DEENDAYAL PORT AUTHORITY (Erstwhile: DEENDAYAL PORT TRUST)

EG/WK/4751/Part (Comp.1)/11

Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch). Gujarat: 370 201. Fax: (02836) 220050 Ph.: (02836) 220038

Dated: 02 /04/2025

To,

Director (Environment) & Member Secretary, Gujarat Coastal Zone Management Authority, Forest & Environment Department, Govt. of Gujarat, Block No.14, 8th floor, Sachivalaya, <u>Gandhinagar – 382 010.</u>

- <u>Sub:</u> "Development of 7 Integrated facilities (Stage I) within the existing Kandla Port Trust limit at District Kutch (Gujarat) by M/s Kandla Port Trust Limited"– <u>Pointwise Compliances of</u> the conditions stipulated in CRZ Recommendations reg.
- Ref.: 1) Letter No. ENV-I0-2014-25-E July, 1, 2015 of Director (Environment) & Member Secretary, GCZMA, Forest & Environment Department, GoG
 - 2) Compliance Report (period up to May, 2017) submitted vide letter dated: 12/6/2017.
 - 3) Compliance Report (period up to Nov., 2017) submitted vide letter dated: 15/12/2017.
 - 4) Compliance Report (period up to May, 2018) submitted vide letter dated: 14(21)/06/2018.
 - 5) Compliance Report (period up to March, 2019) submitted vide letter dated: 30(2)/03(04)/2019.
 - 6) Compliance report (period up to October, 2019) submitted vide letter dated: 14/11/2019.
 - 7) Compliance report (period upto Nov., 2020) submitted vide letter dated 29/12/2020.
 - 8) Compliance report (period upto May, 2021) submitted vide letter dated 07/10/2021.
 - 9) Compliance report (period upto May, 2022) submitted vide letter dated 30/01/2023.
 - 10) Compliance report (period upto Nov., 2022) submitted vide letter dated 20/04/2023
 - 11) Compliance report (period upto May, 2023) submitted vide letter dated 12/09/2023.
 - 12) Compliance report (period upto Nov, 2023) submitted vide letter dated 20/2/2024.
 - 13) Compliance report (period upto May, 2024) submitted vide letter dated 25/07/2024.
 - 14) Compliance report (period upto Dec, 2024) submitted vide letter dated 21/01/2025.

Sir,

It is requested to kindly refer the above cited references for the said subject.

In this connection, it is to state that, the Gujarat Coastal Zone Management Authority vide above referred letter dated 1/7/2015 had recommended 7 project activities of Deendayal Port Authority. Subsequently, the MoEF&CC, GoI had accorded the Environmental & CRZ Clearance vide letter dated 19/12/2016 for the 7 project activities recommended by the GCZMA.

.....Cont.....

Subsequently, DPA vide above referred letters had regularly submitted compliance report of the stipulated conditions, to the Additional Secretary & Director (Env.), F & E Dept., GoG.

Now, as directed under Specific Condition No. 28 mentioned in the CRZ Clearance letter dated 1/7/2015 i.e. A six monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by the DPA on a regular basis to this Department and MoEF&CC, GoI, please find enclosed herewith compliance report (for the period October 2024 to March 2025) of stipulated conditions along with necessary annexures, for kind information & record please (Annexure I).

Further, as per the MoEF&CC, Notification S.O.5845 (E) dated 26.11.2018, stated that "In the said notification, in paragraph 10, in sub-paragraph (ii), for the words "hard and soft copies" the words "soft copy" shall be substituted". Accordingly, we are submitting herewith soft copy of the same via e-mail ID gczma.crz@gmail.com & direnv@gujarat.gov.in.

This has the approval of Chief Engineer, Deendayal Port Authority.

Thanking you.

Yours faithfully, Dy.CE and EMC (I/c)

Deendayal Port Authority

Copy to:

Shri Amardeep Raju, Scientist E, Ministry of Environment, Forest and Climate Change, & Member Secretary (EAC-Infra.1), Indira Paryavaran Bhawan, 3rd Floor, Vayu Wing, Jor Bagh Road, Aliganj, New Delhi- 110 003; E-mail: ad.raju@nic.in

ANNEXURE I

Point wise compliance

COMPLIANCE REPORT (for the period up to October 2024 to March 2025)

Subject: Status of Compliance with the conditions stipulated By Gujarat State Coastal Zone Management Authority, Gandhinagar, in CRZ Recommendation Letter granted for "**Development of 7 integrated facilities (Stage I) within existing Deendayal Authority at Kandla**".

<u>CRZ Recommendations:</u> Letter No. ENV-I0-2014-25-E dated July 1, 2015, of Director (Environment) & Member Secretary, GCZMA, Forest & Environment Department, GoG.

<u>*Note:</u> Based on the recommendation of the GCZMA, MoEF&CC, GoI had accorded Environmental & CRZ Clearance vide letter dated 19/12/2016

Sr.	Conditions in CRZ Recommendation	Compliance
No.	Letter Specific Conditions	
1	The provisions of the CRZ notification of 2011 and subsequent amendments issued from time to time shall be strictly adhered to by the KPT. No activity in contradiction to the Provisions of the CRZ Notification shall be carried out by the KPT.	 a) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) Further, w.r.t. project at Sr. No. 2 & 4 (construction not yet started), it is assured that no activity in contradiction to the Provisions of the CRZ Notification shall be carried out by DPA.
		c) Project at Sr no. 3,5,6 and 7 is already completed.
2	The KPT shall have to ensure that there shall not be any damage to the existing mangrove area.	 a) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) Further, w.r.t. project at sr.no. 2 & 4 (construction not yet started), it is assured that due care shall be taken to
2		protect the existing mangrove area.
3	The KPT shall prepare an emergency plan to protect existing mangroves in case of any eventuality/accident.	DPA had already prepared report through Gujarat Institute of Desert Ecology, Bhuj on Study on present Status, Conservation and Management plan for Mangroves of Deendayal Port region.
4	The KPT shall have to make a provision that mangrove areas get proper flushing water and free flow of water shall not be obstructed.	 a) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) Further, w.r.t. project at sr.no. 2 & 4 (construction not yet started), it is assured that provisions shall be made
		that mangrove areas get proper flushing water and free flow of water shall not be obstructed.
5	The KPT shall have to abide by whatever decision is taken by the GCZMA for violations of CRZ Notification, 2011.	a) Point noted. DPA will abide by whatever decision is taken by the GCZMA for violations of CRZ Notification, 2011.
		b) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A.
6	There shall not be violations of the order dated 9/12/2013 passed by the National Green Tribunal; and accordingly, there shall be no mangrove destruction taking place in the KPT area.	 a) Point Noted. It is hereby assured that due care shall be taken to protect the existing mangrove area. b) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A.
7	No dredging, reclamation or any other project-related activities shall be carried out in the CRZ area categorised as CRZ I (i), and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas, if any, in the region are not affected due to any of the project activity.	project activities (7 project activities) recommended by the GCZMA vide letter dated 1/7/2015 and EC & CRZ Clearance accorded by the MoEF&CC, GoI vide letter dated 19/12/2016.

		dated 03/05/2021 for Regular monitoring of Marine Ecology in and around Deendayal Port Authority (Erstwhile Deendayal Port Trust) and continuous Monitoring Program covering all seasons on various aspects of the Coastal Environs for the period 2021-24. Final Reports for the period 2021-22, 2022-23 & 2023-24, have already been submitted along with compliance report submitted from time to time.
		In continuation of the same, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /72 dated 10/06/2024 for further period of 2024 – 27. A copy of 1 st season report is attached herewith as Annexure B
		b) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A.
8	The KPT shall participate financially in installing and operating the Vessel Traffic Management System in the Gulf of Kachchh and shall also take the lead in preparing and operational sing and updating regularly after getting it vetted by the Indian Coast Guard.	Deendayal Port Authority had already contributed Rs. 41.25 crores, i.e. 25% of the total project cost of 165 crores for installing and operating the VTMS in the Gulf of Kachchh.
9	The KPT shall strictly ensure that no creeks or rivers are blocked due to any activity at Kandla.	a) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A.
		b) Further, w.r.t. project at sr.no. 2 & 4 (construction not yet started), it is assured that no creeks or rivers shall be blocked due to any activity at Kandla.
10	Mangrove plantation in an area of 100 ha. Shall be carried out by the KPT within 2 years in time bound manner on Gujarat coastline either within or outside the Kandla port Trust area, and a six-monthly compliance report along with the satellite	DPA has undertaken Mangrove Plantation in an area of 1600 Hectares since the year 2005. carried out through various agencies. The copy of the details has already been communicated with the earlier compliance reports submitted.
	images shall be submitted to the Ministry of Environment and Forest as well as to this Department without fail.	In addition to the above, DPA appointed M/s GUIDE, Bhuj, for "Regular Monitoring of Mangrove Plantation carried out by DPA" (period 15/9/2017 to 14/9/2018 vide work order dated 1/9/2017 and 24/5/2021 to 23/5/2022 vide work order dated 3/5/2021). The final report submitted by M/s GUIDE, Bhuj, for the years 2017 to 2018 as well as for the year 2021 to 2022 has been submitted in the earlier compliance report submitted.
		Further, vide work order dated 10/06/224 DPA appointed M/s GUIDE, Bhuj, for "Regular Monitoring of Mangrove Plantation carried out by DPA" (Period 10/06/2024 to 09/06/2025) (A copy Inception Report is submitted along with compliance report submitted on 21/01/2025.
11	No activities other than those permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.	a) Point Noted. It is assured that only activities permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.
		b) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A .
12	No groundwater shall be tapped for any purpose during the proposed expansion modernization activities.	a) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A .
		b) Further, w.r.t. Project at Sr. no.2 & 4 (construction not yet started), Water requirement will be met through procurement from GWSSB or private tankers. No ground water shall be tapped.

13	All necessary permissions from different Government Departments/agencies shall be obtained by the KPT before commencing the expansion activities.	DPA had already obtained the necessary Environmental & CRZ Clearance for 7 project activities (dated 19.12.2016). Further, Consent to Establish from GPCB had already been obtained from GPCB for 7 project activities. Moreover, DPA had obtained CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025.
14	No effluent or sewage shall be discharged into sea/creek or in the CRZ area and it shall be treated to conform to the norms prescribed by the GPCB and would be reused /recycled within the plant premises.	a) For completed projects (modification/ strengthening/ up- gradation of existing facilities), Sewage is being treated in the STP of Kandla (1.5 MLD). The treated sewages from STP of DPA are utilized for plantation / Gardening.
		For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure C .
		b) Further, w.r.t. Project at Sr.No.1, kindly refer to the Monitoring reports submitted by M/s KOTPL along with compliance report placed at Annexure A .
15	All the recommendations and suggestion given by the MANTEC Consultants Pvt. Ltd.	DPA has installed Mist Canon at the Port area to minimize the dust.
	in their Comprehensive Environment Impact Assessment report for conservation / protection and betterment of environment shall be implemented strictly by the KPT.	DPA has undertaken the project of dust supersession sprinkling system for the 34 hectare coal storage yard
		Further, DPA has already installed continuous sprinkling system in coal stack yard in DPA (40 ha. area) to prevent dust pollution. Further, to control dust pollution in other area, regular sprinkling through tankers on roads and other staking yards is being done. Regular sweeping of spilled cargo from roads is done by parties on regular basis.
		For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure C .
		For ship waste management, DPA issued Grant of License/Permission to carry out the work of collection and disposal of "Hazardous Waste/Sludge/ Waste Oil" and "Dry Solid Waste (Non- Hazardous)" from Vessels calling at Deendayal Port" through DPA contractors. Further, it is to state that, all ships are required to follow DG Shipping circulars regarding the reception facilities at Swachch Sagar portal.
		Further, DPA has appointed GEMI, Gandhinagar for the work of "Preparation of Plan for Management of Plastic Wastes, Solid Waste, including C&D waste, E-waste, Hazardous waste, including Biomedical and Non- Hazardous Waste in the Deendayal Port Authority" vide Work Order dated 24/01/2023. The work is completed. And final report submitted on along with compliance submitted on 21/01/2025

DPA assigned work to M/s GUIDE, Bhuj, for regular monitoring of Marine Ecology since the year 2017 (From 2017 – 2021), and final reports of the same submitted by GUIDE, Bhuj has already been communicated to the Regional Office, MoEF&CC, GoI, Gandhinagar as well as to the MoEF&CC, GoI, New Delhi along with compliance reports submitted.

Further, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /11 dated 03/05/2021 for Regular monitoring of Marine Ecology in and around Deendayal Port Authority (Erstwhile Deendayal Port Trust) and continuous Monitoring Program covering all seasons on various aspects of the Coastal Environs for the period 2021-24. Final Report for the period 2020-21 has already been submitted along with compliance report submitted dated 07/10/2021

In continuation of the same, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /72 dated 10/06/2024 for further period of 2024 - 27. Copy of 2^{nd} season report is attached herewith as Annexure

As already informed, DPA entrusted work of green belt development in and around the Port area to the Forest Department, Gujarat at Rs. 352 lakhs (Area 32 hectares). The work is completed.

Further, DPA has appointed the Gujarat Institute of Desert Ecology (GUIDE) for "Green belt development in Deendayal Port Authority and its Surrounding Areas, Charcoal site' (Phase-I)" vide Work Order No.EG/WK/4757/Part [Greenbelt GUIDE, dated 31st May 2022. The final report submitted by GUIDE, Bhuj is submitted by compliance report submitted on 12/09/2023.

Further DPA has accorded the work of "Green belt development in DPA and its surrounding area (Phase II) to Gujarat Institute of Desert Ecology (GUIDE), Bhuj for the plantation of 10000 saplings of suitable species vide work order dated 23/06/2023. The same completed. Final report submitted along with compliance report submitted on 21/01/2025

For dredged material management, DPA had issued work order to GUIDE, Bhuj for "Study on dredged material for presence of Contaminants for year 2021-2024. The copy final report submitted by M/s GUIDE, Bhuj for the period 2023-2024 is attached herewith as **Annexure- D**.

In continuation of same DPA issued DPA had issued work order to GUIDE, Bhuj for "Study on dredged material for presence of Contaminants for year 2024-2027 vide work order dated 07/10/2025 A copy of inception report is Attached herewith as **Annexure E**

Further, Dredged Material will be disposed of at designated location as identified by the CWPRS, Pune.

For energy conservation measures, DPA is already generating 20 MW of Wind energy. In addition to it, DPA has commissioned a 45 kWP Solar Plant at Gandhidham.

As pilot project, 2 nos. Liebherr make 120 Ton capacity

		HMCs commissioned on electrical operations on 01/08/2022 & 13/08/2022. Further, 02 nos. Italgru make 120 Ton capacity HMCs are commissioned on electrical operation on 08/09/2023 & 04/01/2024,
		Further, for Oil Spill Management, DPA is already having Oil Spill Contingency Plan in place and Oil Response System as per the NOS-DCP guidelines. A copy of updated oil spill contingency plan is attached herewith as Annexure F
16	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal /marine habitats. The construction activities and dredging shall be carried out only under the constant supervision and guidelines of the Institute of National repute like NIOT.	 a) For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) For the remaining projects Sr. No 2 & 4 (construction not yet started), it is assured that construction activities and dredging shall be carried out only under the constant supervision and guidelines of the Institute of National repute like NIOT.
17	The KPT shall contribute financially for any common study or project that may be proposed by this Department for environmental management / conservation / improvement for the Gulf of Kutch.	Point noted.
18	The construction debris and / or any other of waste shall not be disposed of into the sea, creek or the CRZ areas. The debris shall be removed from the construction site immediately after the construction is over.	 a) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) Further, w.r.t. project at sr.no. 2 & 4 (construction not yet started), it is assured that construction debris and/ or any other of waste shall not be disposed of into the sea, creek or the CRZ areas, and the debris shall be removed from the construction site immediately after the construction is over.
19	The construction camps shall be located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by the construction labours.	compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A.b) Further, w.r.t. project at sr.no. 2 & 4 (construction not
20	The KPT shall regularly updates its Local Oil Spill Contingency and Disaster management Plan in accordance with the National Oil Spill and Disaster Contingency Plan and shall submit the same to the MoEF, GoI and this department after having it vetted through the Indian Coast Guard.	 Deendayal Port already has an update Disaster Management Plan. Copy is attached herewith as Annexure G Further, the Local Oil Spill Contingency Plan is already available with Deendayal Port Trust. Copy is attached herewith as Annexure F DPA has also executed MOU with Oil Companies, i.e. IOCL, HPCL, BPCL etc., for combating the Oil Spill at Kandla
21	The KPT shall bear the cost of the external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	Point noted.
22	The KPT shall take up massive greenbelt development activities in and around Kandla and also within the KPT limits.	

		DPA entrusted work of green belt development in and around the Port area to the Forest Department, Gujarat, at the cost of Rs. 352 lakhs (Area 32 hectares). The plantation is completed. Further, DPA has appointed the Gujarat Institute of Desert Ecology (GUIDE) for "Green belt development in Deendayal Port Authority and its Surrounding Areas, Charcoal site' (Phase-I)" vide Work Order No.EG/WK/4757/Part [Greenbelt GUIDE, dated 31st May 2022. The final report submitted by GUIDE, Bhuj is submitted along with compliance report submitted on 12/09/2023.
		Further DPA has accorded the work of "Green belt development in DPA and its surrounding area (Phase II) to Gujarat Institute of Desert Ecology (GUIDE), Bhuj for the plantation of 10000 saplings of suitable species vide work order dated 23/06/2023. The same is completed. Final report is submitted along with compliance report submitted on 21/01/2025.
23	The KPT shall have to contribute financially for taking up the socio- economic upliftment activities in this region in construction with the Forest and Environment Department and the District Collector/District Development Officer.	The details of the fund earmarked under CSR activities and CSR activities undertaken by DPA to date & proposed activities are placed at Annexure H .
24	A separate budget shall be earmarked for environmental management and socioeconomic activities and details there of shall be furnished to this Department as well as the MoEF, GOI. The details with respect to the expenditure from this budget head shall also be furnished.	& Clearance of other related Expenditure" during BE 2025-
25	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during the construction and operational phases of the project.	 a) For Project at Sr.No. 1 which is under construction, kindly refer compliance submitted by M/s KOTPL (concessionaire of the project) placed at Annexure A. b) DPA is already having Environment Management cell. Further, DPA has also appointed expert agency for providing Environmental Experts from time to time. Recently, DPA appointed M/s Precitech Laboratories, Vapi for providing Environmental Experts vide work order dated 5/2/2021. In addition, it is relevant to submit here that, DPA has appointed Manager (Environment) on contractual basis for the period of 3 years and further extendable to 2 years (Copy of the details has already been communicated with the last compliance report submitted). For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated
26	An Environmental report indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the KPT to this Department as well as to the MoEF&CC, GOI.	

		Gandhinagar is attached herewith as Annexure C.
27	The KPT shall have to contribute financially to support the National Green Corps Scheme being implemented in Gujarat by the GEER Foundation, Gandhinagar, in construction with Forests and Environment Department.	Point Noted.
28	A six-monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by the KPT on regular basis to this department/MoEF, GOI.	report of the conditions stipulated in CRZ recommendation
29	Any other condition that may be stipulated by this department from time to time for environmental protection/management purpose shall also have to be complied with by the KPT.	

ANNEXURE A

Compliance submitted by KOTPL

Kandla Oil Terminal Private Limited

Registered Office: "NEELADRI", 3rd Floor, No. 9, Cenotaph Road, Alwarpet, Chennai - 600 018. Tel: +91-44-4590 2222, 4590 2299, Fax: + 91-44-4590 2200, URL: www.imc.net.in CIN: U60200TN2013PTC092551

Date: 12/05/2025

To,

Executive Engineer (Design) Deendayal Port Authority Administrative Office Gandhidham, Kutch 370201

Sub: Development of Oil Jetty to handle Liquid Bulk and Ship Bunkering Terminal at Old Kandla – Submission of Compliance report for June 2025.

Dear Sir,

This has reference to the captioned subject; we are enclosing herewith the Compliance reports pertaining to KOTPL project.

Kindly acknowledge the receipt of same.

Yours Sincerely,

For Kandla Oil Terminal (P) Limited

Authorised Signatory

Enclosures:

- 1. EC-CRZ Clearance Compliance Report with Annexure
- 2. CRZ Recommendation Compliance Report with Annexure
- 3. NOC/CTE Compliance Report with Annexure
- 4. Monitoring Datasheet

AVEN (A) Naturn pracu

EC Compliance Report for June 2025

Subject: Point-wise Compliance Status Report for Environmental clearance for Developing Integrated Facility within the existing Kandla Port at Kandla, Dist: Kutch by M/s. Kandla Port Trust Limited – Reg.

Ref No: - Environmental Clearance vide Letter No- F. No. 11-82/2011-IA III dated 19.12.2016

Sr. No.	EC Conditions	Compliance Status
PART A	- SPECIFIC CONDITIONS	
1	Construction activity shall be carried out strictly according to the provisions of CRZ Notification 2011 No. construction work other than those permitted in coastal Regulation Zone Notification Shall be carried out in Coastal Regulation Zone area	It is assured that no activity other than those permissible in the Coastal Regulation Notification shall be carried out in the CRZ area.
11	The project proponent shall ensure that there shall be no damage to the existing mangrove patches near the site and also ensure the free flow of water to avoid damage to the mangroves.	It is assured that due care shall be taken to protect existing mangrove patches near the site and the free flow of water to avoid damage to the mangroves.
Ш	The project proponent shall ensure that no creeks or rivers are blocked due to any activities at the project site, and free flow of water is maintained.	It is assured that no creeks or rivers shall be blocked due to any activities at the project site, and the free flow of water shall be maintained.
iv	The shoreline should not be disturbed due to dumping. Periodical study on shoreline changes shall be conducted, and mitigation carried out, if necessary. The details shall be submitted along with the six-monthly monitoring reports.	No shoreline is disturbed due to dumping.
v	The foreshore facilities shall be set up in the stable/low or medium eroding site as demarcated in the shoreline change map by NCSCM. Further, NCSCM shall be authorized to monitor the project during the construction and operation phases so as to ensure that the foreshore facilities cause minimum or	Ongoing construction is in line with and strictly adhering to EC-CRZ conditions issued about this project.

Sr. No.	EC Conditions	Compliance Status
	no impact to the geomorphological systems.	
vI	The PP should take measures to ensure that construction materials/debris (mortar, cementing material, etc.) do not fall into the water. Construction materials including labor camps should be located at an adequate distance from CRZ areas.	It is assured that the construction activities are being carried out, with due care, and that the construction material /debris does not fall into the water. Further, it is also assured that construction waste will be collected at a designated location before being sent to the disposal site.
VII	Dredged materials should be analyzed for the presence of contaminants and also to decide the disposal options. Monitoring of dredging activities should be conducted, and the findings should be shared with the Gujarat SPCB and the Regional office of the Ministry.	The project is under construction stage, and no dredging activity has been carried out to date.
vili	PP in consultation with GCZMA should prepare a regional strategic impact assessment report with a special focus on the region where the PP started construction without permission. The cost towards this study should be borne by the PP	Not Applicable
ix	A comprehensive and integrated conservation plan including a detailed bathymetry study and protection of creeks/mangrove area including buffer zone, mapping of coordinates, running length, HTL, and CRZ boundary should be put in the palace. The plan should take note of all the conditions of approvals granted to all the project proponents in this area, and the reported cases of the disappearance of mangroves near the project site. The preservation of the entire area to maintain the fragile ecological conditions should be a part of the plan in relation to the creek and mangrove conservation.	DPA has appointed the Gujrat Institute of Desert Ecology, Bhuj, for the work.
(The commitments made during the Public Hearing and recorded in the	Not Applicable

Sr. No.	EC Conditions	Compliance Status
	minutes shall comply with by letter and spirit. A hard copy of the action taken shall be submitted to the ministry.	
xi	All the conditions stipulated in the earlier clearance including the recommendations of the Environment Management Plan, and Disaster Management Plan shall be strictly complied with.	Noted
xii	Disposal sites for excavated material should be so designed that the revised land use after dumping and changes in the land use pattern does not interfere with the natural drainage.	It is assured that; construction waste will be collected at a designated location before sending to the disposal site. Also, the land use pattern will not interfere with the natural drainage.
xili	PP shall install a continuous automatic ambient air quality monitoring system (24x7) for all relevant parameters at two locations to monitor the ambient air quality status of the project area. Data should be transferred online to CPCB and SPCB websites.	The Environmental Monitoring Reports following CPCB guidelines and as submitted by MoEFCC & NABL accredited laboratory is enclosed as Annexure.
xiv	The groundwater shall not be tapped within the CRZ areas by the PP to meet the water requirement in any case.	Water requirements will be met through GWSSB or private tankers. No groundwater shall be tapped.
XV	Necessary arrangements for the treatment of the effluents and solid wastes must be made and it must be ensured that they conform to the standards laid down by the competent authorities including the Central or State Pollution Control Board and under the Environment (Protection) Act, 1986.	Noted, the project is under the construction stage.
xvi	All the operational areas will be connected with the network of liquid waste collection corridors comprising of stormwater, oily waste and sewage collection pipelines.	Noted, the project is under the construction stage.

Sr. No.	EC Conditions	Compliance Status
xvii	Automatic /online monitoring system (24x7) monitoring devices) for water pollution in respect of flow measurement and relevant pollutants in the treatment system to be installed. The data to be made available to the respective SPCB and in the Company's website.	Noted
xvili	Marine ecology shall be monitored regularly also in terms of seaweeds, sea grasses, mudflats, sand dunes, fisheries, echinoderms, shrimps, turtles, corals, coastal vegetation, mangroves, and other marine biodiversity components as part of the management plan. Marine ecology shall be monitored regularly also in terms of all micro, macro, and mega floral and faunal components of marine biodiversity.	Deter Deter
xix	Measures should be taken to contain, control, and recover the accidental spills of fuel and cargo handles.	Noted, the project is under the construction stage.
XX	All the mitigation measures submitted in the EIA report shall be prepared in a matrix format and the compliance for each mitigation plan shall be submitted to the RO, MoEF&CC along with half yearly compliance report.	Noted
XXI	Ships/barges shall not be allowed to release any oily bilge waste or ballast water in the sea. Any effluents from the Jetty which have leachable characteristics shall be segregated and recycled/disposed of as per SPCB guidelines.	Noted, the project is under the construction stage.
xxii	The location of DG sets and other emission-generating equipment shall be decided keeping in view the predominant wind direction so that emissions do not affect nearby	Not Applicable

Sr. No.	EC Conditions	Compliance Status
	residential areas. Installation and operation of DG sets shall comply with the guidelines of CPCB.	
xxiii	All the mechanized handling systems and other associated equipment such as hoppers, belt conveyors, stackers cum reclaimers shall have integrated dust suppression systems. Dust suppression systems shall be provided at all transfer points.	handling of liquid cargo.
xxiv	No product other than permitted under the CRZ notification, 2011 shall be stored in the CRZ area.	It is hereby assured that only products permitted under the CRZ Notification, 2011 shall be stored in the CRZ area.
xxv	It shall be ensured by the Project Proponent that the activities do not cause disturbance to the fishing activity, movements of fishing boats and destruction of mangroves during the construction and operation phase.	It is assured that, due care will be taken so
xxvi	As proposed, a green belt over an area of 36.8 ha shall be developed with at least 10-meter-wide green belt on all sides along the periphery of the project area, in the downward direction, and along roadsides etc. Selection of plant species shall be as per the CPCB guidelines in consultation with the DFO.	Noted.
xxvii	Mangrove plantation in an area of 100 ha. shall be carried out by KPT within 2 years in a time bound manner. Action taken report shall be submitted to the Regional Office of MoEF &CC.	Not Applicable
xxvili	Municipal solid wastes and hazardous wastes shall be managed as per the Municipal Solid Waste Rule, 2016 and Hazardous Waste Management Rule, 2016.	Noted.
xxix	The Project Proponent shall take up and earmark adequate funds for socio- economic development and welfare measures as proposed under the CSR program. This shall be taken up on	Noted, the project is under the construction stage.

Sr. No.	EC Conditions	Compliance Status
	priority.	
XXX	The project proponent shall set up a separate environmental management cell for the effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.	A MoEFCC & NABL-accredited laboratory with expert manpower has assigned the work of monitoring. The Environmental Monitoring Reports are enclosed herewith as Annexure.
xxxi	The funds earmarked for the environment management plan shall be included in the budget, and this shall not be diverted for any other purposes.	Noted
xxxii	The proponent shall abide by all the commitments and recommendations made in the EIA/EMP report and also during their presentation to the EAC.	Noted, the project is under the construction stage.
xxxiii	The company shall prepare an operating manual in respect of all activities. It shall cover all safety & environmental related issues and systems. Measures to be taken for protection. One set of the environmental manual shall be made available at the project site. Awareness shall be created at each level of management. All the schedules and results of environmental monitoring shall be available at the project site office.	Noted, the project is under the construction stage.
xxiv	Corporate Social Responsibility. a. The Company shall have a well-laid- down Environment Policy approved by the Board of Directors. b. The Environment Policy shall prescribe standard operating processes/procedures to bring into focus any infringements/deviations/ violations of the environmental or forest norms/ conditions. C. The bierarchical custom	Noted.
	c. The hierarchical system or Administrative Order of the company to deal with environmental issues and for	Noted.

Sr. No.	EC Conditions	Compliance Status	
	ensuring compliance with the environmental clearance conditions shall be furnished. d. To have proper checks and balances, the company shall have a well-laid-down system of reporting non-compliances/ violations of environmental norms to the board of Directors of the company and/or shareholders or stakeholders at large.		
B. GEN	NERAL CONDITIONS:		
(i) ·	The project authorities must strictly adhere to the stipulations made by the State Pollution Control Board (SPCB), State Government, and any other statutory authority.	L	
(11)	Full support shall be extended to the officers of this Ministry/ Regional Office at Bhopal by the project proponent during the inspection of the project for monitoring purposes by furnishing full details and an action plan including action is taken reports in respect of mitigation measures and other environmental protection activities.	Full support shall be extended to the regulatory officers during the inspection and furnishing required project details.	
(iii) A six-Monthly monitoring report shall need to be submitted by the project proponents to the Regional Office of this Ministry at Bhopal regarding the implementation of the stipulated conditions.		Noted.	
(iv)	Ministry of Environment, Forest and Climate Change or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary, in the interest of the environment and the same shall be complied with.	Noted.	
(v)	The Ministry reserves the right to revoke this clearance if any of the conditions stipulated have not complied	Noted.	

Sr. No.	EC Conditions	Compliance Status		
	with the satisfaction of the Ministry.			
(vi)	In the event of a change in the project profile or change in the implementation agency, a fresh reference shall be made to the Ministry of Environment, Forest and Climate Change.			
(vii)	The project proponents shall inform the Regional Office as well as the Ministry, of the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work.	Noted.		
(viii)	A copy of the clearance letter shall be marked to the concerned Panchayat/local NGO, if any, from whom any suggestion/ representation has been made or received while processing the proposal.	Complied.		
(ix)	A copy of the environmental clearance letter shall also be displayed on the website of the concerned State Pollution Control Board. The EC letter shall also be displayed at the Regional Office, District Industries centre and Collector's Office/Tehsildar's office for 30 days.	Complied.		
11	These stipulations would be enforced among others under the provisions of the Water (Prevention and Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification 1994, including the amendments and rules made thereafter.			
12	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project	Noted, the project is under the construction stage. Due statutory clearances applicable, will be taken during the course of respective project stages as per the condition stipulated.		

Sr. No.	EC Conditions	Compliance Status	
	proponents from the respective competent authorities.		
13	The project proponent shall advertise in at least two local Newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental and CRZ Clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen on the website of the Ministry of Environment, Forest and Climate Change at <u>http://www.envfor.nic.in</u> . The advertisement should be made within Seven days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of this Ministry at Bhopal.		
14	This Clearance is subject to a final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs Union of India in Writ Petition (Civil) No. 460 of 2004 as may be applicable to this product.	Noted.	
15	The status of compliance with the various stipulated environmental conditions and environmental safeguards will be uploaded by the project proponent on its website.	Noted.	
16	Any appeal against this Clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.	Noted.	
17	A copy of the clearance letter shall be sent by the proponent to the concerned Panchayat, Zilla Parishad/Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/ representations, if any,	Complied.	

Sr. No.	EC Conditions	Compliance Status	
	were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.		
18	The proponent shall upload the status of compliance with the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEFCC, the respective Zonal Office of CPCB and the SPCB.	Noted.	
19	The environmental statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEFCC by e-mail.	Noted.	

SINA ANDLA No.

CRZ Compliance Report for June 2025

Subject: Point-wise Compliance Status Report for CRZ clearance for Developing integrated facility within the existing Kandla Port at Kandla, Dist: Kutch by M/s. Kandla Port Trust Limited – Reg.

Ref No: - GCZMA CRZ recommendation vide Letter No – <u>ENV-10-2014-25-E Cell</u> dated 01.07.2015

S. No.	CRZ Conditions	Compliance Status				
	SPECIFIC CONDITIONS					
shall be strictly adhered to by the KPT. No activity Pri		It is assured that no activity contradicting the Provisions of the CRZ Notification shall be carried out.				
2.	The KPT shall have to ensure that there shall not be any damage to the existing mangrove area.	It is ensured that due care shall be taken to protect the existing mangrove area.				
3.	The KPT shall prepare an emergency plan to protect existing mangroves in case of any eventuality/accident	Not Applicable				
4.	The KPT shall have to make a provision that mangrove areas get proper flushing water and free flow of water shall not be obstructed.	It is assured that provisions are being made that mangrove areas get proper flushing water and free flow of water shall not be obstructed.				
5.	The KPT shall have to abide by whatever decision taken by the GCZMA for violations of CRZ notification 2011	Decisions taken by the GCZMA for violations of CRZ Notification, 2011, will be abided by.				
6.	There shall not be violations of the order dated 9- 12-2013 passed by the National Green Tribunal, and accordingly, there shall be no mangrove destruction taking place in the KPT area.	It is assured that due care shall be taken to protect the existing mangrove area.				
7.	No dredging, reclamation or any other project- related activities shall be carried out in the CRZ area categorized as CRZ I (i), and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas, if any, in the region are not affected due to any of the project activities.	Noted				
8.	The KPT shall participate financially in installing and operating the Vessel Traffic Management System in the Gulf of Kachchh and shall also take the lead in preparing and operational sing the Regional Oil Spill Contingency plan in the Gulf of Kachchh.	Not Applicable				
9.	The KPT shall strictly ensure that no creeks or rivers are blocked due to any activity at Kandla.	It is assured that no creeks or rivers shall be blocked due to any activity at Kandla.				

S. No.	CRZ Conditions	Compliance Status		
10.	Mangrove plantation in an area of 100 ha. shall be carried out by the KPT within 2 years in a time- bound manner on the Gujarat coastline either within or outside the Kandla Port Trust area, and a six-monthly compliance report along with the satellite images shall be submitted to the Ministry of Environment and Forests as well as to this Department without fail.	Not Applicable		
11.	No activities other than those permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.	It is assured that only activities permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.		
12.	No groundwater shall be tapped for any purpose during the proposed expansion/modernization activities.	Water requirements will be met through GWSSB or private tankers. No groundwater shall be tapped.		
13.	All necessary permissions from different Government Departments/agencies shall be obtained by the KPT before commencing the expansion activities.	Noted		
14.	No effluent or sewage shall be discharged into the sea/creek or in the CRZ area, and it shall be treated to conform to the norms prescribed by the Gujarat Pollution Control Board and would be reused/recycled within the plant premises.	e construction phase		
15.	All the recommendations and suggestions given by Mantec Consultants Pvt. Ltd. New Delhi in their Comprehensive Environment Impact Assessment report for conservation/protection and betterment of the environment shall be implemented strictly by the KPT.	Noted		
16.	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal/marine habitats. The construction activities and dredging shall be carried out only under the constant supervision and guidelines of the Institute of National repute like NIOT.	It is assured that construction activities being carried out under constant supervision.		
17.	The KPT shall contribute financially to any common study or project that may be proposed by this Department for environmental management/conservation /improvement for the Gulf of Kutch.	Not applicable		
18.	The construction debris and/or any other type of waste shall not be disposed of into the sea, creek, or in CRZ areas. The debris shall be removed from	It is assured that the construction activities are being carried out, with due care, and that the construction material /debris does not		

MIA

S. No.		Compliance Status		
	the construction site immediately after the construction is over.	that construction waste will being collected at a designated location before being sent to the disposal site.		
19.	The construction camps shall be located outside the CRZ area, and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel, and it shall be ensured that the environmental conditions are not deteriorated by the construction labours.	No construction camps on the site. Only Local laborers are involved.		
20.	The KPT shall regularly update their Local Oil Spill Contingency and Disaster Management plan in consonance with the National Oil Spill and Disaster Contingency Plan and shall submit the same to this Department after having it vetted through the Indian Coast Guard.			
21.	The KPT shall bear the cost of the external agency that may be appointed by this Department for supervision/ monitoring of proposed activities and the environmental impacts of the proposed activities.			
22.	The KPT shall take up massive greenbelt development activities in and around Kandla and also within the KPT limits.	Not applicable		
23.	The KPT shall have to contribute financially for taking up the socio-economic upliftment activities in this region in consultation with the Forests and Environment Department and the District Collector/ District Development officer.	Not applicable		
24.	A separate budget shall be earmarked for environmental management and socio-economic activities, and details thereof shall be furnished to this Department as well as MoEF,GOI. The details with respect to the expenditure from this budget head shall also be furnished.	Noted		
25.	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during the construction and operational phases of the project.	A MoEFCC & NABL-accredited laboratory with expert manpower has assigned the work of monitoring. The Environmental Monitoring Reports are enclosed herewith as Annexure.		
26.	quality in the coastal and marine environment	Noted. The Environmental Monitoring Reports following CPCB guidelines and as submitted by MoEFCC & NABL accredited laboratory enclosed as Annexure.		

S. No.	CRZ Conditions	Compliance Status
27.	The KPT shall have to contribute financially to support the National Green Corps Scheme being implemented in Gujarat by the GEER Foundation, Gandhinagar, in consultation with the Forests and Environment Department	Not applicable
28.	A six-monthly report on compliance with the conditions mentioned in this letter shall have to be furnished by the KPT on a regular basis to this Department/ MoEF&CC, GOI	Noted
29.	Any other conditions that may be stipulated by this Department/ MoEF&CC, GOI from time to time for environmental protection/management purposes shall also have to be complied with by the KPT.	Noted.

Consent Compliance Report for June 2025

Subject: Point-wise Compliance Status Report for Consent to Establish for Developing Integrated Facility within the existing Kandla Port at Kandla, Dist: Kutch by M/s. Kandla Port Trust Limited – Reg.

Ref No: - PC/CCA-KUTCH-1231/GPCB ID 44000 dated 22.12.2015 and Amendment of Consent to Establish dated 04.12.2017

Sr. No.	Condition	Compliance Status	
2.	SPECIFIC CONDITIONS:		
	conditions of CRZ C	hall strictly adhere to all learance issued by the Forest partment vide order no. ENV- i 01/07/2015.	All conditions of CRZ Clearance issued vide order no. ENV-10- 2014-25-E dated 01/07/2015 will be strictly adhered to. The CRZ compliance report is attached.
	Trust shall not insta construction activit mentioned above,	litionally that Kandla Port II & commission, including the y of seven activities without obtaining rance from MoEF&CC, New	The construction activity was commissioned after due agreement and as per Environment Clearance was issued in the year 2016 by MoEF&CC, New Delhi.
	conditions of the Te	nall strictly adhere to all erms of Reference (ToR) (vide 82/2011-IA.III) by MoEF&CC,	Noted
3.	CONDITION UNDER THE		
	3.1 There shall be no in from the loading ar port and other anci	Not applicable	
	3.2 The quantity of Dor shall not exceed 6.4	The project is under the construction stage	
	3.3 The quality of the s following standards	The project is under the construction stage	
	PARAMETERS	GPCB NORMS	
	BOD (5 days at 20 °C)	20 mg/L	

12-1

	Susp	ended solids	30 mg/L		
	Resi	dual Chlorine	Minimum	0.5 mg/L	
	3.5 1 r s	Sewage shall be d ank/soak pit syste "he unit shall insta neasuring catego ichedule II of "Wa Pollution) Cess Ac vater.	Noted Noted		
4.	1		FAIR ACT 1	981-	
		CONDITION UNDER THE AIR ACT 1981: 4.1 There shall be no use of fuel hence there shall be no flue and process gas emission from storage handling activity and other ancillary operations.			Not Applicable
	4.2	The applicant sh platform, etc at air emissions ar inspection. The various sources by numbers suc shall be painted identification.	Not Applicable		
	4.3	The concentration in the ambient a industry shall not hereunder as per Standards issue November-2009	along with compliance reports. The latest environmental		
	Sr. No.	No. Pollutant Time Weighted	Time Weighted Average	Concentration in Ambient air in µg/m ³	monitoring reports are enclosed as Annexure.
	1.	Sulphur	Annual	50	
		Dioxide (SO ₂)	24Hours	80	
	2.	Nitrogen	Annual	40	
		Dioxide (NO ₂)	24Hours	80	
	3.	Particulate Matter (Size <10 µm) OR	Annual 24Hours	60 100	

		PM10			
	4.	Particulate Matter (Size <2.5µm) OR PM2.5	Annual 24Hours	40 60	
	4.4	the following lev Between	industrial unit	shall not exceed P.M.:75 dB(A)	The latest environmental monitoring reports are enclosed as Annexure.
5.	COND	ITIONS UNDER HA			
	5.1	The applicant sha facilities for each per Hazardous W & Transboundary amended from ti	type of Haza /aste (Manage / Movement)	rdous Waste as ement, Handling	Noted, the Project is under construction stage.
	5.2 The applicant shall obtain membership of a common TSDF site for the disposal Hazardous. Waste as categorized in Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2008, as amended from time to time.			Noted, the Project is under construction stage.	
5.	GENE	RAL CONDITIONS			
	6.1	Any change in per working conditio consent form/ore intimated to this	ns as mention der should imi	ed in the	Noted
	6.2 The waste generator shall be totally responsible for (i.e. Collection, storage, transportation and ultimate disposal) the wastes generated.				Noted
	6.3	Records of waste and annual return Gujarat Pollution 31st January of ev	Noted		
	6.4	In case of any acci shall be submitte Pollution Control	d in Form- 5 t		Noted

6.5 Applicant shall comply with the relevant provision of "Public Liability Insurance Act-91".	Noted
6.6 Unit shall take all concrete measures to show tangible results in waste generation reduction, avoidance, reuse, and recycling. Action taken in this regard shall be submitted within 03 months and also along with Form 4.	Noted, the project is under the construction stage
6.7 Industry shall have to display online data outside the main factory gate with regard to the quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous waste generated within the factory premises.	Noted, the project is under the construction stage
6.8 Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 10 meters width is developed.	Noted.
6.9 The applicant shall have to submit the returns in the prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water (Prevention and Control of Pollution) Cess Act 1977.	Noted, the project is under the construction stage

AINA KANDLA 370210 30

Monitoring Report (for June 2025 submission)

Sr. No.	Particulars	Reply					
1.	Project type: River valley/ Mining/Industry/ thermal/nuclear/Other (specify)	Development of Oil Jetty to handle Liquid Bull and Ship bunkering Terminal at Old Kandla					
2.	Name of the project	Development of Oil Jetty to handle Liquid Bull and Ship bunkering Terminal at Old Kandla					
3.	Clearance Letter (s). OM no and date	MoEF&CC File No. F.No.11-82/2011-IA-III Proposal No. IA/GJ/MIS/28772/2011 Dated 16 th May 2016					
4.	Location a) District (s)	Location: a) Kutch					
	b) State (s)	b) Gujarat					
5.	Address for Correspondence a) address of Concerned Project Chief Engineer (with pin code & telephone/telex/fax numbers b) Address of Executive project Engineer/manager/ (with pin code fax numbers)	Regional Head (IMCL) Near IOCL foreshore Terminal, Kandla Gandhidham, Kutch 370 201 Dy. General Manager Near IOCL foreshore Terminal, Kandla Gandhidham, Kutch 370 201					
6.	Salient features a) Of the Project b) Of the Environmental Management Plan	Jetty: 3.39 MMTPA Tank farm: About 1,37,000 KL & Allied Facilities					
7.	Production Details during compliance period and (or) during the previous financial year	The project is under the construction stage.					
3.	Breakup of the project area a) Submergence area: forest & non-forest b) Others	N/A					
э.	Breakup of the project affected population with enumeration of those loing houses/dwelling units only agricultural land & landless laborer's/artisan	Not Applicable					

DATA SHEET

_	in non-torest	N/A
2.	 d) Comments on the viability & sustainability of compensatory a forestation programmed in the light of actual field experience so far The status of clear felling in non-forest 	N/A
	a forestation, if any	
	c) The status of compensatory	N/A
	b) The status of clear felling	N/A
	a) The status of approval for diversion of forest land for non-forestry use	N/A.
de la	Forest land requirement	Nil
1.	e) Actual expenditure incurred on the environmental management plans so far.	Rs. 04 Lakhs
	d) Actual expenditure incurred on the project	Rs. 111.62 Cr.
	of environmental management plans so far.	
	c) Benefit cost ratio/Internal rate of Return and the year of assessment Whether (c) includes the cost	
	 b) Allocation made for environmental management plans with item wise and year wise break-up 	
	prices reference	Revised project cost: Rs. 343 Cr. (Estimated)
10.	Financial details a) Project cost as originally planned and subsequent revised estimates and the year of	Estimated Project cost: Rs. 233.50 Cr.
	of only provisional figures, if a survey is carried out give details and years of survey).	
	(please indicate whether these figures are based on any scientific and systematic survey carried out	
	a) SC. ST/Adivasis b) Others	

	areas (such as the submergence area of the reservoir, approach roads), if any, with quantitative information.	1. Sec. 1. Sec		
13.	Status of construction a) Date of commencement (Actual and/or planned) b) Date of completion (Actual and/or planned)	The project is under the construction stage. Award of concession: December 2020 Planned date of Completion: August 2026		
14.	Reasons for the delay if the Project is yet to start	The project is under construction stage, and delayed because of the Pandemic & Local hindrances.		
15.	Date of site visited a) The dates on which the project was monitored by the regional office on pervious occasion. if any b) The date site visit for this monitoring report	No		
16.	Details of the correspondence with project authorities for obtaining action plans/information on status of compliance to safeguard other than the routine letters for logistic support for site visit. (The first monitoring report may contain the details of all the letters issued so far but the later reports may cover only the letters issued subsequently.)	Noted.		

MINA ANDLA 370210 m

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC

			TEST	REPOR	RT		
Name Of Customer	M/s. KOTPL.						
Address Of Customer	Opp. Shirva Railway Crossing						
	Near loc Foreshore Terminals New Kandla - 370210						
Report Dated	14/10/2024						
Sample Drawn By	Vendor on 08/10/2024 Sample Received On 09/10/2024						
Start of Analysis	10/10/2024			End Of	Analysis	12/10/2024	
Monitoring For	Ambient Air Monitoring				ng Location	Near Jeety Landfall Point	
Sampling Duration	24 Hrly	i	1.3.6.3	Recent	or Height		
Ambient Temperature	Max- 3	2.7ºC, Min	- 24.8°C	Relative	Humidity	2.00 meter from G.L.	
Average Wind Speed	9.3 Km	/Hr		Wind D	rection	Max-85.2%, Min- 79.1% From SW	
Flow (PM 10)	1.2 Cu	be Meter(1	200LPM	Flow (P	M 2 5)	16:67 LPM	
Sample/Report No.	1.2 Cube Meter(1200LPM) GE/LAB/AAQ/KOTPL-1				Qty & Pkng.	F.P(2Nos) & CT Bladde	
Limits	Nationa	Ambient	Air Quali			& 50 ml P.B. (3 Nos)	
Parameters	Unit	Duration	Result	Limits	Standards Vide GSR 826(E)16.11.2009 imits Methods of Analysis		
General Parameters		1			moniousio	n nidiyala	
Darticulate matter		Laur		1	EDA/605/D	06/010- /0	
ess than 10 micron	µg/m³	24 Hrs	64.36	100	EPA/625/R-96/010a (Compendium Method IO-2.1): 2017		
Particulate matter ess than 2.5 micron	µg/m ³	ug/m ³ 24 Hrs 32 41 60 USEPA Method Aerosol Science					
Sulphur Dioxide	µg/m ³	24 Hrs	10.49	Tech FRM 35(4)339-342: 2017 80 IS 5182 (part II) 2001, Reaff: 2017			
Equipment Used: - Fine Model: EEC-115MFC), Respirable Dust Sampl Date of Calibration: - 18 Note - 1. This Test Report This Test Report shall This report, in full or in	e, Sr. No 3/11/202 ort refers	224-I-21 3. Next Ca only to the	(Make: E libration l sample	2023, Ne Enviro Ins Due: - 17/ tested	xt Calibration truments), Mo 11/2024	Due: - 17/11/2024, del: ECC-RDS- 405)	

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreananviro.com, krchavan@mygreenanviro.com
- ⊕ www.mygreenenviro.com
- 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC NABL Certified as per ISO/IEC 17025:2017

ISO 9001:2016, Reg. No. 18/QBL75 ISO 14001:2015, Reg. No. 18/EBL76 OHSAS 45001: 2018, Reg. No. 19/OCF79

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT

TEST REPORT

Name Of Customer	M/s. KOTPL.							
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210							
Report Dated	14/10/2024							
Sample Drawn By	Vendor on 08/10/2024			Sample	Received On	09/10/2024		
Start of Analysis	10/10/2024			End Of /	Analysis	12/10/2024		
Monitoring For	Ambient Air Monitoring			Sampling Location		Near Jeety Landfall Point		
Sampling Duration	24 Hrly			Receptor Height		2.00 meter from G.L.		
Ambient Temperature	Max- 32.7ºC, Min- 24.8ºC			Relative Humidity		Max-85.2%, Min- 79.1%		
Average Wind Speed	9.3 Km/Hr			Wind Direction		From SW		
Sample/Report No.	GE/LAB/AAQ/KOTPL-01			Sample Qty & Pkng.		CT Bladder & 30 ml P.B. (3 Nos)		
Limits	National Ambient Air Quality Standards Vide GSR 826(E)16.11.2009							
Parameters	Unit Duration Result			Limits	Methods o	f Analysis		
General Parameters	-							
Oxides of Nitrogen	µg/m ³ 24 Hrs 14.29			80	IS 5182 (part VI) 2006, Reaff:2017			
Respirable Dust Samp Date of Calibration: - 1	le, Sr. N 8/11/202	o. 224-I-21 23, Next Ca	(Make:	Enviro Ins Due: - 17/	truments), Mo /11/2024	odel: ECC-RDS- 405)		

Note - 1. This Test Report refers only to the sample tested

2 This Test Report shall not be reproduced except in full, without written approval of the Laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

For GREEN ENVIRO

Authorized Signatory

-End of the Report-

- Regd.Office : Sr.No.167/28 & 168/28, Piot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenanviro.com, krchavan@mygreenenviro.com

www.mygreenenvirp.com

 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC

4			TEST	REPOR	Т		
Name Of Customer	M/s.KOTPL						
Address Of Customer	Opp. Shirva Railway Crossing,						
	Near loc Foreshore Terminals New Kandla – 370210						
Report Dated	14/10/2024						
Sample Drawn By	Vendor	on 08/10/	09/10/2024				
Start of Analysis	10/10/2					12/10/2024	
Monitoring For	Ambier	nt Air Moni	toring	Sampling Location		Tank Farm Area	
Sampling Duration	24 Hrly			Recepto		2.00 meter from G.L.	
Ambient Temperature	Max- 3	2.5°C, Min	- 24.6°C		Humidity	Max-85.4%, Min- 79.3%	
Average Wind Speed	9.2 Km		Service State	Wind Direction		From SW	
Flow (PM 10)	1.2 Cut	be Meter(1	200LPM)	Flow (PN		16:67 LPM	
Sample/Report No.	GE/LAB/AAQ/KOTPL-2			Sample Qty & Pkng.		F.P(2Nos)& CT Bladder & 50 ml P.B.(3 Nos)	
Limits	Nationa	Ambient	Air Qualit	y Standar	ds Vide GSR	826(E)16.11.2009	
Parameters	Unit	Duration	Result	Limits	Methods of		
General Parameters				Linns	1 moulous o	Analysis	
Particulate matter less than 10 micron	µg/m ³	24 Hrs	62.37	100	EPA/625/R-96/010a (Compendium Method IO-2.1): 2017		
Particulate matter less than 2.5 micron	µg/m³	24 Hrs	29.18	60 USEPA Method Aerosol Science Tech FRM 35(4)339-342: 2017			
Sulphur Dioxide	µg/m ³	24 Hrs	9.52	80	IS 5182 (part II) 2001, Reaff: 2017		
Respirable Dust Samp Date of Calibration: - 1 Note - 1. This Test Rep	ort refers	3, Next Ca 225-I-21 3, Next Ca 5 only to th	(Make: E libration (Due: - 17/1 Enviro Inst Due: - 17/1	11/2024, ruments), Mo 11/2024		
3.This report, in full or i	n part, sł	nall not be	d except i used for a	n full, with advertising	out written ap a or legal action	proval of the Laboratory on.	

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenerviro.com, krchavan@mygreenerviro.com
- www.mygreenenviro.com
- 020-25817978 M : +91 8208539774 / 9767684521 9861460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC NABL Certified as per ISO/IEC 17025:2017

ISO 0001:2016, Reg. No. 18IQBL75 ISO 14001:2015, Reg. No. 18|EBL76 OHSAS 45001: 2018, Reg. No. 19IOCF79

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT

TEST REPORT

Address Of Customer		M/s.KOTPL.					
	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210						
Report Dated	14/10/2	024	10				
Sample Drawn By	Vendor	on 08/10/	2024	Sample	Received On	00/10/2024	
Start of Analysis	10/10/2024			End Of A		12/10/2024	
Monitoring For	Ambient Air Monitoring				Location	The second s	
	24 Hrly			Receptor		Tank Farm Area 2.00 meter from G.L.	
					Humidity		
	9.2 Km/Hr			Wind Din		Max-85.4%, Min- 79.3% From SW	
and the second se	GE/LAB/AAQ/KOTPL-02			Sample Oty & Pkng		CT Bladder & 30 ml P.B.(3 Nos)	
Limits	National Ambient Air Quality Standards Vide GSR				826(E)16 11 2009		
Parameters					Methods o		
General Parameters			1		1	Trindiyaia	
Oxides of Nitrogen	μg/m ³	24 Hrs	12.35	80	IS 5182 (na	rt VI) 2006, Reaff:2017	
Respirable Dust Sample Date of Calibration: - 18 Note - 1. This Test Repo 2 This Test Report shall 3 This report, in full or in	ort refers I not be r	only to the only t	libration le sample d except	Due: - 17/1 tested in full_with	ruments), Mo 11/2024 out written ar	del: ECC-RDS-405)	

Authorized Signatory

-End of the Report-

- 9 Regd.Office : Sr No. 167/28 & 168/28, Plot No. 7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

WWW.mygreelienviro.com

C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

Sample/Report No. Name Of Customer Address Of Customer Report Dated Date Of Sampling Date Of Analysis	GE/LAB/ANM/KC M/s. KOTPL. Opp. Shirva Rail Near loc Foresho 14/10/2024 Vendor on 08/10/		andla – 370210		
Address Of Customer Report Dated Date Of Sampling	Opp. Shirva Rail Near loc Foresho 14/10/2024	way Crossing, are Terminals New K	andla – 370210		
Report Dated Date Of Sampling	Near loc Foresho 14/10/2024	way Crossing, yre Terminals New K	andla – 370210		
Date Of Sampling	14/10/2024	a contractor rectric	Variala = 370210		
	Vendor on 08/10				
Date Of Analysis	tondor on our low	/2024			
Care Of Analysis	10/10/2024	energy and the second se			
Monitoring For	Ambient Noise M	onitoring			
Sampling Location	Near Tank Farm				
entitios	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time				
Time Of Sampling	 Day time shall mean from 06:00 A.M. to 10:00 P.M. Night time shall mean from 10:00 P.M. to 06:00 A.M 				
T B L L B B B B B B B B B B B B B B B B	ESULTS OF AN	ALYSIS (DAY TIME	1		
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	65,2	75	IS- 9989-1991		
R	ESULTS OF ANA	ALYSIS (NIGHT TIM	IE)		
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	50.1 70 IS- 9989-1991				
REMARK/OBSERVATIONS: Mo	nitoring results ar	e well within the limi	ts prescribed by CDCD		
Equipment Used: Digital Noise le					

2. Test report shall not be reproduced except in full, without written approval of the laboratory

- 3. This report, in full or in part, shall not be used for advertising or legal action.
 - ---End of the Report---
- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavnn@mygreenenviro.com

Www.mygreenenviro.com

- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

TEST REPO	axi					
GE/LAB/ANM/K	OTPL 2					
	011 22					
Opp. Shirva Railway Crossing						
Near loc Foreshore Terminale New Kendle						
11110/2024						
Near Jeety Landfall Area						
Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
1) Day time shall mean from 08:00 A M + 40:00 B						
RESULTS OF AN	ALYSIS (DAY TIME)				
READINGS	CPCB LIMITS	REFERENCE METHOD				
63.5	75	IS- 9989-1991				
RESULTS OF ANA	LYSIS (NIGHT TIM	IF)				
READINGS	CPCB LIMITS	REFERENCE METHOD				
49.9	70	IS- 9989-1991				
Monitoring results on	والمعالية والمعالمة والمعالمة	10- 9909-1991				
2023, Next Calibratic	on Due: - 17/11/202	4				
CON EN.						
(STATE CONTRACTOR						
	M/s. KOTPL. Opp. Shirva Rai Near loc Foresh 14/10/2024 Vendor on 08/10 10/10/2024 Ambient Noise M Near Jeety Lands Central Pollution as an upper limit during Night time 1) Day time shall 2) Night time shall 3) Night time shall 2) Night time shall 3) Night time shall 3) Night time shall	Opp. Shirva Railway Crossing. Near loc Foreshore Terminals New 14/10/2024 Vendor on 08/10/2024 10/10/2024 Ambient Noise Monitoring Near Jeety Landfall Area Central Pollution Control Board has p as an upper limit of Noise Level durin during Night time 1) Day time shall mean from 06:00 A 2) Night time shall mean from 10:00 f RESULTS OF ANALYSIS (DAY TIME 63.5 RESULTS OF ANALYSIS (NIGHT TIM READINGS CPCB LIMITS READINGS CPCB LIMITS				

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

 - --End of the Report---
- Regd.Office : Sr.No.167/2B & 168/2B, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenvirp.com
- Laboratory : Sr.No. 45A/1 4A/4. "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

	TEST REPO	DRT					
Sample/Report No.	GE/LAB/ANM/K	OTPL3					
Name Of Customer	M/s. KOTPL						
Address Of Customer	Opp. Shirva Railway Crossing, Near Ioc Ecreshere Terminal						
Report Dated	Near loc Foreshore Terminals New Kandla – 370210 14/10/2024						
Date Of Sampling	Vendor on 08/10	Vendor on 08/10/2024					
Date Of Analysis	10/10/2024						
Monitoring For	Ambient Noise N	Ionitorina					
Sampling Location	Tank Farm Right	A CONTRACTOR CONTRACTOR					
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M						
	RESULTS OF AN	ALYSIS (DAY TIME)				
UNIT	READINGS						
dB(A)	59.7	75	15- 9989-1991				
	RESULTS OF ANA	ALYSIS (NIGHT TIM	(F)				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	47.8	70	IS, 9989, 1004				
REMARK/OBSERVATIONS	Monitoring results ar	e well within the limi					
	2023, Next Calibratic	on Due: - 17/11/202	4				
Breke							
uthorized Signatory	ASULTAN						

---End of the Report---

- ♥ Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- Laboratory : St.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- www.mygreenenviro.com
- 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

	TEST REPO	DRT	and the second second				
Sample/Report No.	GE/LAB/ANM/K	OTPLA					
Name Of Customer	M/s. KOTPL.	01124					
Address Of Customer	Opp. Shirva Rai	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210					
Report Dated	14/10/2024 14/10/2024						
Date Of Sampling	Vendor on 08/10	/2024					
Date Of Analysis	10/10/2024	entocous-					
Monitoring For	Ambient Noise M	Ionitorina					
Sampling Location		Tank Farm Left Side					
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M.						
	RESULTS OF AN	ALYSIS (DAY TIME)				
UNIT	READINGS	PEADINGE					
dB(A)	62.4	75	IS- 9989-1991				
	RESULTS OF ANA	ALYSIS (NIGHT TIN	1E)				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	51.3	70	IS- 9989-1991				
REMARK/OBSERVATIONS quipment Used: Digital Nois Date of Calibration: - 18/11	SPE INVALENTATION INTERNET	NAME AND AND ADDRESS OF ADDRESS OF ADDRESS	ts prescribed by CPCB.				
or GREEN ENVIRO							

- ---End of the Report---
- 9 Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com www.mygreenenviro.com
- ♥ Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Report No: - GE/LAB/W/KOTPL1	Lab Reference No: - GE/LAB/W/KOTPL01
Dated:- 14/10/2024	Date Of Sampling: - 08/10/2024
Date Of Analysis - 10/10/2024	End Of Analysis - 13/10/2024
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container – Sterilized Bottle
Sample Nature - Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 °C	Value	7.20	6.5 - 8.5	IS 3025 (Part II) 1983, Reaff: 2017
Total Dissolved Solids	mg/lit	81.24	500	IS 3025 (Part XVI) 1984, Reaff: 2017
Total Suspended Solids	mg/lit	04.58	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	45.20	200	IS 3025 (Part XXI) 2009, Reaff: 2019
Calcium	mg/lit	19.30	75	IS 3025 (Part 40) 1991, Reaff: 2019
Magnesium	mg/lit	09.71		IS 3025 (Part 46) 1994, Reaff: 2019
Chloride	mg/lit	25.69		IS 3025 (Part 32) 1998, Reaff: 2019

For GREEN ENVIRO

anele

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

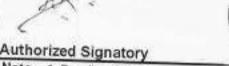
- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- Info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.com

C20-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC NABL Certified as per ISO/IEC 17025:2017

ISO 9001:2015, Reg. No. 1810BL75 ISO 14001:2015, Reg. No. 18888L76 OHSAS 45001: 2018, Reg. No. 19IDCF79


DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Report No: - GE/LAB/W/KOTPL2	Lab Reference No: - GE/LAB/W/KOTPL02
Dated:- 14/10/2024	Date Of Sampling: - 08/10/2024
Date Of Analysis - 10/10/2024	End Of Analysis - 13/10/2024
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container – Sterilized Bottle
Sample Nature – Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard: (IS 10500:2012)	Methods of Analysis
Temperature	°C	32		IS 3025 (Part 9) 1984
Electrical Conductivity 25 °C	µS/cm	401.5	Not Specified	IS 3025 (Part 14) - 2013
E. coli	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

Note - 1. Results relate only to the sample tested.

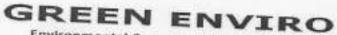
2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopadi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.cum

020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564


Environmental Consultancy & Laboratory Approved by MoEF&CC

			TES	T REPO	RT	
Name Of Customer	M/s. I	KOTPL.			addine?	
Address Of Custome	Opp.	Shirva Ra	ilway Cro	ssina		
Report Dated	Near	loc horesh	ore Term	inals New	Kandla - 370	210
Sample Drawn By	the second se	the part was				010
Start of Analysis	10/11	Vendor on 08/11/2024 10/11/2024			e Received On	09/11/2024
and a second	Ambie	2024		End Of	Analysis	12/11/2024
Monitoring For	CITIBLE	Ambient Air Monitoring			ng Location	Near Jeety Landfall
Sampling Duration	24 Hrl	24 Hrly				Point
Ambient Temperature	Max-	Max- 30.9ºC, Min- 23.7ºC			or Height	2.00 meter from G.L.
Average Wind Speed	9.0 Kn	9.0 Km/Hr			e Humidity	Max-83,1%, Min- 77,49
Flow (PM 10)	1.2 Cu	100.1.11.1		VVInd D	irection	From SW
Sample/Report No.	GE/LA	GE/LAB/AAQ/KOTPL-1				16:67 LPM
Limits		National Ambient Air Quality			Qty & Pkng.	F.P(2Nos) & CT Bladde & 50 ml P.B.(3 Nos)
Parameters	Unit	Annuent	Air Quali	ty Standa	rds Vide GSR	826(E)16.11.2009
	Unit	Duration	Result	Limits	Methods of	Analysis
Seneral Parameters	v					7
Particulate matter ess than 10 micron	µg/m ³	24 Hrs	70.42	100	EPA/625/R-	96/010a (Compendium
Particulate matter ess than 2.5 micron	µg/m ³	24 Hrs	38.51	60	USEPA Met	(.1): 2017 hod Aerosol Science
Sulphur Dioxide	unter 3				Tech FRM 3	5(4)339-342: 2017
Guipment Llead	µg/m ³	24 Hrs	13.40	80	IS 5182 (par	t II) 2001, Reaff: 2017
quipment Used: - Fin fodel: EEC-115MFC), espirable Dust Samp ate of Calibration: - 1 ote - 1. This Test Rep This Test Report sha	le, Sr. No 8/11/202: ort refers	224-I-21, 3. Next Ca only to the	(Make: E libration [sample	Inviro Inst Due: - 17/ tested	truments), Mod 11/2024	lel: ECC-RDS- 405)

- ♥ Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- ♀ Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- e www.mygreenenvira.com
- 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory NABL Certified as per ISO/IEC 17025:2017

ISO 9001:2015, Reg. No. 18(QBL75 ISO 14001:2018, Reg. No. 18IE01,76 OHSAS 45001:2018, Reg. No. 19IOCF79

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT

			TEST	REPOR	RT	Mark Concerns		
Name Of Customer	M/s. K	OTPL		_	98 			
Address Of Customer	Opp.	Shirva Ra						
Report Dated	Mear	Near loc Foreshore Terminals New Kandla - 370210						
Sample Drawn By	1 1 1 1 1 1	Verd						
Start of Analysis	Vendo	r on 08/11	/2024	Sample	Received On	09/11/2024		
Processing and the owner of the second se	10/11/			End Of	Analysis	12/11/2024		
Monitoring For	Ambient Air Monitoring			Samplin	ng Location	Near Jeety Landfall		
Sampling Duration	24 Hrly			-	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Point		
Ambient Temperature				Recepto	or Height	2.00 meter from G.L.		
Average Wind Speed	Max- 30.9°C, Min- 23.7°C 9.0 Km/Hr			Relative	Humidity	Max-83.1%, Min- 77.49		
S 1122				Wind Di	rection	From SW		
Sample/Report No.	GE/LAB/AAQ/KOTPL-01			Sample Qty & Pkng.		CT Bladder & 30 ml		
Limits	National Ambient Air Qualit			hi Standa	and the second	P.B. (3 Nos)		
Parameters	Unit	Duration	David	Limits				
General Parameters	e int	Unit Duration Result			Methods of Analysis			
Oxides of Nitrogen		1.044						
	µg/m ³	24 Hrs	17.25	80	IS 5182 (pa	rt VI) 2006, Reaff:2017		
Respirable Dust Sample Date of Calibration: - 18	e, Sr. No 3/11/202	3 Next Co	. (Make: {	Enviro Ins	truments), Mo	del: ECC-RDS- 405)		
lote - 1. This Test Rend	ort refers	only to th	e sample	tested	11/2024			
or GREEN ENVIRO		and the second	COLUMN A					

---End of the Report---

- Regd.Office : ScNo.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007,
- Laboratory : Sr.No. 45A/1-4A/4. "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com @ www.mygreenenviro.com
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

				REPOR		YSIS REPORT	
Name Of Customer	M/s.K	OTPL.	_	Contraction and			
Address Of Custome	Opp.	Shirva Ra	Iway Crow	ast			
The state of the s	INCAL	IOC Forest	ore Termi	nale Now	Kandla – 370		
Report Dated				THEID TYCH	Nandia - 37(210	
Sample Drawn By Start of Analysis	Vendo	or on 08/11	1/2024	Sample	Received	Leave	
Monitoring For	10/11/	10/11/2024			Analysis	09/11/2024	
Sampling Duration	Ambie	nt Air Mor	itoring	Samplin	g Location	12/11/2024	
Ambient Terration	24 Hrl	V		Recepto	Height	Tank Farm Area	
Ambient Temperature		30.8ºC, Mi	n-23.5°C	Relativo	Humidity	2.00 meter from G.L.	
Average Wind Speed Flow (PM 10)	8.9 Kn	8.9 Km/Hr			rection	Max-83.4%, Min- 77.69	
A CONTRACTOR OF	1.2 Cu	1.2 Cube Meter(1200LPM)			V 2.5)	From SW	
Sample/Report No.	GE/LA	GE/LAB/AAQ/KOTPL-2				16:67 LPM	
Limits	Nation	National Archiver			Qty & Pkng,	F.P(2Nos)& CT Bladder & 50 ml P.B.(3 Nos)	
Parameters	1 lait	A Ambient	Air Qualit	y Standar	ds Vide GSR	& 50 ml P.B.(3 Nos) 826(E)16.11.2009	
General Parameters	Unit	Duration	Result	Limits	Methods o	f Analysis	
Particulate matter		1	-			- maryats	
ess than 10 micron	µg/m ³	24 Hrs	67.36	100	EPA/625/R	96/010a (Compendium	
Particulate matter	STATISTICS N	1000	er iga	100	Method IO-	2.1): 2017	
ess than 2.5 micron	µg/m ³	24 Hrs	34.85	60	USEPA Me	thod Aerosol Science	
Sulphur Dioxide	µg/m ³	24 Hrs			LIGCU FKW 3	35(4)339-342 2017	
guioment Used - Eine	Durit O	241113	12.01	80	IS 5182 (pa	rt II) 2001, Reaff: 2017	
ate of Calibration: - 18	9. Sr. No /11/2023	. 225-I-21, 3. Next Ca	(Make: E libration D	nviro Instr lue: - 17/1	uments), Mod 1/2024	0.0 11	
This Test Report shall This report, in full or in	not be r part, sh	eproduced all not be	except in used for a	full, witho dvertising	out written app or legal actio	proval of the Laboratory	
GREEN ENVIRO							
0	1	CHEEN COL	13				
(a)		0	12				
	821		151				
Barete]副	(67	131				

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7. Wireless Colony, Aundh, Pune - 411007,
- ♀ Laboratory ; Sr.No.45A/1-4A/4, "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- @ www.mygreenenviro.com
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

GREEN ENVIRO Environmental Consultancy & Laboratory

NABL Certified as per ISO/IEC 17025:2017

180 2001:2015 Reg No. 18028L75 ISO 14001:2015 Reg No. 18028L76 OHSAS 45001:2018 Reg No. 1910CF79

			TEST	REPOR	T			
Name Of Customer	M/s.KC	OTPL						
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210							
Report Dated	14/11/2	2024	sie reimi	nais New	Kandla - 370	210		
Sample Drawn By		Vendor on 08/11/2024 Sample Received On 09/11/2024						
Start of Analysis	10/11/2		2024	Sample End Of	Received Or	09/11/2024		
Monitoring For			toring	End Of	Analysis	12/11/2024		
Sampling Duration	Ambient Air Monitoring 24 Hrly			Becente	g Location	Tank Farm Area		
Ambient Temperature	Max- 30.890 Min. 23.500			Receptor Height		2.00 meter from G.L.		
Average Wind Speed	8.9 Km/Hr			Relative Humidity Wind Direction		Max-83.4%, Min- 77.6%		
5-3 - 2 C 1 C 1 D 2 C 1 C 1 C 1 C 1 C 2 C 1 C 1 C 1 C 1 C	GE/LAB/AAQ/KOTPL-02				From SW			
Sample/Report No.	National Ambient Air Qualit			Sample Qty & Pkng.		CT Bladder & 30 ml		
Limits				ty Standar	P.B.(3 Nos)			
Parameters	Unit Duration Result			Limits				
General Parameters		1	reoun	Cirilius.	Methods of	of Analysis		
Oxides of Nitrogen	μg/m ³	24 Hrs	15.22	80	IS FARR !			
Respirable Dust Sampl Date of Calibration: - 18 Note - 1 This Test Pop	e Sr No	2251.21	(Males) I			art VI) 2006, Reaff:2017 odel: ECC-RDS-405)		
Note - 1. This Test Ren	ort refers	s only to th	le sample	tested	11/2024			
or GREEN ENVIRO		(inclusion)	Carlin Frage	and the second second				

chu of the Report-

 Regd.Office : ScNo.167/28 & 168/28, Piot No.7, Wireless Colony, Aundh, Pune - 411007.

- Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.com

C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

r

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC

	TEST REPO	ORT						
Sample/Report No.	GE/LAB/ANM/							
Name Of Customer	and the second se	M/s. KOTPL						
Address Of Customer	Opp Shinya Re	Opp. Shirva Railway Crossing, Near loc Foreshore Terminola New York						
Report Dated	14/11/2024 New Kandla – 370210							
Date Of Sampling	Vendor on 08/1	Vendor on 08/11/2024						
Date Of Analysis	10/11/2024							
Monitoring For	Ambient Noise M	Ambient Noise Monitoring						
Sampling Location		Near Tank Farm						
.imits*	Central Pollution as an upper limit	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall	I mean from 06:00 A all mean from 10:00						
	RESULTS OF AN	ALYSIS (DAY TIME	P.M. to 06:00 A.M					
UNIT	READINGS	CPCB LIMITS						
dB(A)	63.5	75	REFERENCE METHOD					
	RESULTS OF AN	ALYSIS (NIGHT TIM	IS- 9989-1991					
UNIT	READINGS	CPCB LIMITS	I. Contraction of the second s					
dB(A)	51.9		REFERENCE METHOD					
EMARK/OBSERVATIONS upment Used: Digital Nois	h Maraka 1	70	IS- 9989-1991					
uipment Used: Digital Nois ate of Calibration: - 18/11 or GREEN ENVIRO	se level meter - Lutron /2023, Next Calibratio	Model No: SL-4035 on Due: - 17/11/2024	ts prescribed by CPCB. SD, Sr. No: Q641686 4					

report, in full or in part, shall not be used for advertising or legal action. the laboratory

--End of the Report--

- ♥ Regd.Office : Sr.No. 167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Info@mygreenenviro.com, krchavan@mygreenenviro.com e www.mygreunenviro.com

♀ Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM". Eliphiston Road, Bopodi, Pune - 411003.

C 020-25817978 M : +91 8206539774 / 9767684521 9881460031 / 9881081846 / 9370025564

r

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC

	TEST REPO	DRT						
Sample/Report No.	GE/LAB/ANM/K	OTPLO						
Name Of Customer	GE/LAB/ANM/KOTPL2 M/s. KOTPL.							
Address Of Customer		Opp. Shirva Railway Crossing						
Report Data al	Near loc Foreshore Terminals Now Kee dt.							
Report Dated								
Date Of Sampling		Vendor on 08/11/2024						
Date Of Analysis	10/11/2024	10/11/2024						
Monitoring For	Ambient Noise Monitoring							
Sampling Location	Near Jeety Landfall Area							
Limits*	Central Pollution as an upper limit	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall	1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M						
	RESULTS OF AN	ALYSIS (DAY TIME	P.W. to US:00 A.M					
UNIT	READINGS	CPCB LIMITS						
dB(A)	59.8	59.8 20						
	RESULTS OF ANA	LYSIS (NIGHT TIN	IS- 9989-1991					
UNIT	READINGS		17. Contraction of the second s					
dB(A)		CPCB LIMITS	REFERENCE METHOD					
	45.3	70	IS- 9989-1991					
EMARK/OBSERVATION: quipment Used: Digital Noi ate of Calibration: - 18/11	S: Monitoring results an se level meter - Lutron	e well within the limi	ts prescribed by CPCB.					
ate of Calibration: - 18/11	1/2023, Next Calibratio	on Due: - 17/11/202	50, Sr. No: Q641686 4					
Brere								
	121 1 18/							

- Test report shall not be reproduced except in full, without written approval of the laboratory
 This report, in full or in part, shall not be used for advertising or legal action.
 - - ---End of the Report---
- Regd.Office : Sr.No. 167/28 & 168/28, Plot No.7. Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com www.mygreenenviro.com
- ♀ Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

Imits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time "ime Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M UNIT RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO REFERENCE METHO dB(A) 57.4 75 UNIT RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS AB(A) 57.4 75 IS- 9989-1991 1000000000000000000000000000000000000		TEST REPO	DRT					
Name Of Customer M/s. KOTPL. Address Of Customer Opp. Shirva Railway Crossing. Near loc Foreshore Terminals New Kandla – 370210 Report Dated 14/11/2024 Date Of Sampling Vendor on 08/11/2024 Date Of Analysis 10/11/2024 Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) MAIN 57.4 75 IS-9989-1991 MIT READINGS CPCB LIMITS REFERENCE METHO dB(A) MUNIT READINGS CPCB LIMITS REFERENCE METHO AB(A)		GE/LAB/ANM/k	OTPL 3	1				
Address Of Customer Opp. Shirva Railway Crossing, Near Ioc Foreshore Terminals New Kandla – 370210 Report Dated 14/11/2024 Date Of Sampling Vendor on 08/11/2024 Date Of Analysis 10/11/2024 Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time Time Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. to 06:00 A.M VINIT RESULTS OF ANALYSIS (DAY TIME) UNIT RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 75 UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 75 IS-9989-1991			01120					
Report Dated 14/11/2024 Date Of Sampling Vendor on 08/11/2024 Date Of Analysis 10/11/2024 Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time 'ime Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M UNIT READINGS CPCB LIMITS QB(A) 57.4 75 UNIT READINGS CPCB LIMITS UNIT READINGS CPCB LIMITS QB(A) 43.7 70	Address Of Customer	Opp. Shirva Railway Crassing						
Date Of Sampling Vendor on 08/11/2024 Date Of Analysis 10/11/2024 Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) Limits* 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. during Night time Lime Of Sampling 1) Day time shall mean from 10:00 P.M. to 06:00 A.M. Limits 1) Day time shall mean from 10:00 P.M. to 06:00 A.M. Limits RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 75 UNIT READINGS CPCB LIMITS REFERENCE METHO UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 43.7 70 70	Report Dated	Near foc Foreshore Terminale Menu Kault						
Date Of Analysis 10/11/2024 Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side .imits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time .imits* 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M .imits 1) Day time shall mean from 10:00 P.M. to 06:00 A.M UNIT RESULTS OF ANALYSIS (DAY TIME) UNIT RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS UNIT READINGS CPCB LIMITS UNIT READINGS CPCB LIMITS MB(A) 57.4 75 UNIT READINGS CPCB LIMITS MERENCE METHO MIT READINGS UNIT READINGS CPCB LIMITS								
Monitoring For Ambient Noise Monitoring Sampling Location Tank Farm Right Side Limits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time Time Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M UNIT RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS MB(A) 57.4 75 UNIT RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS MB(A) 57.4 75 MB(A) 57.4 75 MB(A) 57.4 75 MIT READINGS CPCB LIMITS REFERENCE METHO 37 37		A REAL POINT OF THE PARTY OF TH	1/2024					
Sampling Location Tank Farm Right Side .imits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time .imits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) .imits* 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M .imits* 1) Day time shall mean from 10:00 P.M. to 06:00 A.M .unit RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS .dB(A) 57.4 75 .unit RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS .dB(A) 57.4 75 .unit READINGS CPCB LIMITS	The second contraction was been							
Imits* Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time "ime Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M UNIT RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO REFERENCE METHO dB(A) 57.4 75 UNIT RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS AB(A) 57.4 75 IS- 9989-1991 1000000000000000000000000000000000000	Sampling Location							
ime Of Sampling 1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M 2) Night time shall mean from 10:00 P.M. to 06:00 A.M RESULTS OF ANALYSIS (DAY TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 43.7	Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during double of AB(A)						
INTINES UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 75 IS- 9989-1991 RESULTS OF ANALYSIS (NIGHT TIME) REFERENCE METHO UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 43.7 70 IS- 9989-1991	Time Of Sampling	1) Day time shall	mean from De-DO A	14 4 40 20 -				
UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 57.4 75 IS- 9989-1991 RESULTS OF ANALYSIS (NIGHT TIME) REFERENCE METHO UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 43.7 70 IS- 9989-1991	A CANADA CO	RESULTS OF AN	ALYSIS (DAY TIME	P.M. to 06:00 A.M				
dB(A) 57.4 75 IS- 9989-1991 RESULTS OF ANALYSIS (NIGHT TIME) UNIT READINGS CPCB LIMITS REFERENCE METHO dB(A) 43.7 70	UNIT	READINGS	the second se	1				
UNIT READINGS CPCB LIMITS REFERENCE METHO	dB(A)	57.4 75						
dB(A) 43.7 70 REFERENCE METHO		RESULTS OF AN	ALYSIS (NIGHT TIN	IC- 3303-1991				
dB(A) 43.7 TO	UNIT	READINGS						
11/ 10 0000 (00)	dB(A)	43.7	70					
EMARK/OBSERVATIONS: Monitoring results are well within the limits prescribed by CPCB. aujoment Used: Digital Noise level meter - Lutron Model No: SL-4035SD, Sr. No: Q641686 ate of Calibration: - 18/11/2023, Next Calibration Due: - 17/11/2024	EMARK/OBSERVATIONS	: Monitoring results as		A CONTRACT OF				
ate of Calibration: - 18/11/2023, Next Calibration Due: - 17/11/2024								

-End of the Report--

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

e www.mygreenenviro.com

- · Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- C 020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

t

GREEN ENVIRO

Environmental Consultancy & Laboratory Approved by MoEF&CC

	TEST REPO	ORT					
Sample/Report No.	GE/LAB/ANM/k						
Name Of Customer	M/s. KOTPL						
Address Of Customer	Opp. Shirva Ra	Opp. Shirva Railway Grand					
Report Dated	Ineal loc Foreshore Terminale New Key II						
Date Of Sampling							
	Vendor on 08/11/2024						
Date Of Analysis	10/11/2024						
Monitoring For	Ambient Noise Monitoring						
Sampling Location	Tank Farm Left Side						
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall 2) Night time sha	mean from 06:00 A	M. to 10:00 P.M.				
	RESULTS OF AN	ALYSIS (DAY TIME	E)				
UNIT	READINGS		REFERENCE METHOD				
dB(A)	61.3	75					
11.5100.00	RESULTS OF ANA	ALYSIS (NIGHT TIN	IS- 9989-1991				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	44.1	70	10.0000				
EMARK/OBSERVATIONS quipment Used: Digital Nois	: Monitoring results an	e well within the line					
uipment Used: Digital Nois ate of Calibration: - 18/11/	e level meter - Lutron 2023, Next Calibratio	Model No: SL-4035 n Due: - 17/11/202	ts prescribed by CPCB. SD, Sr. No: Q641686				
	(())						

---End of the Report---

- Regd.Otfice : St.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
 www.mygreenenviro.com

 Laboratory : Sr.No.45A/1-4A/4. "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.

020-25817978 M : +91 8208539774 / 9767684521 9881460031 / 9881081846 / 9370025564

GREEN ENVIRO

Environmental Consultancy & Laboratory NABL Certified as per ISO/IEC 17025:2017

ISO 2001:2015, Reg. No. 181QBL75 ISO 14001:2016, Reg. No. 18IEBL 76 OHSAS 45001:2018, Reg. No. 18IOCF79

DRINKING WATER SAMPLE ANALYSIS REPORT

M/s. KOTPL.
Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Lab Reference No: - GE/LAB/W/KOTPL02
Date Of Sampling: - 08/11/2024
End Of Analysis - 13/11/2024
Quantity of Sample Received - 2 Lit
Sample Container - Sterilized Bottle
Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard: (IS 10500:2012)	Methods of Analysis
Temperature	°C	30		IS 3025 (Part 9) 1984
Electrical Conductivity 25 °C	pS/cm	360.4		IS 3025 (Part 14) - 2013
E. coli	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

note

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- 9 Regd.Office : Sc.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

Www.mygreenenviro.com

020-25817978 M : +91 8208539774 / 9757684521 9881460031 / 9881081846 / 9370025564

Environmental Consultancy & Laboratory Approved by MoEF&CC

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL.
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Report No: - GE/LAB/W/KOTPL1	Lab Reference No: - GE/LAB/W/KOTPL01
Dated:- 14/11/2024	Date Of Sampling: - 08/11/2024
Date Of Analysis - 10/11/2024	End Of Analysis - 13/11/2024
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container – Sterilized Bottle
Sample Nature – Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 °C	Value	7.11	6.5 - 8.5	IS 3025 (Part II) 1983, Reaff: 2017
Total Dissolved Solids	mg/lit	76.28	500	IS 3025 (Part XVI) 1984, Reaff: 2017
Total Suspended Solids	mg/lit	04.14	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	43.03	200	IS 3025 (Part XXI) 2009, Reaff: 2019
Calcium	mg/lit	16.92	75	IS 3025 (Part 40) 1991, Reaff. 2019
Magnesium	mg/iit	08.56		IS 3025 (Part 46) 1994, Reaff: 2019
Chloride	mg/lit	22.40		IS 3025 (Part 32) 1998, Reaff. 2019

For GREEN ENVIRO

mete

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Sr.No.167/28 & 168/28, Plot No.7, Wireless Colony, Aundh, Pune - 411007.
- Laboratory : Sr.No.45A/1-4A/4, "PARSHURAM", Eliphiston Road, Bopodi, Pune - 411003.
- info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.com

C 020-25817978 M : +91 8208539774 / 9767684521 9881460031/9881081846/9370025564

increase.

GREEN ENVIRO

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT

			TEST	REPO	RT				
Name Of Customer	M/s. K	OTPL.		10.30	100				
Address Of Customer	Opp.	Opp. Shirva Railway Crossing							
	Neari	oc Foresh	ore Termi	Kandla - 370	210				
Report Dated		Near loc Foreshore Terminals New Kandla - 370210 14/12/2024							
Sample Drawn By	Vendo	Vendor on 07/12/2024 Sample Received On 08/12/2024							
Start of Analysis	09/12/	2024		End Of Analysis		100/12/2024			
Monitoring For	Ambie	nt Air Mon	itoring	Sampling Location		12/12/2024 Near Jeety Landfall			
Sampling Duration	24 Hrly			De	1100	Point			
Ambient Temperature	Max- 28.9ºC, Min- 21.6ºC			Receptor Height		2.00 meter from G.L.			
Average Wind Speed	8.8 Km/Hr			Relative Humidity Wind Direction		Max-80.3%, Min- 73.4%			
Flow (PM 10)	1.2 Cube Meter(1200LPM)					From EW			
Sample/Danad M	GE/LAB/AAQ/KOTPL-1			The second se		16:67 LPM			
Sample/Report No.				Sample	Qty & Pkng.	F P(2Nos) & CT Bladde			
Limits	Nationa	National Ambient Air Quality Standards V				& 50 ml P.B.(3 Nos)			
Parameters	Unit	Duration	Result	Limits					
General Parameters		1	Treadire	cirins	Methods o	f Analysis			
Particulate matter ess than 10 micron	μg/m ³	24 Hrs	74.60	100	EPA/625/R	-96/010a (Compendium			
Particulate matter ess than 2.5 micron	µg/m³	ug/m ³ 24 Hrs 40.57 60 USEPA Method Aerosol Science							
Sulphur Dioxide	µg/m ³	24 Hrs	16.38	80	15.5400	35(4)339-342: 2017			
quipment Used: - Fine Model: EEC-115MFC), Respirable Dust Sample Date of Calibration: - 14	e, Sr. No	ample, Sr. Calibration 224-I-21,	No. FPS : - 14/11/2 (Make: E	26-F- 22, 2024, Nex nviro Inst	(Make: Enviro d Calibration	rt II) 2001, Reaff: 2017 DEarth Services), Due: - 13/11/2025, del: ECC-RDS- 405)			
ote - 1. This Test Reno	not be r	only to the	sample t	ested	11/2025				
or GREEN ENVIRO	(Consult Tot		Sternant	r or legal actio	20.			

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Ŷ Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenviro.com 1
 - +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001 2015 Certified ISO 14001 2015 Certified ISD 45001 2018 Certified

			TEST	REPO	RT			
Name Of Customer	M/s. k	OTPL.			9555			
Address Of Customer	Opp,	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210						
	ivear	loc Foresh	ore Term	inals New	Kondla 070			
Report Dated	14/12/	2024	and a second	Intens Men	r Kandia - 370	210		
Sample Drawn By	Vendo	r on 07/12	2/2024	Sample	Received	00000000		
Start of Analysis	09/12/	2024		End Of	Analysis	08/12/2024		
Monitoring For	Ambie	Ambient Air Monitoring			nialysis	12/12/2024		
				Sampling Location		Near Jeety Landfall Point		
Sampling Duration	24 Hrly		And the second second	Recept	or Height			
Ambient Temperature	and the second s	8.9ºC, Mir	1-21.6ºC	Relative	e Humidity	2.00 meter from G.L.		
Average Wind Speed	8.8 Km/Hr			Wind D	irection	Max-80.3%, Min- 73.4%		
Sample/Report No.	GE/LA	B/AAQ/KO	TPL-01			From EW CT Bladder & 30 ml		
Limits	Notional Automatics			Sample	Qty & Pkng.			
and the second sec	Nationa	al Ambient	Air Quali	ty Standa	rds Vide GSR	P.B. (3 Nos) 826(E)16.11.2009		
Parameters	Unit Duration Result			Limits				
Seneral Parameters	-				Methods o	i Analysis		
Oxides of Nitrogen	µg/m ³	24 Hrs	20.13	80	Lineuro			
Respirable Dust Sampl	a Sr Nu	224104		Tankar.	15 5182 (pa	art VI) 2006, Reaff:2017		
Respirable Dust Sampl Date of Calibration: - 14	4/11/202	4. Next Ca	, (Make: (dibration)	Enviro Ins	truments), Mo	del: ECC-RDS- 405)		
ote - 1. This Test Renv	art roform	and shows at			11/2025			
STREET COULD STREET	I DOLDARI	CONTRACTOR AND A DESCRIPTION OF	and the second state of th	and the second sec		pproval of the Laboratory		
This report, in full or in	nor of	all not be	a except i	n full, with	nout written ap	proval of the Laboratory		
	Prese of	ian not be	used for a	advertisin	g or legal action	on.		
or GREEN ENVIRO								
			SPEEN EN	Vano				
		6						

Authorized Signatory

-End of the Report-

Regd.Office : Survey No. 167/28 & 168/28, Piol No.7.

 "Rutuparn" Wireless Colony, Aunch, Pune-411 007 Maha., India
 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

e www.mygreenenviro.com 1.

+ 91 8208539774 / 9881460031 / 9370025564 + 91 9881081846 / 9767684521

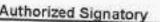
Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT TEST REPORT Name Of Customer M/s.KOTPL Opp. Shirva Railway Crossing, Address Of Customer Near loc Foreshore Terminals New Kandla - 370210 Report Dated 14/12/2024 Sample Drawn By Vendor on 07/12/2024 Sample Received On 08/12/2024 Start of Analysis 09/12/2024 End Of Analysis 12/12/2024 Monitoring For Ambient Air Monitoring Sampling Location Sampling Duration Tank Farm Area 24 Hrly Receptor Height Ambient Temperature 2.00 meter from G.L. Max- 28.8°C, Min- 21.4°C **Relative Humidity** Average Wind Speed Max-80.5%, Min- 73.6% 8.7 Km/Hr Wind Direction From EW Flow (PM 10) 1.2 Cube Meter(1200LPM) Flow (PM 2.5) 16:67 LPM GE/LAB/AAQ/KOTPL-2 Sample/Report No. F.P(2Nos)& CT Bladder Sample Qty & Pkng. & 50 ml P.B.(3 Nos) National Ambient Air Quality Standards Vide GSR 826(E)16.11.2009 Parameters Unit Duration Result Limits Methods of Analysis General Parameters

Particulate matter less than 10 micron Particulate matter	μg/m ³	24 Hrs	69.30	100	EPA/625/R-96/010a (Compendium Method IO-2.1): 2017
less than 2.5 micron	μg/m ³	24 Hrs	36,11	60	USEPA Method Aerosol Science
Sulphur Dioxide	µg/m ³	24114	10.00	1222	Tech FRM 35(4)339-342: 2017
Equipment ()	Thau.	24 Hrs	13.82	80	IS 5182 (part II) 2001, Reaff: 2017

Equipment Used: - Fine Dust Sample, Sr. No. GE-15-2018, (Make Natel India, Model - NPM2.5A), Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025, Respirable Dust Sample, Sr. No. 225-I-21, (Make: Enviro Instruments), Model: ECC-RDS-405)


Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025 Note - 1. This Test Report refers only to the sample tested

2 This Test Report shall not be reproduced except in full, without written approval of the Laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

For GREEN ENVIRO

Limits

anote

 Regd.Office : Survey No. 167/28 & 168/26, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenvirg.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001 2018 Certified

	TEST REPO	DRT						
Sample/Report No.	GE/LAB/ANM/k	OT DL 2						
Name Of Customer	M/s. KOTPL							
Address Of Customer		Opp. Shirva Railway Crossing,						
Percet Data 1	INear loc Foresh	iore Terminals New	Kandla 270040					
Report Dated			Nanua - 570210					
Date Of Sampling	Vendor on 07/12	2/2024						
Date Of Analysis	09/12/2024							
Monitoring For	Ambient Noise N	Ionitoring						
Sampling Location	Near Jeety Land							
Limits*	Central Pollution as an upper limit during Night time	Control Board has p of Noise Level durin	prescribed 75 dB(A) ig day time & 70 dB(A)					
Time Of Sampling	 Day time shall Night time sha 	mean from 06:00 A	PM to DP.DD A AA					
	RESULTS OF AN	ALYSIS (DAY TIME						
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD					
dB(A)	65.9	75	Contraction of the second s					
	RESULTS OF ANA	ALYSIS (NIGHT TIM	IS- 9989-1991					
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD					
dB(A)	51.8	70						
EMARK/OBSERVATIONS	Monitoring requile	Monitoring results are well within the limits prescribed by CPCB.						
auipment Used: Digital Nois ate of Calibration: - 14/11/2 or GREEN ENVIRO	se level meter - Lutron 2024, Next Calibration	e well within the limi Model No: SL-4035 Due: - 13/11/2025	ts prescribed by CPCB. SD, Sr. No: Q641686					

ed except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

- Regd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha,, India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, φ. Pune-411 045 Maltarashtra, India
- info@mygreenenvico.com, krchavan@mygreenenvico.com www.mygreenenvirp.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPO	DRT					
Sample/Report No.	GE/LAB/ANM/k	OTPL 1					
Name Of Customer	M/s. KOTPL.	GE/LAB/ANM/KOTPL1					
Address Of Customer	Opp. Shirva Ra	ilway Crossing					
Report Dated	14/12/2024	ore Terminals New	Kandla – 370210				
Date Of Sampling	Vendor on 07/12	2/2024					
Date Of Analysis	09/12/2024						
Monitoring For	Ambient Noïse N	Monitorina					
Sampling Location	Near Tank Farm		and the second second				
Limits*	Central Pollution as an upper limit during Night time	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during double 75 dB(A)					
Time Of Sampling	1) Day time shall	1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M					
	RESULTS OF AN	ALYSIS (DAY TIME	P.M. to U6:00 A.M				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	67.7	75	IS- 9989-1991				
	RESULTS OF AN	ALYSIS (NIGHT TIM	IE)				
UNIT	READINGS	CPCB LIMITS					
		50 4 REPERENCE METHO					
dB(A)	52.4	70	IS- 9989-1991				

st report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

Regd.Office : Survey No.167/28 & 168/28, Plot No.7, Ŷ. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Barier, ų. Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenerviro.com 2

+91 8208539774/9881460031/9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	T			
Name Of Customer	Ms.K	OTPL		0.00000				
Address Of Customer	Opp. S	Opp. Shirva Railway Crossing						
	inear h	oc Foresh	ore Termi	nals Nour	Kandla - 370			
Report Dated	14/12/	2024	Contraction of the	Hold HCW	Nanola - 370	210		
Sample Drawn By	Vendo	r on 07/12	/2024	Sample	Received Or	0.000		
Start of Analysis	09/12/2	2024		End Of	Analysis			
Monitoring For	Ambier	nt Air Mon	itoring	Samplin	g Location	12/12/2024		
Sampling Duration	24 Hrly			Recento	r Height	Tank Farm Area		
Ambient Temperature		8.8ºC, Mir	1-21.4°C	Relative	Humidity	2.00 meter from G.L.		
Average Wind Speed	8.7 Km	/Hr	Stratic Courses	Relative Humidity Wind Direction		Max-80.5%, Min- 73.6%		
Sample/Report No.	GE/LAB/AAQ/KOTPL-02			Sample Qty & Pkng.		From EW CT Bladder & 30 ml		
imits	Nationa	National Ambient Air Qualit			wy a Pkng.			
Parameters	Unit	Duration	I Down	ly Standar	ds Vide GSR	826(E)16.11.2009		
General Parameters	Onit	[Duration	Result	Limits	Methods o	f Analysis		
Oxides of Nitrogen	μg/m ³	24 Hrs	17.00	00				
Respirable Dust Samol	O Sr AL	DOF LOA	19.00	80	IS 5182 (pa	art VI) 2006, Reaff:2017		
This Test Report shal This Test Report shal This report, in full or in or GREEN ENVIRO	ort refers	only to the	e sample	tested	11/2025			
frenche_		Contract	0/	Ē)				

ind of the Report-

9 Regd.Office - Survey No.167/28 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

- Laboratory : Survey No.233/1/2/4/2A. "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India
- info@mygraenenviro.com, krchavan@mygraenenviro.com
- www.mygreenenviro.com 5
 - +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt, of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPO	DRT					
Sample/Report No.	GE/LAB/ANM/K	OTPLA					
Name Of Customer	M/s. KOTPL						
Address Of Customer	Opp. Shirva Ra	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210					
Report Dated	14/12/2024	ore Lerminals New	Kandla - 370210				
Date Of Sampling	Vendor on 07/12	2/2024					
Date Of Analysis	09/12/2024						
Monitoring For	Ambient Noise N	Ionitoring					
Sampling Location	Tank Farm Left 5	가슴이 있는 사고, 전문에 가지 못했다.					
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time						
Time Of Sampling	1) Day time shall	mean from 06:00 A Il mean from 10:00 I	M + 10 000				
	RESULTS OF AN	ALYSIS (DAY TIME	P.M. to 08:00 A.M				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	64.1	75	IS- 9989-1991				
	RESULTS OF ANA	LYSIS (NIGHT TIM	IS- 9909-1991				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	53.2	53.2 70 IS 0000 4004					
EMARK/OBSERVATIONS quipment Used: Digital Nois rate of Calibration: - 14/11/2	Monitoring results an e level meter - Lutron 024, Next Calibration	e well within the limit Model No: SL-4035	and the second second second second second				
or GREEN ENVIRO		300, - 10/11/2025					

ort shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

 Regd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aunoh, Pune-411 007 Maha., India

Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Q. Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

a www.mygreenenviro.com 5

+91 8208539774/9881460031/9370025564 +91 9801081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17825 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001.2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing,
Report No: - GE/LAB/W/KOTPL1	Near loc Foreshore Terminals New Kandla – 370210 Lab Reference No: - GE/LAB/W/KOTPL01
Dated:- 14/12/2024	Date Of Sampling: - 07/12/2024
Date Of Analysis - 09/12/2024	End Of Analysis - 12/12/2024
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container – Sterilized Bottle
Sample Nature – Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 °C	Value	6.87	6.5 - 8.5	
Total Dissolved	mg/lit	07 05		IS 3025 (Part II) 1983, Reaff: 2017
Solids	mynit	67.25	500	IS 3025 (Part XVI) 1984, Reaff: 2017
Total Suspended Solids	mg/lit	02.96	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	31.64	200	
Calcium	10.4		200	IS 3025 (Part XXI) 2009, Reaff: 2019
	mg/lit	10.39	75	IS 3025 (Part 40) 1991, Reaff: 2019
Magnesium	mg/lit	05.31		
Chloride	mallit	10.01		IS 3025 (Part 46) 1994, Reaff: 2019
	mg/lit	15.24	200	IS 3025 (Part 32) 1998, Reaff: 2019

For GREEN ENVIRO

rere

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

Regd.Office : Survey No.167/28 & 168/28, Plot No.7. "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Mana., India

Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, ø Pune-411 045 Maharashtra, India

- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenviro.com 1
 - +91 8208539774 / 9881460031 / 9370025564 +91 9861081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s, KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Report No: - GE/LAB/W/KOTPL2	Lab Reference No: - GE/LAB/W/KOTPL02
Dated:- 14/12/2024	Date Of Sampling: - 07/12/2024
Date Of Analysis - 09/12/2024	End Of Analysis - 12/12/2024
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By – Vendor	Sample Container – Sterilized Bottle
Sample Nature – Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard:	Methods of Analysis
Temperature	0.0	Contraction of the	(IS 10500:2012)	
	°C	28	**	IS 3025 (Part 9) 1984
Electrical Conductivity	µS/cm	291.6		
25 °C E. coli			net opcomed	IS 3025 (Part 14) - 2013
L . OVI	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

note

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

Repd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Putuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- e www.mygreenenviro.com 5
- +91 8208539774/9881460031/9370025564 +91 9881081846 / 9767684521

Litera.

GREEN ENVIRO

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT

			TEST	REPOR	रा	
Name Of Customer	M/s. K	OTPL.		a consecutive service		
Address Of Customer	Opp. 3	Shirva Rai	Iway Cros	ssing,		
Report Dated	Near 14/01/	oc Foresh	ore Term	inals New	Kandla - 3702	210
Sample Drawn By		an or signed		10		
Start of Analysis	00/01/	r on 07/01	08/01/2025			
	and the second se	09/01/2025			Analysis	12/01/2025
Monitoring For	Ambiei	Ambient Air Monitoring			ng Location	Near Jeety Landfall
Sampling Duration	24 Hrty	24 Hrly			11	Point
Ambient Temperature	Max-2	7.9ºC, Mir	21 400	Recepto	or Height	2.00 meter from G.L.
Average Wind Speed	8.6 Km	/Hr	1-21.4%	the second s	Humidity	Max-79.2%, Min- 72.19
Flow (PM 10)			2001 010	Wind Di	rection	From EW
Concerns a constant of the	GELA	be Meter(1	ZOULPM)	Flow (P	M 2.5)	16:67 LPM
Sample/Report No.		B/AAQ/KO		Sample	Qty & Pkng,	F.P(2Nos) & CT Bladde
Limits	Nationa	al Ambient	Air Quali	y Standards Vide GSR (& 50 ml P.B.(3 Nos)
Parameters	Unit	Duration	Result	Limits		
General Parameters		Landada	reodult	Linnes	Methods of	Analysis
Particulate matter less than 10 micron	μg/m ³	24 Hrs	79.74	100	EPA/625/R.	96/010a (Compendium
Particulate matter	1.0		10.14	100	Method IO-2	2 1): 2017
ess than 2.5 micron	µg/m ³	24 Hrs	45.63	60	USEPA Met	hod Aerosol Science
Sulphur Dioxide	μg/m ³	24 Hrs	21.69		Tech FRM 3	5(4)339-342: 2017
	Duet Co	ser la	21.09	80	IS 5182 (par	t II) 2001, Reaff: 2017
Equipment Used: - Fine Model: EEC-115MFC), Respirable Dust Sample Date of Calibration: - 14 Iote - 1. This Test Repo This Test Report shall This report, in full or in	e, Sr. No /11/2024 rt refers	224-I-21, Next Ca only to the	(Make: E libration [sample	Enviro Inst Due: - 13/1 tested	ruments), Mod 11/2025	lue: - 13/11/2025, lel: ECC-RDS- 405)
or GREEN ENVIRO	(Contraction of the second s	101 0	er er udsilg	<u>Lor legal actio</u>	n

Regd.Office : Survey No.167/28 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India ۰
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- @ www.mygreenenviro.com ١.,
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPO	RT			
Name Of Customer	M/s. k	OTPL.						
Address Of Customer	Opp.	Opp. Shirva Railway Crossing						
592(0)27	Near	Near loc Foreshore Terminals New Kandle 270010						
Report Dated	1.400 11	2020				1210		
Sample Drawn By Start of Analysis	Vendo	or on 07/01	/2025	Sample	e Received Or	08/01/2025		
otan of Analysis	09/01/			End Of	Analysis			
Monitoring For	Ambie	nt Air Mon	itoring	Sampli	ng Location	12/01/2025 Near Jeety Landfall		
Sampling Duration	24 Hrly					Point		
Ambient Temperature				Receptor Height		2.00 meter from G.L.		
Average Wind Speed	8.6 Km	7.9ºC, Mir	1-21.4ºC	Relative Humidity		Max-79.2%, Min- 72.1%		
	the second se			Wind Direction		From EW		
Sample/Report No.	- CLA	GE/LAB/AAQ/KOTPL-01			Qty & Pkng.	CT Bladder & 30 ml		
Limits	Nationa	al Ambient	Air Quali	tu Standa	rde 164 - 000	P.B. (3 Nos)		
Parameters	Unit	Duration	Result	y Standards Vide GSR 826(E)16.11.200				
General Parameters	Constant of		resur	Limits Methods of Analysis				
Oxides of Nitrogen	µg/m ³	24 Hrs	25 59	80	Tennesse			
		20110	20.00	80	IS 5182 (pa	art VI) 2006, Reaff:2017		
Respirable Dust Sampl Date of Calibration: - 14	4/11/202	 224-1-21 Next Ca 	. (Make: I	Enviro Ins		odel: ECC-RDS- 405)		
lote - 1. This Test Rend	ort refere	only to th		101 10	11/2020	28.2		
THE FORT STATE	1001061	CONTRACTOR STORES		and the second se	out written or	pproval of the Laboratory		
This report, in full or in	n part, sł	nall not be	used for .	advertisin	d or legal activ	op of the Laboratory		
					0			
or GREEN ENVIRO			AREN EN	And And				
				CAMP ON CONTRACT				

Authorized Signatory

---End of the Report---

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, Rutuparr Wireless Colony, Aundh, Pune-411 007 Mana., India

Laboratory : Survey No.233/1/2/4/2A, "Nilaan Tower", Baner, Pune-411 045 Maharashtra, India Q.

- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenviro.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory

ISO 14001 2015 Certified

Recognition by EPA- MoEF & CC (Govt. of India) ISO 9001 2015 Certified NABL Certified as per ISO/IEC 17025 : 2017 ISO 45001:2018 Certified AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT TEST REPORT Name Of Customer M/s.KOTPL. Opp. Shirva Railway Crossing, Address Of Customer Near loc Foreshore Terminals New Kandla - 370210 Report Dated 14/01/2025 Sample Drawn By Vendor on 07/01/2025 Sample Received On 08/01/2025 Start of Analysis 09/01/2025 End Of Analysis 12/01/2025 Monitoring For Ambient Air Monitoring Sampling Location Tank Farm Area Sampling Duration 24 Hrly Receptor Height Ambient Temperature 2.00 meter from G.L. Max- 27.7°C, Min- 21.2°C Relative Humidity Max-79.5%, Min- 72.4% Average Wind Speed 8.5 Km/Hr Wind Direction From EW Flow (PM 10) 1.2 Cube Meter(1200LPM) Flow (PM 2.5) 16:67 LPM GE/LAB/AAQ/KOTPL-2 Sample/Report No. F.P(2Nos)& CT Bladder Sample Qty & Pkng. & 50 ml P.B.(3 Nos) Limits National Ambient Air Quality Standards Vide GSR 826(E) 16.11.2009 Parameters Unit Duration Result Limits Methods of Analysis General Parameters Particulate matter EPA/625/R-96/010a (Compendium less than 10 micron µg/m³ 24 Hrs 75.46 100 Method IO-2.1): 2017 Particulate matter USEPA Method Aerosol Science µg/m³ less than 2.5 micron 24 Hrs 43.91 60 Tech FRM 35(4)339-342: 2017 Sulphur Dioxide µg/m³ 24 Hrs | 19.87 80 IS 5182 (part II) 2001, Reaff. 2017 Equipment Used: - Fine Dust Sample, Sr. No. GE-15-2018, (Make Natel India, Model - NPM2.5A), Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025, Respirable Dust Sample, Sr. No. 225-I-21, (Make: Enviro Instruments), Model: ECC-RDS-405) Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025 Note - 1. This Test Report refers only to the sample tested 2 This Test Report shall not be reproduced except in full, without written approval of the Laboratory 3. This report, in full or in part, shall not be used for advertising or legal action. For GREEN ENVIRO nore Authorized Signatory

Regd.Office : Survey No.167/28 & 168/28, Plot No 7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

Laboratory : Survey No.233/1/2/4/2A, "Niltaan Tower", Baner, Pune-411 045 Maharashtra, India

- info@mygreenenviro.com, krchavan@mygreenenvi.c.com
- @ www.mygreenenviro.com
- +91 8208539774 / 9881460031 / 9370025564
- +91 9881081846 / 9767684521

1

GREEN ENVIRO

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	T			
Name Of Customer	M/s.K	OTPL.		wanti saa	12			
Address Of Customer	Opp.	Opp. Shirva Railway Crossing						
	Near1	Near loc Foreshore Terminals New Kandla - 370210						
Report Dated	1 4 4 6 11	102U		COLD THE PY	Kanula - 370	210		
Sample Drawn By	Vendo	r on 07/01	/2025	Samola	Passived O	0.001		
Start of Analysis	09/01/	2025		End Of	Received Or	08/01/2025		
Monitoring For	Ambie	nt Air Moni	toring	End Of /	naiysis	12/01/2025		
Sampling Duration	24 Hrh	1		Recente	g Location	Tank Farm Area		
Ambient Temperature	Max-2	7.7ºC, Min	- 21 200	Recepto	Humilt	2.00 meter from G.L.		
Average Wind Speed	8.5 Km	v/Hr	artic G	Relative Humidity		Max-79.5%, Min- 72.4%		
Sample/Report No.	GE/LA	B/AAQ/KO	TPL-02	Wind Direction		From EW		
	Ser Second	GE/LAB/AAQ/KOTPL-02		Sample Qty & Pkng.		CT Bladder & 30 ml		
Limits	Nationa	al Ambient	Air Qualit	v Standar	de Wide Opp	P.B.(3 Nos) 826(E)16.11.2009		
Parameters	Unit	Duration	Decult	1 South Lines	us vide GSR	826(E)16.11.2009		
General Parameters		- aradon	Result	Limits	Methods o	f Analysis		
Oxides of Nitrogen	µg/m ³	24 Hrs	00.70	00	1			
Respirable Dust Samo	O Sr ML	005104	10 1 1	80	IS 5182 (pa	art VI) 2006, Reaff:2017		
Respirable Dust Sampl Date of Calibration: - 14 Note - 1. This Test Rep	1/11/202	A Mart C	(Make: E	Enviro Inst	ruments), Mo	del: ECC-RDS-405)		
Vote - 1 This Test Ren	ort colory	a state a st	and a second to b	100. 10/	1/2025	and the second		
The real tenuit shall	I DOT DO	CONTRACTOR AND	a second second	Contraction of the second second second				
This report, in full or in	n nart ei	all not be	except II	n full, with	out written ap	proval of the Laboratory		
	Print C, car	ian not be	used for a	dvertising	or legal acti	on.		
or GREEN ENVIRO								
0		13	STATE A COL	1				
-fr-		131	503	唐				
Monere			(6)	181				
the second se		1131	Chan all	3/				
uthorized Signatory		11.4		11				

9 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aunoh, Pune-411 007 Maha., India

- Ŷ Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavaa@mygreenenviro.com
- www.mygreenenviro.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9861081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

AMDICAL NO.

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001.2018 Certified

	TEST REPO	DRT					
Sample/Report No.	GE/LAB/ANM/k	TOTEL 1	1				
Name Of Customer	M/s. KOTPL						
Address Of Customer	CONTRACTOR OF CONTRACTOR OF THE STATE	Opp. Shirva Railway Crossing,					
Description of the	Inear loc Foresh	ore Terminals New	Kandla 270040				
Report Dated	1. 10 112020		Nanuia - 570210				
Date Of Sampling	Vendor on 07/0-	1/2025					
Date Of Analysis	09/01/2025						
Monitoring For	Ambient Noise N	Aonitorina					
Sampling Location	Near Tank Farm	V041V4 9.000032700					
Limits*	Central Pollution as an upper limit during Night time	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during doubt					
Fime Of Sampling	1) Day time shall	mean from 06:00 A Il mean from 10:00 I	11 1 10 10				
	RESULTS OF AN	ALYSIS (DAY TIME	1 10 00:00 A.M				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	70.6	75	IS- 9989-1991				
	RESULTS OF AN	ALYSIS (NIGHT TIM	IC- 5505-1991				
UNIT	READINGS						
dB(A)		CPCB LIMITS	REFERENCE METHOD				
	55.3 70 IS- 9989-1991 Monitoring results are well within the limits prescribed by CPCB. Iso 2000 CPCB.						
quipment Used: Digital Nois ate of Calibration: - 14/11/2 or GREEN ENVIRO	e level meter - Lutron 024, Next Calibration	Model No: SL-4035 Due: - 13/11/2025	ts prescribed by CPCB. SD, Sr. No: Q641686				
uthorized Signatory	and the second second						

Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

Regd.Office : Survey No. 167/2B & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

- e info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenviro.com
- +91 8208539774/9881460031/9370025564 +91 9881081846 / 9767684521

ABADUCAU

GREEN ENVIRO

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Cartified ISO 14001:2015 Cartified ISO 45001 2018 Certified

endor on 07/01 9/01/2025 mbient Noise M ear Jeety Landf	Iway Crossing, ore Terminals New I /2025 Ionitoring	Kandla – 370210	
I/s. KOTPL. Opp. Shirva Rai ear loc Foresh 4/01/2025 endor on 07/01 9/01/2025 mbient Noise M ear Jeety Landf entral Pollution	Iway Crossing, ore Terminals New I /2025 Ionitoring	Kandla – 370210	
Opp. Shirva Rai ear loc Foresh 4/01/2025 endor on 07/01 9/01/2025 mbient Noise M ear Jeety Landf entral Pollution	ore Terminals New (/2025 lonitoring	Kandla – 370210	
endor on 07/01 9/01/2025 mbient Noise M ear Jeety Landf	/2025 Ionitoring	Kandla – 370210	
9/01/2025 mbient Noise M ear Jeety Landf entral Pollution	lonitoring		
9/01/2025 mbient Noise M ear Jeety Landf entral Pollution	lonitoring		
ear Jeety Landf entral Pollution	-		
ear Jeety Landf entral Pollution	-		
entral Pollution			
Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time			
1) Day time shall mean from 06:00 A M to 40:00 D to			
SULTS OF ANA	ALYSIS (DAY TIME	1. 10 00:00 A.M	
	CPCB LIMITS	REFERENCE METHOD	
68.5	75	IS- 9989-1991	
ULTS OF ANA	LYSIS (NIGHT TIM	IC- 0003-1831	
	CPCB LIMITS	REFERENCE METHOD	
54.8	70	IS- 9989-1991	
oring results an		12- 9909-1991	
	READINGS 68.5 BULTS OF ANA READINGS 54.8 oring results an	READINGS CPCB LIMITS 68.5 75 CULTS OF ANALYSIS (DAY TIME 68.5 75 CULTS OF ANALYSIS (NIGHT TIM READINGS CPCB LIMITS	

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report--

Regd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Rutuparry" Wireless Colony, Aundh, Pune-411 007 Maha., India

- Laboratory : Survey No.233/1/2/4/2A, "Nilaan Tower", Baner, Pune-411 045 Maharashtra, India

d www.mygreenanviro.com ٩.,

+91 8208639774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

TEST REPO	RT			
GE/LAB/ANM/KOTPL3				
M/s. KOTPL				
Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla 270340				
14/01/2025				
Vendor on 07/01/2025				
09/01/2025				
Ambient Noise Monitoring				
Central Pollution as an upper limit	Control Board has p of Noise Level durin	rescribed 75 dB(A) g day time & 70 dB(A)		
1) Day time shall mean from 06:00 A M to 10:00 D M				
RESULTS OF AN	ALYSIS (DAY TIME)		
READINGS	CPCB LIMITS	REFERENCE METHOD		
64.2	75	IS- 9989-1991		
RESULTS OF ANA	ALYSIS (NIGHT TIM			
READINGS	CPCB LIMITS	REFERENCE METHOD		
52.4	70	IS- 9989-1991		
: Monitoring results ar	e well within the limi	e preserihed by OBOD		
	M/s. KOTPL Opp. Shirva Rail Near loc Foresho 14/01/2025 Vendor on 07/01 09/01/2025 Ambient Noise M Tank Farm Right Central Pollution as an upper limit during Night time 1) Day time shall 2) Night time shall 3) Night time shall 2) Night time shall 3) Night time shall 3) Night time shall 3) Night time shall	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New H 14/01/2025 Vendor on 07/01/2025 09/01/2025 Ambient Noise Monitoring Tank Farm Right Side Central Pollution Control Board has p as an upper limit of Noise Level durin during Night time 1) Day time shall mean from 06:00 A. 2) Night time shall mean from 10:00 F RESULTS OF ANALYSIS (DAY TIME 64:2 RESULTS OF ANALYSIS (NIGHT TIM READINGS CPCB LIMITS READINGS CPCB LIMITS		

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Mana., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Banet. Pune-411 045 Maharashtra, India

info@mygraenenviro.com, krchavan@mygreenenviro.com

@ www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPO	RT		
Sample/Report No.	GE/LAB/ANM/KOTPL4			
Name Of Customer	M/s. KOTPL			
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210			
Report Dated	14/01/2025			
Date Of Sampling	Vendor on 07/01/2025			
Date Of Analysis	09/01/2025			
Monitoring For	Ambient Noise Monitoring			
Sampling Location	Tank Farm Left Side			
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time			
Time Of Sampling	1) Day time shall mean from 06:00 A.M. to 10:00 P.M. 2) Night time shall mean from 10:00 P.M. to 06:00 A.M			
	RESULTS OF AN	ALYSIS (DAY TIME)	
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD	
dB(A)	66.9	75	IS- 9989-1991	
	RESULTS OF ANA	ALYSIS (NIGHT TIM	E)	
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD	
dB(A)	56.7	70	IS- 9989-1991	
REMARK/OBSERVATION	S: Monitoring results an	e well within the limi	te pressile d L. open	
quipment Used. Digital No	ISE level meter - Lutron	Model Ne: CL 4005	SD. Sr. No: Q641686	
Date of Calibration: - 14/11/	2024, Next Calibration	Due: - 13/11/2025		
or GREEN ENVIRO	ALEN ENVIL			
\cap	a and a constant			
Amere.				
	1 2 3 2 2 3 1			

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory
- 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Auridh, Pune-411 007 Maha., India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, 9 Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- e www.mygreenenviro.com 1.
 - +91 8208539774/9881460031/9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001:2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL		
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210		
Report No: - GE/LAB/W/KOTPL1	Lab Reference No: - GE/LAB/W/KOTPL01		
Dated:- 14/01/2025	Date Of Sampling: - 07/01/2025		
Date Of Analysis - 09/01/2025	End Of Analysis - 12/01/2025		
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit		
Sample Collected By - Vendor	Sample Container - Sterilized Bottle		
Sample Nature – Drinking	Location - Near Office Area		

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 °C	Value	6.95	6.5 - 8.5	IS 3025 (Part II) 1983, Reaff: 2017
Total Dissolved Solids	mg/lit	70.42	500	IS 3025 (Part XVI) 1984, Reaff: 2017
Total Suspended Solids	mg/lit	03.23	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	34.85	200	IS 3025 (Part XXI) 2009, Reaff: 2019
Calcium	mg/lit	12.74	75	IS 3025 (Part 40) 1991, Reaff. 2019
Magnesium	mg/lit	05.92	30	IS 3025 (Part 46) 1994, Reaff: 2019
Chloride	mg/lit	17.21	200	IS 3025 (Part 32) 1998, Reaff: 2019

For GREEN ENVIRO

note

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report--

- Regd.Office : Survey No. 167/28 & 168/28. Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Mana., India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygraener/viro.com, krchavan@mygreener/viro.com
- @ www.mygreenenvira.com 14
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 14001 2015 Certified ISO 45001 2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL.		
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210		
Report No: - GE/LAB/W/KOTPL2	Lab Reference No: - GE/LAB/W/KOTPL02		
Dated:- 14/01/2025	Date Of Sampling: - 07/01/2025		
Date Of Analysis - 09/01/2025	End Of Analysis - 12/01/2025		
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit		
Sample Collected By Vendor	Sample Container – Sterilized Bottle		
Sample Nature – Drinking	Location - Near Office Area		

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard: (IS 10500:2012)	Methods of Analysis
Temperature	°C	27		IS 3025 (Part 9) 1984
Electrical Conductivity 25 °C	µS/cm	308.4	Not Specified	IS 3025 (Part 14) - 2013
E. coli	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

nete

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Mana., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

e) www.mygreenenviro.com ٩.

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			and the second se	REPOR		SIS REPORT	
Name Of Customer	M/s. K	OTPL			447		
Address Of Customer	-	Opp. Shirva Railway Crossing.					
	Near la	Near loc Foreshore Terminals New Kandla - 370210					
Report Dated	13/02/	2025			1.4411010 - 01.0.	210	
Sample Drawn By	Vendor on 06/02/2025			Sample	Received Or	07/02/2025	
Start of Analysis	08/02/2025			End Of	Analysis	10/02/2025	
Monitoring For	Ambient Air Monitoring			Samplin	ng Location	Near Jeety Landfall	
Sampling Duration	24 Hrly			Recent	or Height	Point 2.00 motor 6	
Ambient Temperature	Max-3	1.6ºC, Min	- 22.8ºC	Relative	Humidity	2.00 meter from G.L.	
Average Wind Speed	8.4 Km	/Hr		Wind D		Max-82.1%, Min- 74.3% From EW	
Flow (PM 10)	1.2 Cube Meter(1200LPM)			Flow (P		16:67 LPM	
Sample/Report No.	GE/LAB/AAQ/KOTPL-1			Sample	Qty & Pkng.	F.P(2Nos) & CT Bladde	
Limits	Nationa	National Ambient Air Quality Standards Vide GSR 826(E)16.11				& 50 ml P.B.(3 Nos)	
Parameters	Unit	Unit Duration Result Limits Methods of					
General Parameters		1	Los concertos		mouloust	n maiyas	
Particulate matter ess than 10 micron	μg/m ³	24 Hrs	77.29	100	EPA/625/R Method IO	-96/010a (Compendium	
Particulate matter ess than 2.5 micron	μg/m ³	24 Hrs	43.67	60	USEPA Me	25(4)339-342: 2017	
Sulphur Dioxide	μg/m ³	24 Hrs	18.34	80	IS 5182 (na	art II) 2001 Beatt 2017	
	e, Sr. No 1/11/202/ ort refers	 224-I-21, 4. Next Ca only to the reproduced 	(Make: I libration i sample	2024, Ne Enviro Ins Due: - 13/ tested	xt Calibration truments), Mc 11/2025	Due: - 13/11/2025, del: ECC-RDS- 405)	
Banere	(Concentration of the second se					

 Regd.Office : Survey No. 167/28 & 168/28, Plot No. 7, "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

- info@mygreenenviro.com, krchavan@mygreenenviro.com
- WWW.mygreenenviro.com +91 8208539774 / 98814
 - +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	RT	
Name Of Customer	M/s. K	OTPL				
Address Of Customer	Opp. S	Shirva Rai	way Cros	sing,	Kandla - 370	
Report Dated	13/02/	2025	ore renn	inals New	Kandla - 370	210
Sample Drawn By	the second se	r on 06/02	/2025	Samala	Received On	0710010000
Start of Analysis	08/02/	2025		End Of	Analysis	
Ionitoring For	Ambie	nt Air Mon	itoring		ng Location	10/02/2025 Near Jeety Landfall
Sampling Duration	24 Hrly			Record	or bloight	Point
mbient Temperature	Max- 31.6ºC, Min- 22.8ºC			Receptor Height Relative Humidity		2.00 meter from G.L.
verage Wind Speed	8.4 Km/Hr			Wind Direction		Max-82.1%, Min- 74.3%
ample/Report No.	GE/LAB/AAQ/KOTPL-01				Qty & Pkng.	From EW CT Bladder & 30 ml
imits	National Ambient Air Qualit					P.B. (3 Nos)
arameters	Unit	Unit Duration Result			Methods o	
eneral Parameters					1 monous o	r nialyais
xides of Nitrogen	µg/m ³	24 Hrs	22.42	80	IS 5182 (ps	art VI) 2006, Reaff:2017
espirable Dust Samp ate of Calibration: - 1	le, Sr. No 4/11/202	0. 224-I-21 4. Next Ca	, (Make: alibration	Enviro Ins Due: - 13/	1	odel: ECC-RDS- 405)
ote - 1. This Test Rep	ort refers Il not be	s only to th	e sample	tested		oproval of the Laboratory
OF GREEN ENVIRO			SEH EA	The second second	a er logen dott	

Authorized Signatory

-End of the Report-

 Regd.Office : Survey No.167/28 & 168/28. Plot No.7.
 "Butuparm" Wirelest Colony. Aundh. Pune-411 007 Maha., India
 Laboratory : Survey No.233/1/2/4/2A. "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.com 1

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	т			
Name Of Customer	M/s.K0	DTPL.						
Address Of Customer	Opp. 5	Opp, Shirva Railway Crossing						
	Near loc Foreshore Terminals New Kandla - 370210							
Report Dated	13/02/2	2025			differit of 07	<u>10</u>		
Sample Drawn By	Vendo	r on 06/02/	2025	Sample	Received On	07/02/2025		
Start of Analysis	08/02/2	and the second se		End Of /	Analysis	10/02/2025		
Monitoring For	Ambier	nt Air Moni	itoring		g Location	Tank Farm Area		
Sampling Duration	24 Hrly			Recepto		2.00 meter from G.L.		
Ambient Temperature	Max-3	1,4ºC, Min	- 22.6ºC	Relative	Humidity			
Average Wind Speed	8.3 Km	/Hr		Wind Dir	ection	Max-82.3%, Min- 74.5% From EW		
Flow (PM 10)	1.2 Cul	be Meter(1	200LPM)	Flow (PM	125)	16:67 LPM		
Sample/Report No.	1.2 Cube Meter(1200LPM) GE/LAB/AAQ/KOTPL-2			Sample Qty & Pkng.		F.P(2Nos)& CT Bladde		
Limits	Nationa	Ambient	Air Qualit			& 50 ml P.B.(3 Nos) 826(E)16.11.2009		
Parameters	Unit	Duration	Result	Limits				
General Parameters		1	Literati	CITATIO	Methods of	Analysis		
Particulate matter		0000	See Sec.	Sheet a	EDAIROEID	00/040- (0		
ess than 10 micron	μg/m ³	24 Hrs	72.49	100	EPA/625/R-96/010a (Compendiur Method IO-2.1): 2017			
Particulate matter	u.c./m3	24.11-	20.70		USEPA Me	thod Aerosol Science		
ess than 2.5 micron	μg/m ³	24 Hrs	39.78	60	Tech FRM 3	35(4)339-342: 2017		
Sulphur Dioxide	µg/m ³	24 Hrs	16.61	80	IS 5182 (pa	rt II) 2001, Reaff. 2017		
Respirable Dust Sample Date of Calibration: - 14 Note - 1. This Test Rep	e, Sr. No 11/202	225-I-21, 4. Next Ca	(Make: E libration [Due: - 13/1 Enviro Inst Due: - 13/1	ruments), Mo 11/2025	dia, Model - NPM2.5A), del: ECC-RDS-405) proval of the Laboratory		
This report, in full or in	<u>n part, sk</u>	all not be	used for a	advertising	out written ap i or legal actic	proval of the Laboratory on.		
		AL 1 44						

Regd.Office : Survey No.187/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

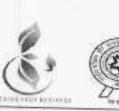
s www.mygreenenvira.com +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

			TEST	REPOR	Т	
Name Of Customer	M/s.KO	TPL.	-			
Address Of Customer	Opp. S Near lo	hirva Raik c Foresho	way Cros	sing, hals New k	Kandla - 3702	10
Report Dated	13/02/2	025	is rettin	IDIO INCAN I	vanula - 5702	10
Sample Drawn By	and the second se	on 06/02/	2025	Sample	Received On	07/02/2025
Start of Analysis	08/02/2			End Of A	Inslueie	10/02/2025
Monitoring For	Ambien	t Air Moni	toring		d Location	Tank Farm Area
Sampling Duration	24 Hrly			Recepto		2.00 meter from G.L.
Ambient Temperature	Max-31	.4ºC, Min	- 22 6ºC		Humidity	
Average Wind Speed	8.3 Km/Hr		Wind Direction		Max-82.3%, Min- 74.5% From EW	
Sample/Report No.	GE/LAB/AAQ/KOTPL-02			Sample Qty & Pkng.		CT Bladder & 30 ml
Limits	Nationa	National Ambient Air Quality Standards Vide GSR 826(E)16.11.2009				
Parameters	Unit	Duration	Result	Limits	Methods of	
General Parameters		Lange and the second second		Christian	I metrious o	Analysis
Oxides of Nitrogen	µg/m ³	24 Hrs	20.44	80	19 5192 /00	rt VI) 2006, Reaff:2017
Respirable Dust Samp Date of Calibration: - 1 Note - 1. This Test Rep 2 This Test Report sha 3. This report, in full or i	ort refers	only to th eproduce	e sample d except	Due: - 13/ tested	ruments), Mo 11/2025 out written or	del: ECC-RDS-405)
For GREEN ENVIRO		Annound a	Consta Table			

---End of the Report---


Regd.Office : Survey No.167/28 & 168/28, Plot No.7.

"Rutupam" Wireless Colony, Aunch, Pune-411 007 Maha., India 4 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenviro.com + 91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 976/684521

F

GREEN ENVIRO

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPO	RT				
Sample/Report No.	GE/LAB/ANM/K	OTPL1				
Name Of Customer	M/s. KOTPL,					
Address Of Customer	Opp. Shirva Rail Near loc Foresho	way Crossing, pre Terminals New k	(andla - 370210			
Report Dated	13/02/2025					
Date Of Sampling	Vendor on 06/02	/2025				
Date Of Analysis	08/02/2025					
Monitoring For	Ambient Noise M	lonitoring				
Sampling Location	Near Tank Farm					
_imits*	Central Pollution as an upper limit during Night time	Control Board has p of Noise Level durin	rescribed 75 dB(A) g day time & 70 dB(A)			
Time Of Sampling	1) Day time shall	mean from 06:00 A Il mean from 10:00 I	M. to 10:00 P.M. P.M. to 06:00 A.M.			
	RESULTS OF AN	ALYSIS (DAY TIME	1			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
dB(A)	69.1	75	IS- 9989-1991			
	RESULTS OF AN	ALYSIS (NIGHT TIM	<u>1E)</u>			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
Chin						
dB(A)	54.2	70	IS- 9989-1991			
	S: Monitoring results ar	e well within the lim	ts prescribed by CBCB			

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

Regd.Office : Survey No.167/28 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

@ www.mygreenenviro.com ٩.,

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

	TEST REPO	RT					
Sample/Report No.	GE/LAB/ANM/KC	DTPL2					
Name Of Customer	M/s. KOTPL	M/s. KOTPL.					
Address Of Customer	Opp. Shirva Rail Near loc Foresho	way Crossing, pre Terminals New K	(andla – 370210				
Report Dated	Near loc Foreshore Terminals New Kandla - 370210 13/02/2025						
Date Of Sampling	Vendor on 06/02	2025					
Date Of Analysis	08/02/2025						
Monitoring For	Ambient Noise M	onitoring					
Sampling Location	Near Jeety Landf	all Area					
Limits*	Central Pollution as an upper limit during Night time	Control Board has p of Noise Level durin	rescribed 75 dB(A) g day time & 70 dB(A)				
Time Of Sampling	 Day time shall Night time sha 	mean from 06:00 A Il mean from 10:00 I	P.M. to 06:00 A.M				
	RESULTS OF AN	ALYSIS (DAY TIME	1				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	67.3	75	IS- 9989-1991				
	RESULTS OF ANA	LYSIS (NIGHT TIN	IE)				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	53.4	70	IS- 9989-1991				
REMARK/OBSERVATION	S: Monitoring results ar	e well within the limi					
Equipment Used: Digital No Date of Calibration: - 14/11/	se level meter - Lutron	Model Net CL 1005	SD, Sr. No: Q641686				
For GREEN ENVIRO		240. TO THEOLO					

st report shall not be reproduced except in full, without written approval of the laboratory 3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

info@mygroenenviro.com, krchavas@mygreenenviro.com

@ www.mygreenenviro.com 1.

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPOR	RT					
Sample/Report No.	GE/LAB/ANM/KC	DTPL3					
Name Of Customer	M/s. KOTPL.						
Address Of Customer	Opp. Shirva Raik Near loc Foresho	way Crossing, pre Terminals New K	andla - 970210				
Report Dated	13/02/2025	Near loc Foreshore Terminals New Kandla - 370210 13/02/2025					
Date Of Sampling	Vendor on 06/02/	2025					
Date Of Analysis	08/02/2025						
Monitoring For	Ambient Noise M	onitoring	The second second				
Sampling Location	Tank Farm Right	Side					
Limits*	Central Pollution as an upper limit during Night time	Control Board has p of Noise Level durin	rescribed 75 dB(A) g day time & 70 dB(A)				
Time Of Sampling	1) Day time shall	mean from 06:00 A, Il mean from 10:00 F	M. to 10:00 P.M. P.M. to 06:00 A M				
	RESULTS OF AN/	ALYSIS (DAY TIME	1				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	63.5	75	IS- 9989-1991				
	RESULTS OF ANA	LYSIS (NIGHT TIM	E)				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	50.6	70	IS- 9989-1991				
REMARK/OBSERVATION	S: Monitoring results ar	e well within the limi					
quipment Used: Digital No							

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory
 - 3. This report, In full or in part, shall not be used for advertising or legal action.

-End of the Report--

- Regd.Office Survey No.167/28 & 168/28, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India
- info@mygreenerviro.com, krchavan@mygreenerviro.com
- @ www.mygreenerwiro.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

	TEST REPO	RT				
Sample/Report No.	GE/LAB/ANM/KC	DTPL4				
Name Of Customer	M/s. KOTPL.					
Address Of Customer	Opp. Shirva Rail Near loc Foresho	way Crossing, ore Terminals New H	(andla – 370210			
Report Dated	Near loc Foreshore Terminals New Kandla - 370210 13/02/2025					
Date Of Sampling	Vendor on 06/02/	/2025				
Date Of Analysis	08/02/2025					
Monitoring For	Ambient Noise M	onitoring				
Sampling Location	Tank Farm Left S	ide				
Limits*	Central Pollution as an upper limit during Night time	Control Board has p of Noise Level durin	rescribed 75 dB(A) g day time & 70 dB(A)			
Time Of Sampling	1) Day time shall	mean from 06:00 A Il mean from 10:00 I	M. to 10:00 P.M. P.M. to 06:00 A.M			
	RESULTS OF AN	ALYSIS (DAY TIME	1			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
dB(A)	65.2	75	IS- 9989-1991			
	RESULTS OF ANA	ALYSIS (NIGHT TIN	IE)			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
dB(A)	55.1	70	IS- 9989-1991			
REMARK/OBSERVATION	S: Monitoring results ar	e well within the lim				
Equipment Used: Digital No Date of Calibration: - 14/11/ For GREEN ENVIRO	ise level meter - Lutron	Model No: SI 1036	SD, Sr. No: Q641686			
Authorized Signatory	A CONTRACT					

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory
 - 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

- Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Mana., India.
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavan@mygreenenviro.com
 www.mygreenenviro.com
- B www.mygreenerviro.com +91 8208539774 / 9881460031 / 9370025564
 - +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL.
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210
Report No: - GE/LAB/W/KOTPL1	Lab Reference No: - GE/LAB/W/KOTPL01
Dated:- 13/02/2025	Date Of Sampling: - 06/02/2025
Date Of Analysis - 08/02/2025	End Of Analysis - 11/02/2025
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container – Sterilized Bottle
Sample Nature - Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 °C	Value	6.76	6.5 - 8.5	IS 3025 (Part II) 1983, Reaff: 2017
Total Dissolved Solids	mg/lit	62.13	500	IS 3025 (Part XVI) 1984, Reaff. 2017
Total Suspended Solids	mg/lit	02.37	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	25.92	200	IS 3025 (Part XXI) 2009, Reaff: 2019
Calcium	mg/lit	8.03	75	IS 3025 (Part 40) 1991, Reaff: 2019
Magnesium	mg/lit	04.40	30	IS 3025 (Part 46) 1994, Reaff: 2019
Chloride	mg/lit	12.03	200	IS 3025 (Part 32) 1998, Reaff: 2019

For GREEN ENVIRO

avere

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Butubarry Wireless Colorum August Processing Strength Proces
- "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Maha., India
 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygraenenviro.com, krchavan@mygreenenviro.com
- @ www.mygreenenviro.com
- + 91 8208539774 / 9881460031 / 9370025564 + 91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s. KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210
Report No: - GE/LAB/W/KOTPL2	Lab Reference No: - GE/LAB/W/KOTPL02
Dated:- 13/02/2025	Date Of Sampling: - 06/02/2025
Date Of Analysis - 08/02/2025	End Of Analysis - 11/02/2025
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container - Sterilized Bottle
Sample Nature – Drinking	Location – Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard: (IS 10500:2012)	Methods of Analysis
Temperature	οC	31		IS 3025 (Part 9) 1984
Electrical Conductivity 25 °C	µS/cm	235.6	Not Specified	IS 3025 (Part 14) - 2013
E. coli	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

mar 12

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India info@mygreenenviro.com, krchavan@mygreenenviro.com

@ www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025584 +91 9881081846 / 9767684521

100

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	т	
Name Of Customer	M/s. Ko	OTPL.		_		
Address Of Customer	Opp. S	hirva Raily	vay Cross	sing,	Kandla - 3702	30
Report Dated	13/03/2	025	ie remin	als New	National - 5702	.10
Sample Drawn By	Contraction of the local division of the loc	on 06/03/	2025	Sample	Received On	07/09/2025
Start of Analysis	08/03/2	and the second state of the local second s		and the second se	Analysis	10/03/2025
Monitoring For	Ambier	nt Air Moni	toring	And in concerning the second second second	g Location	Near Jeety Landfall Point
Sampling Duration	24 Hrly			Recentr	r Height	2.00 meter from G.L.
Ambient Temperature		3.5ºC, Min	- 23.6ºC		Humidity	Max-83.4%, Min- 75.7%
Average Wind Speed	8.2 Km			Wind Di		From EW
Flow (PM 10)	1.2 Cub	e Meter(1	200LPM)			16.67 LPM
Sample/Report No.		B/AAQ/KO			Qty & Pkng.	F.P(2Nos) & CT Bladde & 50 ml P.B.(3 Nos)
Limits	Nationa	Ambient	Air Qualit	y Standai	rds Vide GSR	826(E)16.11.2009
Parameters	Unit	Duration		Limits	Methods o	and the second se
General Parameters						
Particulate matter less than 10 micron	µg/m ³	24 Hrs	73.68	100	EPA/625/R Method IO-	-96/010a (Compendium 2.1): 2017
Particulate matter less than 2.5 micron	ug/m3 24 Hrs 39.56 60 USEPA Me		thod Aerosol Science 35(4)339-342: 2017			
Sulphur Dioxide	1.1.2.2.2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2		art II) 2001, Reaff: 2017			
Equipment Used: - Fin Model: EEC-115MFC), Respirable Dust Samp Date of Calibration: - 1 Note - 1. This Test Rep 2 This Test Report sha 3. This report, in full or	Date of le, Sr. No 4/11/202 ort refers Il not be	Calibration 224-I-21 4. Next Ca only to the reproduce	n: - 14/11/ , (Make: E alibration I e sample d except i	2024, Ne Enviro Ins Due: - 13/ tested in full, with	xt Calibration truments), Mo 11/2025 hout written as	Due: - 13/11/2025, del: ECC-RDS- 405)
For GREEN ENVIRO		A COMPLET				

9 Regd.Office : Survey No.167/28 & 168/28, Plot No.7.

- "Butuparn" Wireless Colony, Aundh, Pune-411 007 Maba., India Staboratory : Survey No.233/1/2/4/2A. "Nitaan Tuwer", Baner, Pune-411 045 Maharashtra, India
- info@mygraunenviro.com, krchavari@mygreeneoviro.com
- www.mygreenenviro.com
- +91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

			TEST	REPOR	T	
Name Of Customer	M/s. K	OTPL.				
Address Of Customer	Opp. S Near lo	hirva Raik c Foresho	way Cros	sing, nals New	Kandla - 370	210
Report Dated	13/03/2					
Sample Drawn By	Vendor	on 06/03/	2025	Sample	Received On	07/03/2025
Start of Analysis	08/03/2	2025			Analysis	10/03/2025
Monitoring For	Ambier	nt Air Monii	toring	and the second se	g Location	Near Jeety Landfall Point
Sampling Duration	24 Hrly		Same	Recepto	or Height	2.00 meter from G.L.
Ambient Temperature	Max- 3	3.5°C, Min	- 23.6°C		Humidity	Max-83.4%, Min- 75.7%
Average Wind Speed	8.2 Km	And the second se		Wind Di		From EW
Sample/Report No.	GE/LAB/AAQ/KOTPL-01		Sample Qty & Pkng.		CT Bladder & 30 ml P.B. (3 Nos)	
Limits	Nationa	National Amblent Air Quality Standards Vide GSR 826(E)16.				826(E)16.11.2009
Parameters	Unit Duration Result		Limits			
General Parameters	_					
Oxides of Nitrogen	µg/m ³	24 Hrs	19.43	80	IS 5182 (p	art VI) 2006, Reaff:2017
Respirable Dust Samp Date of Calibration: - 1	le, Sr. No 4/11/202	224-I-21 4, Next Ca	, (Make: libration	Enviro Ins Due: - 13/	truments) M	
3.1 mis report, in full or i	Il not be	reproduce	d except	in full, with	hout written a ig or legal act	pproval of the Laboratory ion.
	and the second second second	Autor De	See NE	advertisin	ig of logal act	ion.

Authorized Signatory

---End of the Report----

9 Regd.0ffice : Survey No.167/2B & 168/2B, Plot No.7,

"Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India

info@mygreenenviro.com, krchavan@mygreenenviro.com

e www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564 +91 9881081845 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

			TEST	REPOR	т	
Name Of Customer	M/s.KC	TPL.				
Address Of Customer	Opp. S	hirva Raih	way Cross	sing.		
	Near lo	c Foresho	ore Termin	nals New k	(andla – 3702	210
Report Dated	13/03/2	2025				
Sample Drawn By	Vendor	on 06/03/	2025	Sample	Received On	07/03/2025
Start of Analysis	08/03/2	statement and an end of the second		End Of A		10/03/2025
Monitoring For	Ambier	it Air Moni	toring	and the second se	Location	Tank Farm Area
Sampling Duration	24 Hrly			Recepto		2.00 meter from G.L.
Ambient Temperature	Max-3	3.2ºC, Min	- 23.4°C		Humidity	Max-83.6%, Min- 75.9%
Average Wind Speed	8.1 Km	/Hr		Wind Dir	The second se	From EW
Flow (PM 10)	1.2 Cub	be Meter(1	200LPM)	Flow (PN		16:67 LPM
Sample/Report No.	GEALAE	B/AAQ/KO	TPL-2		Qty & Pkng.	F.P(2Nos)& CT Bladder & 50 ml P.B.(3 Nos)
Limits	Nationa	Ambient	Air Qualit	y Standar	ds Vide GSR	826(E)16.11.2009
Parameters	Unit	Duration	Result	Limits	Methods of	
General Parameters		1	1.100.000	Harring.	_ methods of	1 Analysis
Particulate matter less than 10 micron	μg/m ³	24 Hrs	65.31	100	EPA/625/R Method IO-	-96/010a (Compendium
Particulate matter less than 2.5 micron	μg/m ³ 24 Hrs 32.66		60	USEPA Me	ethod Aerosol Science 1 35(4)339-342: 2017	
Sulphur Dioxide	µg/m ³	24 Hrs	10.84	80		rt II) 2001, Reaff: 2017
Respirable Dust Samp Date of Calibration: - 1 Note - 1. This Test Rep 2 This Test Report sha	4/11/202 le, Sr. No 4/11/202 ort refers I not be i	4, Next Ca 225-I-21 4, Next Ca s only to th reproduce	alibration I . (Make: E alibration I ne sample d except i	Due: - 13/ Enviro Inst Due: - 13/1 tested n full, with	11/2025, ruments), Mo 11/2025	intraval of the Leboratory
This report, in full or i	n part, sł	all not be	used for a	advertising	or legal action	on.

Regd.Office : Survey No.167/28 & 168/28, Plot No.7,

"Rutuparn" Wireless Colony, Aundh, Pune-411 007 Mana., India Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India

info@mygreenerwiro.com, krchavan@mygreenerwiro.com

www.mygreeneriviro.com

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001 2015 Certified ISO 45001 2018 Certified

			TEST	REPOR	Г	
Name Of Customer	M/s.KC	TPL.		-		
Address Of Customer	Opp. S Near Io	Shirva Raily oc Foresho	vay Cros	sing, tals New k	(andla - 3702	10
Report Dated	13/03/2	2025	o renna	iale Henri	andia - 0702	.10
Sample Drawn By	and the second se	on 06/03/	2025	Sample	Received On	07/03/2025
Start of Analysis	08/03/2	the first in the second s		End Of A		10/03/2025
Monitoring For	Ambier	t Air Monit	orina		Location	Tank Farm Area
Sampling Duration	24 Hrly			Receptor		2.00 meter from G.L.
Ambient Temperature	the second s	3.2ºC, Min-	- 23 4ºC	Relative		Max-83.6%, Min- 75.9%
Average Wind Speed	8.1 Km			Wind Dir		From EW
Sample/Report No.	GE/LAB/AAQ/KOTPL-02			Qty & Pkng.	CT Bladder & 30 ml P.B. (3 Nos)	
Limits	Nationa	I Ambient	Air Qualit	ty Standard	ds Vide GSR	826(E)16.11.2009
Parameters	Unit	Duration	Result	Limits	Methods o	
General Parameters		-	Louise mit		1 monodo o	1 / mary ala
Oxides of Nitrogen	µg/m ³	24 Hrs	13.98	80	IS 5182 (pa	art VI) 2006, Reaff:2017
Respirable Dust Samp Date of Calibration: - 1 Note - 1. This Test Rep 2 This Test Report sha 3. This report, in full or i	4/11/202 ort refer Il not be	o. 225-I-21 4. Next Ca s only to th reproduce	, (Make: I dibration e sample d except	Due: - 13/* tested in full, with	ruments), Mo 11/2025 out written a	odel: ECC-RDS-405)
For GREEN ENVIRO			STATE NENT		g of legal act	on.

Authorized Signatory

--End of the Report-

 Regd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Maha., India.
 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner.

Pune-411 045 Maharashtra, India

info@mygreenenviro.com, kichavan@mygreenenviro.com

@ www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564 +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPOR						
Sample/Report No.	GE/LAB/ANM/KO	TPL3					
Name Of Customer	M/s. KOTPL						
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210						
Report Dated	14/12/2024						
Date Of Sampling	Vendor on 07/12/	Vendor on 07/12/2024					
Date Of Analysis	09/12/2024						
Monitoring For	Ambient Noise Me	onitoring					
Sampling Location	Tank Farm Right	Side					
Limits*	as an upper limit of during Night time	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time 1) Day time shall mean from 06:00 A.M. to 10:00 P.M.					
Time Of Sampling		mean from 06:00 A. Il mean from 10:00 F					
	RESULTS OF AN	ALYSIS (DAY TIME	<u> </u>				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	61.3	75	IS- 9989-1991				
	RESULTS OF AN	ALYSIS (NIGHT TIN	IE)				
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD				
dB(A)	49.6	70	IS- 9989-1991				
REMARK/OBSERVATIO	NS: Monitoring results a	re well within the lim	its prescribed by CPCB.				
Equipment Used: Digital N Date of Calibration: - 14/1	oise level meter - Lutror	Model No: SL-4035	A DESCRIPTION OF THE OTHER OF THE SECOND STREET, S				

Note – 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Survey No. 167/28 & 168/28, Plot No.7, "Butuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India.
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- Info@mygreenenviro.com, krchavan@mygreenenviro.com

www.mygreenenvira.com

+91 8208539774 / 9881460031 / 9370025564

+91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

Report Dated 13/03/2025 Date Of Sampling Vendor on 06/03/2025 Date Of Analysis 08/03/2025 Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f	ng I Board has prescribed 75 dB(A)			
Address Of Customer Opp. Shirva Railway Ord Report Dated 13/03/2025 Date Of Sampling Vendor on 06/03/2025 Date Of Analysis 08/03/2025 Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f 2) Night time shall mean 1000000000000000000000000000000000000	ng I Board has prescribed 75 dB(A)			
Near loc Foreshore Term Report Dated 13/03/2025 Date Of Sampling Vendor on 06/03/2025 Date Of Analysis 08/03/2025 Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f	ng I Board has prescribed 75 dB(A)			
Report Dated 13/03/2025 Date Of Sampling Vendor on 06/03/2025 Date Of Analysis 08/03/2025 Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f 2) Night time shall mean 2) Night time shall mean	ng I Board has prescribed 75 dB(A)			
Date Of Analysis 08/03/2025 Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f	I Board has prescribed 75 dB(A)			
Monitoring For Ambient Noise Monitorin Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f 2) Night time shall mean	I Board has prescribed 75 dB(A)			
Sampling Location Near Tank Farm Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f 2) Night time shall mean	I Board has prescribed 75 dB(A)			
Limits* Central Pollution Control as an upper limit of Noise during Night time Time Of Sampling 1) Day time shall mean f 2) Night time shall mean	I Board has prescribed 75 dB(A) se Level during day time & 70 dB(A)			
Time Of Sampling 2) Night time Shall mean f	I Board has prescribed 75 dB(A) se Level during day time & 70 dB(A)			
Time Of Sampling 1) Day time shall mean f 2) Night time shall mean				
RESULTS OF ANALYSIS	 Day time shall mean from 06:00 A.M. to 10:00 P.M. Night time shall mean from 10:00 P.M. to 06:00 A.M 			
UNIT READINGS CPC	CB LIMITS REFERENCE METHO			
dB(A) 62.9	75 IS- 9989-1991			
RESULTS OF ANALYSIS	S (NIGHT TIME)			
UNIT READINGS CPC	CB LIMITS REFERENCE METHO			
dB(A) 49.7	70 IS- 9989-1991			
REMARK/OBSERVATIONS: Monitoring results are well v	within the limits prescribed by CPCB			
Chipmont Upod: Digital Majag Isral - 1 1 1 1 1	No: SL-4035SD, Sr. No: Q641686			

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Rutuparm" Wireless Colony, Aundh, Pune-411 007 Maha., India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India info@mygraenenviro.com, krchavan@mygreenenviro.com

dr www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564

+91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

1S0 9001:2015 Certilled 1S0 14001:2015 Certilled 1S0 45001:2018 Certilled

	TEST REPOR	RT			
Sample/Report No.	GE/LAB/ANM/KC	TPL2			
Name Of Customer	M/s. KOTPL.	M/s. KOTPL.			
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210				
Report Dated	13/03/2025				
Date Of Sampling	Vendor on 06/03/2025				
Date Of Analysis	08/03/2025				
Monitoring For	Ambient Noise M	onitoring			
Sampling Location	Near Jeety Landf	all Area			
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time				
Time Of Sampling	 Day time shall mean from 06:00 A.M. to 10:00 P.M. Night time shall mean from 10:00 P.M. to 06:00 A.M. 				
	RESULTS OF AN	ALYSIS (DAY TIME	1		
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	61.8	75	IS- 9989-1991		
	RESULTS OF AN	ALYSIS (NIGHT TIN	<u>1E)</u>		
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	48.5	70	IS- 9989-1991		
REMARK/OBSERVATION	IS: Monitoring results a	re well within the lim	its prescribed by CPCB		
Equipment Used: Digital N Date of Calibration: - 14/11	oise level meter - Lutror	Model No: SL-4035			
Authorized Signatory	CONSULTING				

te - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- 9 Regd.Office : Survey No.167/28 & 168/28, Plot No.7,
- "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygreenerviro.com, krchavan@mygreenerviro.com
- e www.mygreenenviro.com
- +91 8208539774 / 9881460031 / 9370025584
 - +91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001 2018 Certified

	TEST REPOR	г			
Sample/Report No.	GE/LAB/ANM/KOT	PL3			
Name Of Customer	M/s. KOTPL.				
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210				
Report Dated	13/03/2025				
Date Of Sampling	Vendor on 06/03/2025				
Date Of Analysis	08/03/2025				
Monitoring For	Ambient Noise Mo	onitoring			
Sampling Location	Tank Farm Right				
Limits*	as an upper limit of	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time 1) Day time shall mean from 06:00 A.M. to 10:00 P.M.			
Time Of Sampling	2) Night time sha	I mean from 10:00 F	P.M. to 06:00 A.M		
	RESULTS OF AN	ALYSIS (DAY TIME)			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	58.3	75	IS- 9989-1991		
	RESULTS OF AN	ALYSIS (NIGHT TIN	IE)		
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD		
dB(A)	46.4	70	IS- 9989-1991		
REMARK/OBSERVATIO	NS: Monitoring results a	re well within the lim	its prescribed by CPCB.		
Equipment Used: Digital N Date of Calibration: - 14/1 For GREEN ENVIRO	loise level meter - Lutron 1/2024, Next Calibration	n Model No: SL-403 Due: - 13/11/2025	5SD, Sr. No: Q641688		

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory
 - 3. This report, in full or in part, shall not be used for advertising or legal action.
 - -End of the Report-
- Regd.Office : Survey No.167/28 & 168/28. Plot No.7.
 "Butupam" Wireless Colony, Aundh, Pune-411 007 Maha., India Q Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner.
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- www.mygreenenviro.com +91 8208539774 / 9881460031 / 9370025564

Pune-411 045 Maharashtra, India

+91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

	TEST REPOR	т				
Sample/Report No.	GE/LAB/ANM/KO	rPL4				
Name Of Customer	M/s. KOTPL.					
Address Of Customer	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla - 370210					
Report Dated	13/03/2025					
Date Of Sampling	Vendor on 06/03/2025					
Date Of Analysis	08/03/2025					
Monitoring For	Ambient Noise Mo	nitoring				
Sampling Location	Tank Farm Left Si	de				
Limits*	Central Pollution Control Board has prescribed 75 dB(A) as an upper limit of Noise Level during day time & 70 dB(A) during Night time 1) Day time shall mean from 06:00 A.M. to 10:00 P.M.					
Time Of Sampling	2) Night time shal	I mean from 10:00 F	P.M. to 06:00 A.M			
	RESULTS OF ANA	ALYSIS (DAY TIME	Contraction of the second s			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
dB(A)	59.1	75	IS- 9989-1991			
	RESULTS OF AN	ALYSIS (NIGHT TIN	<u>1E)</u>			
UNIT	READINGS	CPCB LIMITS	REFERENCE METHOD			
dB(A)	47.2	70	IS- 9989-1991			
REMARK/OBSERVATIO	NS: Monitoring results a	re well within the lim	its prescribed by CPCB.			
Equipment Used: Digital N Date of Calibration: - 14/1 For GREEN ENVIRO	loise level meter - Lutror	Model No: SL-4035				
Authorized Signatory	Constant Party					

- 2. Test report shall not be reproduced except in full, without written approval of the laboratory
 - 3. This report, in full or in part, shall not be used for advertising or legal action.

---End of the Report---

- 9 Begd.Office : Survey No. 167/26 & 168/28, Plot No.7. "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Banec Pune-411 045 Maharashtra, India
- info@mygreenenviro.com, krchavan@mygreenenviro.com
- g www.mygreenenviro.com
- +91 8208539774/9881460031/9370025564 +91 9881081846/9767684521 ٩.,

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISD 9001:2015 Certified ISD 14001 2015 Certified ISO 45001:2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s, KOTPL
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210
Report No: - GE/LAB/W/KOTPL1	Lab Reference No: - GE/LAB/W/KOTPL01
Dated:- 13/03/2025	Date Of Sampling: - 06/03/2025
Date Of Analysis - 08/03/2025	End Of Analysis - 11/03/2025
Details Of Sample- Drinking Water	Quantity of Sample Received – 2 Lit
Sample Collected By - Vendor	Sample Container - Sterilized Bottle
Sample Nature – Drinking	Location - Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard : (IS 10500:2012)	Methods of Analysis
PH @ 25 ℃	Value	6.81	6.5 - 8.5	IS 3025 (Part II) 1983, Reaff: 2017
Total Dissolved Solids	mg/lit	65.24	500	IS 3025 (Part XVI) 1984, Reaff: 2017
Total Suspended Solids	mg/lit	02.63	Not Specified	IS 3025 (Part XVII)1984, Reaff- 2017
Total Hardness	mg/lit	28.49	200	IS 3025 (Part XXI) 2009, Reaff: 2019
Calcium	mg/lit	9.17	75	IS 3025 (Part 40) 1991, Reaff. 2019
Magnesium	mg/lit	04.82	30	IS 3025 (Part 46) 1994, Reaff: 2019
Chloride	mg/lit	13,59	200	IS 3025 (Part 32) 1998, Reaff: 2019

For GREEN ENVIRO

mele

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

 Regd.Office : Survey No.167/28 & 168/28, Plot No.7, "Butuparo" Wireless Colony, Aunoh, Pune-411 007 Maha., India

Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Banec.
 Pune-411 045 Maharashtra, India

Info@mygreenenviro.com, krchavan@mygreenenviro.com

⊕ www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564

+91 9881081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

DRINKING WATER SAMPLE ANALYSIS REPORT

CLIENT'S NAME	M/s, KOTPL.
CLIENT'S ADDRESS	Opp. Shirva Railway Crossing, Near loc Foreshore Terminals New Kandla – 370210
Report No: - GE/LAB/W/KOTPL2	Lab Reference No: - GE/LAB/W/KOTPL02
Dated:- 13/03/2025	Date Of Sampling: - 06/03/2025
Date Of Analysis - 08/03/2025	End Of Analysis - 11/03/2025
Details Of Sample- Drinking Water	Quantity of Sample Received - 2 Lit
Sample Collected By - Vendor	Sample Container - Sterilized Bottle
Sample Nature – Drinking	Location – Near Office Area

RESULTS OF ANALYSIS

Parameter	Unit	Result	Standard: (IS 10500:2012)	Methods of Analysis
Temperature	υC	33		IS 3025 (Part 9) 1984
Electrical Conductivity 25 °C	µS/cm	268.7	Not Specified	IS 3025 (Part 14) - 2013
E. coli	/100ml	Absent	0-1/100ml	IS 5887 - 1 & IS15186:2002

For GREEN ENVIRO

0

Authorized Signatory

Note - 1. Results relate only to the sample tested.

2. Test report shall not be reproduced except in full, without written approval of the laboratory

3. This report, in full or in part, shall not be used for advertising or legal action.

-End of the Report-

- Regd.Office : Survey No.167/28 & 168/28, Plot Nn.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha., India
- Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner, Pune-411 045 Maharashtra, India
- info@mygreenanviro.com, krchovan@mygreenenviro.com

www.mygreenenvirg.com

+91 8208539774 / 9881460031 / 9370025564 +91 9681081846 / 9767684521

Environmental Consultancy & Laboratory Recognition by EPA- MoEF & CC (Govt. of India) NABL Certified as per ISO/IEC 17025 : 2017

ISO 9001:2015 Certified ISO 14001:2015 Certified ISO 45001:2018 Certified

AMBIENT AIR QUALITY MONITORING ANALYSIS REPORT TEST REPORT Name Of Customer M/s. KOTPL Opp. Shirva Railway Crossing, Address Of Customer Near loc Foreshore Terminals New Kandla - 370210 14/12/2024 Report Dated Sample Received On 08/12/2024 Vendor on 07/12/2024 Sample Drawn By 09/12/2024 End Of Analysis 12/12/2024 Start of Analysis Near Jeety Landfall Sampling Location Ambient Air Monitoring Monitoring For Point 2.00 meter from G.L 24 Hrly Receptor Height Sampling Duration Max-80.3%, Min- 73.4% Max- 28.9ºC, Min- 21.6ºC Relative Humidity Ambient Temperature From EW 8.8 Km/Hr Wind Direction Average Wind Speed 1.2 Cube Meter(1200LPM) Flow (PM 2.5) 16:67 LPM Flow (PM 10) GE/LAB/AAQ/KOTPL-1 F.P(2Nos) & CT Bladder Sample Qty & Pkng. Sample/Report No. & 50 ml P.B.(3 Nos) National Ambient Air Quality Standards Vide GSR 826(E)16.11.2009 Limits Limits Methods of Analysis Parameters Unit Duration Result General Parameters Particulate matter EPA/625/R-96/010a (Compendium 100 24 Hrs 74.60 µa/m³ Method IO-2.1): 2017 less than 10 micron USEPA Method Aerosol Science Particulate matter 24 Hrs 40.57 60 µa/m³ Tech FRM 35(4)339-342: 2017 less than 2.5 micron Sulphur Dioxide 80 IS 5182 (part II) 2001, Reaff: 2017 µg/m³ 24 Hrs 16.38 Equipment Used: - Fine Dust Sample, Sr. No. FPS 26-F- 22, (Make: Enviro Earth Services). Model: EEC-115MFC), Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025, Respirable Dust Sample, Sr. No. 224-I-21, (Make: Enviro Instruments), Model: ECC-RDS- 405) Date of Calibration: - 14/11/2024, Next Calibration Due: - 13/11/2025 Note - 1. This Test Report refers only to the sample tested 2 This Test Report shall not be reproduced except in full, without written approval of the Laboratory 3. This report, in full or in part, shall not be used for advertising or legal action. For GREEN ENVIRO nore Authorized Signatory

Regd.Office : Survey No.167/28 & 158/28, Plot No.7, "Rutuparn" Wireless Colony, Aundh, Pune-411 007 Maha, India

 Laboratory : Survey No.233/1/2/4/2A, "Nitaan Tower", Baner. Pune-411 045 Maharashtra, India info@mygreeminvire.com, krchavan@mygreenanvire.com

www.mygreenenviro.com

+91 8208539774 / 9881460031 / 9370025564

+91 9881081846 / 9767684521

ANNEXURE B

1st season report of Marine Ecology monitoring 2024-25 Monsoon Report (June to September, 2024)

Regular Monitoring of Marine Ecology in and around the Deendayal Port Authority and Continious Monitoring Programme

Submitted to

DEENDAYAL PORT AUTHORITY

Submitted by

Gujarat Institute of Desert Ecology Mundra Road, Bhuj 370 001, Kachchh, Gujarat E-mail: desert_ecology@yahoo.com www.gujaratdesertecology.com

Project Coordinator

Dr. V. Vijay Kumar, Director

Principal Investigator					
Dr. Durga Prasad Behera	Scientist	Phytoplankton & Zooplankton,			
		Physico-chemical parameters,			
		Intertidal,Seaweed, Seagrass & Marine			
	Team Member				
Dr. KapilKumar Ingle	Project Scientist	Mangove Ecology			
Dr. L. Prabha Devi	Advisor	Management Plan			
Dr. S.K Sajan	Scientist	Avifauna			
Dr. Dhara Dixit	Project Scientist	Halophytes & Nutrient			
Mr. Dayesh Parmar	Project officer	GIS & Remote sensing			
Mr.Rupak Dey	Project Scientist	GIS & Remote sensing			
Mr. Viral. D. Vadodariya	Project Fellow	Avifauna			

Monsoon	(June 2024 to September 2024)	

S. No	Components of the Remarks				
5. NU	Study	Remaiks			
1	MoEF & CC sanction	(i) EC & CRZ clearance granted by the MoEF &CC, GoI dated			
1	letter and details	 (i) LC & CRZ clearance granted by the MoEF &CC, doi dated 19/12/16 Dev. Of 7 integrated facilities – specific condition no. xviii. (ii) EC & CRZ clearance granted by the MoEF &CC, GoI dated 18/2/2020 Dev. Remaining 3 integrated facilities – specific condition no. xxiii. 			
		 (iii). EC & CRZ clearance granted by the MoEF &CC, GoI dated 19/2/2020 Dev. integrated facilities (Stage II-5 -specific condition no. xv. (iv). EC & CRZ clearance granted by the MoEF &CC, GoI dated 20/11/20 – Creation of waterfront facilities (OJ 8 to 11- Para VIII Marine Ecology, specific condition iv. 			
		(v) EC& CRZ clearance granted by MoEF CC , GOI dated 1/1/2024 augmentation of iquid cargo handling facility specific condition no XXV			
2	Deendayal Port letter sanctioning the project	DPA work Order: WK/4751/Part/ (Marine Ecology Monitoring)/72			
3	Duration of the project	Three years-from 2024-2027			
4	Period of the survey carried	First Year Monsoon season (June 2024 to September 2024)			
5	Survey area within the port limit	All major and minor creek systems from Tuna to Surajbari and Vira coastal area.			
6	Number of sampling locations	Fifteen sampling locations in and around the DPA port jurisdiction			
7	Components of the repor	rt			
7a	Mangroves	Among the 15 sampling locations, Tuna Creek had the highest mean plant density with 2535 trees/ha, followed by Kharo Creek with 2486 trees/ha. However, in Kharo creek only one station is located. Regarding individual sample locations, the S-6 had the highest tree density (3,673 trees/ha), followed by S-1 (3,522 trees/ha). The S-15 (1,027 trees/Ha) and S-11 (1,221 trees/Ha) had the lowest average tree density.			
7b	Mudflats	The highest TOC value (3.1%) was recorded at S-13 followed by S-1 and lowest TOC value was reported at site S-10 dependent on the living life forms and variations in the living object in the mudflats. The bulk density of mangrove soil at			

		Deendayal Port Authority coastal region ranged from 1.30 g/cm3 to 1.61 g/cm3. The highest bulk density was recorded at S-13 sites followed by S-14. The lowest bulk density was recorded at S-5 located at Janghi creek.
7c	Phytoplankton	The phytoplankton density varied from 11,200 No/L to 20,480 No/L with the average 15,019 No/L. The highest phytoplankton density was observed at station S-13 (20,480 No/L) followed by S-14 (19,480 No/L), whereas the lowest 11,200 No/L at S-12. <i>Dictylum ,Nitzschia, Pseudonitzschia, Pleurosigma, Rhizosolenia, Synedra, Thalassionema, Thalassiothrix, Navicula, Gyrosigma</i> which are distributed at all the stations.
7d	Zooplankton	The zooplankton identified from the 15 stations falls under 7 phyla and 28 genera belonging to the 13groups. Zooplankton population density v during the Monsoon 2024 at the 15 sampling sites ranged from 8,400 No/L to14,420No/L with an overall average of 10,491No/L. 12 zooplankton genera that exhibited 100% of occurrence.
7e	Intertidal Fauna	The species diversity of the invertebrate phyla showed the maximum for phylum Mollusca (8 species), which is followed by Arthropoda (4species). The overall percentage composition of the three groups of intertidal fauna at the 15 station ie Arthropoda (67.09%), Mollusca (22.11%), and Chordata (10.8%),
7f	Sub-tidal Macrobenthos	macro benthic species of the various groups recorded (Fig.20) & Table 6 from the DPA port environment includes Mollusca (10) and Annelida (4) Arthropoda (2). The percentage composition of the three phyla that occurred during the monsoon. The phylum Mollusca is represented by maximum (65%) share of the subtidal Fauna, followed by Annelida (25.5%), Arthropoda (9.8%)
7g	Seaweeds	NO
7h	Seagrass	NO.
7i	Marine reptiles	NO
7j	Marine mammals	NO
7k	Halophytes	The halophytes sp Salicornia brachiata as mesure dominance
71	Avifauna	A total of 53 species (32 species terrestrial and 21 aquatic bird) representing 9 order, 22 families and 37 genera were recorded during the study period
7m	Physicochemical	This is purely dynamic varies according to tidal current and condition gulf environment and influence to entire creek system.

CONTENTS

S. No	Title	Page No
1	Introduction	1-6
1.1	Rationale of the present study	2
1.2	Scope of work	3
1.3	Study Area	5-6
2	Sampling of Water and sediment samples	7
2.1	Methodology	8-21
	Physico-chemical parameters	8-10
	pH and Temperature	8
	Water sample collection	8
	Salinity	8
	Total Suspended Solids (TSS)	8
	Total Dissolved Solids (TDS)	8
	Turbidity	9
	Dissolved Oxygen (DO)	9
	Phosphate	9
	Total phosphorus	9
	Nitrite	10
	Nitrate	10
	Petroleum Hydrocarbons (PHC)	10
2.2	Biological Characteristics of water and sediment	11-14
	Primary productivity	11
	Phytoplankton	11
	Zooplankton	11
	Intertidal Fauna	12
	Subtidal macro benthic Fauna	12
2.3	Mudflats	15-17
	Sampling locations	17
	Total Organic Carbon	17
	Estimation of Bulk Density (BD)	17
2.4	Mangrove assessment	17-18

2.5	Halophytes	19
2.6	Marine Fishery	20
2.7	Avifauna	21
	Boat Surveys	21
3	Results	22-68
3.1	Water quality assessment	22
	Temperature (°C) and pH	22
	Salinity (ppt)	22
	Dissolved oxygen (DO)	22
	Suspended Solids (TSS)	22
	Total Dissolved solids (TDS)	23
	Turbidity	23
	Water nutrients (Nitrate, Nitrite and Total Phosphorus and Silicate)	23
	Petroleum Hydrocarbon (PHs)	24
3.2	Sediment	26-27
	Sediment texture	26
	Total Organic Carbon (TOC)	27
3.3	Biological characteristics of water and sediment	28-
	Primary productivity	28
3.4	Phytoplankton	29
	Generic status	30
	Percentage composition of phytoplankton	30
	Percentage of occurrence	31
	Phytoplankton density and diversity	32
3.5	Zooplankton	36
	Phylum, group and generic status	36
	Percentage composition	37
	Percentage occurrence of zooplankton	38
	Density of zooplankton	38
3.6	Intertidal Fauna	41-44
	Faunal composition of Subtidal macrobenthos	41
	Percentage composition of Fauna	42
	Intertidal Fauna density (No/m2) variation between the stations	43

3.7	Subtidal Fauna (Macrobenthos)	46-50
	Distribution and composition of subtidal macrobenthos	47
	Subtidal Fauna density (No/10cm ²) variation between the stations	47
3.8	Seaweeds	50
3.9	Seagrass	50
3.10	Halophytes	50
3.11	Mangroves	53-58
	Tree Density	53
	Height	54
	Canopy Crown Cover	55
	Basal girth	56
	Regeneration and recruitment class	57
3.12	Marine Reptiles	58
3.13	Marine Mammals	59
3.14	Marine Fishery	59
4	Mudflat	61-62
	Bulk density of the sediment samples	61
	Total Organic Carbon (TOC)	61
5	Avifauna	63-68
	Status, distribution and diversity of avifauna in different stations	64
	References	69-73
	Annexure 1	74-76

List of Figures

Fig No	Figure details	Page No
1	Sampling locationsof Study Area 2024-2027	6
2	Characteristics of sediment at the study stations in Monsoon 2024	26
3	Total Organic Carbon content (%) in the sediment during Monsoon 2024	27
4	Chlorophyll 'a' concentration at the study stations in Monsoon 2024	28
5	Number of Phytoplankton genera in Monsoon 2024	30
6	Percentage composition of phytoplankton groups in Monsoon 2024	31
7	Percentage occurrence of phytoplankton genera in Monsoon 2024	32
8	Phytoplankton density in Monsoon 2024	33
9	Different diversity indices a. Shannon b. Menhinick c. Margalef d. Simpson	33
10	Generic status of zooplankton during Monsoon 2024	37
11	Percentage composition of zooplankton during Monsoon 2024	37
12	Percentage occurrence of Zooplankton group during Monsoon 2024	38
13	Zooplankton Density in the different stations during Monsoon 2024	39
14	Zooplankton Diversity indices Monsoon 2024	39
15	Number of genera of intertidal fauna during in Monsoon 2024	42
16	Percentage composition of intertidal fauna during Monsoon 2024	42
17	Cumulative % composition of intertidal fauna during Monsoon 2024	43
18	Density of intertidal fauna during Monsoon 2024	43
19	Diversity indices of Intertidal fauna	44
20	Number of genera of macrobenthos during Monsoon 2024	48
21	Percentage composition of macrobenthos during Monsoon 2024	48
22	Subtidal fauna density during Monsoon 2024	49
23	Subtidal macrofaunal diversity indices	49
24	Halophytes diversity of Deendayal Port Authority	51
25	Plant density during Monsoon 2024	54
26	Plant height during Monsoon 2024	55

27	Mangrove canopy cover during monsoon 2024	56
28	Basal girth of mangrove	57
29	Bulk density of mudflat sediment during Monsoon 2024	62
30	Mudflat sediment Organic Carbon during Monsoon 2024	62
31	Permanent study sites at Deendayal Port Authority, Kandla, India	63
32	Distribution of families and species at the Deendayal Port Authority	64
33	Site wise distribution of Avifauna recorded during monsoon season from the Deendayal Port Authority	65
34	Behavioral status of avifauna from the Deendayal Port Authority,	66
35	Status of foraging guild and threatened species recorded from Deendayal Port Authority,	67

List of Tables

S. No	Table details	Page
1	Sampling locations (2024-2025)	5
2	Physico-chemical and biological parameters analysed	7
3	Physico-chemical characteristics of the waters at the study sites during Monsoon 2024	25
	Phytoplankton density, percentage composition and occurrence during Monsoon 2024	35
	Zooplankton generic status during Monsoon 2024 in Deendayal Port Authority area	40
	Intertidal faunal distribution along Deendayal Port Authority area during Monsoon 2024	45
	Macro-benthic faunal distribution during Monsoon 2024 in Deendayal Port Authority	50
8	Site wise diversity indices recorded from DPA in Monsoon 2024	67

List of Photo plates

Plate No	Plate details	Page No
1	Estimation of intertidal fauna by the quadrate method	13
2	Collection of Plankton and macrobenthos in subtidal habitat	14
3	Sediment sample collection at mangrove and mudflat areas	17
4	Assessment of mangrove density, height, canopy cover & girth	18
5	Assessment and percentage cover of halophytes	19
6	Collection of fisheries information from DPA environment	20
7	Halophyte species on the intertidal zone of Deendayal Port Authority area	52
8	Mangrove species recorded along the Deendayal Port area	58
9	Fish catch along the Deendayal Port Authority in Monsoon 2024	60
10	Critical Mangroves and Mudflat habitats of birds at Deendayal Port	67
11	Common and migratory birds from the Deendayal Port Authority, Kandla	68

1. Introduction

Deendayal Port is located at Kandla in the Kachchh district of Gujarat state, operated by Deendayal Port Authority (DPA) (constituted under the major port Authority Act and the administrative control of ministry of ports shipping & water way GOI) is India's busiest major port in recent years and is gearing to add substantial cargo handling capacity with private participation. DPA being one of the 12 major ports in India is situated at latitude 22°59'4.93N and longitude 70°13'22.59 E on the Kandla creek at the inner end of Gulf of Kachchh (GoK). Since its formation in the 1950s, the Deendayal Port provides the maritime trade requirements of states such as Rajasthan, Madhya Pradesh, Uttar Pradesh, Haryana and Gujarat. Because of its proximity to the Gulf countries, large quantities of crude petroleum are imported through this port. About 35% of the country's total export takes place through the ports of Gujarat in which the Deendayal port has a considerable contribution. Assortments of liquid and dry cargo are being handled at DPA Port. The dry cargo includes fertilizers, iron and steel, food grains, metal products, ores, cement, coal, machinery, sugar, wooden logs, etc. The liquid cargo viz. chemicals, edible oil, crude oil and other petroleum products etc. DPA has handled 132.3 MMTPA during the year 2023-2024. Presently, the Port has total 1-16 dry cargo berths for handling dry cargo, 7 oil jetties, and one barge jetty at Bunder basin, dry bulk terminal at Tuna Tekra, barge jetty at Tuna and two SPMs (2 local & 1 Nayara energy Limited and two product berths-Nayara energy Limited) at Vadinar for handling crude oil & petroleum product. Regular expansion or developmental activities such as the addition of jetties, allied SIPC and ship bunkering facilities oil jetty No 8 and container terminal at Tuna Tekra are underway in order to cope with the increasing the demand for cargo handling during the recent times. A developmental initiative of this magnitude is going on since past 7 decades, which will have its own environmental repercussions. Being located at the inner end of Gulf of Kachchh, Deendayal Port Authority encompasses a number of fragile marine ecosystems that includes a vast expanse of mangroves, mudflats, creek systems and associated biota. Deendayal Port is a natural harbour located on the eastern bank of North-South trending Kandla creek at an aerial

Regular Monitoring of Marine Ecology in and Around the Deendayal Port Authority and Continuous Monitoring Programme (Monsoon)

distance of 90 km from the mouth of Gulf of Kachchh. The Port's location is marked by a network of major and minor mangrove lined creek systems with a vast extent of mudflats. Coastal belt in and around the port has an irregular and dissected configuration. Due to its location at the inner end of the Gulf, the tidal amplitude is elevated, experiencing 6.66 m during mean high-water spring (MHWS) and 0.78 m during mean low water spring (MLWS) with MSL of 3.88 m. Commensurate with the increasing tidal amplitude, vast intertidal expanse is present in and around the port environment. Thus, the occurrence of mudflats on the intertidal zone enables mangrove formation to an extensive area. Contrary to the southern coast of Gulf of Kachchh, the coral formations, seaweed and seagrass beds are absent in the northern coast due to high turbulence induced suspended sediment load in the water column, a factor again induced due to the conical Gulf geomorphology and surging tides towards its inner end.

1.1. Rationale of the present study

The ongoing developmental activities at Deendayal Port Authority has been intended for the following.

(i) The development of 3 remaining integrated facilities (Stage 1) within the existing Port at Kandla which includes development of a container terminal at Tuna off Tekra on BOT base T shape jetty, construction of port craft jetty and shifting of SNA section of Deendayal port and railway line from NH-8A to Tuna port.

(ii) EC & CRZ clearance granted by the MoEF &CC, GoI dated 18/2/2020 Dev.
 Remaining 3 integrated facilities (Stage I) with in existing Kandla port – specific condition no. xxiii.

(iii) EC & CRZ clearance granted by the MoEF &CC, GoI dated 19/2/2020 Dev. integrated facilities (Stage II-5 (1)Setting of oil jetty No7 (2) Setting up barrage jetty at jafarawadi (3) Setting up barrage port at Veera (4) Admirative office building at Tuna Tekra (5) Road connecting from Veera barrage jetty to Tuna gate by M/s DPA -specific condition no. xv.

(iv) EC & CRZ clearance granted by the MoEF &CC, GoI dated 20/11/20 – expansion of port by creation of water front facilities (Oil jetty 8,9,10 and 11) and development of land area 554 acres for associated facilities for storage at old

Regular Monitoring of Marine Ecology in and Around the Deendayal Port Authority and Continuous Monitoring Programme (Monsoon)

Kandla , Gandhidham, Kachchh by Ms.Dpa Para VIII Marine Ecology, specific condition iv.

(v)Development of 7 integrated facilities (Stage I) within the existing Kandala port CRZ clearance MoEFcc ,GOI dated 19/12/2016-Specific condition (ii),(iii) and (iv) the project proponent ensure that ,not damage the mangrove patch without disturbing creek water circulation ,there is no blocking of creek or rivers of project area and shoreline also not damaged and it periodically monitored .

(vi) EC& CRZ clearance granted by MoEF CC , GOI dated 1/1/2024 augmentation

of liquid cargo handling facility specific condition no XXV. As per the environmental clearance requirements to these developmental initiatives, by MoEF & CC, among other conditions, has specified to conduct the continuous monitoring

of the coastal environment on various aspects covering all the seasons. The regular monitoring shall include physico-chemical parameters coupled with biological indices such as mangroves, seagrasses, macrophytes and plankton on a periodic basis during the construction and operation phase of the project. Besides, the monitoring study also includes an assessment of Mudflats, Fisheries, and Intertidal fauna including the macrobenthos as components of the management plan. The regular marine ecology monitoring includes Micro, Macro and Mega floral and faunal components of marine biodiversity of the major intertidal ecosystems, the water and sediment characteristics. In accord with MoEF&CC directive, DPA has consigned the project on 'Regular Monitoring' of Marine Ecology in and around the Deendayal Port Authority and Continuous Monitoring Programme" to Gujarat Institute of Desert Ecology (GUIDE), Bhuj during May, 2021. Further, Deendayal Port authorities has entrusted Gujarat Institute of Desert Ecology (GUIDE) to continue the study for another three years, i.e., 2021 – 2024 and further extended to another 3 years i.e from May 2024 to May 2027 with specific condition XXV for augmentation of liquid cargo handling facility . The study covers all the seasons as specified by specific condition of the Ministry of Environment, Forest and Climate Change (MoEF&CC). The present study is designed considering the scope of work given in the EC conditions

1.2 Scope of work

The scope of the present investigation includes physico-chemical and marine biological components as mentioned in the specific conditions of MoEF&CC, EC & CRZ clearance dated 19.12.2016,18.2.2020,19.2.2022 and 20.11.2020 & 1.1.2024 with specific

conditions xviii, xxiii, xv, iv and xxv respectively. A detailed holistic approach to different components of marine physico-chemical parameters of water and sediment and marine biodiversity within the Deendayal Port area will be carried out. Based on the results obtained during the project period, a detailed management plan will be drawn at the end of the project period. The biological and physico-chemical variables will be investigated during the present study on a seasonal basis i.e., monsoon, post monsoon and premonsoon as the period May 2024 to May 2025 as follows:

- Physico-chemical characteristic of water and sediment will be analysed.
- Detailed assessment of mangrove vegetation structure including density, diversity, height, canopy and other vegetation characteristics.
- GIS and RS studies to assess different ecological sensitive land use and land cover categories within the Port area such as the extent of dense and sparse mangroves, mudflats, creek systems and other land cover categories within the port limits.
- To study the intertidal faunal composition, distribution, diversity, density and other characteristics, other mega faunal components such as mammals, reptiles and amphibians.
- To investigate the species composition, distribution, diversity, density of sub-tidal benthic fauna.
- To estimate the primary productivity selected sampling sites located in around DPT area.
- Investigate the species composition, distribution, density and diversity of phytoplankton and zooplankton.
- To study the distribution of halophytes, sea grasses, seaweeds and other coastal flora, their occurrence, distribution, abundance and diversity.
- To study the Avifaunal Density, diversity, composition, habitat, threatened and endangered species and characters.
- Fishery Resources Common fishes available, composition, diversity, Catch Per Unit Effort (CPUE) and other socio-economic information.

This study in short attempts the following, to i) developing a strong long term monitoring of the port marine environment from the biological perspective which could be used to monitor changes in the future, and ii) formulating a management plan based on the baseline data in order to ensure long-term ecological health of the port environment. A

better understanding of the marine ecology of the port and its processes has been attempted in this study which will assist in better management and conservation decisions to promote marine environmental health within the port limits.

1.2.1. Study Area

The coastal belt in and around Deendayal Port Authority jurisdiction is characterized by a network of creek systems and mudflats which are covered by sparse halophytic vegetation like scrubby to dense mangroves, creeks and salt-encrusted landmass which form the major land components (Table1) .The surrounding environment in 10 km radius from the port includes built-up areas, salt pans, human habitations and port related structures on the west and north creek system, mangrove formations and mudflats in the east and south (Fig1). The nearest major habitation is Gandhidham town located about 12 km away on the western part with population of 2,48,705 (as per 2011 census).

	GPS coordination											
Locations	Latitude	Longitude										
S-1	22.9410	70.1358										
S-2	22.9616	70.1244										
S-3	22.9876	70.2345										
S-4	23.0285	70.2331										
S-5	23.0804	70.2245										
S-6	23 9'19.99	7024'1.47										
S-7	22.9771	70.2125										
S-8	23.0378	70.4070										
S-9	22.9960	70.3932										
S-10	23.1007	70.2961										
S-11	23.1608	70.4948										
S-12	22.9446	70.1062										
S-13	23° 6'58.69"	70°21'8.77"										
S-14	22.89590	70.07450										
S-15	23.0654	70.2172										

Table 1 . Sampling locations (2024-2025)

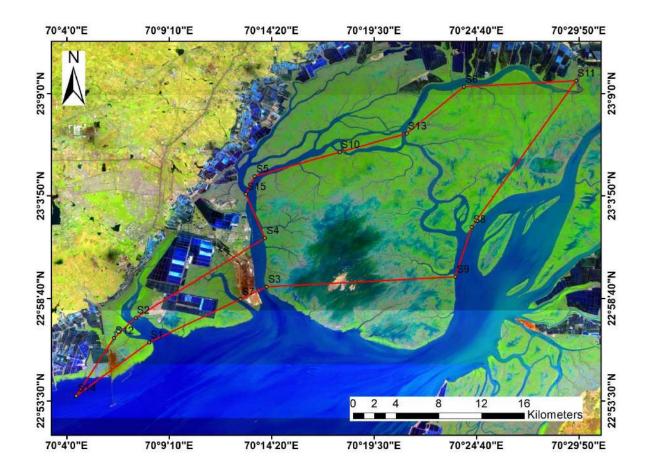


Figure 1. Sampling location of Study area

2. Sampling of water and sediment samples

Sampling was carried out for the coastal water (surface) and sediment to determine physical and chemical characteristics from the prefixed sampling sites. The biological parameters (benthic and pelagic fauna, flora and productivity) were also estimated(Table.2).

Parameters									
Water	Mangrove & Other Flora								
рН	Mangrove								
Temperature	Vegetation structure, density								
Salinity (ppt)	Diversity								
Dissolved oxygen	Height								
Total Suspended Solids (TSS)	Canopy and other vegetation characteristics								
Total Dissolved solids (TDS	Halophytes:								
Turbidity	Percentage of distribution and cover								
Nutrients	Diversity								
Nitrate (NO ₃)	Seagrass and Seaweed								
Nitrite (NO ₂)	Occurrence, distribution, and diversity								
Phosphate	Intertidal fauna								
Silicate	Composition, distribution, diversity, density and other characteristics								
Petroleum Hydrocarbon (PHs)	Mammals								
Sediment	Avifauna								
Texture	Density, diversity, composition, habitat,								
Bulk density	Threatened and endangered species and characters								
Total organic carbon (TOC)									
Biological Parameters									
Phytoplankton- Genera, abundance, diversity and biomass									
Productivity-Chlorophyll a									
Zooplankton – Species, abundance, diversity									
Macrobenthos - genera, abundance, diversity									
Fishery Resources									
Common fishes available									
composition, diversity									
Catch Per Unit Effort (CPUE)									

Table 2: Physico-chemical and biological parameters analysed

The water samples were collected from each pre-designated site in pre-cleaned polyethylene bottles. Prior to sampling, the bottles were rinsed with sample water to be collected and stored in an ice box for transportation to the laboratory and refrigerated at 4°C till further analysis. The analysis of the water quality parameters was carried out by following standard methods (APHA, 2017). All extracting reagents were prepared using metal-free, AnalaR grade chemicals (Qualigens Fine Chemicals Division of Glaxo SmithKline Pharmaceuticals Limited, Mumbai) and double distilled water prepared from quartz double

Methodology

2.1.Physico-chemical Parameters

pH and Temperature

A Thermo fisher pH / EC / Temperature meter was used for pH and temperature measurements. The instrument was calibrated with standard buffers just before use.

Salinity

A suitable volume of the sample was titrated against Silver nitrate (20 g/l) with Potassium chromate as an indicator. The chlorinity was estimated, and from that, salinity values were derived using a formula (Strickland and Parsons,1972).

Total Suspended Solids (TSS)

About 100 ml of the water sample was filtered through pre-weighed filter paper and placed in the Hot air oven at a specified temperature as per the protocol for 1 hour. The filter paper was allowed to cool in a desiccator to obtain a constant weight by repeating the drying and desiccation steps.

Total Dissolved Solids (TDS)

The water samples were subjected for gravimetric procedure for confirmation of the readings obtained from the hand -held meter. About 100 ml of the water sample was taken in a beaker and filtered which was then dried totally in a Hot Air Oven (105°C). The TDS values were calculated using the difference in the initial and final weight of the container.

Turbidity

The sample tube (Nephelometric cuvette) was filled with distilled water and placed in the sample holder. The lid of the sample compartment was closed. By adjusting the'SET ZERO' knob, the meter reading was adjusted to read zero. The distilled water was removed, the 40 NTU standard solutions were filled in the tube, and the meter reading was set to read 100. Other standards were also run. The turbidity of the marine water sample was then found by filling the sample tube with the sample, and the reading was noted.

Dissolved Oxygen (DO)

DO was determined by Winkler's method (Strickland and Parsons, 1972).

Phosphate

Acidified Molybdate reagent was added to the sample to yield a phosphomolybdate complex that is reduced with Ascorbic acid to a highly coloured blue compound, which is measured at the wavelength of 690 nm in a Spectrophotometer (Shimadzu UV 5040).Phosphorus compounds in the sample were oxidized to phosphate with alkaline Potassium per sulphate at high temperature and pressure. The resulting phosphate was analyzed and described as total phosphorous.

Silicate

The determination of dissolved silicon compounds in natural waters is based on the formation of a yellow silicomolybdic acid when an acid sample is treated with a molybdate solution. It is Spectrophotometrically measured by absorbance (810 nm for maximum absorbance and 660 for about 40% by adopting method of s Grasshoff et.al 1999.

Nitrite

Nitrite in the water sample was allowed to react with Sulphanilamide in acid solution. The resulting diazo compound was reacted with N-1-Naphthyl ethylenediamine dihydrochloride to form a highly coloured azo-dye. The light absorbance was measured at the wavelength of 543 nm in Spectrophotometer (Shimadzu UV 5040).

Nitrate

The Nitrate content was determined as nitrite (as mentioned above) after its reduction by passing the sample through a column packed with amalgamated Cadmium.

Petroleum Hydrocarbon (PHs)

The water sample (1liter) was extracted with Hexane and the organic layer was separated, dried over anhydrous sulphate and reduced to 10 ml at 30°C under low pressure. Fluorescence of the extract was measured at 360 nm (excitation at 310 nm) with Saudi Arabian crude residue as a standard. The residue was obtained by evaporating lighter fractions of the crude oil at 120°C.

Sediment sampling

Sediment samples were collected from the prefixed stations by using a Van Veen grab having a mouth area of 0.04m² or by a non-metallic plastic spatula. Sediment analysis was carried out using standard methodologies. In each location (grid), sediment samples were collected from three different spots and pooled together to make a composite sample, representative of a particular site. The collected samples were air dried and used for further analysis.

Sediment Texture

For texture analysis, specified unit of sediment sample was passed through sieves of different mesh size as per Unified Soil Classification System (USCS). Cumulative weight of the fraction retained in each sieve was calculated starting from the largest sieve size and adding subsequent sediment weights from the smaller size sieves (USDA,1951). The percentage of the various fractions was calculated from the weight retained and the total weight of the sample. The cumulative percentage was calculated by sequentially subtracting percent retained from the 100%.

Total Organic carbon

Percentage of organic carbon in the dry sediment was determined by oxidizing the organic matter in the sample by Chromic acid and estimating the excess Chromic acid by titrating against Ferrous ammonium sulphate with Ferroin as an indicator (Walkley and Black, 1934).

2.2. Biological Characteristics of water and Sediment

Primary productivity

Phytoplankton possess the plant pigment chlorophyll 'a' which is responsible for synthesizing the energy for metabolic activities through the process of photosynthesis in which CO_2 is used and O_2 is released. It is an essential component to understand the consequences of pollutants on the photosynthetic efficiency of phytoplankton in the system. To estimate this, a known volume of water (500 ml) was filtered through a 0.45 μ m Millipore Glass filter paper and the pigments retained on the filter paper were extracted in 90% Acetone. For the estimation of chlorophyll 'a' and pheophytin pigments the fluorescence of the Acetone extract was measured using Fluorometer before and after treatment with dilute acid (0.1N HCL) (Strickland and Parsons,1972).

Phytoplankton

Phytoplankton samples were collected from the prefixed 15 sampling sites from the coastal water in and around DPA location using standard plankton net with a mesh size of 25µm and a mouth area of 0.1256 m² (20 cm radius). The net fitted with a flow meter (Hydrobios) was towed from a motorized boat moving at a speed of 2 nautical miles/hr. Plankton adhering to the net was concentrated in the net bucket by splashing seawater transferred to a pre-cleaned and rinsed container and preserved with 5% neutralized formaldehyde and appropriately labelled indicating the details of the collection, and stored for further analysis. The Quantitative analysis of phytoplankton (cell count) was calculated using the formula: N=n ×v/V (Where, N is the total No/liter, n is the average number of cells in 1 ml, v is the volume of concentrate; V is the total volume of water filtered. The identification was done by following the standard literature of Desikachary, (1987), Santhanam *et.al.* (2019) and Kamboj *et.al.* (2018).

Zooplankton

Zooplankton samples were collected using a standard zooplankton net made of bolting silk having 50μ m with mouth area of 0.25 m^2 fitted with a flow meter. The net was towed from a boat for 5 minutes with a constant boat speed of 2 nautical miles/hr. The initial and final reading in the flow meter was noted down and the plankton concentrate collected in the bucket was transferred to appropriately labeled container and preserved with 5% neutralized formaldehyde. One ml of the zooplankton concentrate was added to a Sedgwick counting chamber and observed under a compound microscope and

identified by following standard literature. The group/taxa were identified using standard identification keys and their number was recorded. Random cells in the counting chamber were taken for consideration and the number of zooplankton was noted down along with their binomial name. This process was repeated for five times with 1 ml sample and the average value was considered for the final calculation. For greater accuracy, the final density values were counter-checked and compared with the data collected by the settlement method.

Intertidal Fauna

Intertidal faunal assemblages were studied for their density, abundance and frequency of occurrence during Monsoon 2024 at the pre-fixed 15 sampling locations within the DPA jurisdiction. Sample collection and assessment of intertidal communities were done in the intertidal zone during the low tide period. At each site, $1 \times 1 m^2$ quadrates were placed randomly and all visible macrofaunal organisms encountered inside the quadrate were identified, counted and recorded. At each site, along the transects which run perpendicular to the waterfront, three to six replicate quadrate samples were assessed for the variability in macro-faunal population structure and the density was averaged for the entire intertidal belt. Organisms, which could not be identified in the field, were preserved in 5% formaldehyde, brought to the laboratory and identified using standard identification keys (Abott, 1954; Vine, 1986; Oliver, 1992; Rao, 2003; 2017; Psomadakis *et al.*, 2015; Naderloo 2017; Ravinesh *et al.* 2021; Edward *et al.*, 2022). Average data at each site were used to calculate the mean density (No/m²).

Sub tidal macro benthic Fauna

The sampling methods and procedures were designed in such a way to obtain specimens in the best possible condition as to maximize the usefulness of the data obtained. For studying the benthic organisms, triplicate samples were collected at each station using Van Veen grab, which covered an area of $0.04m^2$. The wet sediment was passed through a sieve of mesh size 0.5 mm for segregating the organisms. The organisms retained in the sieve were fixed in 5-7% formalin and stained further with Rose Bengal dye for ease of spotting at the time of sorting. The number of organisms in each grab sample was expressed as No. /10cm². All the species were sorted, enumerated and identified by following the available literature. The works of Day (1967), Hartman (1968, 1969), Rouse

and Pleijel (2001), Robin *et al.*, (2003), Amr (2021), were referred for polychaetes; Crane (1975), Holthuis (1993), Naderloo (2017). Xavier *et al.*, (2020) for crustaceans; Subba Rao (2017), Ravinesh *et al.* (2021) and Edward *et al*, (2022) for molluscs. Statistical analyses such as diversity indices and Univariate measures such as Shannon-Wiener diversity index (H'), Margalef's species richness (d), Simpson's dominance (D) were determined using using Paleontological Statistics Software Package for Education and Data (PAST) version 3.2.1 (Hammer et al., 2001).

Plate 1: Estimation of intertidal fauna by the quadrate method

Plate 2: Collection of Plankton and macrobenthos in subtidal habitat

2.3. Mudflats

Mudflats are ecologically and socio-economically vital ecosystems that bring benefits to human populations around the globe. These soft-sediment intertidal habitats, with >10% silt and clay (Dyer 1979), sustain global fisheries through the establishment of food and habitat (including important nursery habitats), support resident and migratory populations of birds, provide coastal defenses, and have aesthetic value. Mudflats are intimately linked by physical processes and dependent on coastal habitats, and they commonly appear in the natural sequence of habitats between subtidal channels and vegetated salt marshes. In some coastal areas, which may be several kilometress wide and commonly form the largest part of the intertidal area. Mudflats are characterized by high biological productivity and abundance of organisms but low in species diversity with few rare species. The mudflat biota reflects the prevailing physical conditions of the region. Intertidal mudflats can be separated into three distinct zones such as the lower tidal, middle and upper mudflats. The lower mudflats lie between mean low water neap and mean low water spring tide levels, and are often subjected to strong tidal currents. The middle mudflats are located between mean low water neaps and mean high water springs. The upper mudflats lie between the mean high-water neap and mean high water springs. The upper mudflats are the least inundated part and are only submerged at high water by spring tides (Klein, 1985). Salt marsh vegetation may colonize as far seaward as mean high water neaps. Mudflats will often continue below the level of low water spring tides and form sub-tidal mudflats (McCann, 1980). The upper parts of mudflats are generally characterized by coarse clays, the middle parts by silts, and the lower region by sandy mud (Dyer *et al.*, 2000). The intertidal mudflats are prominent sub-environments that occurred on the margin of the estuaries and low relief sheltered coastal environments. The fine-grained sediments of intertidal mudflats (70%-90%) are derived from terrestrial and marine regions (Lesuere et.al., 2003). Estuarine mudflats are potential sites for deposition of organic matter derived from terrigenous, marine, atmospheric and anthropogenic sources and are mainly associated with fine grained particles (Wang et.al., 2006).

Plate 3. Sediment sample collection at mangrove and mudflat areas

Sampling locations

The Sediment samples were collected from 15 sampling locations by using sediment corer. From each site triplicate samples were collected from up to 100 cm depth with four intervals (0-25cm, 25-50cm, 50-75cm & 75-100cm) and made into composite sample for analysis. The samples were packed in zip lock bags, stored in icebox and shifted to the laboratory for subsequent analysis.

Total Organic Carbon

The organic carbon content of the mudflats was estimated to assess the biological productivity of the sediment. Soil Organic Carbon (SOC) was estimated following the method of Walkley and Black (1934). In this method, organic matter (humus) in the soil gets oxidized by Chromic acid (Potassium dichromate plus concentrated H2SO4) by utilizing the heat evolved with the addition of H₂SO4. The unreacted dichromate is determined by back titration with Ferrous ammonium sulphate (redox titration). Organic carbon was determined by following the below given formula:

Oxidizable organic carbon (%) =
$$\frac{10 (B - T)}{B} \times 0.003 \times \frac{100}{\text{wt. of soil}}$$

Where B = volume (mL) of Ferrous ammonium sulfate required for blank titration.T = volume of Ferrous ammonium sulfate needed for soil sample. Wt. =weight of soil (g).

Estimation of Bulk Density (BD)

The soil under field condition exists as a three-phase system viz. solid (soil particles), liquid (water) and gas (mostly air). The soil organic matter contained in a unit volume of the soil sample is called its bulk density. The amount of bulk density depends on the texture, structure and organic matter status of the soil. High organic matter content lowers the bulk density, whereas compaction increases the bulk density. To determine the bulk density of the sediment samples collected during the present study, the oven-dry weight of a known sediment volume was considered, and mass per unit volume was calculated (Maiti, 2012).

2.4. Mangrove assessment

Mangroves are widely distributed on the Deendayal Port Authority jurisdiction area along the Kandla coast. The 15 sites selected at the different creeks belong to Deendayal Port Authority jurisdiction and all these stations are supposed to be sufficient to represent the

mangroves status in Kandla. The mangrove stations in this study were named Tuna, Jangi, Kandla, Phan and Navlakhi based on the closeness of the location to the respective creek system. The Point Centered Quadrate Method (PCQM) was used for the collection of data of the mangrove vegetation structure. The data included, measurements of density of plants, height variations, canopy and basal girth of mangrove trees as per the method of Cintron and Novelli (1984). For this method, a transect of a maximum of 200 m was applied mostly perpendicular or occasionally parallel to the creek. The sampling points considered at an interval of every 10 m and the vegetation structure of the that area were recorded. As the orientation of the transect line was already fixed, it was easy for movements within the station area for data recording. The distance between trees from the center of the sampling point to the nearest 4 trees of four different directions, height of trees from the ground level, canopy length and canopy width were measured to determine the canopy cover in this study. The equipments utilized in the field were handy, and easy to use such as ranging rods, pipes and for measurement of girth at root collar above the ground (GRC), a measuring tape was used. The plants with a height <50 cm was considered as regeneration class and >50 cm but <100 cm was considered as recruitment class. Along the transects, sub-plots of 1×1 m² for regeneration and 2×2 m² were laid randomly for recruitment class of the mangrove sites.

Plate 4: Assessment of mangrove density, height, canopy cover and girth

2.5. Halophytes

To quantify and document the halophytes at Deendayal Port Authority region, quadrate method was followed. At each sampling location quadrates of various sizes have been laid during every seasonal sampling. For recording the plant density at each transect, a quadrate 1 x 1m² has been laid within the site each tree quadrates were used randomly (Misra,1968; Bonham, 1989). Four quadrates each for shrubs and herbs were laid in each tree quadrate to assess the halophytes and the percentage cover in the study area. To enrich the species inventory, areas falling outside the quadrates were also explored and the observed species were recorded and photographed and identified using standard keys. Specimens of the various species were collected to know more information on habitat and for the preparation of herbarium.

Plate 5: Assessment and percentage cover of halophyte

2.6. Marine Fishery

Fishery resources and the diversity were assessed from the selected sampling sites. Finfish and shellfish samples were collected using a gill net with a 10 mm mesh size. The net was operated onto the water from a canoe or by a person standing in waist deep water during the high tide using a cast net (Plate 6). For effective sampling, points were fixed at distances within the offshore sites for deploying fishing nets to calculate the Catch per Unit effort estimated per hour. The collected specimens were segregated into groups, weighed and preserved in 10% neutralized formalin solution. Finfishes were identified following Fischer and Bianchi (1984), Masuda *et al.* (1984), de Bruin et al. (1995) and Mohsin and Ambiak (1996). Relevant secondary information pertaining to fishery resources of Deendayal Port creek systems were gathered through technical reports, the District Fisheries department, Government gazette and other research publications.

Plate 6: Collection of fisheries information from DPA environment

2.7. Avifauna

The Avifauna population was determined along DPA mangrove strands for which the area was demarcated into fifteen major stations. In each station, creeks of varying lengths from 2 to 5 km are available. These creeks were surveyed by using boat and adopting "line transect" method. A total of fifteen boat transect (one in each site) survey was conducted in the Monsoon season (June- September, 2024). Survey was done in both terrestrial habitats like Mangrove plantations adjoining the mudflats, waste land, and aquatic habitats, like creek area, rivers and wetland.

Boat Surveys

Mangrove bird diversity was calculated by using Boat Survey method. Birds were observed from an observation post on board the boat which has given the greatest angle of clear view. Birds within a 100 meter transect on one side of the boat were counted in 10-minute blocks of time (Briggs *et al.* 1985; van Franeker, 1994). Detection of birds was done with a binocular (10 x 40) and counts were made: (1) continuously of all stationary birds (swimming, sitting on mangrove, or actively feeding) within the transect limits and (2) in a snap-shot fashion for all flying birds within the transect limits. The speed of the boat determines the forward limit of the snapshot area within a range of 100 meters. Longer or shorter forward distances were avoided by adapting the frequency of the snapshot counts. Birds that following and circling the boat were omitted from both snapshot and continuous counts. If birds arrive and then follow the boat, they were included in the count only if their first sighting falls within a normal snapshot or continuous count of the transect area. For each bird observation species, number of individuals and activity at the time of sighting, were recorded. Species richness and diversity index were calculated for different mangrove patches (i.e. fifteen station) of the study station in the Deendayal port Authority.

Data collected in- situ and through laboratory analysis of samples were subjected to descriptive statistical analysis (PAST and Primer 7.0) for the mean, range and distribution of different variables from the selected 15 study stations.

3. Results

Water quality assessment

The data on the mean water quality parameters measured at the time of sampling of the biological components from the 15 study sites are presented in Table3.

Temperature (°C) and pH

The water temperature at the sampling sites ranged from 23°C to 30°C. The maximum temperature of seawater was reported at S-7 and the minimum at S-6 in Janghi creek. The pH of seawater ranged from 7.7 to 8.1. The highest pH reported from majority of the stations was 8.0 to 8.1 and the lowest value 7.7 was noticed at S-8 S-11 in Navlaki creek & Janghi . The overall temperature fluctuation minimum which might be due to monsoon water but the pH of the water did not show remarkable variations among the sampling locations.

Salinity (ppt)

Salinity of the water strongly influences the abundance and distribution of marine biota in coastal and marine environments. The salinity ranged from 34 ppt to 42 ppt with the average value of 38 ppt. Minimum salinity was observed at S-3 and maximum at S-8 & S-10 also.

Dissolved oxygen (DO)

Dissolved oxygen is the amount of oxygen dissolved in water and is a fundamental requirement of all biota and chemical processes in the aquatic environment. The concentration varies mainly due to photosynthesis and respiration by plants and animals in water. Generally, the coastal waters are having high level of dissolved oxygen due to the dissolution from the atmosphere through diffusion process on the surface layer (CCME,1999). The dissolved oxygen in the coastal waters of Deendayal port authority area ranged from 2.9 mg/L to 8.2 mg/L. The highest DO concentration was observed at station S-4 and lowestvalue reported at S-7.

Suspended Solids (TSS)

The total suspended solids (TSS) concentration at the 15 sampling sites ranged from 205 mg/L to 729 mg/L with the average of 419 mg/L. The highest TSS values was reported at S-6 followed by 658 mg/L in S-3 opposite oil jetty. The minimum TSS value 205 mg/L was recorded at S-13.

Total Dissolved solids (TDS)

The total dissolved solids (TDS) in the water consist of inorganic salts and dissolved materials which mostly comprises of anions and cations. The TDS of the samples varied from 26,876mg/L 1,39,862mg/L with an average of 84,352 mg/L. The maximum value was reported from S-10.

Turbidity

The turbidity of the water samples from the study sites ranged between 20 NTU and 160 NTU with the average of 59 NTU. The lowest value was noticed at S-8 and the highest value at S-6 followed by S-7 (142 NTU).

Dissolved nutrients (Nitrate, Nitrite, Total Phosphorus and Silicate)

The nutrients influence growth, metabolic activities and reproduction of biotic components in the aquatic environment. The distribution of nutrients mainly depends upon tidal conditions, season and fresh water influx from land. The nitrate concentration ranged from 0.001 mg/L to 0.003 mg/L with an average of 0.002 mg/L. There was no remarkable variation in the concentration of nitrate among the study stations. Similarly, nitrite values varied between 0.001 mg/L to 0.173 mg/L. The highest concentration was observed at station S-9 and lowest value at station S-14. The Total phosphorus values among the study station ranged from 36 mg/L to 73 mg/L with an average of 54 mg/L. The highest phosphorus concentration was observed at station S-6 near Janghi creek and lowest at station S-3 opposite to oil jetty. During this season the highest concentration over limit might be due to leaching of phosphatic fertilizer while handling in the cargo port area and other cargo discharge. Likewise, the silicate concentration varied from 0.012 mg/L to 0.058 mg/with the average of 0.035 mg/L.The highest concentration of Silicate was observed at S-15 and lowest value at S-14. The variations in the concentration of silicate in correlated with the production of diatoms and siliceous planktonic species which are invoved in the in the export of carbon from surface of open sea towards creek system of Kandla and the particulate matter to the bottom sediment.

Petroleum Hydrocarbons (PHs)

Petroleum Hydrocarbons (PHs) are widely recognized as the most extensively utilized fossil fuels in commercial applications (Kuppusamy et al., 2020). PHs serve as crucial raw materials across various industries and function as primary sources of energy (Varjani, 2017). However, their pervasive use has led to their identification as a major concern in terms of environmental contamination, posing significant threats to ecosystems due to their inherent stability and resilience. The category of PHs encompasses diverse components, including Polycyclic aromatic hydrocarbons (PAHs), alkanes, paraffin, cycloalkanes, organic pollutants, and non-hydrocarbon elements such as phenol, sulfur compounds, thiol, metalloporphyrin, heterocyclic nitrogen, naphthenic acid and asphaltene. The introduction of PHs into an ecological niche or ecosystem promptly alters its composition, leading to a decline in overall functionality and inducing weathering processes. This weathering, in turn, initiates various influences, encompassing chemical reactions (auto-oxidation/photo-oxidation), physical changes (dispersion), physicochemical alterations (sorption, dissolution, evaporation), and biological transformations (microbial and plant catabolism of hydrocarbons) (Truskewycz et al., 2019). The presence of PHs significantly impacts marine organisms, with bioaccumulation of harmful PHs in the aquatic food chain persisting for extended periods. This, in consequence, affects primary producers, primary consumers, and secondary consumers. Notably, approximately 90% of PH discharges are attributed to anthropogenic activities, particularly oil spills, occurring in both terrestrial and marine environments. Reports indicate an alarming annual discharge of around 8.8 million metric tonnes of oil into aquatic environments (Periathamby and Dadrasnia, 2013).

In the current study, the presence of PHs in water samples collected along all the 15 sampling locations were detected and estimated. The PHs ranged from 1.2 μ g/L to 10.1 μ g/L.. The highest concentration of the PHs was noticed at S-4 (in front of oil jetty) (10.1 μ g/L while the lowest was noted at S-5 (1.2 μ g/L) (Phang creek) with average variation of 4.6 2 μ g/L among the different station . Overall the PHs in al station little higher which might be due to cargo handling activity.

Parameter	S-1	S-2	S- 3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15
Temp (°C) (Water)	24	25	25	25	26	23	30	25	25	24	29	24	25	26	23
рН	8.1	8.0	8.1	8.0	8.0	8.1	8.1	7.7	7.9	7.9	7.7	8.0	8.1	8.1	8.0
Salinity (ppt)	36	38	34	39	37	36	41	42	38	42	38	36	40	38	36
Dissolved oxygen (mg/L)	4.3	6.2	5.5	8.2	7.6	7.4	2.9	7.2	6.4	7.0	5.2	5.8	4.1	3.6	5.3
(TSS) (mg/L)	302	599	658	467	346	729	503	329	365	390	346	468	205	259	323
(TDS) (mg/L)	56812	138585	88083	59045	116696	77160	83011	47680	98899	139862	89974	26876	96345	87131	59128
Turbidity (NTU)	58	45	58	74	42	160	142	20	47	60	44	47	31	28	33
Nitrate (NO ₃) (mg/L)	0.003	0.002	0.002	0.002	0.002	0.003	0.001	0.002	0.003	0.003	0.002	0.002	0.002	0.002	0.003
Nitrite (NO ₂) (mg/L)	0.050	0.038	0.031	0.053	0.050	0.064	0.079	0.061	0.173	0.018	0.062	0.094	0.083	0.001	0.052
Silicate (mg/L)	0.043	0.039	0.030	0.034	0.037	0.028	0.022	0.021	0.053	0.047	0.054	0.027	0.018	0.012	0.058
Total Phosphorus (mg/L)	48.24	61.18	36.18	68.53	62.94	73.24	46.18	51.18	37.06	53.82	42.35	46.18	53.53	67.35	62.94
PHs (μg/L)	7.15	6.35	3.49	10.1	1.2	6.5	2.05	7.85	8.7	2.75	1.75	3.9	3.45	1.4	2.45
ТОС	3.12	2.55	2.88	2.715	3.03	2.82	2.91	2.955	2.7	2.43	2.775	2.85	2.67	2.52	2.73
(Biological)															
Chlorophyll a (mg/L)	0.18	0.27	0.13	0.00	0.04	0.11	0.46	0.89	0.59	0.00	0.21	0.47	0.17	0.20	0.08

Table 3: Physico-chemical& Biological characteristics of the waters at the study sites during Monsoon 2024

3.2. Sediment

Sediment texture

The percentage composition of the soil particles in the sediment analyzed from the 15 sampling sites are presented in Fig.2.There were noticeable variations in the soil fractions, sand, silt and clay, among the stations. In the present study the highest percentage of clay was reported at S-1 followed by S-4. The highest percentage of sand was observed at S-14 followed by S-11. As per the observations, the percentage of silt content showed wide fluctuations between stations when compared to the clay and sand The nature of soil texture was characterized by the proportion of clay, sand and silt fractions. The Soil texture revealed the dominance of clay-sandy type while the sandy type substratum was very much dominated as compared to silt. This feature of the bottom sediment might be attributed to the activity of sediment transport in the creek system. The absence of perennial flow of freshwater into the coast along with lack of wave induced sand transport from open sea are the possible reasons for this uniform pattern of soil texture.

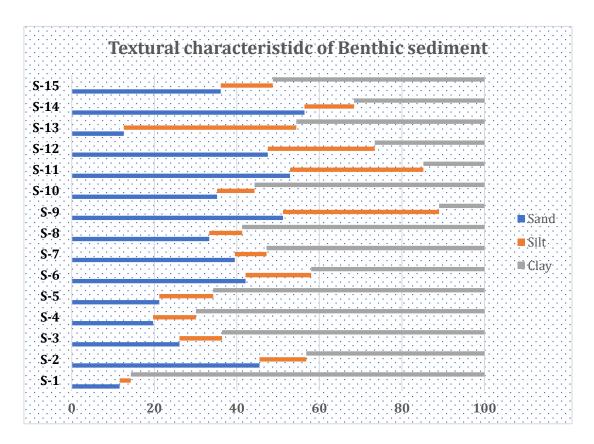
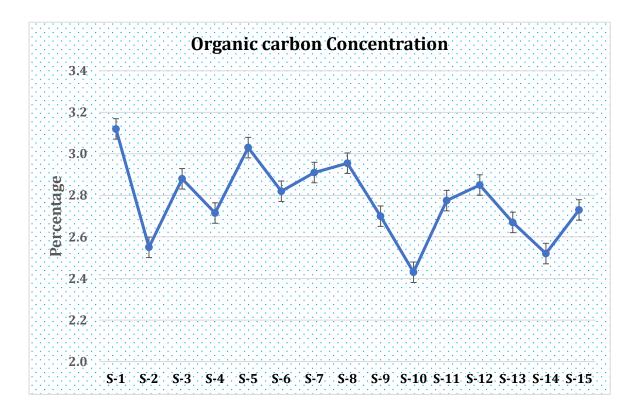



Figure 2: Characteristics of sediment at the study stations in Monsoon 2024

Total Organic Carbon (TOC)

In the present study, the total organic carbon content varied from 2.4% to 3.1% (Fig.3). The highest values of TOC were reported at S-1 followed by S-5 &S-8. The lowest TOC value was recorded at S-10. The distribution of total organic carbon closely followed the distribution of sediment type in general i.e., sediment low in clay content contained relatively low organic carbon. But in the Kandla creek system is associated with Mangroves which holds the organic particles derived from the plants and the fauna undergo decomposition and mixed with the sediment during the the mixing process which would have facilitated the adherence of particulate matter in the soft substratum as most of the stations showed more organic carbon load during monsoon.

Figure 3: Total Organic Carbon content (%) in the sediment during Monsoon 2024

3.3. Biological characteristics

Primary productivity

Chlorophyll 'a' the photosynthetic pigment which can be used as a proxy for phytoplankton productivity and thus is an essential water quality parameter. Generally, the primary production of the water column is assessed from Chlorophyll 'a' concentration. It is well known that half of the global primary production being arbitrated by the activity of microscopic phytoplankton.

At present, the Chlorophyll 'a' concentration ranged from 0.01 mg/L to 0.89 mg/L with average variation among the station was 0.26 mg/L. The highest concentration 0.89 mg/L was reported at S-8 (Fig.4) followed by S-9 (0.59mg/L). The photosynthetic pigment chlorophyll a which is a measure of the population density of phytoplankton during the monsoon period showed minor variations among the sites. The Chlorophyll 'a' content was very low at S-4 (Table 2).

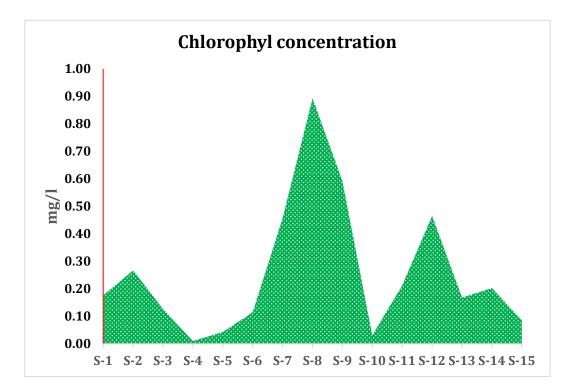


Figure 4: Chlorophyll 'a' concentration at the study stations in Monsoon 2024

3.4. Phytoplankton

Phytoplankton are a key component of the ocean and freshwater ecosystems and provide many ecosystem services including oxygenation through photosynthesis which is estimated to be about half of the Earth's oxygen. Thus, they are important component of the functioning of ecosystems and climate regulation (Jacqueline et al., 2018). The carbon assimilation during photosynthesis by the phytoplankton enables the transfer of atmospheric carbon dioxide into the biomass which is stored in the cells and later pass on to the food chains and being cycled through the food webs. These microscopic producer community has been influenced by the negative impact from human developments and activities, and hence the service provision afforded by them should be accounted for in marine management processes (Jacqueline et al., 2018). Phytoplankton growth depends on the availability of carbon dioxide, sunlight, and nutrients. Phytoplankton, like land plants, require nutrients such as nitrate, phosphate, silicate, and calcium at various levels depending on the species. Some phytoplankton can fix nitrogen and can grow in areas where nitrate concentrations are low. They also require trace amounts of iron which limits phytoplankton growth in large areas of the ocean because iron concentrations are very low. Other factors influence phytoplankton growth rates, including water temperature and salinity, water depth, wind, and what kinds of predators are grazing on them (Lindsey and Scott, 2010).

The numerous species of phytoplankton are the primary producers form the basis of marine food-webs, supporting production of higher trophic levels (a provisioning ES), and act as a sink of carbon dioxide. The spatial distributions of phytoplankton and rates of primary productivity are generally subject to bottom-up control, due to the tight coupling between light, temperature and nutrients. understanding of the spatial and temporal variability in phytoplankton parameters are accounted in marine management as these are correlated with physical and chemical factors of the water. The diatoms form the bulk of phytoplankton and the dinoflagellates are scarce. The phyto-plankton in the Gulf of Kachchh shows a primary peak in September and secondary peaks in January or June are instances of local blooms of more than one genus and species of diatoms.The detailed genera and percentage of phytoplankton presented in table -4.

Generic Status

There were four groups of phytoplankton occurred during monsoon along the DPA, Kandla coast and its peripheral creek system which include Diatom (Pennales, Centrales), and Cyanophyceae. The number of genera recorded during the monsoon period was 17 to 22 at the sampling stations with variations in respect to the composition. The maximum number (22) genera were observed at S-13 and the minimum from S-12 representing 17 genera. As far as generic status is concerned the Pennales diatom contributed a smaller number of genera (13) followed by Centrales (9) (Fig.5 & Table 4). Among the 4 groups of phytoplankton, the genera *Pleurosigma , Thalassionema, Coscinodiscus* and *Odontella* was highly dominated.

Percentage composition of phytoplankton

The cumulative percentage composition of the five groups of phytoplankton from all the study sites is presented in Fig.6. The percentage composition varied from 0.14 % to 14.35 % of which the pennales and centrales are the dominant constituting 65% and 34% respectively. The diatoms pennales and centrales together formed 99% of the phytoplankton population by number of genera as well as number of individuals while the rest is constituted by Cyanophyceae (1%) during the monsoon 2024.

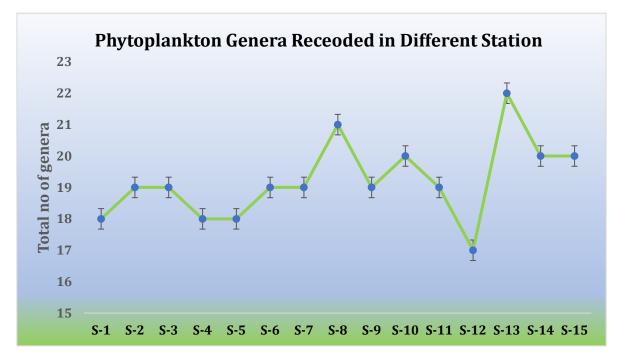


Figure 5: Number of Phytoplankton genera in Monsoon 2024

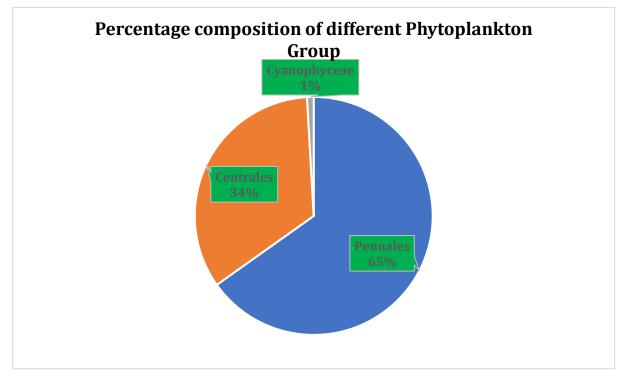
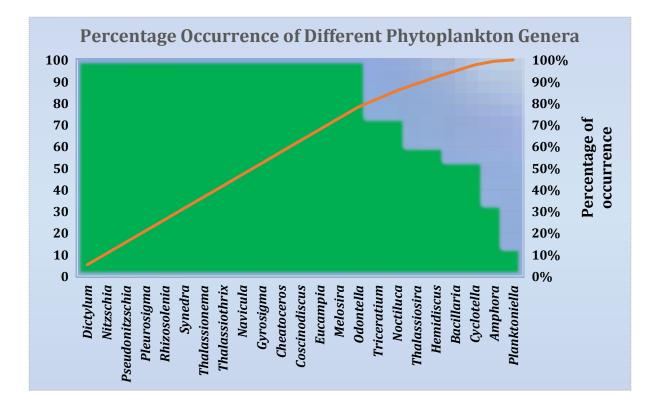



Figure 6: Percentage composition of phytoplankton groups in Monsoon 2024

Percentage of occurrence

The percentage occurrence denotes the number of representations by a genus among the sites sampled. The percentage occurrence of different phytoplankton genera varied from 13% to 100% with an average of 83%. i.e 15 genera of diatoms occurred at all the stations i.e *Dictylum ,Nitzschia, Pseudonitzschia, Pleurosigma, Rhizosolenia, Synedra, Thalassionema, Thalassiothrix, Navicula, Gyrosigma* (fig 7) followed by *Triceratium* and *Noctiluca* (73%) during the monsoon season.

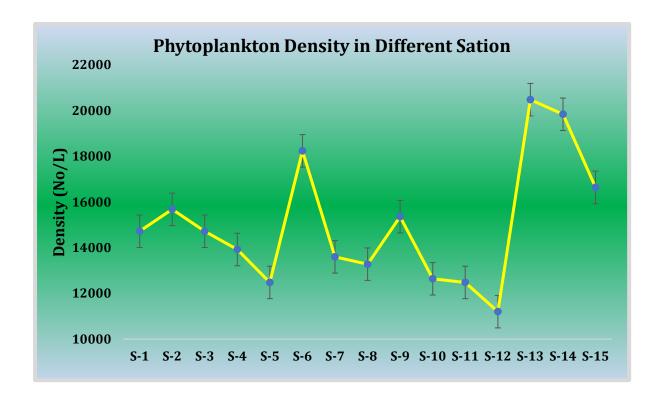


Figure 7: Percentage occurrence of phytoplankton genera in Monsoon 2024

Phytoplankton density and diversity

The density signifies the abundance of plankton which is measured as cell/ individual/L. The phytoplankton density varied from 11,200 No/L to 20,480 No/L with the average 15,019 No/L. The highest phytoplankton density was observed at station S-13 (20,480 No/L) followed by S-14 (19,480 No/L), whereas the lowest 11,200 No/L at S-12 (fig.8). Diversity indices have become part of standard methodology in the ecological studies particularly, impact analysis and biodiversity monitoring of the environments (PEET,1974). Biodiversity indices reflects the biological variability which can be used for comparison with space and time. Various species diversity indices respond differently to different environmental and behavioral factors of biotic communities. Among the different stations, the phytoplankton taxa varied from 17 to 22 (Table-3). During monsoon the Margalef and Menhinik richness indices were maximum as(2.1& 0.2). The Shannon diversity index was maximum 2.7 and minimum 2.5 a. The Simpson index clearly reflexes the species dominance (genera) at all station (fig 9).

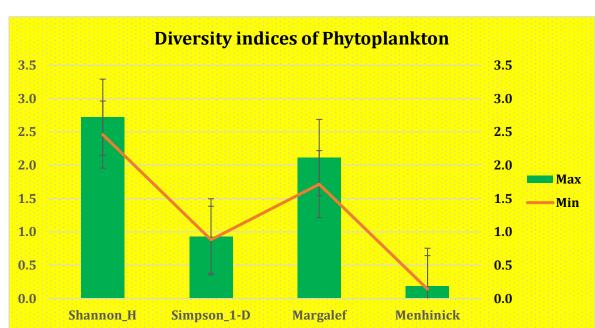
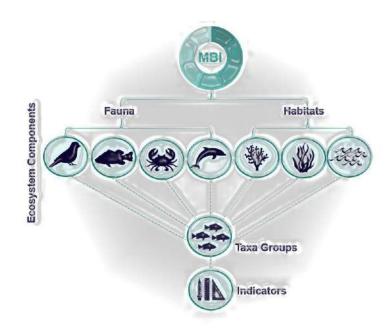



Figure 8: Phytoplankton density in Monsoon 2024

Figure 9: Different diversity indices a. Shannon Index b. Menhinick Index c. Margalef Index d. Simpson Index

As per Shannon Wiener's rules for the aquatic environment i.e., both soil and water are classified as very good when H' value is greater than four (>4), whereas the good quality represents the H' value with a range of 4-3, similarly moderate-quality (H' value 3-2), poor quality (H' value 2-1) and very poor-quality H' value significantly less than one (<1). Presently Deendayal Port Authority and its periphery environment has been influenced by the cargo movements. Accordingly, species diversity decreases at sites with poor water quality. As presumed from the Shannon diversity index values between 2.60 to 2.93 representing the moderate quality of environmental status dominated by majority of the genera such as Dictylum ,Nitzschia, Pseudonitzschia, Pleurosigma, Rhizosolenia, Synedra, Thalassionema, Thalassiothrix, Navicula, Gyrosigma which are distributed at all the stations . A community dominated by relatively few species indicates environmental stress (Plafkin et al., 1989). However, during the monsoon period the many genera appeared and flourish due to the suitable environmental condition in the water. According to Staub *et. al* (1970) species diversity index value between 3.0 to 4.5 represents slightly polluted and the lightly polluted environment shows the index value between 2.0-3.0, and the , moderately polluted environment shows index value of 1.0-2.0 and finally, the heavily polluted environment index value is 0.0-1.0. While considering the overall index values it is inferred that the study sites can be included under the category of lightly polluted. Which might be due to the industrial development and salt pan activity along the periphery environment of DPA port authority.

_	_	Station														Т		
Group Genera	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	РС	РО	
	Amphora	0	0	0	0	0	160	0	0	160	0	0	160	160	0	160	0.36	33
	Bacillaria	160	0	0	160	0	0	0	160	160	160	0	0	160	160	160	0.57	53
	Dictylum	480	320	160	480	320	320	160	320	480	640	800	480	320	480	960	2.98	100
	Nitzschia	1280	1440	1120	480	960	1440	1280	480	800	480	640	480	640	480	800	5.68	100
	Pseudonitzschia	480	640	800	480	800	480	640	480	800	480	480	320	640	960	480	3.98	100
	Pleurosigma	320	480	640	800	480	1440	1600	1920	1440	480	1280	1440	3360	3040	1760	9.09	100
Pennales	Rhizosolenia	1120	480	640	960	480	1280	480	1120	960	480	800	480	1440	1120	1440	5.89	100
	Synedra	1920	2400	2400	1440	1280	1920	320	320	320	480	640	640	2880	1920	480	8.59	100
	Thalassionema	1280	1440	1760	1920	1600	2880	3360	480	2400	2560	1440	1120	2080	4320	3680	14.35	100
	Thalassiothrix	480	1120	1440	480	1120	1440	480	1280	800	960	480	640	480	320	160	5.18	100
	Navicula	800	1280	480	640	800	480	640	1280	1120	960	480	640	800	480	1280	5.40	100
	Gyrosigma	480	320	480	320	160	480	320	320	480	160	160	480	320	160	160	2.13	100
	Thalassiosira	160	160	320	0	320	0	160	160	320	0	0	0	160	320	0	0.92	60
	Cheatoceros	800	640	480	320	480	800	480	640	800	1120	1440	480	800	480	640	4.62	100
	Coscinodiscus	2880	1440	1600	1920	1280	1920	1440	1920	2240	1440	1600	320	2400	3200	640	11.65	100
	Cyclotella	0	0	0	160	0	0	160	160	0	160	320	0	160	160	320	0.71	53
	Eucampia	320	320	480	640	320	480	320	640	480	320	640	320	480	640	800	3.20	100
Centrales	Melosira	480	480	320	480	640	800	480	160	320	480	320	640	480	320	800	3.20	100
	Odontella	960	1120	960	1920	960	1280	800	800	1120	640	480	2240	2080	960	1760	8.03	100
	Planktoniella	0	0	0	0	0	160	0	0	0	160	0	0	0	0	0	0.14	13
	Triceratium	320	160	320	160	160	320	320	160	0	0	160	320	160	0	0	1.14	73
	Hemidiscus	0	1280	160	0	0	160	160	320	0	160	160	0	320	160	0	1.28	60
Cyanophyceae	Noctiluca	0	160	160	160	320	0	0	160	160	320	160	0	160	160	160	0.92	73
Total Density (No/L)		14720	15680	14720	13920	12480	18240	13600	13280	15360	12640	12480	11200	20480	19840	16640		
Total Genera		18	19	19	18	18	19	19	21	19	20	19	17	22	20	20		

Table 4: Phytoplankton density, percentage composition and occurrence during Monsoon 2024

PC: Percentage of Composition

PO: Percentage of Occurrence

3.5. Zooplankton

These are the primary consumers that depends on phytoplankton for their feeding and constitute a second trophic level in food chain of marine ecosystem. The size of the zooplankton members varies greatly from microscopic to macroscopic occupying different depths in the pelagic realm. They constitute the primary food for several higher trophic level organisms which includes fishes, crustaceans and mollusks. Zooplankton provides the required amount of protein to the cultured fishes and crustaceans (Koli and Mule, 2012) as well. The zooplankton species quickly respond to the environmental changes and thus are used as bio-indicators for the assessment of aquatic environments (Sharma et al., 2007). Thus, zooplankton are of great ecological significance as they play important role of transferring organic matter from primary producer to secondary consumers like fishes (Kehavias et al., 2013). Zooplankton in the Gulf of Kachchhis dominated by copepods (Saravanakumar et al., 2017) while the microzooplankton is represented by Cilio-phora and Forminifera (Patel et al., 2017). Ramaiah (1997) stated that studies on zooplankton communities, especially copepods are of key importance in assessing the health of coastal ecosystems. The distribution of living organism is controlled by the variation in salinity of water and its variation caused by dilution and evaporation is most likely to influence the fauna in the coastal ecosystem (Sridhar et al. 2006). The density of zooplankton was found to be high during postmonsoon and premosoon period, bimodal distribution, the primary peak occurring either in October or April and the secondary peak in March or December (Bhaskaran and Gopalakrishnan, 2011). Similarly, there occurs gradual increase in number of organisms towards the offshore area with concomitant increase in diversity. The larval forms of echinoderms, cephalopods and brachiopods are usually confined to the offshore (Govindan et al., 1980). The detailed genera and percentage of phytoplankton presented in table- 5

Phylum, group and generic status

The zooplankton identified from the 15 stations falls under 7 phyla and 28 genera belonging to the 13groups (Table 5). The phylum Arthropoda was the predominant, represented with 20 genera including copepods, crabs, shrimps and their larva. The phylum Arthropoda dominated in the samples with major groups Calanoida, Harpacticoida, Cyclopoida, (Copepoda) Decapoda, and the larval forms of crustaceans. There were 9 genera of copepods in the samples. Among copepods, the Calanoida ranked

first in terms of generic representation particularly *Acartia* sp, *Acrocalanus* sp, *Calanopia* sp. and *Calanus* sp. (figure-10).

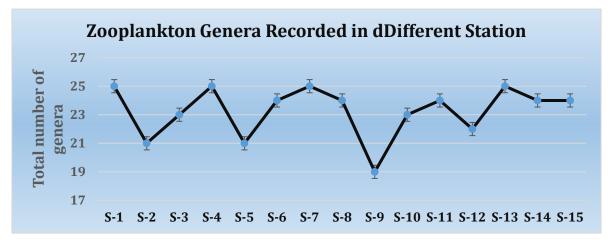


Figure 10: Generic status of zooplankton during Monsoon 2024

Percentage composition

The overall percentage of the various groups of zooplankton varied from 0.4% to 25.8%. The highest percentage was due to the calanoid copepods (25.8%) followed by *Malacostraca* (Brachyuran larvae) (19.9%) and Tintinnida (12.7%). (Fig.11). Among the zooplankton groups calanoid group predominated at all sites.

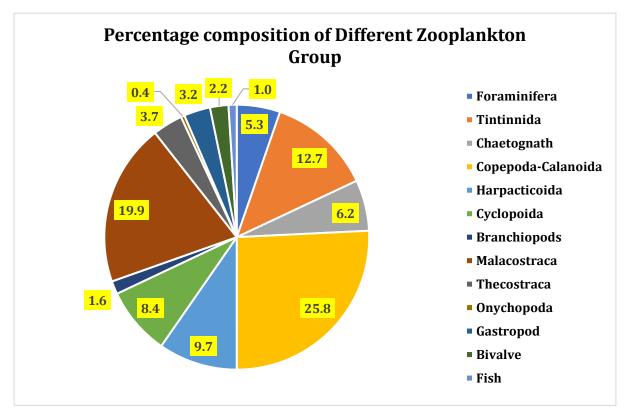
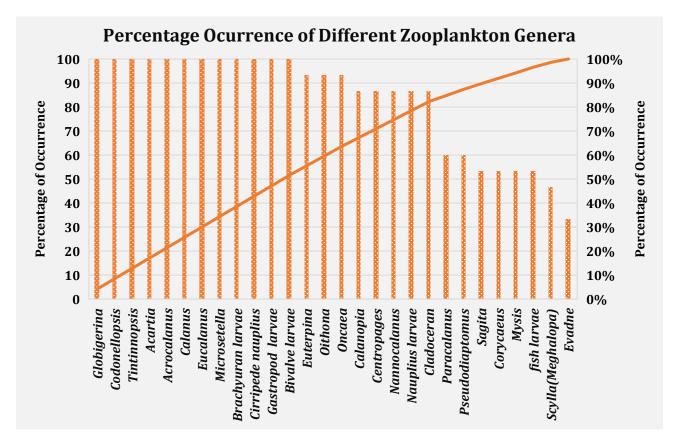
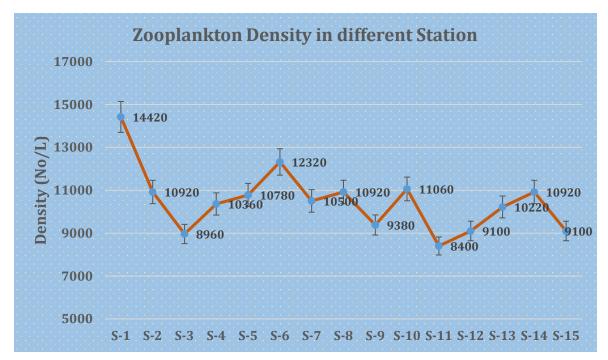



Figure 11: Percentage composition of zooplankton during Monsoon 2024

Percentage occurrence of zooplankton

The percentage occurrence of zooplankton communities(genera) varied from 33% to 100 %. There were 12 zooplankton genera that exhibited 100% of occurrence (Fig.12) followed by the *Euterpina*, *Oithona* and *Oncaea* (93%)and *Calanopia*, *Nannocalanus* (87%) from the study sites (Table5).


Figure 12: Percentage occurrence of Zooplankton groups during Monsoon 2024

Density of zooplankton

Zooplankton population density v during the Monsoon 2024 at the 15 sampling sites ranged from 8,400 No/L to14,420No/L with an overall average of 10,491No/L (Table 5). Station-wise, the highest density of 14,420 No/L was recorded in S-1 followed by S-6 (12,320 No/L) and lowest density was reported at S-11 (8,400 No/L) (Figure 13).

Regular Monitoring of Marine Ecology in and Around the Deendayal Port Authority and Continuous Monitoring Programme (Monsoon)

Figure 13: Zooplankton Density in the different stations during Monsoon 2024

Diversity Index

The Shannon diversity index of the zooplankton ranged between 2.44 to 3.01. Similarly, Margalef and Menhinick species richness index also varied from 2.60 to 1.97 and 0.20 to 0.26 respectively representing the moderate quality of the environment. (fig.14).

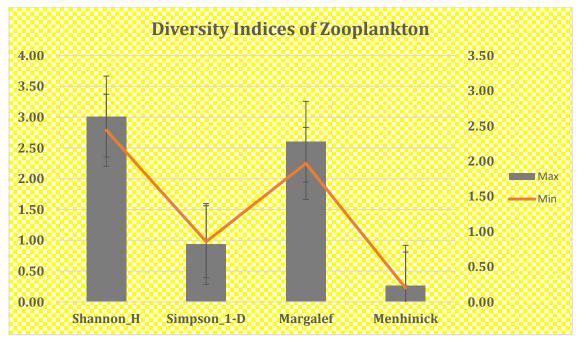


Figure 14: Zooplankton Density indices Monsoon 2024

Groups	Genera	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11		S-13	S-14	S-15	PC	PO
Foraminifera	Globigerina	980	1120	280	420	560	800	420	1120	420	700	420	280	420	280	140	5.31	100
Tintinnida	Codonellopsis	420	700	980	420	560	480	280	700	420	280	420	560	980	840	420	5.38	100
Tintinnua	Tintinnopsis	1120	420	700	980	420	800	560	420	1120	420	140	1400	420	1260	980	7.09	100
Chaetognath	Sagita	2800	0	980	1680	2100	1280	700	140	0	0	140	0	0	0	0	6.24	53
	Acartia	280	420	140	280	140	640	280	140	140	420	560	280	140	420	560	3.08	100
	Acrocalanus	420	560	280	560	700	480	280	140	420	140	280	560	420	280	140	3.60	100
	Calanopia	420	280	0	280	0	320	140	420	280	420	280	700	980	280	420	3.32	87
	Calanus	700	420	980	420	560	800	420	280	140	420	280	140	420	280	140	4.07	100
Copepoda-Calanoida	Centropages	420	280	0	140	420	320	420	280	0	140	420	280	560	420	140	2.69	87
	Eucalanus	700	420	280	140	280	960	700	980	420	560	420	280	420	280	560	4.70	100
	Nannocalanus	140	280	560	280	420	160	140	0	0	140	140	280	420	280	140	2.15	87
	Paracalanus	0	140	280	0	0	0	140	140	0	140	280	140	0	140	280	1.07	60
	Pseudodiaptomu	280	140	0	280	0	160	140	0	140	280	0	0	140	0	280	1.17	60
	Corycaeus	0	0	420	0	0	320	0	420	560	0	0	140	700	280	420	2.07	53
Harpacticoida	Euterpina	560	280	420	560	280	480	560	280	420	980	0	140	140	280	420	3.69	93
	Microsetella	840	980	420	420	280	160	420	280	140	280	420	560	280	420	280	3.93	100
	Oithona	280	0	140	280	420	160	420	700	560	280	420	140	420	280	140	2.95	93
	Oncaea	280	420	140	140	420	320	140	140	0	280	140	140	280	420	140	2.16	93
Cyclopoida	Nauplius larvae	140	0	140	280	420	320	140	280	140	0	140	140	280	140	140	1.72	87
	Mysis	140	0	140	0	140	160	140	0	0	0	140	280	140	0	0	0.81	53
	Scylla(Meghalopa	280	140	140	140	0	0	0	140	0	0	140	0	140	0	0	0.71	47
Branchiopods	Cladoceran	280	140	280	140	140	0	280	140	140	280	140	0	280	140	140	1.60	87
Malacostraca	Brachyuran larva	1680	2940	420	1260	1680	1760	2380	2940	3080	3780	1820	1540	1260	2660	2100	19.89	100
Thecostraca	Cirripede naupliu	420	280	560	420	280	480	560	280	420	280	700	420	280	280	140	3.69	100
Onychopoda	Evadne	0	0	0	140	0	0	140	0	0	140	140	0	0	140	0	0.44	33
Gastropod	Gastropod larva	280	280	140	280	420	320	280	420	280	420	280	420	280	560	420	3.23	100
Bivalve	Bivalve larvae	420	280	140	280	140	320	420	140	140	140	0	280	140	420	280	2.25	100
Fish	fish larvae	140	0	0	140	0	320	0	0	0	140	140	0	280	140	280	1.00	53
Total Densit	y (No/L)	14420	10920	8960	10360	10780	12320	10500	10920	9380	11060	8400	9100	10220	10920	9100		
Total Ge	nera	25	21	23	25	21	24	25	24	19	23	24	22	25	24	24	P /	
																PC	,;	

Percentage of Composition PO: Percentage of Occurrence

3.6. Intertidal Fauna

The intertidal zone, the interface between terrestrial and marine environments, represents one of the most dynamic and ecologically multifaceted ecosystems. Globally, the increasing utilization of the littoral zone for several developmental projects and human activities have contributed increasing level of habitat transformation and consequently degradation of this fragile ecosystem. Such degradation is manifested in the rapid loss of biodiversity, which poses a significant threat to the ecosystem's products and services (Liang et al 2024).

The intertidal zone is often referred as the littoral zone is the area where the land is submerged temporarily due to the tidal water inundation, and where the benthic region of the ocean begins and below this zone is the sublittoral (shelf) zone, extending from the low tide mark to the shelf break, is permanently submerged. The Intertidal zone can include rocky ledges, sandy beaches, mudflats, salt marshes, and mangrove swamps and the benthic region has a variety of physical conditions, including depth, light penetration, and pressure. The intertidal zone is a marine habitat that experiences extreme and rapidly changing environmental conditions such as water Temperature, salinity, tidal amplitude, turbidity, along with substratum composition and organic matter and carbon content and the vegetation characteristics which are very much correlated with the fauna population density and distribution along the intertidal zone.

Faunal composition of intertidal macrobenthos

The intertidal ecological survey has been conducted at the prefixed 15 locations within the vicinity of the Deendayal port Authority. The species diversity of the invertebrate phyla showed the maximum for phylum Mollusca (8 species), which is followed by Arthropoda (4species). The phylum Chordata was represented by one species (Table 6& Fig.15).Among the station the intertidal genera varied from 4 to 9 number higher number of genera recorded at S-6, S-10 and S-13 (9) and least number of genera recorded at S-15.

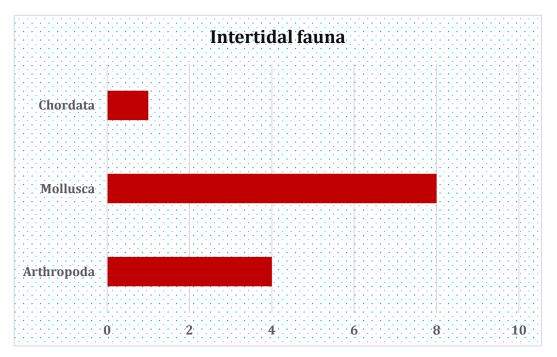


Figure 15: Number of genera of intertidal fauna during in Monsoon 2024

Percentage composition of Intertidal Fauna

The overall percentage composition of the three groups of intertidal fauna at the 15 station ie Arthropoda (67.09%), Mollusca (22.11%), and Chordata (10.8%), as shown in figure 16&17. The cumulative percentage of intertidal fauna varied from 0.1% to 23.5%.

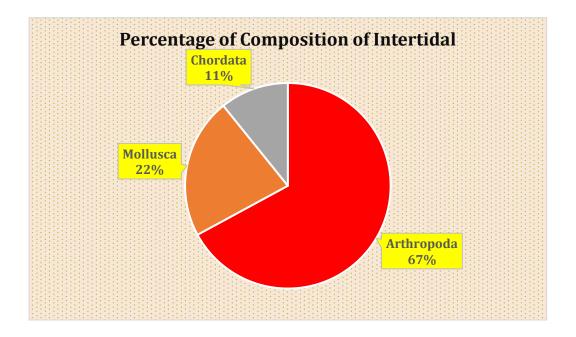
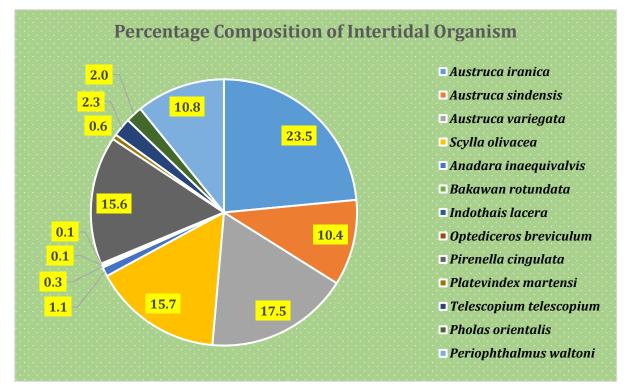
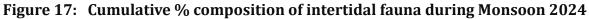




Figure 16: Percentage composition of intertidal fauna during Monsoon 2024

Highest percentage of organism contributed by *Austruca iranica* followed by *Austruca variegata* and least number of organism contributed by *Indothais lacera*, *Optediceros breviculum*.

Intertidal Fauna density (No/m²)

The number of individuals of the fauna collected from the intertidal zone of the mangroves are presented in Fig 17. It was observed that the faunal density was the highest at S- 2 and the least from S-11.

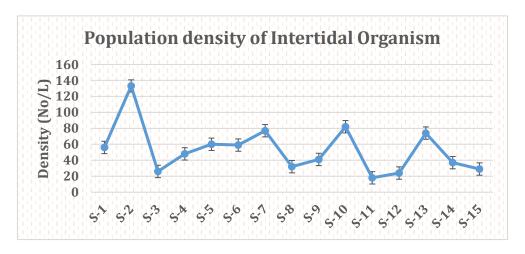


Figure 18: Density of intertidal fauna during Monsoon 2024

The Intertidal faunal diversity documented during the monsoon period of 2024 has shown that the highest number of animals were collected from S-2, and the lowest was from S-11. The most common species are the crustaceans such as *Austruca iranica* and Austruca variegata and among the Mollusca *Pirenella cingulata* (Table.5) and figure 17 represents the various diversity indices calculated for the different fauna recorded from the 15 sites adjoining the DPA port area as presented in figure 19.

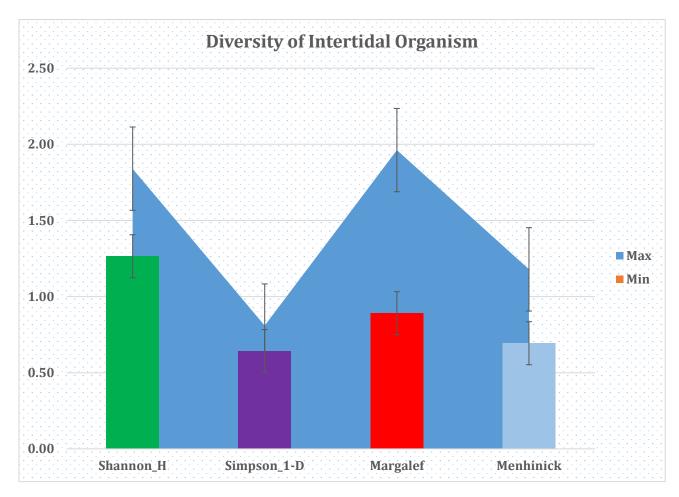


Figure 19. Diversity indices of Intertidal fauna

The maximum and minimum diversity is represent as per Shannon Wiener's rules for the aquatic environment i.e., both soil and water are classified as very good when H' value is greater than four (>4), whereas the good quality represents the H' value with a range of 4-3, similarly moderate-quality (H' value 3-2), poor quality (H' value 2-1) and very poorquality H' value significantly less than one (<1). The intertidal diversity of organisn represent in poor conditions.

Table 6: Intertidal faunal distribution along Deendayal Port Authority area during Monsoon 2024

Dhyla	Canada								Sta	ation							
Phyla	Grpup	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	РС
	Austruca iranica	21	25	14	20	27	18	10	10	12	10	2	6	2	5	5	23.49
Arthropoda	Austruca sindensis	0	3	0	0	3	6	6	5	12	4	10	6	7	17	4	10.43
Aithopoua	Austruca variegata	12	42	2	7	10	12	10	10	10	3	2	2	5	2	10	17.46
	Scylla olivacea	5	25	2	10	5	10	10	3	3	30	2	0	2	8	10	15.70
	Anadara inaequivalvis	0	0	2	1	0	2	0	0	0	2	0	0	2	0	0	1.13
	Bakawan rotundata	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25
	Indothais lacera	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0.13
Mollusca	Optediceros breviculum	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.13
Monusca	Pirenella cingulata	15	35	5	0	0	0	29	0	0	0	0	0	40	0	0	15.58
	Platevindex martensi	0	1	0	0	0	0	0	0	0	4	0	0	0	0	0	0.63
	Telescopium telescopium	0	1	0	0	1	1	2	0	0	7	0	0	6	0	0	2.26
	Pholas orientalis	0	1	1	0	4	2	0	2	2	2	0	0	2	0	0	2.01
Chordata Periophthalmus waltoni		0	0	0	10	10	7	10	2	2	20	2	10	8	5	0	10.80
Total Density of population (No/m2)		56	133	26	48	60	59	77	32	41	82	18	24	74	37	29	
]	Fotal genera	5	8	6	5	7	9	7	6	6	9	5	4	9	5	4	

3.7. Subtidal Fauna (Macrobenthos)

Subtidal ecosystems are permanently submerged due to tidal influence, whereas intertidal ecosystems are found between the high tide and low tide, experiencing fluctuating influences of land and sea. Macrobenthos are an important component of estuarine and marine ecosystems. Benthic fauna is an important component of marine ecosystems, providing key services including secondary production and remineralization. Being sedentary or having only limited mobility, benthic communities are particularly vulnerable to variations in environmental and ecological factors. As a result, they exhibit distinct spatial and temporal distribution patterns on small and large scales. Coastal areas are naturally highly dynamic, with several distinct habitat types coexisting nearby (e.g., estuaries and intertidal habitats) and supporting high biodiversity (Cowie and Woulds, 2011) . The abiotic factors structuring benthic communities include salinity, temperature, sediment characteristics, and oxygen availability, however, their relative importance varies among the different habitats. On a fine scale, biotic factors such as competition for food and space, predation, reproductive strategies, and life-history traits influence the distribution and abundance of individual species, in turn determining community structure. Moreover, coastal habitats are also the most impacted by anthropogenic pressures, from climate change-related warming and acidification to habitat degradation and pollution. Benthic fauna, through their diverse feeding modes and lifestyles, not only are affected by conditions in the sediment environment, but also actively influence sediment textural and geochemical properties, the flow regime of bottom waters, and, through exchange of particles and solutes between water and sediments, also regulate properties in overlying waters (Meysman et al., 2006)

All marine sediments are anoxic below a certain depth from the sediment surface and, consequently, sulphidic sediments have a worldwide distribution. Organic sediment enrichment occurs through vertical and advective accumulation of organic carbon from the decomposition of the organic matter . On bottoms where accumulation of organic matter happens and leading to the reduction of oxygen at low concentration. The oxygen deficiency may very well be the most widespread anthropogenically induced delelerious effect in me marine environment that causes localized mortality of benthic macrofauna. Also there is a complicated interplay between oxygen concentration and sediment geochemistry that regulates the response of organisms to declining dissolved oxygen

concentrations. The physio-biochemical system of estuary is regulated by benthic faunal through burrowing and feeding activities. Benthic communities are the useful tools for biomonitoring and gathering large amount of data in relation to coastal marine health of marine ecosystem. It is important to identify which are the primary causal factors for degradation of coastal ecosystem for design the proper management system at the coastal region..

Distribution and composition of subtidal macrobenthos

The number of macro benthic species of the various groups recorded (Fig.20) & Table 6 from the DPA port environment includes Mollusca (10) and Annelida (4) Arthropoda (2). The percentage composition of the three phyla that occurred during the monsoon is shown in (Fig 20 & table 6) The phylum Mollusca is represented by maximum (65%) share of the subtidal Fauna, followed by Annelida (25.5%), Arthropoda (9.8%) in the total benthic samples collected (Fig.21).

Subtidal Faunal density (No/m²) variation between the stations

The number of individuals of the animals collected from the different sites are shown in Fig 22. The density of the Fauna was high at S-14 ($700/m^2$), and the lowest number ($175/m^2$) was noticed at S-9 during the monsoon 2024.

Diversity index

The figure 22 represent the subtidal microbenthic faunal diversity documented in the monsoon 2024. The highest number of species diversity was documented from stations S-14, S-9, S-3 and S-13. The most common species are *Optediceros breviculum, Glauconome angulata and Pirenella cingulata.* The least diversity was documented for *Solen* sp were found significantly less diversity. The figure 24 represents the various diversity indices calculated for the different fauna recorded from the 15 sites adjoining the DPA port area. Invariabily the minimum and maximum index values of the three indices were observed at S-8&9 and S 14 respectively. Shannon diversity index varied , from 1.00 to 2.00 Simpson index ranged between 0.56 and 0.85 and the Margalef index ranged from 1.03 and 3.30.



Figure 20. Number of genera of macrobenthos during Monsoon 2024

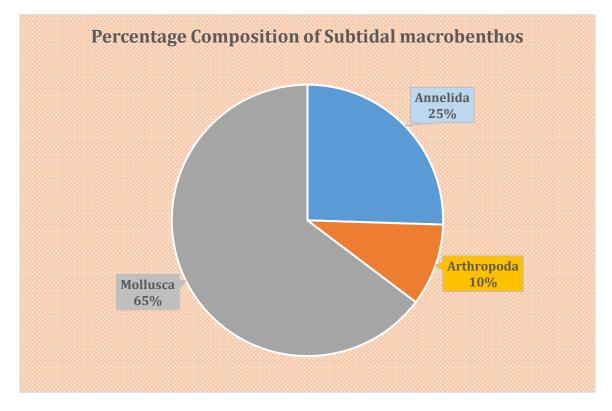


Figure 21. Percentage composition of macrobenthos during Monsoon 2024

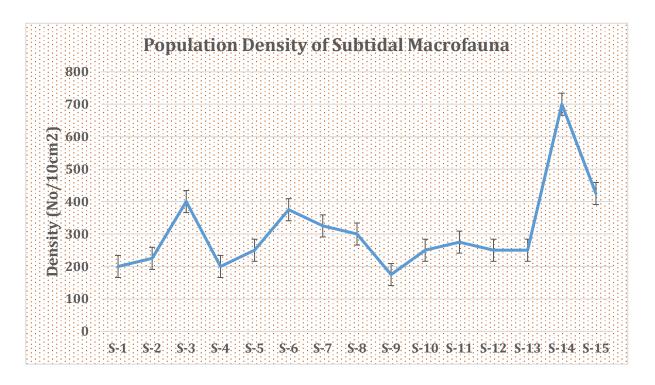


Figure 22. Subtidal fauna density during Monsoon 2024

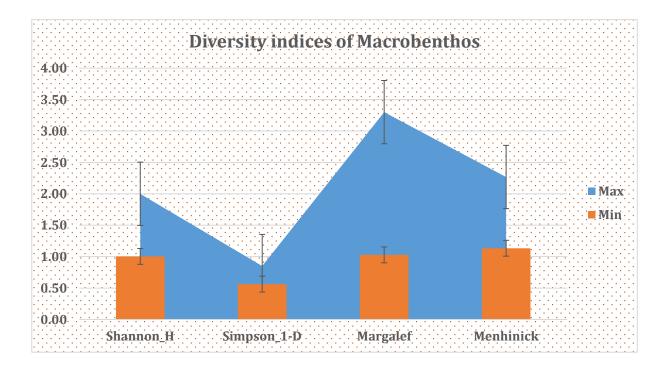
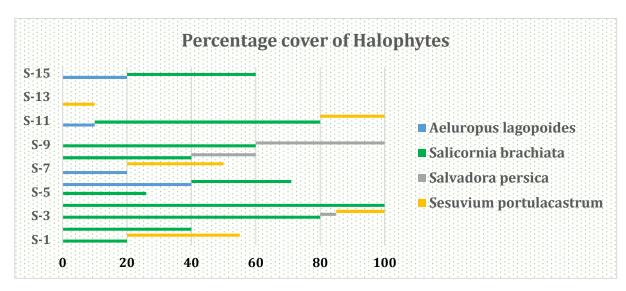


Figure 23. Subtidal macrofaunal diversity indices

Phyla	Genera	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10	S-11	S-12	S-13	S-14	S-15	РС
	Capitella sp.	0	1	0	0	3	0	0	0	1	0	3	1	0	1	0	5.4
Annolida	Lumbrineries sp.	1	0	4	0	0	0	1	0	0	2	0	2	2	0	2	7.6
Annelida	Nephtys sp.	1	0	2	0	0	0	0	2	3	0	0	0	0	1	0	4.9
	Nereis sp.	0	3	1	0	0	1	0	0	0	1	4	0	1	0	3	7.6
Arthropoda	Ampithoe sp.	0	0	0	0	2	0	0	1	0	0	0	2	0	2	0	3.8
Artinopoua	Penaeus sp.	0	2	0	0	1	1	0	0	0	0	2	0	2	0	3	6.0
	Mitrella blanda	0	0	0	0	0	0	0	0	0	0	2	0	0	1	0	1.6
	Natica sp	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1.1
	Optediceros breviculum	1	0	0	2	2	2	3	2	0	0	0	0	0	1	3	8.7
	Pirenella cingulata	5	0	0	0	0	2	1	2	3	1	0	2	3	12	2	17.9
Mollusca	Turritella sp	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1.1
Monusca	Marcia sp.	0	0	0	2	0	1	2	3	0	0	0	1	2	1	2	7.6
	Glauconome angulata	0	2	7	1	2	8	6	2	0	6	0	2	0	0	0	19.6
	Dosinia sp	0	0	2	2	0	0	0	0	0	0	0	0	0	3	0	3.8
	Gafrarium divaricatum	0	1	0	0	0	0	0	0	0	0	0	0	0	2	2	2.7
	Solen sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0.5
Total Population		8	9	16	8	10	15	13	12	7	10	11	10	10	28	17	
Der	nsity No/m2	200	225	400	200	250	375	325	300	175	250	275	250	250	700	425	
Тс	otal genera	4	5	5	5	5	6	5	6	3	5	4	6	5	12	7	

Table 7: Macro-benthic faunal distribution during Monsoon 2024 in Deendayal Port Authority

8. Seaweeds


There is no observation of seaweed during the study period

3.9. Seagrass

Similar to seaweed seagrass also not encounter during present observation

3.10. Halophytes

The halophytes are the plants that are adapted to live in coastal estuaries and salt marshes. It is common in arid and desert milieu which often have substantial salt accumulation. Technically these are the plants which have tolerance to moderate to high salt concentration in its growth substrate. Halophytes, that survive and reproduce in environments where the salt concentration is around 200 mM NaCl or more, constitute about 1% of the world's flora. (Timothy *et al.*, 2008). Halophytes are classified based on their growth conditions as obligate halophytes, facultative halophytes, and habitat-indifferent halophytes. In the present study, four major halophytes, *Salicornia brachiata* (a), *Aeluropus lagopoides* (c), *Salvadora persica* (d) and *Sesuvium portulacastrum*(b) (Plate-7) were recorded along the selected Deendayal Port Authority sites during the monsoon sampling. Among the halophyte species recorded, *Salicornia brachiata* alone was found at ten sampling locations. (Fig.24) and the percentage of cover was found to be the highest at S-4 (100%) and the lowest at S-2 &S-8(40%).

Fifure24.Halophytes diversity of Deendayal Port Authority

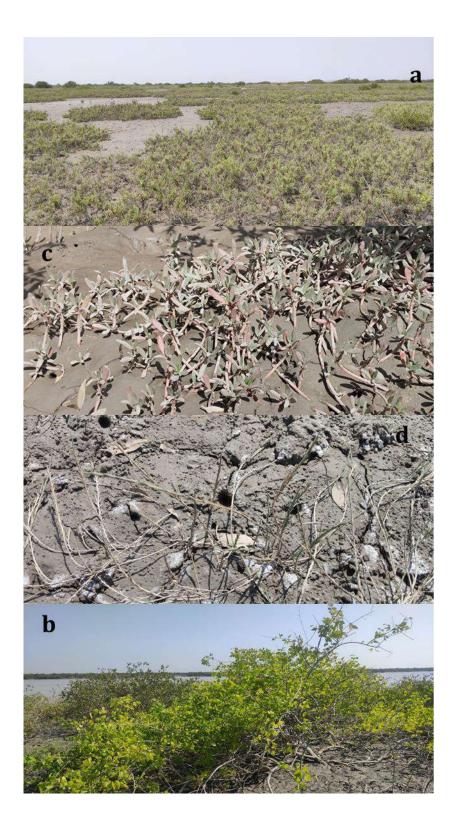


Plate 7. Halophyte species on the intertidal zone of Deendayal Port Authority area

a. Salicornia brachiata c. Sesuvium portulacastrum d. Aeluropus lagopoides
 b. Salvadora persica

3.11. Mangroves

Mangroves in Gujarat are distributed across four main regions: Kachchh, Gulf of Kachchh, Saurashtra, Gulf of Khambhat including South Gujarat. Kachchh and Gulf of Kachchh have the largest mangrove forests, which are meticulously studied and documented by the Gujarat Institute of Desert Ecology (GUIDE). The GUIDE research reveals the unique vegetation characteristics, species composition, ecological importance, and conservation status of these crucial coastal ecosystems. Mangroves serve as critical habitats for a wide variety of marine and terrestrial species, playing a significant role in coastal protection, biodiversity conservation, and local livelihoods. The efforts to study and conserve these ecosystems highlight their importance and the need for sustainable management

Tree Density

During the 2024 monsoon, 15 mangrove sites were selected in and around the Deendayal port Authority to undertake assessment on plant density and growth parameters such as height, girth, and canopy cover. The overall average tree density from the study sites along the DPA, was recorded as 2,189 trees/ha during the monsoon of 2024. However, the area under mangrove cover is shrinking due to increase in the anthropogenic activities such as salt pan formation and other developmental interferences. Among the 15 sampling locations, Tuna Creek had the highest mean plant density with 2535 trees/ha, followed by Kharo Creek with 2486 trees/ha. However, in Kharo creek only one station is located. Regarding individual sample locations, the S-6 had the highest tree density (3,673 trees/ha), followed by S-1 (3,522 trees/ha). The S-15 (1,027 trees/Ha) and S-11 (1,221 trees/Ha) had the lowest average tree density. The varying status of the mangroves across different locations (as illustrated in Fig. 25) reflect the seasonal changes in the local geomorphology as well as the distinct biological and environmental characteristics of each site.

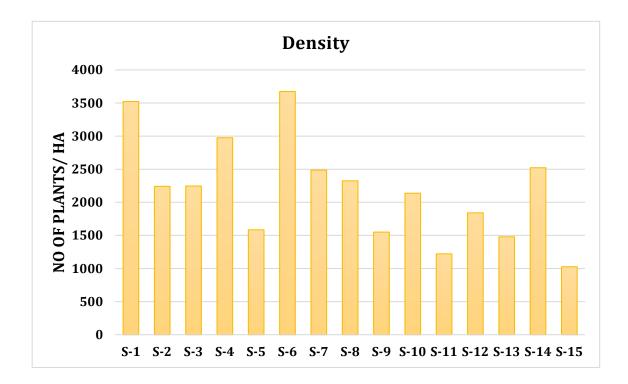


Figure 25. Plant density during monsoon 2024

Height

The overall mean height of the mangroves from the DPA, Kandla environment was 1.8 m during the monsoon of 2024. The highest average tree height was 2 m, recorded at Veera coast area followed by Tuna and Phang creek (1.8 m). In Veera area, only one station (S-14) is located. While considering the sites individually, the average tree height was 2.4 m at S-10 located at Phang creek, followed by site S-12 (2.3 m) located at Tuna creek (Fig.26). During the study, it was observed that the average tree height at several sites varied between 1.3 m and 2.4 m. Height is a crucial factor since it indicates whether trees are developing normally or exhibiting stunted growth. Height also contributes to the complexity of the habitat. Taller mangroves provide better protection against storm surges and high waves. They act as a buffer, reducing the energy of waves before they reach inland areas, thus protecting coastal communities from flooding and erosion. S

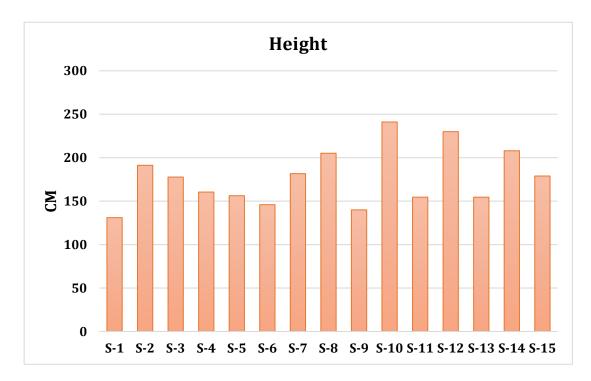


Figure 26. Plant height during monsoon 2024

Canopy Crown Cover

The survey conducted during the 2024 monsoon revealed that the average canopy cover across the mangrove study sites was 3.8 m². The figure 27 reflects the overall extent of the mangrove canopy, which plays a vital role in providing habitat for diverse species, stabilizing shorelines, and maintaining ecological balance. The station S-10 at Phang Creek and S-15 at Kandla Creek are noted for having higher average canopy covers compared to other locations. Navlakhi Creek had the highest average canopy cover at 5.2 m², followed by Phang Creek at 4.5 m², while, S-1 at Tuna Creek, and S-4 at Kandla Creek had comparatively lower average canopy cover. These variations in canopy cover across different sites in the Kandla sample region underscore significant differences influenced by local environmental and biological factors.

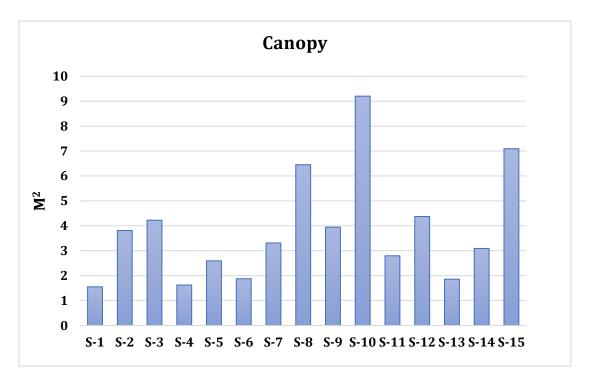


Figure 27. Mangrove canopy cover during monsoon 2024

Basal Girth

The average basal girth of the mangroves at the DPA sampling sites was reported to be 13 cm during the monsoon of 2024. Among the individual sampling sites, the highest average basal girth was recorded at site S-10 (22 cm) and site S-8 (18 cm), located in Phang Creek and Navlakhi Creek respectively (Fig.28). The lowest average basal girth was reported at site S-6 and S-9 (8 cm) in Janghi Creek and Navlakhi Creek, respectively. In the DPA Kandla area, as in other parts of Gujarat and the entire Gulf of Kutch, Avicennia marina is predominant, characterized by its multiple stem pattern. However, some larger trees in a few sites exhibit the higher basal girth measurements

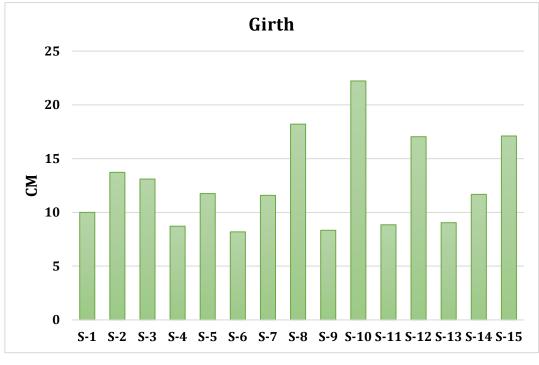


Figure 28. Basal girth of mangrove

Regeneration and recruitment class

The mangrove density and growth parameters were recorded during the survey conducted in the monsoon season of 2024 in the DPA Kandla area. The overall average regeneration class density was recorded as 29,692 plants/ha and the overall average recruitment class density was recorded as 5,308 plants/ha. In site-wise observations, the highest average regeneration class plants were recorded at site S-8 (73,000 plants/ha) which is followed by S-9 (52,000 plants/ha) both located along the Navlakhi creek area, For the recruitment class, the maximum plant density (average) was (11,750 plants/ha) at site S-7 located in the Kharo creek during this survey. Younger class mangroves can assure future availability of matured plants of full-grown trees in the area. Young mangroves help to stabilize soil and trap sediments, preventing coastal degradation and maintaining water quality. As they grow, these young plants will eventually contribute to the various ecosystem services and enhance the coastal protection offered by mature mangroves, shielding shorelines from erosion and storm surges.

Plate 8: Mangrove species recorded along the Deendayal Port area

a. Rhizophora mucronate b. Aegiceras corniculatum c. Ceriops tagal

d. Avicennia marina

3.12. Marine Reptiles

The saw-scaled viper *Echis carinatus sochureki* normally encounter in while visit in mangrove survey but during the present observation in all the 15 study location there is no single encounter in study area. The literature describes the species as aggressive and strikes at a lightning speed, the observed specimen was active. In monsoon, the maximum number of this snake was recorded in S-10 located on the northern part of Sat Saida bet in previous record.

3.13. Marine Mammals

Sousa plumbea (Cuvier, 1829) is commonly referred to as the Indian Ocean humpback dolphin. The length of the humpback dolphin is approximately 1.7 to 2m. Humpback dolphins feed mostly on small fishes, sometimes shrimps; occur mostly in small groups (mostly 12 or less); have limited nearshore movements and in most parts of their range, exhibit a fission/fusion type of social organization. The evaluation of the conservation status of a species and its subsequent listing as a Threatened species is a function of its risk of extinction, which is influenced primarily by population dynamics (population size and trends, population structure) and the key biological and environmental factors influencing those dynamics (distribution, behaviour, life history, habitat use and the effects of human activities). During the field surveys, the Indian Ocean humpback dolphin (Sousa plumbea) was not cited in monsoon season.

3.14. Marine Fishery

The Ichthyofauna diversity of the Gulf of Kachchh includes a total of 20 orders, 47 families and 96 species (Katira & Kardani 2017). Along the Sikka coast of Jamnagar where 112 ichthyofauna species belonging to 50 families, 12 orders, and 84 genera has been reported. Similarly, the localitynear the Marine National Park, in Jamnagar, Gulf of Kachchh reported 109 ichthyofauna species belonging to 58 families, 19 orders, and 93 genera (Brahmane *et al.* 2014). Apart from this, a recent study conducted by Sidat *et al.*, (2021) reported 96 species which include 20 order and 47 families. During the field observation, in the gill net catches *Mugil cephalus*, (Plate 9) the maximum during monsoon. Around 2kg of Mugil was catch in 10 minutes of in 1 km stretch.

Plate 9 Fish catch along the Deendayal Port Authority in monsoon 2024

4. Mud flat

Mudflats and mangroves establish a major ecosystem of the DPA coastal region and the significance of ecosystem services rendered by mudflat is endorsed in Coastal Regulation Zone (CRZ, 2011) as it accords special status to highly productive zone. Mudflat has an assemblage of plant-animal-geomorphological entities. DPA has been surrounded by two major ecosystems such as mangroves and mudflats which support a number of ecosystem services like nursery grounds for fish and shellfishes and breeding/feeding grounds for the birds (Spencer and Harvey, 2012). The TOC concentration is direct indicator of mudflat productivity and blue carbon sequestration.

Bulk density of the sediment samples

The bulk density (or apparent density) is defined as the density of a large volume of porous material powder including the pore spaces within the material particles in the measurement volume. The data on the bulk density of the sediment samples are presented in (Fig.29). The bulk density of mangrove soil at Deendayal Port Authority coastal region ranged from 1.30 g/cm³ to 1.61 g/cm³. The highest bulk density was recorded at S-13 sites followed by S-14. The lowest bulk density was recorded at S-5 located at Janghi creek.

Total Organic Carbon (TOC)

The highest TOC value (3.1%) was recorded at S-13 followed by S-1 and lowest TOC value was reported at site S-10 (Fig.30). It is observed that TOC values varied significantly among the sampling stations which means that organic carbon is dependent on the living life forms and variations in the life forms in the mudflats. The TOC concentration is a direct indicator of mudflat productivity and blue carbon sequestration. The data on monsoon samplings revealed that the different sampling sites of Deendayal Port Authority jurisdiction have considerable variations with respect to organic carbon.

Regular Monitoring of Marine Ecology in and Around the Deendayal Port Authority and Continuous Monitoring Programme (Monsoon)

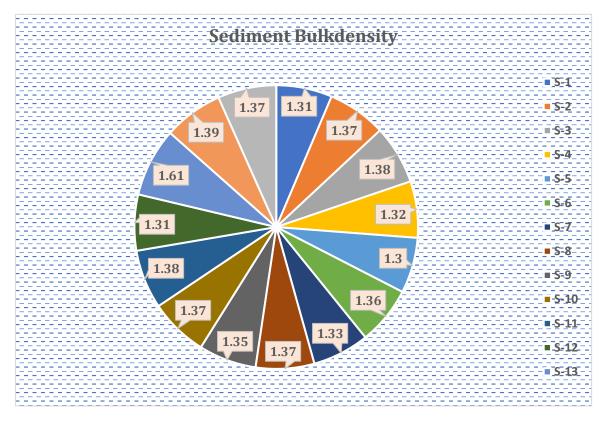


Figure 29: Bulk density of mudflat sediment during Monsoon 2024

Figure 30: Mudflat sediment Organic Carbon during Monsoon 2024

5. Avifauna

Globally, avifauna has the highest level of diversity. Indian subcontinent comprehends around 1340 species of birds which contribute more than 15% of the world's bird species (Ali and Ripley 1987, Manakadan and Pittie 2001, Grimmett et al. 2011, Cox 2010). Thus, understanding the diversity and structure of bird communities to describe the importance of regional or local landscapes for avian conservation and assessment of avian diversity has become an important tool in biodiversity conservation (Safiq *et al.* 1997). The baseline data on diversity, distribution and species composition plays a significant role for identifying priority areas and formulating the species-specific conservation plan (Peterson *et al.* 2000, Colin 2000) and evaluate the habitat quality (Chettri et al. 2005, Manjunath and Joshi 2012). While, numerous bird species use their foraging ecology to sustain a trophic level, making birds another key animal group in an ecosystem. Scavenging carcasses, eliminating vermin and insect pests, cycling nutrients, dispersing seeds, pollination, and pest control are some of these services. As scavengers and possible pollinators, they have a functional role in the ecosystem and are appropriately referred to as bio-indicators (Bruford 2002, Gregory et al. 2003, Parmar et al. 2016, Maznikova et al. 2024). The aim of the present study was to understand the occurrence and distribution of avifauna in the coastal areas of the Deendayal Port Authority, Kandla, India (Fig. 31).

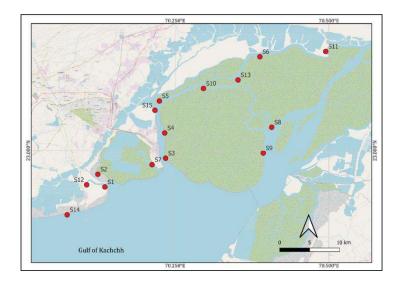
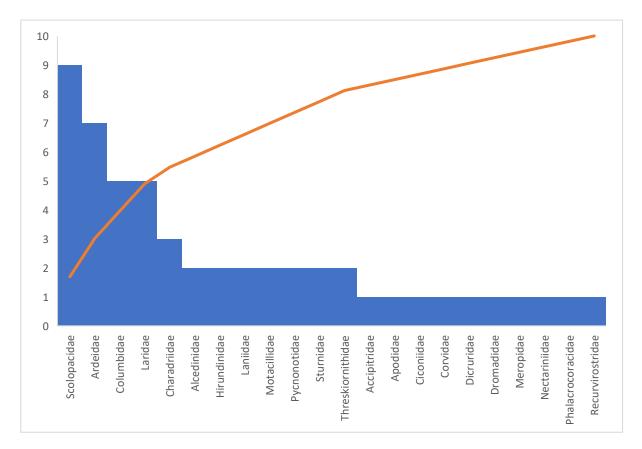



Figure 31. Permanent study sites at Deendayal Port Authority, Kandla, India

Status, Diversity and Distribution of avifauna in different station

The status and diversity of avifauna was studied in coastal areas of Deendayal Port Authority, Kandla, India for the monsoon season. The entire survey was comprehensively carried out by boat survey and walking along the fixed sampling station, for documentation of avifauna. A total of 53 species (32 species terrestrial and 21 aquatic bird) representing 9 order, 22 families and 37 genera were recorded during the study period **(See Annexture 1& Plate 10,11)**. Scolopacidae (nine species) were the most dominant family in terms of species richness followed by Ardeidae (seven species), whereas Columbidae and Laridae (five species), whereas others represent less species (Fig.32)

Figure 32 Distribution of families and species at the Deendayal Port Authority

Among the survey station, site 13 (53 species) were the most dominant with 37 genera and 22 families species richness followed by site 5 and 12 (45 species), and site 1 have 44 species and other sites have less species composition **(**Fig. 33).

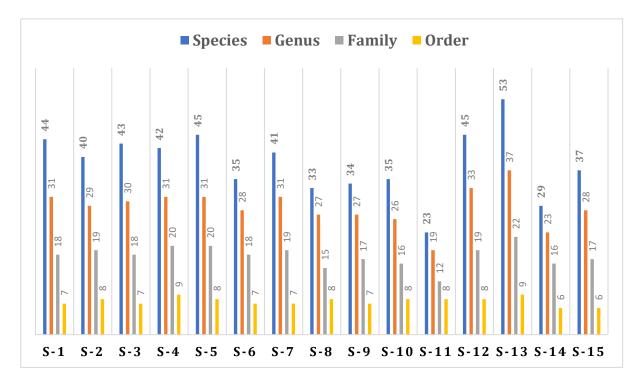


Figure 33 Site wise distribution of Avifauna recorded during monsoon season from the Deendayal Port Authority

The Shannon–Wiener diversity indices shows that site 13 (H=3.738), followed by site 12 (H=3.61), site 5 and 1 (H=3.57), whereas others represent less diversity (Table 7). Based on the movement pattern 36 species (68%) of birds were residence, 14 (26%) are migratory and three (6%) species are regional migratory (Annexure 1, Fig. 34). Considering the abundance of the species during the study period, 32 taxa were recorded from terrestrial, 21 from aquatic habitat. Among 53 species, only five species viz. Painted Stork Mycteria leucocephala (Pennant, 1769), Black-headed Ibis Threskiornis melanocephalus (Latham, 1790), Glossy Ibis Plegadis falcinellus (Linnaeus, 1766), Black-tailed Godwit Limosa limosa (Linnaeus, 1758) and Eurasian curlew Numenius arquata (Linnaeus, 1758) are under the Near Threatened (NT), whereas, River Tern Sterna aurantia (Gray, JE, 1831) is under vulnerable (VU) categories of IUCN Red List of Threatened Species. Moreover, two species (4%) River Tern Sterna aurantia (Gray, JE, 1831) and Common Greenshank Tringa nebularia (Gunnerus, 1767) were under the

Schedule I, and species (96%) were under Schedule II categories of Wild Life (Protection) Act, 1972 **(**Fig 35)

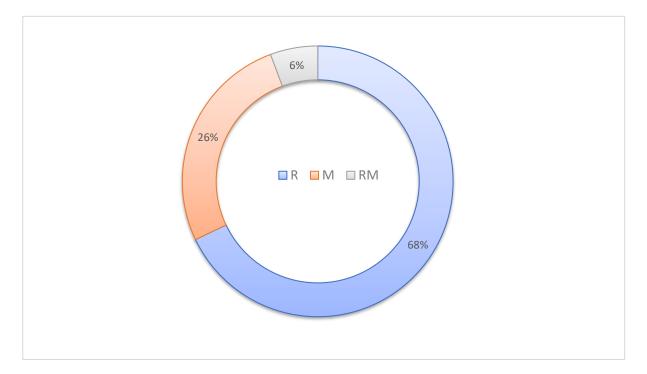


Figure 34 Behavioral status of avifauna from the Deendayal Port Authority,

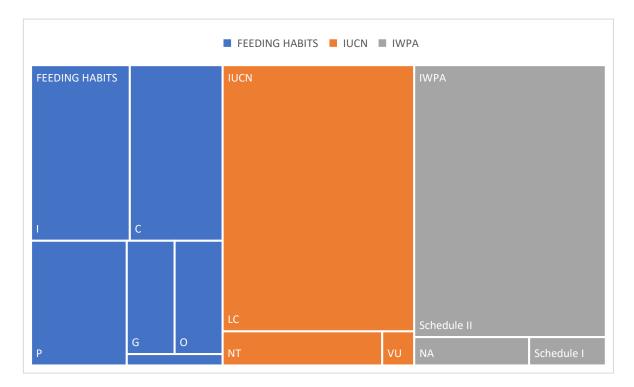


Figure 35 Status of foraging guild and threatened species recorded from Deendayal Port Authority,

Site	Species	Individuals	Shannon_H	Evenness_e^H/S	Margalef	Equitability_J
S-1	44	115	3.60	0.84	9.06	0.95
S-2	40	126	3.55	0.87	8.06	0.96
S-3	43	170	3.49	0.76	8.18	0.93
S-4	42	185	3.61	0.88	7.85	0.96
S-5	45	172	3.62	0.83	8.55	0.95
S-6	35	105	3.39	0.85	7.31	0.95
S-7	41	159	3.58	0.87	7.89	0.96
S-8	33	95	3.41	0.92	7.03	0.98
S-9	34	91	3.41	0.89	7.32	0.97
S-10	35	136	3.39	0.84	6.92	0.95
S-11	23	62	2.96	0.84	5.33	0.94
S-12	45	171	3.66	0.86	8.56	0.96
S-13	53	218	3.75	0.80	9.66	0.94
S-14	29	74	3.22	0.86	6.51	0.96
S-15	37	96	3.47	0.87	7.89	0.96

Table 8. Site wise diversity indices recorded from DPA in Monsoon 2024

Plate 10 Critical Mangroves and Mudflat habitats of birds at Deendayal Port Authority, Kandla (A-F)

Plate 11. Common and migratory birds from the Deendayal Port Authority, Kandla. (A) Lesser black-backed gull Larus fuscus Linnaeus, 1758 (B) Caspian gull Larus cachinnans Pallas, 1811 (C) Western Reef Heron Egretta gularis (Bosc, 1792) (D) Crab-plover Dromas ardeola Paykull, 1805 (E) Black Headed Ibis Threskiornis melanocephalus (Latham, 1790) (F) Eurasian curlew Numenius arquata (Linnaeus, 1758).

References

Abott, R.T. (1954). American Sea shells. Dvan Nostrand Company Inc, Newyork, pp 541

- Ali, S. and Ripley, S. D. 1987. *Compact Handbook of the Birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan, and Sri Lanka*. Oxford University Press, Delhi, India, 737 pp.
- Ali, S. and Ripley, S. D. 1987. *Compact Handbook of the Birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan, and Sri Lanka*. Oxford University Press, Delhi, India, 737 pp.

Amr, Z.S. 2021. The state of biodiversity in Kuwait. Gland, Switzerland: IUCN; The State of Kuwait, Kuwait: Environmental Public Authority Crane (1975), Holthuis, L.B. (1993). The Recent genera of the caridean and stenopodidean shrimps (Crustacea, Decapoda): With an appendix on the order Amphionidacea. Nationaal Natuurhistorisch Museum Leiden. 328.

- APHA, 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association.
- Bruford, M. W. 2002. Biodiversity-Evolution, Species, Genes. *In:* Norris, K. and Pain, D.J.
 (Eds.), *Conserving Birds Biodiversity-General Principals and their Application*.
 Cambridge University Press, U.K, 1-19.
- Bruford, M. W. 2002. Biodiversity-Evolution, Species, Genes. *In:* Norris, K. and Pain, D.J.
 (Eds.), *Conserving Birds Biodiversity-General Principals and their Application*.
 Cambridge University Press, U.K, 1-19.
- Chettri, N., Deb, D. C., Sharma, E. and Jackson, R., 2005. The relationship between bird communities and habitat: A study along a trekking corridor of the Sikkim Himalaya. *Mountain Research and Development* 25(3): 235-244
- Chettri, N., Deb, D. C., Sharma, E. and Jackson, R., 2005. The relationship between bird communities and habitat: A study along a trekking corridor of the Sikkim Himalaya. *Mountain Research and Development* 25(3): 235-244
- Colin, B., Jones, M. and Marsden, S. 2000. *Expedition Field Techniques Bird Survey*, BirdLife International press, Cambridge, p. 75.

- Colin, B., Jones, M. and Marsden, S. 2000. *Expedition Field Techniques Bird Survey*, BirdLife International press, Cambridge, p. 75.
- Cox, G. W. 2010. *Bird Migration and Global Change*. Island Press, Wahington. Covelo, London, 1-291.
- Cox, G. W. 2010. *Bird Migration and Global Change*. Island Press, Wahington. Covelo, London, 1-291.

Day, J.H. 1967. A Monograph on the Polychaeta of Southern Africa part I Errantia. Trustees of the British Museum (Natural History) London, 458pp.

Desikachary, T.V. (1987). Atlas of diatoms, 3 and 25. Madras Science Foundation Madras: plates, 22-4000

Dyer, K.R., Christie, M.C. & Wright, E.W. 2000. The classification of intertidal mudflats. Continental Shelf Research, 20(10-11): 1039-1060.

Edward, J.K.P., Ravinesh, R. & Biju Kumar, A. 2022. Molluscs of the Gulf of Mannar, India and Adjacent Waters: A Fully Illustrated Guide, (Dekker, H. & Oliver, P.G. Eds.). Suganthi Devadason Marine Research Institute, Tuticorin & Department of Aquatic Biology & Fisheries, University of Kerala, India, 524pp.

Fischer, W. & Bianchi, G. 1984. FAO species identification sheets for fishery purposes Western Indian Ocean, Fishing area 51 Prepared and prints with the support of the Danish International Development Agency DANIDA Rome, Food and Agricultural Organization of the United Nations, I-IV 20-55

- Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M. and Gibbons, D. W. 2003. Using birds as indicators of biodiversity. *Ornis Hungarica* 12&13: 11-24.
- Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M. and Gibbons, D. W. 2003. Using birds as indicators of biodiversity. *Ornis Hungarica* 12&13: 11-24.
- Grimmett, R., Inskipp, C. and Inskipp, T. 2011. *Birds of the India, Pakistan, Nepal, Bangladesh, Bhutan, Sri Lanka and the Maldives*. Princeton University Press, New Jersey, 528 pp.

Grimmett, R., Inskipp, C. and Inskipp, T. 2011. *Birds of the India, Pakistan, Nepal, Bangladesh, Bhutan, Sri Lanka and the Maldives*. Princeton University Press, New Jersey, 528 pp.

Hammer, ., Harper, D. A. T., & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9 p. <u>http://palaeo-electronica.org/2001 1/past/issue1 01.htm</u>

Hartman, O. (1968). Atlas of the errantiate polychaetous annelids from California. Allan Hancock Foundation, University of Southern California. Los Angeles, 828. Rouse and

Kamboj, R.D., Salvi, H., Patel, R. & Bhagat, R. 2018' Monograph on Phytolankton of Gulf of Kachchh. Gujarat Ecological aeduction and Research (GEER) Foundation . 182

Klein, G.D. (985. Intertidal Flats and Intertidal Sand Bodies, pp187-224. In: Davis, R.A. (eds) Coastal Sedimentary Environments. Springer, New York, NY McCann, 1980

Liang, J., Ma, C. -W., Kim, S. -K., & Park, S. -H. (2024). Assessing the Benthic Ecological Quality in the Intertidal Zone of Cheonsu Bay, Korea, Using Multiple Biotic Indices. Water, 16(2), 272. https://doi.org/10.3390/w16020272

Maiti, S. K., 2012. Ecorestoration of the coalmine degraded lands. Springer Science & Business Media, pp. 333Cintron and Novelli (1984).

- Manakadan, R. and Pittie, A. 2001. Standardised common and scientific names of the birds of the Indian subcontinent. *Buceros* 6(1): 1-37
- Manakadan, R. and Pittie, A. 2001. Standardised common and scientific names of the birds of the Indian subcontinent. *Buceros* 6(1): 1-37
- Manjunath, K. and Joshi, B. 2012. Avifaunal diversity in Gulbarga region, north Karnatak. *Recent Research in Science and Technology* 4(7), 27-34.
- Manjunath, K. and Joshi, B. 2012. Avifaunal diversity in Gulbarga region, north Karnatak. *Recent Research in Science and Technology* 4(7), 27-34.

Masuda, H., Amaoka, K., Araka, C., Vyeno, T. & Yoshino T 1984. The Fishes of Japanese Archipelago. Tokai University Press, Japan 437.de Bruin et al. (1995) and

- Maznikova, V. N., Ormerod, S. J. and Gomez-Serrano, M. A. 2024. Birds as bioindicators of river pollution and beyond: specific and general lessons from an apex predator. *Ecological Indicators* 158: 11136.
- Maznikova, V. N., Ormerod, S. J. and Gomez-Serrano, M. A. 2024. Birds as bioindicators of river pollution and beyond: specific and general lessons from an apex predator. *Ecological Indicators* 158: 11136.

Mohsin, A.K.M. & Ambiak, M.A. (1996). Marine Fishes and Fisheries of Malaysia and Neighboring Countries. University Pertanian Malaysia Press, Serdang 743

Naderloo, R. (2017). Atlas of Crabs of the Persian Gulf. Springer International Publishing AG, Switzerland, 445pp.

- Parmar, T.K., Rawtani, D. and Agrawal, Y. K. 2016. Bioindicators: the natural indicator of environmental pollution. *Frontiers in Life Science* 9(2): 110–118.
- Peterson, A. T., Ball, L. G. and Brady, K. W. 2000. Distribution of the birds of the Philippines: biogeography and conservation priorities. *Bird Conservation International* 10(2): 149-167

Ravinesh, R., Biju Kumar, A. and Anjana, V.L (2021) Diversity and distribution of molluscan fauna of Asthamudi estuary, Kerala, India, Wetlands Ecology and Management. 29 (5), 745-765

Robin S.W., Pat, H.A. & Glasby, C.J. (2003). Polychaetes: An Interactive Identification Guide. CSIRO Publishing, Melbourne.

Santhanam, P., Pachiappan, P., and Begum, A. (2019). Methods of Collection, Preservation and Taxonomic Identification of Marine Phytoplankton. pp25-61. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Phytoplankton Biology. Springer, Singapore.

Shafiq, T., Javed, S. and Khan, J. A. 1997. Bird community structure of middle altitude oak forest in Kumaon Himalayas, India: a preliminary investigation. *International Journal of Ecology and Environmental Science* 23: 389-400.

Strickland, J.D.H. and Parsons, T.R. 1972 A Practical Hand Book of Seawater Analysis. Fisheries Research Board of Canada Bulletin 157, 2nd Edition, 310 p.

Subba Rao (2017),

Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E (2019). Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules. Sep 19;24(18):3400. doi: 10.3390/molecules24183400. PMID: 31546774; PMCID: PMC6767264.Periathamby and Dadrasnia, 2013

USDA (United States Department of Agriculture) 1951. Soil Survey Manual. Handbook No. 18, Soil Survey Staff, Bureau of Plant Industry, Soils and Agricultural Engineering, United States Department of Agriculture, Washington DC, 205.

Vine, P. (1986). Red Sea Invertebrates. Immel Publishing, London. 224 pp Oliver, 1992;

Walkley, A.J. and Black, I.A. 1934 Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37, 29-38.

Walkley, A.J. and Black, I.A. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37, 29-38.

Xavier, J.C., Cherel, Y., Boxshall, G., Brandt, A., Coffer, T., Forman, J., Havermans, C., Jażdżewska, A.M., Kouwenberg, K., Schiaparelli, S., Schnabel, K., Siegel, V., Tarling, G.A., Thatje, S., Ward, P. & Gutt, J. (2020) Crustacean guide for predator studies in the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK. 253.

Sl. No.	Order, Family, Common & Scientific Name	MS	FS	IUCN	IWPA	Habitat
Α	CHARADRIIFORMES					
1	Charadriidae					
1	Little ringed plover Charadrius dubius Scopoli, 1786	R	С	LC	Schedule II	А
2	Red-wattled Lapwing Vanellus indicus (Boddaert, 1783)	R	Ι	LC	Schedule II	Т
3	Yellow-wattled Lapwing Vanellus malabaricus (Boddaert, 1783)	R	Ι	LC	Schedule II	Т
2	Dromadidae					
4	Crab-plover Dromas ardeola Paykull, 1805	М	С	LC	Schedule II	А
3	Laridae					
5	Common tern Sterna hirundo Linnaeus, 1758	RM	Р	LC	Schedule II	А
6	Little tern <i>Sternula albifrons</i> (Pallas, 1764)	R	Р	LC	Schedule II	А
7	River Tern Sterna aurantia (Gray, JE, 1831)	R	Р	V	Schedule I	А
8	Caspian gull Larus cachinnans Pallas, 1811	М	Р	LC	Schedule II	А
9	Lesser black-backed gull <i>Larus fuscus</i> Linnaeus, 1758	М	С	LC	Schedule II	А
4	Recurvirostridae					
10	Black Winged Stilt Himantopus himantopus (Linnaeus, 1758)	R	С	LC	Schedule II	А
5	Scolopacidae					
11	Black-tailed Godwit <i>Limosa limosa</i> (Linnaeus, 1758)	М	0	NT	Schedule II	Т
12	Common Greenshank Tringa nebularia (Gunnerus, 1767)	М	Ι	LC	Schedule I	Т
13	Common Redshank Tringa tetanus (Linnaeus, 1758)	М	Ι	LC	Schedule II	А
14	Common Sandpiper Actitis hypoleucos (Linnaeus, 1758)	М	Ι	LC	Schedule II	А
15	Eurasian curlew <i>Numenius arquata</i> (Linnaeus, 1758)	М	С	NT	Schedule II	А
16	Green Sandpiper Tringa ochropus Linnaeus, 1758	М	Ι	LC	Schedule II	Т
17	Marsh Sandpiper <i>Tringa stagnatilis</i> (Bechstein, 1803)	М	С	LC	Schedule II	Т
18	Temminck's stint <i>Calidris temminckii</i> (Leisler, 1812)	М	С	LC	Schedule II	Т
19	Whimbrel Numenius phaeopus (Linnaeus, 1758)	М	Р	LC	Schedule II	А
В	COLUMBIFORMES					
6	Columbidae					

Annexture 1. Checklist of Avifauna recorded during the monsoon season from the Deendayal Port Authority, Kandla, India.

20	Blue Rock Pigeon <i>Columba livia</i> (Gmelin, JF, 1789)	R	G	LC	NA	Т
21	Spotted Dove Spilopelia chinensis (Scopoli, 1786)	R	G	LC	Schedule II	Т
22	Eurasian Collared Dove <i>Streptopelia decaocto</i> (Frivaldszky, 1838)	R	G	LC	Schedule II	Т
23	Laughing Dove Spilopelia senegalensis (Linnaeus, 1766)	R	G	LC	Schedule II	Т
24	Red Collared Dove <i>Streptopelia tranquebarica</i> (Hermann, 1804)	R	G	LC	Schedule II	Т
C	CORACIIFORMES					
7	Alcedinidae					
25	Common Kingfisher <i>Alcedo atthis</i> (Linnaeus, 1758)	R	Р	LC	Schedule II	А
26	White-throated Kingfisher Halcyon smyrnensis (Linnaeus, 1758)	R	С	LC	Schedule II	Т
8	Meropidae					
27	Green Bee-eater Merops orientalis Latham, 1801	R	Ι	LC	Schedule II	Т
D	PELECANIFORMES					
9	Ardeidae					
28	Cattle Egret <i>Bubulcus ibis</i> (Linnaeus, 1758)	R	С	LC	Schedule II	Т
29	Great Egret <i>Ardea alba</i> (Linnaeus, 1758)	R	Р	LC	Schedule II	А
30	Indian Pond Heron Ardeola grayii (Sykes, 1832)	R	С	LC	Schedule II	А
31	Intermediate Egret Ardea intermedia (Wagler, 1829)	R	Р	LC	Schedule II	А
32	Little Egret <i>Egretta garzetta</i> (Linnaeus, 1766)	R	С	LC	Schedule II	А
33	Grey Heron Ardea cinerea Linnaeus, 1758	R	Р	LC	Schedule II	Т
34	Western Reef Heron <i>Egretta gularis</i> (Bosc, 1792)	RM	Р	LC	Schedule II	А
10	Threskiornithidae					
35	Black Headed Ibis <i>Threskiornis melanocephalus</i> (Latham, 1790)	R	С	NT	Schedule II	А
36	Glossy Ibis <i>Plegadis falcinellus</i> (Linnaeus, 1766)	R	С	NT	Schedule II	Т
Ε	CICONIIFORMES					
11	Ciconiidae					
37	Painted Stork Mycteria leucocephala (Pennant, 1769)	R	С	NT	Schedule II	А
F	PASSERIFORMES					
12	Corvidae					
38	House Crow Corvus splendens (Vieillot, 1817)	R	0	LC	NA	Т

13	Dicruridae					
39	Black Drongo Dicrurus macrocercus Vieillot, 1817	R	Ι	LC	Schedule II	Т
14	Hirundinidae					
40	Barn Swallow Hirundo rustica (Linnaeus, 1758)	RM	Ι	LC	Schedule II	Т
41	Wire-tailed Swallow Hirundo smithii Leach, 1818	R	Ι	LC	Schedule II	Т
15	Laniidae					
42	Bay-backed Shrike Lanius vittatus Valenciennes, 1826	R	Ι	LC	Schedule II	Т
43	Brown shrike Lanius cristatus Linnaeus, 1758	R	Ι	LC	Schedule II	Т
16	Motacillidae					
44	White Wagtail Motacilla alba Linnaeus, 1758	М	Ι	LC	Schedule II	Т
45	Yellow Wagtail <i>Motacilla flava</i> Linnaeus, 1758	М	Ι	LC	Schedule II	Т
17	Nectariniidae					
46	Purple Sunbird Cinnyris asiaticus (Latham, 1790)	R	Ν	LC	Schedule II	Т
18	Pycnonotidae					
47	White Eared Bulbul Pycnonotus leucotis (Gould, 1836)	R	0	LC	Schedule II	Т
48	Red-vented Bulbul Pycnonotus cafer (Linnaeus, 1766)	R	0	LC	Schedule II	Т
19	Sturnidae					
49	Common Myna Acridotheres tristis (Linnaeus, 1766)	R	0	LC	Schedule II	Т
50	Brahminy Starling Sturnia pagodarum (Gmelin, JF, 1789)	R	Ι	LC	Schedule II	Т
G	SULIFORMES					
20	Phalacrocoracidae					
51	Little Cormorant Microcarbo niger (Vieillot, 1817)	R	Р	LC	Schedule II	А
Н	Apodiformes					
21	Apodidae					
52	House Swift Apus nipalensis (Hodgson, 1837)	R	Ι	LC	Schedule II	
Ι	ACCIPITRIFORMES					
22	Accipitridae					
53	Black Kite <i>Milvus migrans</i> (Boddaert, 1783)	R	С	LC	Schedule II	Т

Gujarat Institute of Desert Ecology Mundra Road, Bhuj 370 001, Kachchh, Gujarat E-mail: desert_ecology@yahoo.com www.gujaratdesertecology.com

ANNEXURE C

Monitoring Report

Environmental Monitoring Report (EMR)

prepared under

"Preparing and monitoring of environmental monitoring and management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years"

(Monitoring Period: December 2024 - January 2025)

Document Ref No.: GEMI/DPA/782(2)(4)/2024-25/165 Submitted to:

Deendayal Port Authority (DPA), Kandla

Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

GEMI Bhavan, 246-247, GIDC Electronic Estate, Sector-25, Gandhinagar-382025 "AN ISO 9001:2015, ISO 14001:2015 AND ISO 45001:2018 Certified Institute"

Certificate

This is to certify that the Monthly Environment Monitoring Plan (EMP) report for the period 15th December 2024 to 14th January 2025 for the work entitled, "**Preparing and Monitoring of Environmental Monitoring and Management Plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years**" has been prepared in line with the work order no. EG/WK/EMC/1023/2011/iii/239 dated 15/02/2023 allotted by Deendayal Port Authority.

The report has been delivered as per the terms and conditions of the work order Sr. No. 4(2).

10

Vilast

S. S. O. & Lab Head Authorized Signatory

© Gujarat Environment Management Institute (GEMI)

All rights reserved. This "Environment Monitoring Report (Dec-2024-Jan-2025)" is prepared as a part of the project "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years". No part of this report may be reproduced, distributed or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Director, Gujarat Environment Management Institute (GEMI).

Disclaimer:

Gujarat Environment Management Institute (GEMI) has taken all reasonable precautions in the preparation of this report. The data presented in this report have been collected as per the relevant Standard Operating Procedures, Protocols and Guidelines. GEMI believes that the information and facts presented in the report are accurate as on the date it was written. However, it is impossible to dismiss absolutely, the possibility of errors or omissions. GEMI therefore specifically disclaims any liability resulting from the use or application of the information contained in this report. The information is not intended to serve as legal advice related to the individual situation.

About this Document

Gujarat Environment Management Institute (GEMI) has been assigned with the work of "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority (DPA) at Kandla and Vadinar for a period of 3 years" by DPA, Kandla. Under the said project the report titled "Environment Monitoring Report (Dec-2024-Jan-2025)" is prepared.

- Name of the Report: Environment Monitoring Report (Dec-2024-Jan-2025)
- Date of Issue: 15/02/2025
- Version: 1.0
- Report Ref.: GEMI/DPA/782(2)(4)/2024-25/165

Table of Contents

СНАРТ	TER 1: INTRODUCTION	1
1.1	Introduction	2
1.2	Green Ports Initiative	2
1.3	Importance of EMP	3
1.4	Objectives and scope of the Study	4
СНАРТ	TER 2: METHODOLOGY	6
2.1	Study Area	7
a.	Kandla	7
b.	Vadinar	7
2.2	Environmental Monitoring at Kandla and Vadinar	11
СНАРТ	TER 3: METEOROLOGY MONITORING	
3.1	Meteorology Monitoring	14
3.2	Results and discussion	16
3.3	Data Interpretation and Conclusion	
СНАРТ	TER 4: AMBIENT AIR QUALITY MONITORING	20
4.1	Ambient Air Quality	21
4.2	Result and Discussion	27
4.3	Data Interpretation and Conclusion	
4.4	Remedial Measures:	
СНАРТ	ER 5: DG STACK MONITORING	
5.1	DG Stack Monitoring	
5.2	Result and Discussion	41
5.3	Data Interpretation and Conclusion	41
СНАРТ	TER 6: NOISE MONITORING	42
6.1	Noise Monitoring	
6.2	Result and Discussion	
6.3	Data Interpretation and Conclusion	
6.4	Remedial Measures	
СНАРТ	TER 7: SOIL MONITORING	
7.1	Soil Quality Monitoring:	
7.2	Result and Discussion	54

7.3	Data Interpretation and Conclusion	
СНАРТ	ER 8: DRINKING WATER MONITORING	
8.1	Drinking Water Monitoring	
8.2	Result and Discussion	63
8.3	Data Interpretation and Conclusion	65
8.4	Remedial Measures	
СНАРТ	ER 9: SEWAGE TREATMENT PLANT MONITORING	
9.1	Sewage Treatment Plant (STP) Monitoring:	69
9.2	Result and Discussion	75
9.3	Data Interpretation and Conclusion	77
9.4	Remedial Measures:	77
СНАРТ	ER 10: MARINE WATER QUALITY MONITORING	79
10.1	Marine Water	
10.2	Result and Discussion	
10.3	Data Interpretation and Conclusion	
СНАРТ	ER 11: MARINE SEDIMENT QUALITY MONITORING	
11.1	Marine Sediment Monitoring	
11.2	Result and Discussion	
11.3	Data Interpretation and Conclusion	94
СНАРТ	ER 12: MARINE ECOLOGY MONITORING	
12.1	Marine Ecological Monitoring	
12.2	Result and Discussion	
Annexu	re 1: Photographs of the Environmental Monitoring conducted at Kandla	115
Annexu	re 2: Photographs of the Environmental Monitoring conducted at Vadina	r116

List of Tables

Table 1: Details of Automatic Weather Station	14
Table 2: Automatic Weather Monitoring Station details	14
Table 3: Meteorological data for Kandla and Vadinar	16
Table 4: Details of Ambient Air monitoring locations	21
Table 5: Parameters for Ambient Air Quality Monitoring	27
Table 6: Summarized results of PM10, PM2.5, SO2, NOx, VOC and CO for Ambient Air q	luality
monitoring	27
Table 7: Summarized results of Benzene for Ambient Air quality monitoring	
Table 8: Summarized results of Polycyclic Aromatic Hydrocarbons	

Table 9: Summarized results of Non-methane VOC	33
Table 10: Details of DG Stack monitoring locations	
Table 11: DG stack parameters	41
Table 12: DG monitoring data	41
Table 13: Details of noise monitoring locations	43
Table 14: Details of the Noise Monitoring	46
Table 15: Ambient Air Quality norms in respect of Noise	46
Table 16: The Results of Ambient Noise Quality	47
Table 17: Details of the Soil quality monitoring	50
Table 18: Soil parameters	
Table 19: Soil Quality for the sampling period	54
Table 20: Details of Drinking Water Sampling Locations	58
Table 21: List of parameters for Drinking Water Quality monitoring	61
Table 22: Summarized results of Drinking Water quality	63
Table 23: Details of the monitoring locations of STP	
Table 24: Treated effluent Standards (as per CC&A of Kandla STP)	69
Table 25: Norms of treated effluent as per CC&A of Vadinar STP	72
Table 26: List of parameters monitored for STP's at Kandla and Vadinar	75
Table 27: Water Quality of inlet and outlet of STP of Kandla	76
Table 28: Water Quality of inlet and outlet of STP of Vadinar	76
Table 29: Details of the sampling locations for Marine water	
Table 30: List of parameters monitored for Marine Water	83
Table 31: Results of Analysis of Marine Water Sample for the sampling period	85
Table 32: Details of the sampling locations for Marine Sediment	90
Table 33: List of parameters to be monitored for Sediments at Kandla and Vadinar	
Table 34: Summarized result of Marine Sediment Quality	94
Table 35: Standard Guidelines applicable for heavy metals in sediments	
Table 36: Comparison of Heavy metals with Standard value in Marine Sediment	96
Table 37: Details of the sampling locations for Marine Ecological	99
Table 38: List of parameters to be monitored for Marine Ecological Monitoring	102
Table 39: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productiv	-
(GPP), Pheophytin and Chlorophyll for Kandla and Vadinar	
Table 40: Phytoplankton variations in abundance and diversity in sub surface sampling	
stations	
Table 41: Species richness Index and Diversity Index in Phytoplankton	110
Table 42: Zooplankton variations in abundance and diversity in sub surface sampling	
stations	
Table 43: Species richness Index and Diversity Index in Zooplankton	
Table 44: Benthic Fauna variations in abundance and diversity in sub surface sampling.	
Table 45: Species richness Index and Diversity Index in Benthic Organisms	113

List of Maps

Map 1: Locations of Kandla and Vadinar	8
Map 2: Locations of Kandla Port	9
Map 3: Locations of Vadinar Port	10
Map 4: Locations for Ambient Air Monitoring at Kandla	
Map 5: Locations for Ambient Air Monitoring at Vadinar	
Map 6: Locations for DG Stack monitoring at Kandla	
Map 7: Locations for DG Stack monitoring at Vadinar	
Map 8: Locations for Noise Monitoring at Kandla	
Map 9: Locations for Noise Monitoring at Vadinar	
Map 10: Locations for Soil Quality Monitoring at Kandla	
Map 11: Locations for Soil Quality Monitoring at Vadinar	
Map 12: Locations for Drinking Water Monitoring at Kandla	
Map 13: Locations for Drinking Water Monitoring at Vadinar	60
Map 14: Locations for STP Monitoring at Kandla	73
Map 15: Locations for STP Monitoring at Vadinar	74
Map 16: Locations for Marine Water Monitoring at Kandla	
Map 17: Locations for Marine Water Monitoring at Vadinar	
Map 18: Location of Marine Sediment Monitoring at Kandla	
Map 19: Locations of Marine Sediment Monitoring at Vadinar	
Map 20: Locations of Marine Ecological Monitoring at Kandla	
Map 21: Locations of Marine Ecological Monitoring at Vadinar	

List of Figures

Figure 1: Methodology flow chart	12
Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar	15
Figure 3: Process flow diagram of STP at Kandla	70
Figure 4: Process flow diagram of STP at Gopalpuri	71
Figure 5: Process flowchart for the STP at Vadinar	72

List of Graphs

Graph 1: Spatial trend in Ambient PM ₁₀ Concentration	.32
Graph 2: Spatial trend in Ambient PM _{2.5} Concentration	31
Graph 3: Spatial trend in Ambient SOx Concentration	32
Graph 4: Spatial trend in Ambient NOx Concentration	32
Graph 5: Spatial trend in Ambient CO Concentration	32
Graph 6: Spatial trend in Ambient Total VOCs	32

List of Abbreviations

Α	Acceptable Limits as per IS: 10500:2012
AAQ	Acceptable Linnis as per 15, 10000,2012 Ambient Air Quality
AWS	Automatic Weather monitoring stations
BIS	Bureau of Indian Standards
BOD	Biochemical Oxygen Demand
BQL	Below Quantification Limit
CCA	Consolidated Consent & Authorization
CO	Carbon Monoxide
COD	Chemical Oxygen Demand
СРСВ	Central Pollution Control Board
DO	Dissolved Oxygen
DPA	Dissolved Oxygen Deendayal Port Authority
EC	Electrical Conductivity
EMMP	Environmental monitoring and Management Plan
EMP	Environment Management Plan
FPS	Fine Particulate Sampler
FY FY	Financial Year
GEMI	
IFFCO	Gujarat Environment Management Institute
	Indian Farmers Fertiliser Cooperative Limited
IMD	India Meteorological Department
IOCL	Indian Oil Corporation Limited
LNG	Liquefied Natural Gas
MGO	Marine Gas Oil
MMTPA M-FF	Million Metric Tonnes Per Annum
MoEF	Ministry of Environment & Forests
MoEF&CC	Ministry of Environment, Forest and Climate Change
NAAQS	National Ambient Air Quality Standards
NO _x	Nitrogen oxides
NTU	Nephelometric Turbidity Unit
OOT	Off Shore Oil Terminal
OSR	Oil Spill Response
Р	Permissible Limits as per IS: 10500:2012
PAH	Poly Aromatic Hydrocarbons
PM DEFE	Particulate Matter
PTFE	Polytetrafluoroethylene
RCC	Reinforced Concrete Cement
RDS	Respirable Dust Sampler
SAR	Sodium Adsorption Ratio
SAR SBM	Sodium Adsorption Ratio Single Bouy Mooring
SAR SBM SO _x	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides
SAR SBM SO _x STP	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant
SAR SBM SO _x STP TC	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms
SAR SBM SO _x STP TC TDS	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids
SAR SBM SO _x STP TC TDS TOC	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids Total organic Carbon
SAR SBM SO _x STP TC TDS	Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids

CHAPTER 1: INTRODUCTION

1.1 Introduction

Kandla Port, also known as the Deendayal Port is a seaport in Kachchh District near the city of Gandhidham in Gujarat state in western India. Located on the Gulf of Kachchh, it is one of major ports on the western coast, and is located at 256 nautical miles southeast of the Port of Karachi in Pakistan and over 430 nautical miles north-northwest of the Port of Mumbai (Bombay). It is the largest port of India by volume of cargo handled. Deendayal Port's journey began in 1931 with the construction of RCC Jetty by Maharao Khengarji. Kandla was constructed in the 1950s as the chief seaport serving western India, after the independence of India. On 31st March 2016, Deendayal Port created history by handling 100 MMT cargo in a year and became the first Major Port to achieve this milestone. Deendayal Port Authority (DPA), India's busiest major port in recent years, is gearing up to add substantial cargo handling capacity with private sector participation. DPA has created new record by handling 137 MMTPA (at Kandla and Vadinar) during the financial year 2022-23. The DPA had commissioned the Off-shore Oil Terminal facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. Further, significant Quantum of infrastructural upgradation has been carried out & excellent maritime infrastructure has been created at Vadinar for the 32 MMTPA Essar Oil Refinery in Jamnagar District.

1.2 Green Ports Initiative

DPA is committed to sustainable development and adequate measures are being taken to maintain the Environmental well-being of the Port and its surrounding environs. Weighing in the environmental perspective for sustained growth, the Ministry of Shipping had started, Project Green Ports" which will help in making the Major Ports across India cleaner and greener. "Project Green Ports" will have two verticals - one is "Green Ports Initiatives" related to environmental issues and second is "Swachh Bharat Abhiyaan".

The Green Port Initiatives include twelve initiatives such as preparation and monitoring plan, acquiring equipment required for monitoring environmental pollution, acquiring dust suppression system, setting up of sewage/waste water treatment plants/ garbage disposal plant, setting up Green Cover area, projects for energy generation from renewable energy sources, completion of shortfalls of Oil Spill Response (OSR) facilities (Tier-I), prohibition of disposal of almost all kind of garbage at sea, improving the quality of harbour wastes etc.

DPA had also appointed GEMI as an Advisor for "Making Deendayal Port a Green Port-Intended Sustainable Development under the Green Port Initiatives. DPA has also signed MoU with Gujarat Forest Department in August 2019 for Green Belt Development in an area of 31.942 Ha of land owned by DPA. The plantation is being carried out by the Social Forestry division of Kachchh.

1.3 Importance of EMP

Port activities can cause deterioration of air and marine water quality in the surrounding areas due to multifarious activities. The pollution problems usually caused by port and harbour activities can be categorized as follows:

- 1. Air pollutant emissions due to ship emissions, loading and unloading activities, construction emission and emissions due to vehicular movement.
- 2. Coastal habitats may be destroyed and navigational channels silted due to causeway construction and land reclamation.
- 3. Deterioration of surface water quality may occur during both the construction and operation phases.
- 4. Harbour operations may produce sewage, bilge wastes, solid waste and leakage of harmful materials both from shore and ships.
- 5. Human and fish health may be affected by contamination of coastal water due to urban effluent discharge.
- 6. Oil pollution is one of the major environmental hazards resulting from port/harbour and shipping operations. This includes bilge oil released from commercial ships handling non-oil cargo as well as the more common threat from oil tankers.
- 7. Unregulated mariculture activities in the port and harbour areas may threaten navigation safety.sd

Hence, for the determination of levels of pollution, identification of pollution sources, control and disposal of waste from various point and non-point sources and for prediction of pollution levels for future, regular monitoring and assessment are required during the entire construction and operation phase of a major port. As per the Ministry of Environment, Forest and Climate Change (MoEF&CC), The Environmental Management Plan (EMP) is required to ensure sustainable development in the area surrounding the project. Hence, it needs to be an all encompasses plan consist of all mitigation measures for each item wise activity to be undertaken during the construction, operation and the entire life cycle to minimize adverse environmental impacts resulting from the activities of the project. for formulation, implementation and monitoring of environmental protection measures during and after commissioning of projects. The plan should indicate the details of various measures are taken and proposed to be taken for appropriate management of the environment of Deendayal Port Authority.

It identifies the principles, approach, procedures and methods that will be used to control and minimize the environmental and social impacts of operational activities associated with the port. An EMP is a required part of environmental impact assessment of a new port project but could also be evolved for existing ports. It is useful not only during the construction and operational phases of the new port but also for operation of existing ports to ensure the effectiveness of the mitigation measures implemented and to further provide guidance as to the most appropriate way of dealing with any unforeseen impacts.

It is extremely essential that port and harbour projects should have an Environmental Monitoring and Management Plan (EMMP), which incorporates monitoring of Ambient Air, Drinking Water, Noise, Soil, Marine (water, sediment, ecology) quality along with the collection of online meteorological data throughout the duration of the project.

To ensure the effective implementation of the EMP and weigh the efficiency of the mitigation measures, it is essential to undertake environmental monitoring both during construction and operation period. In view of the above, Gujarat Environment Management Institute (GEMI) has been awarded with the work "**Preparing and Monitoring of Environmental Monitoring and Management Plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years**" vide letter No. EG/WK/EMC/1023/2011/III/239 dated: 15/02/2023 by DPA.

This document presents the Environmental Monitoring Report (EMR) for Kandla and Vadinar for the environmental monitoring done during the period from 17th December-16th January 2024-2025.

1.4 Objectives and scope of the Study

In line with the work order, the key objective of the study is to carry out the Environmental Monitoring and preparation the Management Plan for Kandla and Vadinar for a period of 3 years". Under the project, Environmental monitoring refers to systematic assessment of ambient air, water (drinking and surface), soil, sediment, noise and ecology in order to monitor the performance and implementation of a project in compliance with Environmental quality standards and/or applicable Statutory norms.

The scope of work includes not limited to following:

- 1. To review the locations/stations of Ambient Air, Ambient Noise, drinking water, and Marine Water, Soil and Sediments monitoring within the impacted region inand-around DPA establishment, in view of the developmental projects.
- 2. To assess the Ambient Air quality, quality at 6 stations at Kandla and 2 at Vadinar in terms of gases and particulate matter.
- 3. To assess the DG stack emissions (gases and particulate matter).
- 4. To assess Drinking water quality at twenty locations (18 at Kandla and 2 at Vadinar) in terms of Physical, Chemical and Biological parameters viz., Color, Odor, turbidity, conductivity, pH, Total Dissolved Solids, chlorides, Hardness, total iron, sulfate, NH₄, PO₄, and bacterial count on a monthly basis.
- 5. To assess the Marine water quality in terms of aquatic Flora and Fauna and Sediment quality in terms of benthic flora and fauna.
- 6. To assess Marine Water Quality and sediment in term of physical and chemical parameter.
- 7. To assess the trends of water quality in terms of Marine ecology by comparing the data collected over a specified time period.
- 8. Weekly sample collection and analysis of inlet & Outlet points of the Sewage Treatment Plant (STP) to check the water quality being discharged by DPA as per the CC&A.
- 9. Carrying out monthly Noise monitoring; twice a day at the representative stations for a period of 24 hours.
- 10. Meteorological parameters are very important from air pollution point of view, hence precise and continuous data collection is of utmost importance. Meteorological data on wind speed, wind direction, temperature, relative humidity, solar radiation and

rainfall shall be collected from one permanent station at DPA, Kandla and one permanent station at Vadinar.

- 11. To suggest mitigation measures, based on the findings of this study and also check compliance with Environmental quality standards, Green Port Initiatives, MIV 2030, and any applicable Statutory Compliance.
- 12. To recommend Environment Management Plans based on Monitoring programme and findings of the study.

CHAPTER 2: METHODOLOGY

2.1 Study Area

Under the study, the locations specified by Deendayal Port Authority for the areas of Kandla and Vadinar would be monitored. The details of the study area as follows:

a. Kandla

Deendayal Port (Erstwhile Kandla Port) is one of the twelve major ports in India and is located on the West Coast of India, in the Gulf of Kutch at 23001'N and 70013'E in Gujarat. The Major Port Authorities Act 2021 is the governing statute for Administration of Major Ports, under which, Deendayal Port Trust (DPT) has become Deendayal Port Authority (DPA). At Kandla, DPA has sixteen (16) cargo berths for handling various types of Dry Bulk Cargo viz, fertilizer, food grains, Coal, sulphur, etc.

• Climatic conditions of Kandla

Kandla has a semi-desert climate. Temperature varies from 25°C to 44°C during summer and 10°C to 25°C during winter. The average annual temperature is 24.8 °C. The average rainfall is 410 mm, most of which occurs during the monsoon from the months of June-to-September.

b. Vadinar

Vadinar is a small coastal town located in Devbhumi Dwarka district of the Gujarat state in India located at coordinates 22° 27' 16.20" N - 069° 40' 30.01". DPA had commissioned the Off Shore Oil Terminal (OOT) facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. The OOT of the DPA contributes in a large way to the total earnings of this port. Vadinar is now notable due to the presence of two refineries-one promoted by Reliance Industries and Essar Oil Ltd.

DPA also handled 43.30 MMT at Vadinar (which includes transhipment), the containerized cargo crossed 4.50 lakh TEU, grossing a total of 100 MMT overall. Major commodities handled by the Deendayal Port are Crude Oil, Petroleum product, Coal, Salt, Edible Oil, Fertilizer, etc.

• Climatic conditions of Vadinar

Vadinar has a hot semi-arid climate. The summer season lasts from March-to-May and is extremely hot, humid, but dry. The climatic conditions in Vadinar are quite similar to that recorded in its district head quarter i.e., Jamnagar. The annual mean temperature is 26.7 °C. Rainy season with extremely erratic monsoonal rainfall that averages around 630 millimetres. The winter season is from October-to-February remains hot during the day but has negligible rainfall, low humidity and cool nights.

The Kandla and Vadinar port have been depicted in the **Map 1** as follows:

Map 1: Locations of Kandla and Vadinar Port

Map 2: Locations of Kandla Port

Map 3: Locations of Vadinar Port

2.2 Environmental Monitoring at Kandla and Vadinar

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during project operation. With the knowledge of baseline conditions, the monitoring programme will serve as an indicator for identifying any deterioration in environmental conditions, thereby assist in recommending suitable mitigatory steps in time to safeguard the environment. Monitoring is as important as that of control of pollution since the efficiency of control measures can only be determined by a well-defined monitoring program. Environmental Monitoring is vital for monitoring the environmental status of the port for sustainable development. The list of main elements for which Environmental monitoring is to be carried out have been mentioned below:

- Meteorology
- Ambient Air
- DG Stack
- Noise
- Soil
- Drinking Water
- Sewage Treatment Plant
- Marine (Surface) water
- Marine Sediments
- Marine Ecology

GEMI has been entrusted by DPA to carry out the monitoring of the various aforementioned environmental aspects at the port, so as to verify effectiveness of prevailing Environment Management plan, if it confirms to the statutory and/or legal compliance; and identify any unexpected changes. Standard methods and procedures have been strictly adhered to in the course of this study. QA/QC procedures were strictly followed which covers all aspects of the study, and includes sample collection, handling, laboratory analyses, data coding, statistical analyses, interpretation and communication of results. The analysis was carried out in GEMI's NABL/MoEF accredited/recognized laboratory.

Methodology adopted for the study

Methodology is a strictly defined combination of practices, methods and processes to plan, develop and control a project along the continuous process of its implementation and successful completion. The aim of the project management methodology is to allow the control of whole process of management through effective decision-making and problem solving. The methodology adopted for the present study is shown in **Figure 1** as given below:

Figure 1: Methodology flow chart

The details of various sectors of Environment monitoring are described in subsequent chapters.

CHAPTER 3: METEOROLOGY MONITORING

3.1 Meteorology Monitoring

Meteorological conditions play a crucial role in dispersion of air pollutants as well as in environmental pollution studies particularly in pollutant transport irrespective of their entry into the environment. The wind speed and direction play a major role in dispersion of environment pollutants. In order to determine the prevailing micrometeorological conditions at the project site an Automatic Weather Monitoring Stations (AWS) of Envirotech make (Model: WM280) were installed at both the sites of Kandla and Vadinar at 10 m above the ground. The details of the AWS installed have been mentioned in **Table 1** as follows:

Table 1. Details of Automatic Weather Station					
Sr. No.	Site	Location Code	Location Name	Latitude Longitude	
1.	Kandla	AWS-1	Environment Laboratory (DPA)	23.00996N 70.22175E	
2.	Vadinar	AWS-2	Canteen Area	22.39994N 69.716608E	

Table 1: Details	of Automatic	Weather Station

Methodology

During the study, a continuous automatic weather monitoring station was installed at both the sites to record climatological parameters such as Wind speed, Wind Direction, Relative Humidity, Solar Radiation, Rainfall and Temperature to establish general meteorological regime of the study area. The methodology adopted for monitoring meteorological data shall be as per the standard norms laid down by Bureau of Indian Standards (BIS) and the India Meteorological Department (IMD). The details of Automatic Weather Monitoring Station have been mentioned in **Table 2**.

Sr.	Details of Meteorological	Unit of	Instrument	Frequency
No.	Data	Measurement		
1.	Wind Direction	degree	Automotio	
2.	Wind Speed	Km/hr	Automatic Weather	Hourly Average
3.	Rainfall	mm/hr	Monitoring Station	
4.	Relative Humidity	% RH		
5.	Temperature	°C	(Envirotech WM280)	
6.	Solar Radiation	W/m ²	(((1/1200))	

Table 2: Automatic Weather Monitoring Station details

The Meteorological parameters were recorded at an interval of 1 hour in a day and the average value for all the Meteorological parameters were summarized for the sampling period of at both the observatory site.

Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar

3.2 Results and discussion

The summary of hourly climatological observations recorded at Kandla and Vadinar during the monitoring period, with respect to significant parameters has been mentioned in **Table 3** as follows:

Details of Micro-meteorological data at Kandla Observatory												
Monitoring Period	Wind Speed (Km/h)			Temperature (°C)			Relative humidity (%)			Solar Radiation	Wind Direction (°)	Rainfall (mm)
Stat.	Mean	Max.	Min	Mean	Max	Min	Mean	Max	Min	(W/m²)	()	, <i>,</i>
December- January, 2024-2025	7.25	48	3.12	20.27	34.1	13.5	52.38	78	27.8	57.19	South	0
Details of Micro-meteorological data at Vadinar Observatory												
Monitoring Period	Wind Speed (Km/h)		Temperature (°C)			Relative humidity (%)			Solar	Wind Direction	Rainfall	
Stat.	Mean	Max.	Min	Mean	Max	Min	Mean	Max.	Min	Radiation (W/m²)	(°)	(mm)
December- January, 2024-2025	7.91	74.7	2.96	20.90	27.3	14.1	60.62	104.1	29.4	69.28	South-West	0

Table 3: Meteorological data for Kandla and Vadinar

3.3 Data Interpretation and Conclusion

• Temperature

- a. **Kandla:** The ambient temperature for the monitoring period varies between the range of 13.5–34.1 °C for Kandla, with average temperature of 20.27°C.
- b. **Vadinar:** The ambient temperature for the monitoring period varies between the range of 14.1-27.3°C for Vadinar, with average temperature of 20.90°C.

• Relative Humidity

- a. **Kandla**: The Relative Humidity recorded between the range of 27.8–78, with average Humidity of 52.38%.
- b. **Vadinar:** During the study period, the Relative Humidity varies between 29.4-101.1%, with average Humidity of 60.62%.

• Rainfall

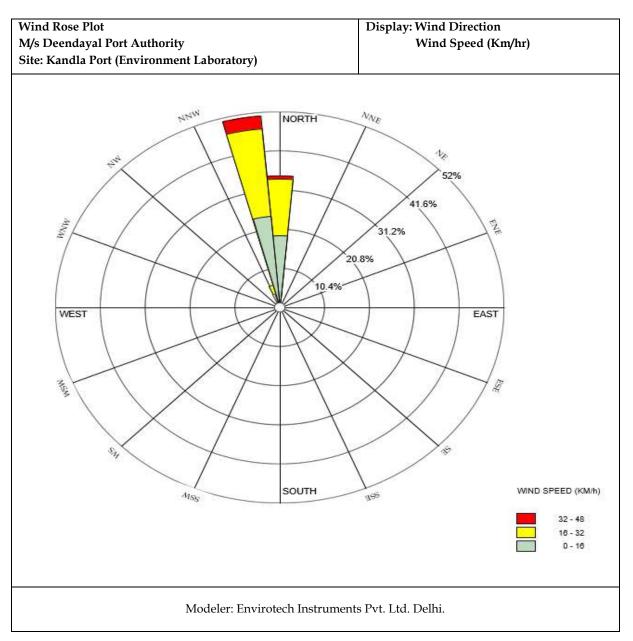
- a. Kandla: 0 rainfall was observed at Kandla.
- b. Vadinar: 0 rainfall was observed at Vadinar.

• Wind Speed

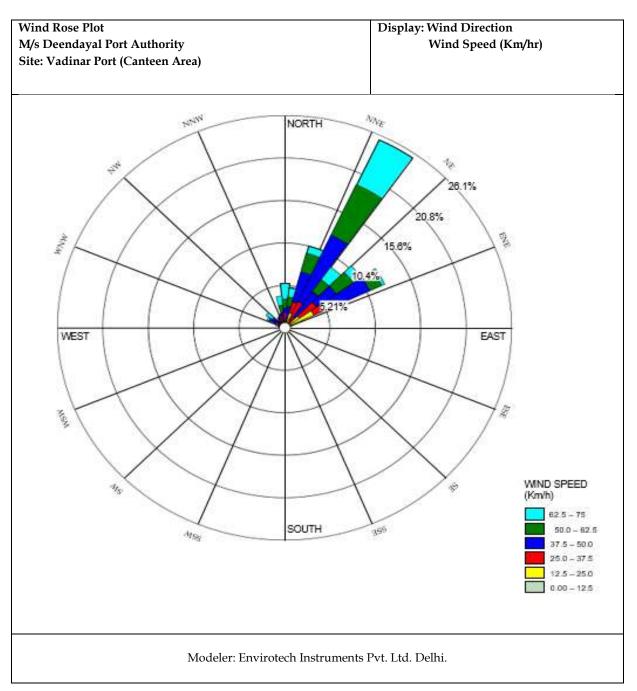
Wind speed and Direction play a significant role in transporting the pollutants and thus decides the air quality.

- a. Kandla: Wind speed recorded ranges between 3.12–48 Km/hr.
- b. **Vadinar:** During the monitoring period, the Wind speed recorded ranges between 2.96–74.7 Km/hr.

• Solar Radiation:


- a. Kandla: The average Solar Radiation for the monitoring period was recorded as 57.19 W/m^2 .
- b. Vadinar: The average Solar Radiation was recorded as 69.28 W/m^2 .

• Wind rose diagram -


The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data.

This Wind Rose Diagram reveals that at Kandla and Vadinar, during the monitoring period, the prevailing winds predominantly blow from the West South West direction at Kandla, whereas, high speed winds were also observed to blow from South direction. At Vadinar, the winds were observed to blow from South-West direction.

CHAPTER 4: AMBIENT AIR QUALITY MONITORING

4.1 Ambient Air Quality

It is necessary to monitor the ambient air quality of the study area, in order to determine the impact of the shipping activities and port operations on the ambient air quality. The prime objective of ambient air quality monitoring is to assess the present air quality and its conformity to National Ambient Air Quality Standards i.e. NAAQS, 2009. Ambient air quality has been monitored from 17th December 2024 to 16th January 2025.

Methodology

The study area represents the area occupied by DPA and its associated Port area. The sources of air pollution in the region are mainly vehicular traffic, fuel burning, loading & unloading of dry cargo, fugitive emissions from storage area and dust arising from unpaved village roads. Considering the below factors, under the study, as per the scope specified by DPA eight locations wherein, 6 stations at Kandla and 2 at Vadinar have been finalized within the study area

- Meteorological conditions;
- Topography of the study area;
- Direction of wind;
- > Representation of the region for establishing current air quality status
- > Representation with respect to likely impact areas.

The description of various air quality stations monitored at Kandla and Vadinar have been specified in **Table 4**.

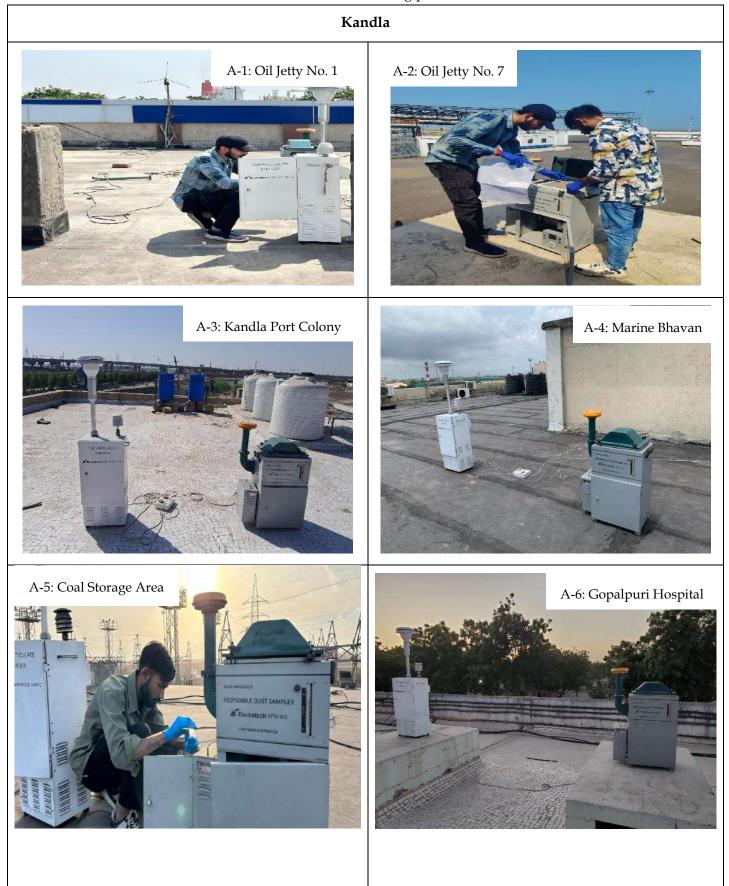
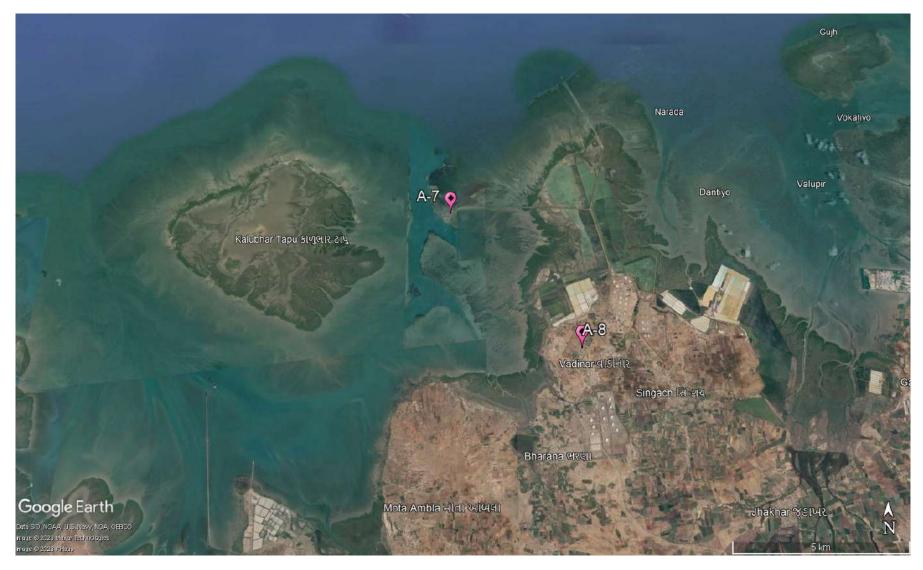

Sr. No.		ation ode	Location Name	Latitude Longitude	Significance	
1.		A-1	Oil Jetty No. 1	23.029361N 70.22003E	Liquid containers and	
2.		A-2	Oil Jetty No. 7	23.043538N 70.218617E	emission from ship	
3.	la	A-3	Kandla Port Colony	23.019797N 70.213536E	Vehicular activity and dust emission	
4.	Kandla	A-4	Marine Bhavan	23.007653N 70.222197E	Construction and vehicular activity, road dust emission,	
5.		A-5	Coal Storage Area	23.000190N 70.219757E	Coal Dust, Vehicular activity	
6.		A-6	Gopalpuri Hospital	23.081506N 70.135258E	Residential area, dust emission, vehicular activity	
7.	A-7 A-8		Admin Building	22.441806N 69.677056E	Vehicular activity	
8.	Vad	A-8	Vadinar Colony	22.401939N 69.716306E	Residential Area, burning waste, vehicular activity	

Table 4: Details of Ambient Air monitoring locations

The monitoring locations at Kandla and Vadinar have been depicted in map in **Map 4 and 5** respectively.

Ambient Air monitoring photos



Map 4: Locations for Ambient Air Monitoring at Kandla

Map 5: Locations for Ambient Air Monitoring at Vadinar

Frequency

The sampling for Particulate matter i.e. PM_{10} and $PM_{2.5}$ and the gaseous components like SO_x , NO_x , CO as well as the Total VOCs were monitored twice in a week for a period of 24 hours a day. Whereas, the sampling for the components of PAH, Benzene and non-Methane VOCs was conducted on monthly basis.

Sampling and Analysis

The Sampling of the Ambient Air Quality parameters and analysis is conducted as per the CPCB guidelines of National Ambient Air Quality Monitoring. The sampling was performed at a height of 3.5 m (approximately) from the ground level. For the sampling of PM₁₀, calibrated 'Respirable Dust Samplers' were used, where Whatman GF/A microfiber filter paper of size 8"x 10" were utilized, where the Gaseous attachment of the make Envirotech instrument was attached with Respirable Dust Sampler for the measurement of SO_x and NO_x. The Fine Particulate Sampler for collection of PM_{2.5} was utilized for the particulate matter of size <2.5 microns. A known volume of ambient air is passed through the cyclone to the initially pre-processed filter paper. The centrifugal force in cyclone acts on particulate matter to separate them into two parts and collected as following:

- Particles <10 µ size (Respirable): GF/A Filter Paper
- Particles <2.5 µ size (Respirable): Polytetrafluoroethylene (PTFE)

Sampling and analysis of ambient SO_2 was performed by adopting the 'Improved West and Gaeke Method'. The ambient air, drawn through the draft created by the RDS, is passed through an impinger, containing a known volume of absorbing solution of Sodium tetrachloromercurate, at a pre-determined measured flow rate of 1 liter/minute (L/min). Similarly, NO_x was performed by adopting the 'Jacob Hochheister Modified' (Na arsenite) method. The impinger contains known volume of absorbing solution of Sodium Arsenite and Sodium Hydroxide.

Data has been compiled for PM_{10} , $PM_{2.5}$, SO_x and NO_x samples of 24-hour carried out twice a week. In case of CO, one hourly sample were taken on selected monitoring days using the sensor-based CO Meter. For the parameters Benzene, Methane & Non-methane and Volatile Organic Carbons (VOCs), the Low Volume Sampler is used, where the charcoal tubes are used as sampling media. The sampling in the Low Volume Sampler (LVS) is carried out as per IS 5182 (Part 11): 2006 RA: 2017, where the ambient air flow rate is maintained at 200 cc/min, the volume of air that passes through the LVS during two hours monitoring is approx. 24 L.

The sampling of PAHs is carried out as per IS: 5182 (Part 12): 2004. Where, the EPM 2000 Filter papers are utilized in the Respirable Dust Sampler (RDS). For the parameters, Benzene, PAH & Non-methane VOC's, monthly monitoring is carried out. The details of the parameters with their frequency monitored are mentioned in **Table 5**:

Sr.	Parameters	Units	Reference method	Instrument	Frequency
<u>No.</u> 1.	PM ₁₀	µg/m³	IS 5182 (Part 23): 2006	Respirable Dust Sampler (RDS) conforming to IS:5182 (Part-23): 2006	Twice in a week
2.	PM _{2.5}	µg/m³	IS:5182 (Part:24):2019	Fine Particulate Sampler (FPS) conforming to IS:5182 (Part-24): 2019	
3.	Sulphur Dioxide (SO _x)	µg/m³	IS 5182 (Part:2): 2001	Gaseous Attachment conforming to IS:5182 Part-2	
4.	Oxides of Nitrogen (NO _x)	µg/m³	IS:5182 (Part-6): 2006	Gaseous Attachment conforming to IS:5182 Part-6	
5.	Carbon Monoxide (CO)	mg/m ³	GEMI/SOP/AAQM/11 ; Issue no 01, Date 17.01.2019: 2019	Sensor based Instrument	
6.	VOC	µg/m³	IS 5182 (Part 17): 2004	Low Flow Air Sampler	
8.	РАН	µg/m³	IS: 5182 (Part 12): 2004	Respirable Dust Sampler (RDS) conforming to IS:5182 (Part-12): 2004	Monthly
7.	Benzene	µg/m³	IS 5182 (Part 11): 2006 RA: 2017	Low Flow Air Sampler	
9.	Non-methane VOC	µg/m³	IS 5182 (Part 11): 2006	Low Volume Sampler	

Table 5: Parameters for Ambient Air Quality Monitoring

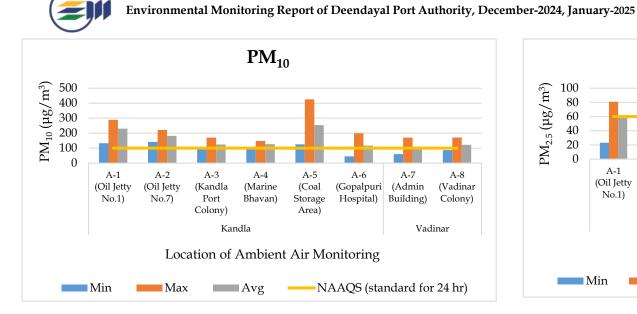
4.2 Result and Discussion

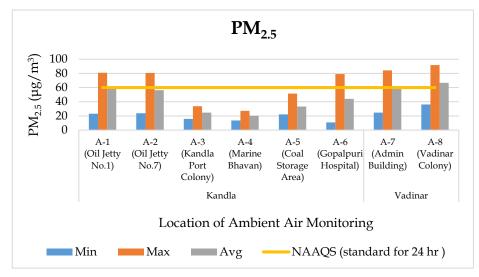
The summarized results of ambient air quality monitoring for the study period are presented in **Table-6 to 9** along with the graphical representation from **Graph 1 to Graph 6**. Various parameters monitored during the study have been presented by their maximum, minimum, average and Standard deviation.

Station Code	Unit of Average Concentration	Average Pollutant Concentration						
& Name	Pollutants	ΡΜ ₁₀ (μg/m ³)	ΡM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _χ (μg/m ³)	VOC (µg/m³)	CO (mg/m³)	
Inallie	Duration		(24	(2 hr)	(1 hr)			
	NAAQS by CPCB Monitoring days	100	60	80	80	-	2	
	16-12-2024	288.45	59.98	53.31	33.23	0.05	0.88	
A-1:	18-12-2024	284.13	76.86	50.42	24.14	0.06	0.63	
Oil Jetty	23-12-2024	285.33	68.85	13.09	21.12	0.12	0.83	
No.1,	26-12-2024	132.58	23.08	9.45	10.48	0.17	0.79	
Kandla	30-12-2024	154.79	62.87	16.62	21.43	0.1	0.82	

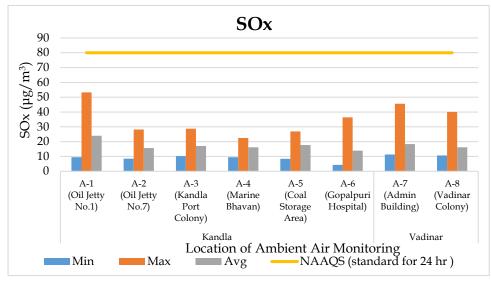
Table 6: Summarized results of PM₁₀, PM_{2.5}, SO₂, NO_x, VOC and CO for Ambient Air quality monitoring

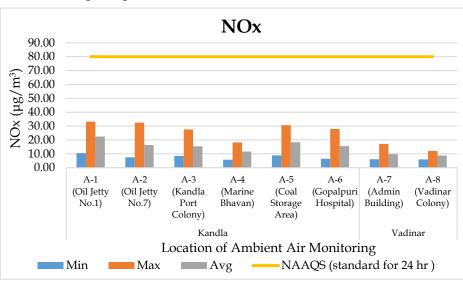
Station Code	Unit of Average Concentration		Ave	rage Polluta	nt Concentra	ation	
æ	Pollutants	ΡM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _X (μg/m ³)	VOC (µg/m³)	CO (mg/m ³)
Name	Duration	(11)		hr)	(µg/iii)	(2 hr)	(11 hr)
	NAAQS		(24		(2 III)	(1 111)	
	by CPCB						
	Monitoring	100	60	80	80	-	2
	days						
	02-01-2025	260.09	80.83	20.07	27.43	0.12	0.81
	06-01-2025	210.54	60.52	13.86	18.97	0.2	0.82
	07-01-2025	221.02	56.07	14.78	23.16	0.21	0.81
	Minimum	132.58	23.08	9.45	10.48	0.05	0.63
	Maximum	288.45	80.83	53.31	33.23	0.21	0.88
	Average	229.62	61.13	23.95	22.50	0.13	0.80
	Std. Deviation	60.85	17.62	17.51	6.57	0.06	0.07
	16-12-2024	157.04	47.49	14.12	18.32	0.16	0.84
	18-12-2024	190.54	74.27	12.34	12.52	0.20	0.88
	23-12-2024	208.91	80.64	28.18	20.47	0.19	0.89
	26-12-2024	158.75	23.69	8.56	14.75	0.14	0.81
	30-12-2024	221.71	60.32	14.96	11.16	0.07	0.84
A-2:	02-01-2025	141.48	67.90	17.16	13.84	0.13	0.84
Oil Jetty	06-01-2025	187.49	51.67	16.66	32.53	0.11	0.85
No.7,	07-01-2025	186.94	44.70	13.05	7.47	0.09	0.88
Kandla	Minimum	141.48	23.69	8.56	7.47	0.07	0.81
	Maximum	221.71	80.64	28.18	32.53	0.20	0.89
	Average	181.61	56.34	15.63	16.38	0.14	0.85
	Std. Deviation	27.34	18.37	5.75	7.67	0.05	0.03
	16-12-2024	103.64	26.50	10.26	27.56	0.25	0.76
	18-12-2024	115.94	30.87	14.83	20.56	0.10	0.79
	23-12-2024	142.12	24.10	28.78	10.32	0.06	0.82
	26-12-2024	136.52	24.26	12.69	15.27	0.14	0.86
A-3:	30-12-2024	127.02	15.86	11.58	17.60	0.18	0.87
Kandla	02-01-2025	169.82	21.33	20.57	12.37	0.20	0.81
Port	06-01-2025	100.35	33.68	13.54	8.53	0.24	0.85
Colony,	07-01-2025	101.56	21.41	24.56	11.30	0.16	0.77
Kandla	Minimum	100.35	15.86	10.26	8.53	0.06	0.76
	Maximum	169.82	33.68	28.78	27.56	0.25	0.87
	Average	124.62	24.75	17.10	15.44	0.17	0.82
	Std. Deviation	24.30	5.64	6.75	6.31	0.07	0.04
	16-12-2024	112.54	27.08	9.54	8.76	0.14	0.79
	18-12-2024	106.87	13.67	15.68	11.74	0.21	0.83
	23-12-2024	126.95	25.34	12.45	10.37	0.18	0.89
	26-12-2024	145.50	15.98	21.89	11.52	0.11	0.76
A-4:	30-12-2024	135.26	19.57	22.42	13.90	0.08	0.81
Marine	02-01-2025	125.63	24.68	16.74	12.39	0.07	0.88
Bhavan,	06-01-2025	110.25	18.76	19.85	5.75	0.10	0.81
Kandla	07-01-2025	147.32	15.48	11.02	18.20	0.10	0.86
	Minimum	106.87	13.67	9.54	5.75	0.07	0.76
	Maximum	147.32	27.08	22.42	18.20	0.07	0.89
	Average	126.29	20.07	16.20	11.58	0.13	0.83
	Std. Deviation	15.66	5.06	4.93	3.65	0.05	0.05



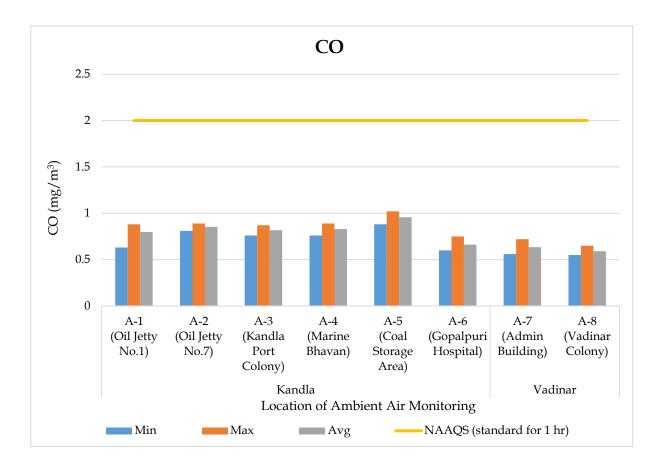

Station Code	Unit of Average		Ave	age Polluta	nt Concentra	ation	
Station Code	Concentration	DM	DM	- SO	NO	NOC	60
&	Pollutants	ΡM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m³)	NO _X (μg/m³)	VOC (µg/m³)	CO (mg/m ³)
Name	Duration	(µg/III°)	~ C		(µg/III°)		, ,
	Duration		(24	hr)		(2 hr)	(1 hr)
	NAAQS by CPCB						
	Monitoring	100	60	80	80	-	2
	days						
	16-12-2024	159.63	36.38	26.58	8.84	0.29	0.93
	18-12-2024	125.48	29.31	14.67	9.78	0.07	0.98
	23-12-2024	169.84	40.28	13.52	30.62	0.23	1.02
	26-12-2024	415.26	22.13	19.64	11.40	0.16	0.97
	30-12-2024	425.68	51.64	20.15	28.51	0.17	0.88
A-5:	02-01-2025	348.61	27.88	12.06	19.77	0.19	0.92
Coal Storage	06-01-2025	228.78	24.65	8.4	24.39	0.13	0.92
Area,	07-01-2025	157.62	34.58	26.87	13.28	0.10	0.99
Kandla	Minimum	125.48	22.13	8.40	8.84	0.07	0.88
	Maximum	425.68	51.64	26.87	30.62	0.29	1.02
	Average	253.86	33.36	17.74	18.32	0.17	0.96
	Std. Deviation	123.55	9.57	6.74	8.70	0.07	0.04
	16-12-2024	56.81	16.60	4.94	15.15	0.05	0.75
	18-12-2024	45.26	21.16	36.41	14.27	0.09	0.70
	23-12-2024	112.63	10.92	4.87	10.10	0.10	0.69
	26-12-2024	154.21	18.61	4.37	7.73	0.19	0.68
• •	30-12-2024	199.56	79.04	13.01	<6	0.13	0.64
A-6:	02-01-2025	183.59	73.01	21.16	27.47	0.17	0.61
Gopalpuri	06-01-2025	104.11	66.03	13.01	6.42	0.07	0.62
Hospital, Kandla	07-01-2025	76.55	67.61	13.51	27.9	0.17	0.6
Natiula	Minimum	45.26	10.92	4.37	6.42	0.05	0.60
	Maximum	199.56	79.04	36.41	27.90	0.19	0.75
	Average	116.59	44.12	13.91	15.58	0.12	0.66
	Std. Deviation	57.60	29.58	10.78	8.86	0.05	0.05
	16-12-2024	60.52	24.61	12.03	6.12	0.08	0.70
	18-12-2024	92.96	54.94	11.45	<6	0.19	0.60
	23-12-2024	160.57	79.35	11.37	17.11	0.15	0.62
	26-12-2024	169.87	82.15	12.66	6.65	0.16	0.62
A-7:	30-12-2024	86.86	46.73	12.67	<6	0.14	0.63
Admin	02-01-2025	82.64	69.48	45.56	12.19	0.17	0.62
Building,	06-01-2025	91.27	29.82	14.91	<6	0.16	0.56
Vadinar	07-01-2025	125.49	84.19	26.28	7.01	0.13	0.72
	Minimum	60.52	24.61	11.37	6.12	0.08	0.56
	Maximum	169.87	84.19	45.56	17.11	0.19	0.72
	Average	108.77	58.91	18.37	9.82	0.15	0.63
	Std. Deviation	39.18	23.59	12.05	4.75	0.03	0.05
	16-12-2024	87.32	36.57	11.71	<6	0.20	0.65
A-8 :	18-12-2024	120.29	65.04	10.78	<6	0.14	0.55
Vadinar	23-12-2024	149.90	81.26	10.73	<6	0.20	0.55
Colony,	26-12-2024	171.58	76.15	12.81	6.02	0.15	0.58
Vadinar	30-12-2024	116.51	60.18	12.99	<6	0.18	0.55
	02-01-2025	109.79	91.70	40.11	12.07	0.13	0.56

Station Code	Unit of Average Concentration	Average Pollutant Concentration						
& Name	Pollutants	ΡM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _X (μg/m³)	VOC (µg/m³)	CO (mg/m³)	
iname	Duration		(24	(2 hr)	(1 hr)			
	NAAQS by CPCB Monitoring days	100	60	80	80	-	2	
	06-01-2025	111.08	36.25	11.96	7.14	0.17	0.63	
	07-01-2025	112.69	85.93	18.23	9.60	0.08	0.65	
	Minimum	87.32	36.25	10.73	6.02	0.08	0.55	
	Maximum	171.58	91.70	40.11	12.07	0.20	0.65	
	Average	122.40	66.64	16.17	8.71	0.16	0.59	
	Std. Deviation	26.26	21.30	9.96	2.69	0.04	0.05	

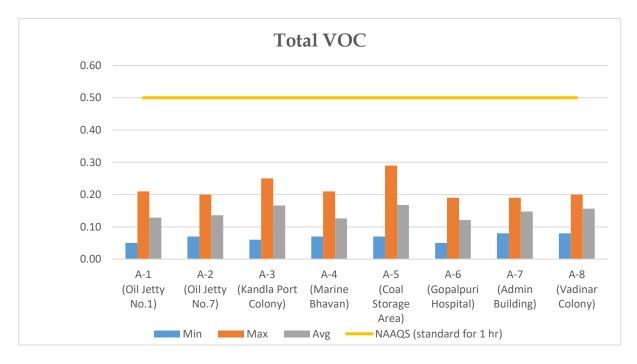

Graphs 1-6 shows spatial trend of ambient air parameter at all the eight-monitoring location (six at Kandla and 2 at Vadinar


Graph 1: Spatial trend in Ambient PM₁₀ Concentration

FMI


Graph 3: Spatial Trend in Ambient SOx Concentration

Graph 2: Spatial trend in Ambient PM_{2.5} Concentration



Graph 4: Spatial trend in Ambient Nox Concentration

Graph 5: Spatial trend in Ambient CO Concentration

Graph 6: Spatial trend in Ambient Total VOCs

	Benzene (µg/m ³)										
Sr.	Kandla						Va	dinar	NAAQS		
No	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	standards (24 hr)		
1	0.05	0.02	0.04	0.01	0.08	0	0	0	5 μg/m ³		

Table 7: Summarized results of Benzene for Ambient Air quality monitoring

Table 8: Summarized results of Polycyclic Aromatic Hydrocarbons

Sr.	Components				Vadinar				
No.	Components	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8
1	Napthalene	1.10	1.52	0.02	1.53	1.2	0.01	0.46	0.41
2	Acenaphthylene	0.59	0.72	0.07	0.87	0.31	0.01	0.00	0.00
3	Acenaphthene	0.58	0.61	0.18	0.19	0.26	0.14	0.00	0.00
4	Fluorene	0.05	0.45	0.01	0.54	0.62	0.58	0.00	0.01
5	Anthracene	0.11	0.05	0.01	0.21	0.23	0.01	0.02	0.02
6	Phenanthrene	0.05	0.02	0.03	0.01	0.00	0.10	0.00	0.00
7	Fluoranthene	0.02	0.41	0.05	0.25	0.02	0.36	0.00	0.01
8	Pyrene	0.16	0.59	0.42	0.29	0.48	0.06	0.00	0.00
9	Chrycene	1.22	0.98	0.25	0.40	0.02	1.20	0.00	0.00
10	Banz(a)anthracene	0.22	0.26	0.36	0.27	0.02	0.15	0.00	0.00
11	Benzo[k]fluoranthene	3.7	0.20	2.6	0.2	1.02	1.68	0.00	0.04
12	Benzo[b]fluoranthene	0.02	0.06	0.02	0.02	0.05	0.03	0.00	0.02
13	Benzopyrene	1.74	0.93	3.56	0.01	0.63	0.05	0.00	0.00
14	Indeno [1,2,3-cd] fluoranthene	0.52	0.75	0.71	0.55	0.98	1.49	0.00	0.11
15	Dibenz(ah)anthracene	0.00	0.01	0.25	0.00	0.18	0.05	0.00	0.00
16	Benzo[ghi]perylene	1.3	8.9	28.1	13.2	9.3	12.8	0.00	0.00

Table 9: Summarized results of Non-methane VOC

Sr	Kandla							inar
No	A-1 A-2 A-3 A-4 A-5 A-6						A-7	A-8
1	0.92	0.96	1.13	1.26	1.56	1.10	1.45	1.12

4.3 Data Interpretation and Conclusion

The results were compared with the National Ambient Air Quality Standards (NAAQS), 2009 of Central Pollution Control Board (CPCB).

The concentration of PM₁₀ at Kandla varies in the range of 45.26 to 425.68 μg/m³ with an average value of 172.10 μg/m³. PM₁₀ exceeded NAAQS of all the monitoring locations in Kandla. Whereas, at Vadinar, the concentration varies from 60.52 to 171.58 μg/m³, with an average value of 115.68 μg/m³, and complies with the stipulated norm (100 μg/m³).

- The elevated PM₁₀ concentration at location A-5, the Coal Storage Area, can be attributed to several factors. Heavy vehicular traffic in upwind areas significantly contributes to the dispersion of particulate matter into the ambient air. The process of unloading coal directly onto trucks using grabs leads to the emission of coal dust into the air and its subsequent settling on the ground. This settled dust is re-entrained into the atmosphere as trucks travel through the area. Additionally, coal-loaded trucks are often not adequately covered with tarpaulin sheets, which exacerbates the suspension of coal particles during transit from vessels to the storage yard or site. These factors collectively contribute to increased PM₁₀ levels in and around the Coal Storage Area and Marine.
- The PM_{2.5} concentrations at Kandla varies from 10.92 to 80.83 µg/m³ with average 39.96 µg/m³. The PM_{2.5} concentration falls within the NAAQS limit for all locations of Kandla. Whereas, at Vadinar its concentration varies from 24.61 to 91.70 µg/m³ with average 62.77 µg/m³. During winter, the concentrations of particulate matter (PM10 & PM2.5) are seen to increase. Also due to construction and demolition all around the port contributing in increased particulate matter levels.
- The concentration of SO_x varies from 4.37 to 53.31 μg/m³ with average concentration as 17.42 μg/m³ at Kandla and 10.73 to 45.56 μg/m³ with average as 17.27 μg/m³ at Vadinar. The average concentration of SO_x complies with the prescribed limit of NAAQS (80 μg/m³) for both the monitoring site.
- The concentration of NO_x varies from 5.75 to 33.23 μ g/m³ with average 16.63 μ g/m³ at Kandla and 6.02 to 17.11 μ g/m³ with average 9.26 μ g/m³ at Vadinar. The concentration of NO_x falls within the prescribed limit of NAAQS i.e. 80 μ g/m³ at both the monitoring site of Kandla and Vadinar.
- The concentration of CO varies from 0.60 to 1.02 μg/m³ with average 0.82 μg/m³ at Kandla and 0.55 to 0.72 μg/m³ with average 0.61 μg/m³ at Vadinar. The concentration falls within the norm of 2 mg/m³ specified by NAAQS at both the monitoring sites
- The concentration of **Total VOCs** levels was recorded in range of **0.05 to 0.29 µg/m**³ at Kandla and **in range of 0.08 to 0.20 µg/m**³ at the location of Vadinar respectively. The main source of VOCs in the ambient air may be attributed to the burning of Gasoline and Natural gas in Vehicle exhaust and burning fossil fuels, and garbage that release VOCs into the atmosphere. During the monitoring period, the wind flows towards South direction at Kandla, and hence the wind direction and speed also contribute to increased dispersion of pollutants from the upward areas towards the downward areas.
- **Benzene** was detected on the location of Kandla in the range of **0 to 0.08 (µg/m3)** whereas not detected on the location of Vadinar.
- **Polycyclic Aromatic Hydrocarbons (PAHs)** are ubiquitous pollutants in urban atmospheres. Anthropogenic sources of total PAHs in ambient air emissions are greater than those that come from natural events. These locations are commercial areas where Vehicular activity and dust emission is common. PAHs are a class of chemicals that occur naturally in coal, crude oil, and gasoline. The higher

concentration which results from burning coal, oil, gas, road dust, etc. Other outdoor sources of PAHs may be the industrial plants in-and-around the DPA premises.

The Ambient air Monitoring location of Kandla recorded the Non-methane VOC (NM-VOC) concentration in the range of 0.92 to 1.56 μg/m³. While at Vadinar, the concentration of NM-VOC falls is found to be 1.12 to 1.45 mg/m³ at both the location.

With reference to the Ambient Air Quality monitoring conducted under the study, it may be concluded that the particulate matter PM_{10} , were reported in higher concentration and apparently exceeds the NAAQS particularly at locations of Kandla., whereas $PM_{2.5}$ complies with the NAAQS at majority of the locations. For both the ambient air monitoring parameters (PM_{10} and $PM_{2.5}$), the major exceedance was observed at location A-5 i.e. Coal Storage Area. The gaseous pollutants (NO_x , SO_x , CO, VOCs etc.) falls within the permissible limit. The probable reasons contributing to these emissions of pollutants into the atmosphere in-and-around the port area are summarized as follows: -

- 1. **Port Machinery:** Port activities involve the use of various machinery and equipment, including cranes, for lifts, tugboats, and cargo handling equipment. These machines often rely on diesel engines, which can emit pollutants such as NO_x, Particulate matter, and CO. Older or poorly maintained equipment tends to generate higher emissions.
- 2. **Port Vehicles:** Trucks and other vehicles operating within port and port area contributes to air pollution. Similar to port machinery, diesel-powered vehicles can emit NO_x, PM, CO, and other pollutants such as PAH, VOCs etc. Vehicle traffic and congestion in and around port areas can exacerbate the air quality issues.
- 3. Apart from that, construction and demolition activities majorly contribute to particulate matter pollution.

4.4 Remedial Measures:

To improve air quality, DPA has implemented a number of precautionary measures, such as maintaining Green zone, initiated Inter-Terminal Transfer of tractor-trailers, Centralized Parking Plaza, providing shore power supply to tugs and port crafts, the use of LED lights at DPA area helps in lower energy consumption and decreases the carbon foot prints in the environment, time to time cleaning of paved and unpaved roads, use of tarpaulin sheets to cover dumpers at project sites etc. are helping to achieve the cleaner and green future at port. To address air pollution from port shipping activities, various measures that can be implemented are as follows:

- Practice should be initiated for using mask as preventative measure, to avoid Inhalation of dust particle-Mask advised in sensitive areas. Covering vehicles with tarpaulin during transportation will help to reduce the suspension of pollutants in air.
- Frequent water sprinkling on roads to reduce dust suspension due to vehicular movement, this can be use during transporting coal to avoid suspension of coal dust.
- Use of proper transport methods, such as a conveyor belt, for excavated material and screens around the construction site.
- Temporary pavement of roads in construction site could considerably reduce dust emission. Prohibition of use of heavy diesel oil as fuel could be possibly reduce

pollutants. Encouraging use of low-sulfur fuels (viz. Marine Gas Oil (MGO)/Liquefied Natural Gas (LNG), can significantly reduce sulfur and PM emissions from ships.

- Investing in infrastructure for cold ironing allows ships to connect to the electrical grid while docked, reducing the need for auxiliary engines and associated emissions.
- Implementing efficient cargo-handling processes, optimizing logistics to reduce congestion and idling times, and encouraging use of cleaner port machinery and vehicles can all contribute to reducing air pollution in port areas.

CHAPTER 5: DG STACK MONITORING

5.1 DG Stack Monitoring

A diesel generator is a mechanical-electrical machine that produces electrical energy (electricity) from diesel fuel. They are used by the residential, commercial, charitable and governmental sectors to provide power in the event of interruption to the main power, or as the main power source. Diesel generating (DG) sets are generally used in places without connection to a power grid, or as an emergency power supply if the grid fails. These DG sets utilize diesel as fuel and generate and emit the air pollutants such as Suspended Particulate Matter, SO₂, NO_x, CO, etc. from the stack during its functioning. The purpose of stack sampling is to determine emission levels from plant processes to ensure they are in compliance with any emission limits set by regulatory authorities to prevent macro environmental pollution. The stack is nothing but chimney which is used to disperse the hot air at a great height, emissions & particulate matters that are emitted. Hence, monitoring of these stacks attached to DG Sets is necessary in order to quantify the emissions generated from it.

As defined in scope by DPA, the monitoring of DG Stack shall be carried out at two locations, one at Kandla and one at Vadinar. The details of the DG Sets at Kandla and Vadinar have been mentioned in **Table 10** as follows:

Sr. No.	Location Code	Location Name	Latitude/ Longitude
1.	DG-1	Kandla	22.98916N 70.22083E
2.	DG-2	Vadinar	22.44155N 69.67419E

Table 10: Details of DG Stack monitoring locations

The map depicting the locations of DG Stack Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 6 and 7** as follows:

Map 6: Locations for DG Stack monitoring at Kandla

Map 7: Locations for DG Stack monitoring at Vadinar

Methodology:

Under the study, the list of parameters to be monitored under the projects for DG Stack Monitoring has been mentioned in **Table 11** as follows:

	Table 11. DO stack parameters									
Sr. No.	Parameter	Unit	Instrument							
1.	Suspended Particulate Matter	mg/Nm ³	Stack Monitoring Kit							
2.	Sulphur Dioxide (SO ₂)	PPM	Sensor based Flue Gas							
3.	Oxides of Nitrogen (NO _x)	PPM	Analyzer (Make: TESTO,							
4.	Carbon Monoxide	%	Model 350)							
5.	Carbon Dioxide	%	woder 550)							

able 11: DG stack pa	arameters
----------------------	-----------

The methodology for monitoring of DG Stack has been mentioned as follows:

т

The monitoring of DG Stack is carried out as per the IS:11255 and USEPA Method. The Stack monitoring kit is used for collecting representative samples from the stack to determine the total amount of pollutants emitted into the atmosphere in a given time. Source sampling is carried out from ventilation stack to determine the emission rates/or characteristics of pollutants. Sample collected must be such that it truly represents the conditions prevailing inside the stack. Whereas the parameters Sulphur Dioxide, Oxides of Nitrogen (NO_x), Carbon Monoxide and Carbon Dioxide, the monitoring is carried out by using the sensor-based Flue Gas Analyzer.

Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar.

5.2 Result and Discussion

The sampling and monitoring of DG stack emission was carried out at Kandla and Vadinar and its comparison with CPCB or Indian standards for Industrial Stack Monitoring the flue gas emission from DG set has given in **Table 12**.

Sr. No.	Stack Monitoring Parameters for DG Sets	Stack Monitoring Limits/ Standards As per CPCB	DG- 1 (Kandla)	DG-2 (Vadinar)
1.	Suspended Particulate Matter (SPM) (mg/Nm ³)	150	71.45	37.48
2.	Sulphur Dioxide (SO ₂) (PPM)	100	1.17	N.D.
3.	Oxides of Nitrogen (NO _x) (PPM)	50	25.49	9.04
4.	Carbon Monoxide (CO) (%)	1	0.15	0.011
5.	Carbon Dioxide (CO ₂) (%)	-	1.19	1.41

Table 12:	DG monitoring data
-----------	--------------------

5.3 Data Interpretation and Conclusion

The results of DG stack emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters.

CHAPTER 6: NOISE MONITORING

6.1 Noise Monitoring

Noise can be defined as an unwanted sound, and it is therefore, necessary to measure both the quality as well as the quantity of environmental noise in and around the study area. Noise produced during operation stage and the subsequent activities may affect surrounding environment impacting the fauna and as well as the human population. Under the scope, the noise monitoring is required to be carried out at 10 locations in Kandla and 3 locations in Vadinar. The sampling locations for noise are not only confined to commercial areas of DPA but also the residential areas of DPA.

The details of the noise monitoring stations are mentioned in **Table 13** and locations have been depicted in the **Map 8 and 9** as follow:

Sr. No.	Location Code		Location Name	Latitude/ Longitude
1.		N-1	Oil Jetty 7	23.043527N 70.218456E
2.		N-2	West Gate No.1	23.006771N 70.217340E
3.		N-3	Canteen Area	23.003707N 70.221331E
4.		N-4	Main Gate	23.007980N 70.222525E
5.	dla	N-5	Main Road	23.005194N 70.219944E
6.	Kandla	N-6	Marin Bhavan	23.007618N 70.222087E
7.		N-7	Port & Custom Building	23.009033N 70.222047E
8.		N-8	Nirman Building	23.009642N 70.220623E
9.		N-9	ATM Building	23.009985N 70.221715E
10.		N-10	Wharf Area/ Jetty	22.997833N 70.223042E
11.	ır	N-11	Near Main Gate	22.441544N 69.674495E
12.	Vadinar	N-12	Near Vadinar Jetty	22.441002N 69.673147E
13.	Ϋ́	N-13	Port Colony Vadinar	22.399948N 69.716608E

Map 8: Locations for Noise Monitoring at Kandla

Map 9: Locations for Noise Monitoring at Vadinar

Methodology:

The intensity of sound energy in the environment is measured in a logarithmic scale and is expressed in a decibel (dB(A)) scale. The ordinary sound level meter measures the sound energy that reaches the microphone by converting it into electrical energy and then measures the magnitude in dB(A). Whereas, in a sophisticated type of sound level meter, an additional circuit (filters) is provided, which modifies the received signal in such a way that it replicates the sound signal as received by the human ear and the magnitude of sound level in this scale is denoted as dB(A). The sound levels are expressed in dB(A) scale for the purpose of comparison of noise levels, which is universally accepted. Noise levels were measured using an integrated sound level meter of the make Envirotech Sound Level Meter (Class-I) (model No. SLM-109). It has an indicating mode of Lp and Leq. Keeping the mode in Lp for few minutes and setting the corresponding range and the weighting network in "A" weighting set the sound level meter was run for one-hour time and Leq was measured at all locations.

Frequency

Monitoring was carried out at each noise monitoring station for Leq. noise level (Day and Night), which was recorded for 24 hours continuously at a monthly frequency with the help of Sound/Noise Level Meter (Class-1). The details of the noise monitoring have been mentioned in **Table 14**.

	Tuble III Details of the Holise Monitoling									
Sr. No.	Parameters	Units	Reference Method	Instrument						
1.	Leq (Day)	dB(A)	10 0000 001 /	Noise Level Meter (Class-						
2.	Leq (Night)	dB(A)	IS 9989: 2014	I) model No. SLM-109						

Table 14: Details of the Noise Monitoring

Standard for Noise

Ministry of Environment & Forests (MoEF) has notified the noise standards vide the Gazette notification dated February 14, 2000 for different zones under the Environment Protection Act (1986). The day time noise levels have been monitored from 6.00 AM to 10.00 PM and night noise levels were measure from 10.00 PM to 6.00 AM at all the thirteen locations (10 at Kandla and 3 at Vadinar) monthly. The specified standards are as mentioned in **Table 15** as follows:

		Noise dB(A) Leq		
Area Code	Category of Area	Daytime	Night time	
А	Industrial Area	75	70	
В	Commercial Area	65	55	
С	Residential Area	55	45	
D	Silence Zone	50	40	

Table 15: Ambient Air Quality norms in respect of Noise

6.2 Result and Discussion

The details of the Noise monitoring conducted during the monitoring period have been summarized in the **Table 16** as below:

					Day Time					Night Time	
Sr. No.	Station Code	Station Name	Category of Area	Standard	Max.	Min.	Leq dB(A) Total	Standard	Max.	Min.	Leq dB(A) Total
1	N-1	Oil Jetty 7	А	75	53.4	33.8	43.6	70	45.7	32.1	38.9
2	N-2	West Gate No.1	А	75	61.8	44.2	53	70	50.2	41.2	45.7
3	N-3	Canteen Area	В	65	54.2	43.5	48.8	55	47.2	32.4	39.8
4	N-4	Main Gate	А	75	71.9	44.6	58.2	70	50.2	33.7	41.9
5	N-5	Main Road	А	75	70.5	37.3	53.9	70	48.5	35.1	41.8
6	N-6	Marin Bhavan	В	65	61.7	42.8	52.2	55	49.8	32.9	41.3
7	N-7	Port & Custom Building	В	65	59.1	34.9	47	55	48.1	34.7	41.4
8	N-8	Nirman Building	В	65	62.5	35.6	49.0	55	47.2	32.9	40
9	N-9	ATM Building	В	65	56.9	36	46.4	55	50.2	33.4	41.8
10	N-10	Wharf Area/ Jetty	А	75	60.4	41.9	51.1	70	47.1	38.1	42.6
11	N-11	Near Main Gate	А	75	63.4	55.3	59.3	70	56.2	45.7	50.9
12	N-12	Near Vadinar Jetty	А	75	65.2	58.5	61.8	70	56.5	51.9	54.2
13	N-13	Port Colony Vadinar	С	55	43.3	38.4	40.8	45	39.7	34.2	36.9

Table 16: The Results of Ambient Noise Quality

6.3 Data Interpretation and Conclusion

The noise level at both the locations (Kandla and Vadinar) was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 10 locations at Kandla ranged from **33.8 dB(A) to 71.9 dB(A)**, while at Vadinar, he noises levels for the three-location ranged from **38.4 dB(A) to 65.2 dB(A)**. Whereas, during Night Time the average Noise Level ranged from **32.1 dB(A) to 50.2 dB(A)** at Kandla and **34.2 dB(A) to 56.5 dB(A)** at Vadinar.

6.4 Remedial Measures

Though, the noise levels detected at the locations of Kandla and Vadinar, are found within the prescribed norms, the noise can further be considerably reduced by adoption of low noise equipment or installation of sound insulation fences. Green belt of plants can be a good barrier. If noise exceeds the applicable norms, then the working hours may be altered as a possible means to mitigate the nuisances of construction activities.

CHAPTER 7: SOIL MONITORING

7.1 Soil Quality Monitoring:

The purpose of soil quality monitoring is to track changes in the features and characteristics of the soil, especially the chemical properties of soil occurring at specific time intervals under the influence of human activity. Soil quality assessment helps to determine the status of soil functions and environmental risks associated with various practices prevalent at the location.

As defined in scope by Deendayal Port Authority (DPA), Soil Quality Monitoring shall be carried out at Six locations, four at Kandla and two at Vadinar. The details of the soil monitoring locations within the Port area of DPA are mentioned in **Table 17**:

Sr. No.	Location Code		Location Name	Latitude Longitude
1.	S-1		Oil Jetty 7	23.043527N 70.218456E
2.	dla	S-2	IFFCO Plant	23.040962N 70.216570E
3.	Kandla	S-3	Khori Creek	22.970382N 70.223057E
4.	S-4		Nakti Creek	23.033476N 70.158461E
5.	ar	S-5	Near SPM	22.400026N 69.714308E
6.	Vadinar	S-6	Near Vadinar Jetty	22.440759N 69.675210E

Table 17: Details	of the	Soil	anality	monitoring
Table 17. Details	or the	5011	quanty	monnormg

Methodology

As per the defined scope by Deendayal Port Authority (DPA), the sampling and analysis of Soil quality has been carried out on monthly basis.

The samples of soil collected from the locations of Kandla and Vadinar and analyzed for the various physico-chemical parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures. The samples were analyzed for selected parameters to get the present soil quality status and environmental risks associated with various practices prevalent at the location. GEMI has framed its own guidelines for collection of soil samples titled as *'Soil Sampling Manual'*. Soil samples were collected from 30 cm depth below the surface using scrapper, filled in polythene bags, labelled on-site with specific location code and name and sent to GEMI's laboratory, Gandhinagar for further detailed analysis. The samples collected from all locations are homogeneous representative of each location. The list of parameters to be monitored under the projects for the Soil Quality Monitoring been mentioned in **Table 18** as follows:

Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar.

C.	Table 18: Soll parameters								
Sr. No.	Parameters	Units	Reference method	Instruments					
1.	ТОС	%	Methods Manual Soil Testing in						
2.	Organic Carbon	%	India January, 2011, 09. Volumetric method (Walkley and Black, 1934)	Titration Apparatus					
3.	Inorganic Phosphate	Kg/Hectare	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR- Indian Institute of Pulses Research 2017 Determination of Available Phosphorus in Soil	UV-Visible Spectrophotometer					
4.	Texture	-	Methods Manual Soil Testing in India January 2011,01	Hydrometer					
5.	pН	-	IS 2720 (Part 26): 1987	pH Meter					
6.	Conductivity	µS/cm	IS 14767: 2000	Conductivity Meter					
7.	Particle size distribution & Silt content	-	Methods Manual Soil Testing in India January 2011	Sieves Apparatus					
8.	SAR	meq/L	Procedures for Soil Analysis, International Soil Reference and Information Centre, 6 th Edition 2002 13-5.5.3 Sodium Absorption Ratio (SAR), Soluble cations	Flame Photometer					
9.	Water Holding Capacity	%	NCERT, Chapter 9, 2022-23 and Water Resources Department Laboratory Testing Procedure for Soil & Water Sample Analysis	Muffle Furnace					
10.	Aluminium	mg/Kg							
11.		mg/Kg	EPA Method 3051A						
12.	Nickel	mg/Kg							
13.	Copper	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a						
14.	Zinc	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a	ICP-OES					
15.	Cadmium	mg/Kg							
16.	Lead	mg/Kg	EPA Method 3051A						
17.	Arsenic	mg/Kg							
18.	18. Mercury mg/Kg								

Table 18: Soil parameters

The map depicting the locations of Soil Quality Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 10 and 11** as follows:

Environmental Monitoring Report of Deendayal Port Authority, December-2024, January-2025

Map 10: Locations for Soil Quality Monitoring at Kandla

Map 11: Locations for Soil Quality Monitoring at Vadinar

7.2 Result and Discussion

The analysis results of physical analysis of the soil samples collected during environmental monitoring mentioned in **Table 19** are shown below:

	Location			Kan	dla	01	Vad	inar
Sr. No	Parameters	Unit	S-1 (Oil Jetty 7)	S-2 IFFCO Plant)	S-3 (Khori Creek)	S-4 (Nakti Creek)	S-5 (Near SPM)	S-6 (Near Vadinar Jetty)
1	рН	-	8.73	8.25	8.51	8.44	7.85	8.38
2	Conductivity	µS/cm	12210	13780	2630	15690	271	231
3	Inorganic Phosphate	Kg/ha	0.68	1.62	1.94	1.28	0.87	0.86
4	Organic Carbon	%	0.41	0.39	0.3	0.78	0.35	0.82
5	Organic Matter	%	0.71	0.67	0.52	1.35	0.6	1.42
6	SAR	meq/L	18.31	12.29	1.31	13.21	0.10	0.13
7	Aluminium	mg/Kg	12387	11554	8105	11739	34107	31358.80
8	Chromium	mg/Kg	52.24	52.52	49.18	58.81	69.59	71.12
9	Nickel	mg/Kg	22.89	15.87	21.32	28.84	28.84	32.53
10	Copper	mg/Kg	77.03	85.80	70.86	24.96	89.51	76.23
11	Zinc	mg/Kg	73.96	95.08	61.84	63.50	62.67	63.70
12	Cadmium	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL
13	Lead	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL
14	Arsenic	mg/Kg	0.95	0.93	2.31	3.86	0.35	0.72
15	Mercury	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL
16	Water Holding Capacity	%	52	47.2	48.8	60	47.2	65.59
17	Sand	%	61.69	67.68	70.4	57.69	78.24	78.96
18	Silt	%	26	32	21.28	39.99	20	14
19	Clay	%	12.32	0.32	8.32	2.32	1.76	7.04
20	Texture	-	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Loamy sand	Loamy sand

Table 19: Soil Quality for the sampling period

7.3 Data Interpretation and Conclusion

Soil samples were collected from 6 locations (4 at Kandla and 2 at Vadinar) and further analysed for its physical & chemical characteristics. Each of the parameters have been given an interpretation based on the observations as follows:

• The value of **pH** ranges from **8.25-8.73**, highest at location S-1 (Oil Jetty 7) and lowest at S-2 (IFFCO Plant); while the average pH for Kandla was observed to be 8.48. Whereas, at Vadinar the pH value observed at S-5 i.e., Near SPM (7.85) and at S-6 i.e.,

Near Jetty Area (8.38). As per the observation the pH was found to be **moderately to strongly alkaline** both the monitoring station of Kandla and Vadinar.

- At entire monitoring locations of Kandla the value of Electrical Conductivity ranges from 2630-15690 µs/cm, highest at location S-4 (Nakti Creek) with the average as 11077.5 µs/cm. Whereas, at Vadinar the range of conductivity was between the range of 231 to 271 µs/cm with an average value of 251 µs/cm.
- At Kandla, the concentration of **Inorganic Phosphate** varied from **0.68-1.94 Kg/ha**, with average **1.38 Kg/ha**. Whereas, at the locations of Vadinar, the Inorganic Phosphate was observed at S-5 i.e., Near SPM (**0.87 Kg/ha**) and detected at S-6 i.e., near Jetty Area (**0.86 Kg/ha**). The phosphorus availability in soil solution is influenced by a number of factors such as Organic matter, clay content, pH, temperature, etc.
- The concentration of **Total Organic Carbon** ranges from **0.30-0.78**% while the average TOC at Kandla was detected as **0.47%**. Whereas, at Vadinar the average TOC was found to be **0.58**% where the observed TOC value found at S-5 i.e. Near SPM (**0.35**%) and S-6 i.e. near Jetty Area to be **0.82**% and below quantification limit respectively.
- The concentration of **Water Holding Capacity** in the soil samples of Kandla and Vadinar varies from **47.2-60**% and **47.2-65.59**% respectively.
- The concentration of **Sodium Adsorption Ratio** ranges from **1.31-18.31 meq/L** with an average value **11.28 meq/L** at Kandla. Whereas, at Vadinar, the average SAR was found to be **0.11 meq/L**. A component of conductivity is the SAR. A high SAR indicates a large concentration of sodium ions in the soil, which raises conductivity.

Sandy Loam to loamy sand **Soil Texture** was observed at all the monitoring locations of Kandla and Vadinar.

Heavy Metals

For the sampling period, the concentration of **Aluminium** varied from **8105 to 12387 mg/kg** at Kandla and **31358.8 to 34107.4 mg/kg** at Vadinar and the average value was observed to be **10946.25 and 32733.1 mg/kg** at Kandla and Vadinar monitoring station, respectively.

- The concentration of **Chromium** varied from **49.18 to 58.81 mg/kg** at Kandla and **69.59 to 71.12 mg/kg** at Vadinar and the average value was observed to be **53.18 and 70.35 mg/kg** at Kandla and Vadinar monitoring station, respectively.
- The concentration of **Nickel** varied from **15.87 to 28.84 mg/kg** at Kandla and **28.84 to 32.53 mg/kg** at Vadinar and the average value was observed to be **22.23 and 30.68 mg/kg** at Kandla and Vadinar monitoring station, respectively.

- The concentration of Zinc varied from 61.84 to 95.08 mg/kg at Kandla and 62.67 to 63.70 mg/kg at Vadinar and the average value was observed to be 73.59 and 63.18 mg/kg at Kandla and Vadinar monitoring station, respectively
- The concentration of copper varied from 24.96 to 85.80 mg/kg at Kandla and 76.23 to 89.51 mg/kg at Vadinar and the average value was observed to be 64.66 and 82.87 mg/kg at Kandla and Vadinar monitoring station, respectively.
- The concentration of Arsenic varied from 0.93 to 3.86 mg/kg at Kandla and the average value was observed to be 2.01 at Kandla Vadinar and the average value was observed to be 0.35 and 0.72 mg/kg at Kandla and Vadinar monitoring station.
- While other heavy metals in the Soil i.e., Mercury, Lead and Cadmium were observed "Below Quantification Limit" for majority of the soil samples collected at Kandla and Vadinar.

CHAPTER 8: DRINKING WATER MONITORING

8.1 Drinking Water Monitoring

It is necessary to check with the drinking water sources regularly so as to know whether water quality conforms to the prescribed standards for drinking. Monitoring the drinking water quality is essential to protect human health and the environment. With reference to the scope specified by DPA, a total of 20 locations (18 at Kandla and 2 at Vadinar) were monitored to assess the Drinking Water quality. The DW-2 location was replaced by Shramdeep due to demolition of past sampling location (port & custom building)

The details of the drinking water sampling stations have been mentioned in **Table 20** and the locations have been depicted through Google map in **Map 12 and 13**.

Sr. No.	Location Code		Location Name	Latitude/ Longitude
1.		DW-1	Oil Jetty 7	23.043527N 70.218456E
2.		DW-2	Shramdeep	23.009631N, 70.220877E
3.		DW-3	North Gate	23.007938N 70.222411E
4.		DW-4	Workshop	23.009372N 70.222236E
5.		DW-5	Canteen Area	23.003707N 70.221331E
6.		DW-6	West Gate 1	23.006771N 70.217340E
7.		DW-7	Sewa Sadan -3	23.009779N 70.221838E
8.		DW-8	Nirman Building	23.009642N 70.220623E
9.	dla	DW-9	Custom Building	23.018930N 70.214478E
10.	Kandla	DW-10	Port Colony Kandla	23.019392N 70.212619E
11.		DW-11	Wharf Area/ Jetty	22.997833N 70.223042E
12.		DW-12	Hospital Kandla	23.018061N 70.212328E
13.		DW-13	A.O. Building	23.061914N 70.144861E
14.		DW-14	School Gopalpuri	23.083619N 70.132061E
15.		DW-15	Guest House	23.078830N 70.131008E
16.		DW-16	E- Type Quarter	23.083306N 70.132422E
17.		DW-17	F- Type Quarter	23.077347N 70.135731E
18.		DW-18	Hospital Gopalpuri	23.081850N 70.135347E
19.	Vadinar	DW-19	Near Vadinar Jetty	22.440759N 69.675210E
20.	Va	DW-20	Near Port Colony	22.401619N 69.716822E

 Table 20: Details of Drinking Water Sampling Locations

Map 12: Locations for Drinking Water Monitoring at Kandla

Map 13: Locations for Drinking Water Monitoring at Vadinar

Methodology

The water samples were collected from the finalized sampling locations and analyzed for physico-chemical and microbiological parameter, for which the analysis was carried out as per APHA, 23rd Edition and Indian Standard method in GEMI's NABL Accredited Laboratory, Gandhinagar. GEMI has followed the CPCB guideline as well as framed its own guidelines for the collection of water/wastewater samples, under the provision of Water (Preservation and Control of Pollution) Act 1974, titled as 'Sampling Protocol for Water & Wastewater'; approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014. The samples under the study were collected and preserved as per the said Protocol. The parameters finalized to assess the drinking water quality have been mentioned in Table 21 as follows:

Sr. No.	Parameters	Units	Reference method	Instrument
1.	рН	-	APHA, 23 rd Edition (Section-4500- H+B):2017	pH Meter
2.	Colour	Hazen	APHA, 23 rd Edition, 2120 B:2017	Color Comparator
3.	EC	μS/cm	APHA, 23 rd Edition (Section-2510 B):2017	Conductivity Meter
4.	Turbidity	NTU	APHA, 23 rd Edition (Section -2130 B):2017	Nephlo Turbidity Meter
5.	TDS	mg/L	APHA, 23 rd Edition (Section-2540 C):2017	Vaccum Pump with filtration
6.	TSS	mg/L	APHA, 23rd Edition, 2540 D: 2017	assembly and Oven
7.	Chloride	mg/L	APHA, 23 rd Edition (Section-4500-Cl- B):2017	Titration Apparatus
8.	Total Hardness	mg/L	APHA, 23 rd Edition (Section-2340 C):2017	
9.	Ca Hardness	mg/L	APHA, 23 rd Edition (Section-3500-Ca B):2017	
10.	Mg Hardness	mg/L	APHA, 23 rd Edition (Section-3500-Mg B):2017	
11.	Free Residual Chlorine	mg/L	APHA 23rd Edition, 4500	
12.	Fluoride	mg/L	APHA, 23 rd Edition (Section-4500-F- D):2017	UV- Visible Spectrophotometer
13.	Sulphate	mg/L	APHA, 23 rd Edition (Section 4500- SO4-2-E):2017	
14.	Sodium	mg/L	APHA, 23 rd Edition (Section-3500-Na- B):2017	Flame Photometer
15.	Potassium	mg/L	APHA,23 rd Edition, 3500 K-B: 2017	
16.	Salinity	mg/L	APHA, 23rd Edition (section 2520 B, E.C. Method)	Salinity /TDS Meter
17.	Nitrate	mg/L	APHA, 23 rd Edition, 4500 NO3- B: 2017	UV- Visible Spectrophotometer

Table 21: List of parameters for Drinking Water Quality monitoring

Sr. No.	Parameters	Units	Reference method	Instrument
18.	Nitrite	mg/L	APHA, 23 rd Edition, 4500 NO2-B: 2017	
19.	Hexavalent	mg/L	APHA, 23 rd Edition, 3500 Cr B: 2017	
17.	Chromium			
20.	Manganese	mg/L	APHA,23 rd Edition, ICP Method 3120	ICP-OES
20.			B: 2017	
21.	Mercury	mg/L	EPA 200.7	
22.	Lead	mg/L	APHA ICP 23 rd Edition (Section-3120	
~~.			B):2017	
23.	Cadmium	mg/L	APHA ICP 23rd Edition (Section-3120	
25.			B):2017	
24.	Iron	mg/L	APHA ICP 23rd Edition (Section-3120	
24.			B):2017	
25.	Total	mg/L	APHA ICP 23rd Edition (Section-3120	
25.	Chromium		B):2017	
26.	Copper	mg/L	APHA,23 rd Edition, ICP Method 3120 B:	ICP-OES
20.			2017	
27.	Zinc	mg/L	APHA ICP 23rd Edition (Section-3120	
27.			B):2017	
28.	Arsenic	mg/L	APHA ICP 23rd Edition (Section-3120	
20.			B):2017	
29.	Total	MPN/	IS 15185: 2016	LAF/ Incubator
29.	Coliforms	100ml		

8.2 Result and Discussion

The drinking water quality of the locations at Kandla and Vadinar and its comparison with the to the stipulated standard (Drinking Water Specifications i.e., IS: 10500:2012) have been summarized in **Table 22** as follows:

Sr.	Parameters	Units		ndard as per IS									Ka	ndla									Vad	inar
No.			Α	Р	DW-1	DW-2	DW-3	DW-4	DW-5	DW-6	DW-7	DW-8	DW-9	DW-10	DW-11	DW-12	DW-13	DW-14	DW-15	DW-16	DW-17	DW-18	DW-19	DW-20
1.	pН	-	6.5-8.5	-	8.40	7.20	7.54	7.41	7.02	7.99	7.36	7.16	6.91	6.93	7.99	7.15	7.50	6.96	6.99	7.10	7.08	6.76	6.90	6.79
2.	Colour	Hazen	5	15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3.	EC	μS/ cm	-	-	125.5	279	23.1	43.9	50	149	23	25.4	61.4	217	138	212	65.4	203	174.4	49.2	29.7	126.8	165.3	105.6
4.	Salinity	PSU	-	-	0.06	0.13	0.02	0.03	0.03	0.06	0.02	0.02	0.03	0.11	0.09	0.10	0.04	0.10	0.09	0.03	0.02	0.06	0.08	0.05
5.	Turbidity	NTU	1	5	0.59	0.64	0.56	0.71	0.64	0.65	0.65	0.69	0.73	BQL	0.98	BQL	0.52	0.71	BQL	BQL	0.63	0.83	BQL	BQL
6.	Chloride	mg/L	250	1000	28.58	60.12	7.88	13.80	11.50	111.97	7.88	7.88	16.75	45.33	109.97	45.33	17.74	48.29	43.36	15.77	9.86	35.48	20.70	13.80
7.	Total Hardness	mg/L	200	600	16	40	2	2	5	180	2	2.5	7	42	160	34	8	26	10	4	2	6	54	22
8.	Ca Hardness	mg/L	-	-	8	18	1.5	1.5	3	100	1.5	2	4	24	90	18	2	12	8	2.5	1.5	4	26	12
9.	Mg Hardness	mg/L	-	-	8	22	BQL	BQL	2	80	BQL	BQL	3	18	70	16	6	14	2	1.5	BQL	2	28	10
10	Free Residual Chlorine	mg/L	0.2	1	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
11	TDS	mg/L	500	2000	66	92	12	22	26	342	12	14	32	112	346	108	34	106	90	26	16	66	84	54
12	TSS	mg/L	-	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
13	Fluoride	mg/L	1.0	1.5	BQL	BQL	BQL	0.62	BQL	0.435	BQL	BQL	BQL	BQL	0.349	BQL	BQL	BQL	0.35	BQL	BQL	BQL	BQL	BQL
14	Sulphate	mg/L	200	400	BQL	15.25	BQL	BQL	BQL	36.66	BQL	BQL	BQL	11.59	35.50	10.59	BQL							
15	Nitrate	mg/L	45	-	BQL	1.635	BQL	BQL	1.040	5.851	BQL	BQL	BQL	1.236	5.470	1.246	BQL							
16	Nitrite	mg/L	-	-	BQL	BQL	BQL	BQL	BQL	0.033	BQL	BQL	BQL	BQL	0.263	BQL								
17	Sodium	mg/L	-	-	19.91	30.35	BQL	BQL	7.26	76.79	BQL	BQL	BQL	17.55	71.89	16.59	5.08	19.27	16.79	BQL	BQL	5.25	8.67	5.06
18	Potassium	mg/L	-	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL

Table 22: Summarized results of Drinking Water quality

Sr.	Parameters	Units		ndard as per IS									Ka	ndla									Vad	inar
No.			Α	Р	DW-1	DW-2	DW-3	DW-4	DW-5	DW-6	DW-7	DW-8	DW-9	DW-10	DW-11	DW-12	DW-13	DW-14	DW-15	DW-16	DW-17	DW-18	DW-19	DW-20
19.	Hexavalent Chromium	mg/L	-	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
20.	Odour	TON	Agre	eable	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21.	Arsenic	mg/L	0.01	0.05	BQL	BQL	BQL	BQL	BQL	9.792	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
22.	Cadmium	mg/L	0.003	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23.	Copper	mg/L	0.05	1.5	BQL	BQL	BQL	BQL	0.0072	BQL	BQL	BQL	0.0080	0.0062	BQL	0.0058	BQL	0.0086						
24.	Iron	mg/L	0.3	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.139	BQL	BQL
25.	Lead	mg/L	0.01	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.00335	BQL
26.	Manganese	mg/L	0.1	0.3	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
27.	Mercury	mg/L	0.001	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
28.	Total Chromium	mg/L	0.05	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
29.	Zinc	mg/L	5	15	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
30.	Total Coliform*	MPN/ 100ml		not be cted	150	BQL	BQL	BQL	BQL	BQL	BQL	10	BQL	BQL	85	BQL	65	40	110	20	BQL	170	235	BQL

A: Acceptable, P:Permissible, BQL: Below Quantification limit; Turbidity (QL=0.5 NTU), Free Residual Chlorine (QL=2 mg/L), Total Suspended Solids (QL=2 mg/L), Fluoride (QL=0.3 mg/L), Sulphate (QL=10 mg/L), Nitrate as NO₃ (QL=1 mg/L), Nitrite as NO₂ (QL=0.1mg/L), Sodium as Na (QL=5mg/L), Potassium as K (QL=5mg/L), Hexavalent Chromium (QL=0.01 mg/L), Arsenic (QL=0.005 mg/L), Cadmium (QL=0.002 mg/L), Copper (QL=0.005 mg/L), Iron (QL=0.1mg/L), Lead (QL=0.002 mg/L), Manganese (QL=0.04 mg/L), Mercury (QL=0.0005 mg/L), Total Chromium (QL=0.005 mg/L), Zinc (QL=0.5 mg/L), Total Coliforms (QL=1 MPN/ 100ml)

AQL: Above Quantification Limit; Total Coliforms (QL=1000000)

*Note: For Total Coliform, one MPN is equivalent to one CFU. The use of either method; MPN or CFU for the detection of bacteria are considered valid measurements for bacteria limits.

8.3 Data Interpretation and Conclusion

Drinking water samples were taken at 20 locations (18 at Kandla and 2 at Vadinar), and their physical and chemical properties were analyzed. The analysis's results were compared with standard values as prescribed in IS 10500:2012 Drinking Water Specification.

- pH: The pH values of drinking water samples in Kandla were reported to be in the range of 6.76 to 8.40 with an average pH of 7.30. In Vadinar, its values ranged from 6.90 to 6.79, with an average pH of 6.85. remarkably, the pH values at project locations are within the permissible range of 6.5 to 8.5. specified under IS: 10500:2012, expect DW-19 and DW-20.
- **Colour:** The value of Color in Drinking water sample at Kandla is found to be **1 Hazen** in each sample. In Vadinar the color value is found to be **1 Hazen** in both the locations.
- **Turbidity:** At the drinking water locations of Kandla, the turbidity was found to be in the range of **0.52 to 0.98** with an average of **0.68**. Whereas, in Vadinar the value of turbidity was reported BQL for both the monitoring location.
- Total Dissolved Solids (TDS): Monitoring TDS is crucial because it provides an indication of overall quality of the water. During the monitoring period, the TDS concentrations in Kandla were observed to vary in a wide range i.e., between 12 to 346 mg/L, with an average concentration of 84.55 mg/L. while in Vadinar, it ranged from 84 to 54 mg/L, with average at 69 mg/L.

It is important to note that the TDS concentrations in both Kandla and Vadinar fall well within the acceptable limit of 500 mg/L.

- Electrical Conductivity (EC): It is a measure of the ability of a solution to conduct electric current, and it is often used as an indicator of the concentration of dissolved solids in water. During the monitoring period, the EC values for samples collected in Kandla were observed to range from 23 to 279 µS/cm, with an average value of 110.87 µS/cm. In Vadinar, the EC values showed variation from 105.6 to 165.3 µS/cm, with an average value of 135.45 µS/cm. It's important to regularly monitor EC levels in drinking water as it can provide valuable information about water quality and presence of dissolved substances.
- Chlorides: The concentrations in the drinking water samples collected from Kandla and Vadinar were within acceptable limits, as specified by the BIS. The chloride in Kandla varied from 7.88 to 111.97 mg/L, with an average value of 35.41 mg/L. In Vadinar, it ranged from 13.80 to 20.70 mg/L, with an average value of 17.25 mg/L. It's important to note that all the recorded chloride concentrations in both Kandla and Vadinar were well below the acceptable limit of 250 mg/L except for location DW-5, DW-11.
- Total Hardness (TH): Total Hardness varied from 2 to 180 mg/L, with the average value as 30.47 mg/L. While at Vadinar, the variation was observed from 22 to 54 mg/L; with the average conc. At 38 mg/L. It's important to note that all the recorded chloride concentrations in both Kandla and Vadinar were well below the acceptable limit of 200 mg/L.

- Sulphate: During monitoring period in Kandla and Vadinar, the sulphate concentrations were found to be within the acceptable limits i.e., 200 mg/L as per the specified norms. In Kandla, the sulphate concentrations varied from 10.59 to 36.66 mg/L, with an average value of 21.92 mg/L. In Vadinar, the sulphate concentration was observed below quantification limit.
- Sodium: During the monitoring period, at Kandla variation in the concentration of sulphate was observed to be in the range of 5.08 to 76.79 mg/L, with the average concentration of 26.06 mg/L. While at Vadinar, the concentration recorded 8.67 mg/L at DW-19 and 5.06 mg/L at DW-20 with the average concentration of 6.87 mg/L.
- Nitrate: During the monitoring period, at Kandla & Vadinar variation in the concentration of Nitrate was observed to be in the range of 1.04 to 5.85 mg/L, with the average concentration of 2.74 mg/L also majority of the location recorded as "BQL". While at Vadinar, the concentration recorded as below Quantification limit.
- Fluoride: The concentration was found to be BQL in majority of the monitoring location except for location DW-4 (Workshop) i.e. 0.62 mg/L, DW-6 (West Gate 1) i.e. 0.43 mg/L, DW-11 (Wharf area/Jetty) i.e. 0.34 mg/L at Kandla. While at Vadinar its value also reported to be BQL for both the monitoring location.
- Nitrite: The Concentration was found to be BQL in all of the monitoring location except for location DW-6 (West Gate 1) i.e. 0.033 mg/L, DW-11 (Wharf Area/Jetty) i.e. 0.263 mg/L at Kandla. While at Vadinar its value also reported to be BQL for both the Monitoring location.
- **Iron:** The Concentration was found to be **BQL** in all of the monitoring location except for location DW-18 (Hospital Gopalpuri) i.e. 0.139 mg/L at Kandla.
- Copper: The Concentration was found to be BQL in all of the monitoring location except for location DW-5 (Canteen Area) i.e. 0.00720 mg/L, DW-10 (Port Colony Kandla) i.e. 0.00623 mg/L, DW-12 (Hospital Kandla) i.e. 0.00587 mg/L, at Kandla. While at Vadinar, the concentration recorded BQL at DW-19 and 0.00868 mg/L at DW-20 with the average concentration of 0.00868 mg/L.
- The parameters such as Free Residual Chlorine, Lead, Potassium, Total Suspended Solids, Manganese, Hexavalent Chromium, and the metals Arsenic, Cadmium, Total Chromium and Zinc were all observed to have concentrations "Below the Quantification Limit (BQL)" at majority of the locations during the monitoring period.
- Total Coliforms: During the monitoring period, at Kandla variation in the concentration of sulphate was observed to be in the range of 10 to 170 MPN/100ml, with the average concentration of 81.25 MPN/100ml. While at Vadinar, the concentration recorded 235 MPN/100ml at DW-19 and BQL at DW-20.

8.4 Remedial Measures

Appropriate water treatment processes should be administered to eradicate coliform bacteria. The methods of disinfection such as **chlorination**, **ultraviolet** (**UV**), **or ozone** etc, apart from that, filtration systems can also be implemented to remove bacteria, sediment, and other impurities.

The following steps can be implemented to ensure that the water being supplied is safe for consumption:

- Regular monitoring should be carried out to assess the quality of drinking water at various stages, including the source, purification plants, distribution network, and consumer endpoints would help in early detection of coliform bacteria or other contaminants in the drinking water.
- It is necessary to carry out a system assessment to determine whether the drinking-water supply chain (up to the point of consumption) as a whole can deliver water of a quality that meets identified targets. This also includes the assessment of design criteria of the treatment systems employed.
- Identifying control measures in a drinking-water system that will collectively control identified risks and ensure that the health-based targets are met. For each control measure identified, an appropriate means of operational monitoring should be defined that will ensure that any deviation from required performance (water quality) is rapidly detected in a timely manner.
- Management and communication plan should be formulated describing actions to be taken during normal operation as well as during incident conditions (such as drinking water contamination) and documenting the same.

CHAPTER 9: SEWAGE TREATMENT PLANT MONITORING

9.1 Sewage Treatment Plant (STP) Monitoring:

The principal objective of STP is to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. As defined in the scope by Deendayal Port Authority (DPA), Kandla, the STP Monitoring is to be carried out weekly at three locations, one at Kandla, one at Gopalpuri and one STP at Vadinar. The samples from the inlet and outlet of the STP have been collected weekly. The details of the locations of STP to be monitored for Kandla and Vadinar have been mentioned in Table 23 as follows:

Sr. No.	Locatio	on Code	Location Name	Latitude Longitude
1.	Vandla	STP-1	STP Kandla	23.021017N 70.215594E
2.	Kandla	STP-2	STP Gopalpuri	23.077783N 70.136759E
3.	Vadinar STP-3		STP at Vadinar	22.406289N 69.714689E

Table 23: Details of the monitoring	locations of STP

The Consolidated Consent and Authorization (CC&A) issued by the GPCB were referred for the details of the STP for Kandla and Gopalpuri. The CC&A of Kandla and Gopalpuri entails that the treated domestic sewage should conform to the norms specified in Table **24**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

labl	e 24: Treated effluent Standards	(as per CC&A of Kandla STP)
Sr. No.	Parameters	Prescribed limits
1.	pН	6.5-8.5
2.	BOD (3 days at 27°C)	30 mg/L
3.	Suspended Solids	100 mg/L
4.	Fecal Coliform	< 1000 MPN/100 ml

Table 24. Treated offluent Standards (a or CC& A of Kandla STP)

The detailed process flow diagram of the Kandla and Gopalpuri STP have been mentioned in **Figure 3 and 4** as follows:

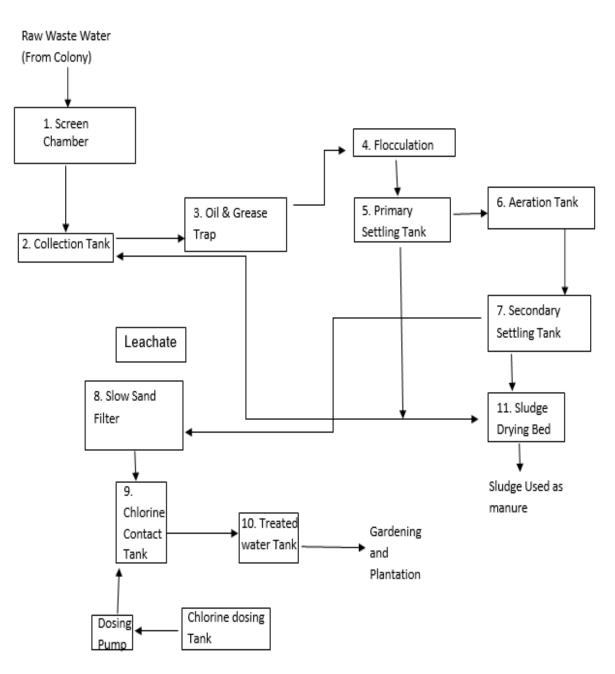
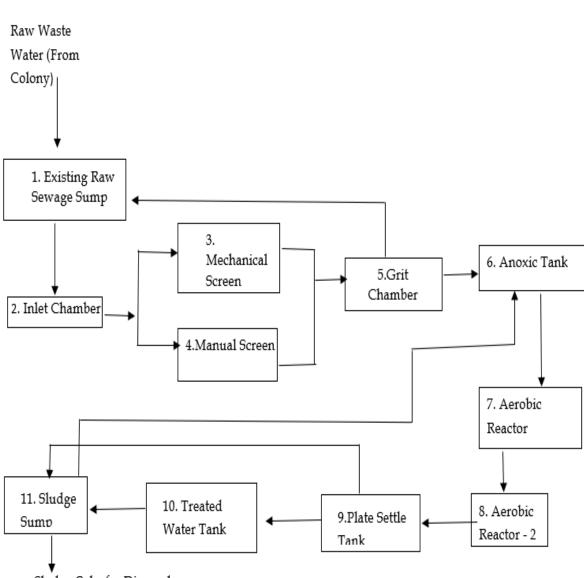



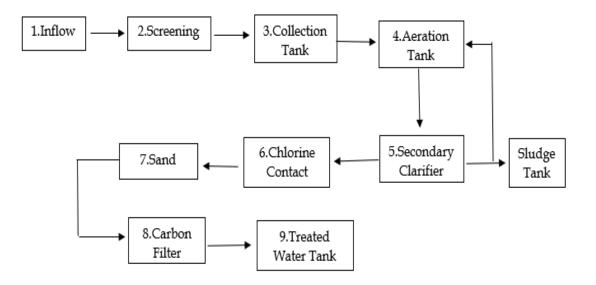
Figure 3: Process flow diagram of STP at Kandla

Sludge Cake for Disposal

Figure 4: Process flow diagram of STP at Gopalpuri

STP at Vadinar

GEMI

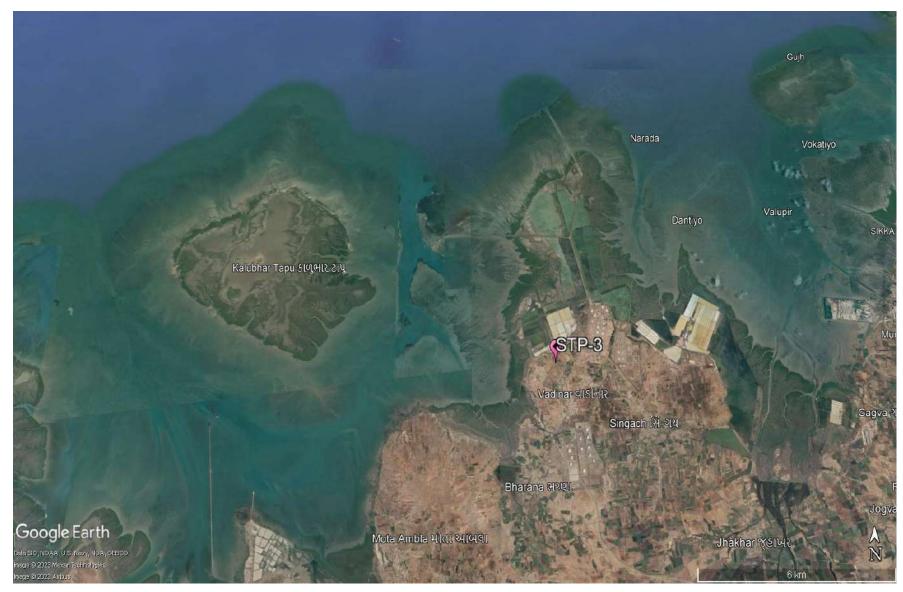

The STP at Vadinar has been built with a treatment capacity of 450 KLD/day. The Consolidated Consent and Authorization (CC&A) issued by the GPCB has been referred for the details of the said STP. The CC&A of the Vadinar STP suggests that the domestic effluent generated shall be treated as per the norms specified in **Table 25**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

Sr. No.	Parameters	Prescribed limits
1.	pН	5.5-9
2.	BOD (3 days at 27°C)	10 mg/L
3.	Suspended Solids	20 mg/L
4.	Fecal Coliform	Desirable 100 MPN/100 ml
		Permissible 230 MPN/100 ml
5.	COD	50 mg/L

Table 25: Norms of treated effluent as	s per CC&A of Vadinar STP
--	---------------------------

The detailed process flow diagram of the Vadinar STP have been mentioned in **Figure 5** as follows:

Figure 5: Process flowchart for the STP at Vadinar


The map depicting the locations of STP to be monitored in Kandla and Vadinar have been shown in **Map 14 and 15** as follows:

Map 14: Locations for STP Monitoring at Kandla

Map 15: Locations for STP Monitoring at Vadinar

Methodology

As per the defined scope by DPA, the sampling and analysis of water samples from the inlet and outlet of the STP's of Kandla and Vadinar are carried out once a week, i.e., four times a month.

The water samples were collected from inlet and the outlet of the STP's and analyzed for physico-chemical and microbiological parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures for the examination of water. The samples were analyzed for selected parameters to establish the existing water quality of the inlet and outlet points of the STP. GEMI has framed its own guidelines for collection of water/wastewater samples titled as 'Sampling Protocol for Water & Wastewater'; which has been approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014 under the provision of Water (Preservation and Control of Pollution) Act 1974. The sample collection and preservation are done as per the said Protocol. Under the project, the list of parameters to be monitored for the STP have been mentioned in **Table 26** as follows:

Frequency

Monitoring is required to be carried out once a week for monitoring location of Kandla and Vadinar i.e., two STP station at Kandla and one STP station at Vadinar.

Sr. No.	Parameters	Units	Reference method	Instruments
1.	рН	-	APHA, 23 rd edition, 4500- H ⁺ B, 2017	pH Meter
2.	TDS	mg/L	APHA, 23 rd Edition,	Vacuum Pump with
3.	TSS	mg/L	2540 C: 2017	filtration assembly and Oven
4.	DO	mg/L	APHA, 23 rd Edition, 4500 C: 2017	Titration Apparatus
5.	COD	mg/L	APHA, 23 rd Edition, 5220 B: 2017	Titration Apparatus plus Digester
6.	BOD	mg/L	IS-3025, Part 44, 1993	BOD Incubator plus Titration Apparatus
7.	SAR	meq/L	IS 11624: 2019	Flame Photometer
8.	Total Coliforms	MPN/100ml	IS 1622: 2019	LAF/ Incubator

Table 26: List of parameters monitored for STP's at Kandla and Vadinar

9.2 Result and Discussion

Analytical results of the STP samples collected from the inlet and the outlet of the STP's of Kandla and Vadinar have been summarized in **Table 27 & 28**. Further it was compared with the standard norms specified in the CC&A of the respective STPs.

				1	Table 27. Water Quarity of fillet and outlet of STT of Kandia														
Sr	Parameter	Units	GPCB								Kan	ıdla							
No.			Norms		Week 3 o	f Deceml	ber	Week 4 of December				Week 1 of January				Week 2 of January			
			(Kandla)	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2
				(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)
1.	pН	-	6.5-8.5	7.14	7.12	7.17	7.23	7.1	7.08	7.01	7.38	7.20	7.11	7.07	7.41	7.45	7.16	7.08	7.40
2.	TDS	mg/L	-	1352	1321	1398	1518	1458	1324	1464	1450	1358	1316	1430	1390	1467	1364	1340	1410
3.	TSS	mg/L	100	31	20	108	16	41	16	70	12	64	14	220	18	48	12	280	26
4.	COD	mg/L	-	180	73.2	316.0	48.0	248	164	247.0	51.8	176.7	72.3	441.3	72.9	196.0	56.0	842.0	76.6
5.	DO	mg/L	-	BQL	3.2	BQL	3.7	BQL	1.5	BQL	1.7	BQL	3.4	BQL	1.7	BQL	2.5	BQL	2.0
6.	BOD	mg/L	30	42.58	26.8	98.75	6.0	36.54	12.74	77.19	6.47	29.46	9.04	132.39	7.29	45.34	8.40	252.60	7.66
7.	SAR	meq/L	-	11.15	9.30	7.56	9.14	9.87	5.68	5.90	4.62	9.36	8.68	8.65	10.82	12.32	10.10	6.99	6.94
8.	Total Coliforms	MPN/ 100ml	<1000	1600	240	1600	1600	1600	280	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600

Table 27: Water Quality of inlet and outlet of STP of Kandla

Table 28: Water Quality of inlet and outlet of STP of Vadinar

Sr No.	Parameter	Units	GPCB Norms (Vadinar)		December		December		of January		of January
					STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)
1.	pН	-	6.5-8.5	7.28	7.44	7.15	7.20	6.52	7.12	7.03	7.16
2.	TDS	mg/L	-	408	382	488	374	418	362	424	358
3.	TSS	mg/L	20	8	4	72	10	90	6	38	4
4.	COD	mg/L	50	168.0	56.0	293.2	52.2	498.0	32.4	196.8	36.1
5.	DO	mg/L	-	1.2	8.4	0.7	7.0	BQL	6.0	1.5	6.9
6.	BOD	mg/L	10	50.40	5.60	91.63	6.53	149.40	3.24	59.04	3.61
7.	SAR	meq/L	-	2.21	2.60	1.37	2.31	2.13	2.21	2.45	1.96
8.	Total Coliforms	MPN/100ml	100-230	1600	1600	1600	1600	1600	1600	1600	1600

BQL: Below Quantification limit; Total Suspended Solids (QL=2), Dissolved Oxygen (QL=0.5), Biochemical Oxygen Demand (QL=3 mg/L)

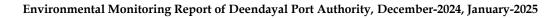
9.3 Data Interpretation and Conclusion

For physicochemical analysis, the treated sewage water was gathered from the Kandla STP, Gopalpuri STP, and Vadinar STP and the analytical results were compared with the standards mentioned in the Consolidated Consent and Authorization (CC&A) by GPCB.

- The **pH** of treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) conform to their respective stipulated norms of **7.08 to 7.41** at Kandla and **7.12 to 7.44** at Vadinar respectively.
- The **TDS** of treated sewage at Kandla was ranges from **1316 to 1518 mg/L**, whereas for Vadinar it ranges from **358 to 382 mg/L**.
- The **TSS** of the Treated effluent for the STP-1 and STP-2 at Kandla and STP-3 at Vadinar falls within the stipulated norms of **4 and 26 mg/L** respectively as mentioned in their respective CCA.
- **COD** value for Kandla was observed in the range of **48 to 164 mg/L**. Whereas for Vadinar the value of COD falls within the range of **32.4 to 56 mg/L**.
- The value of **DO** was observed in the range of **1.50 to 3.70 mg/L** at Kandla, whereas for Vadinar it was observed in the range of **6.0 to 8.4 mg/L**.
- The **BOD** of the outlet for the STPs of Kandla and Vadinar falls within the stipulated norms.
- The value of **SAR** for Kandla was observed in the range of **4.62 to 10.82 meq/L**, whereas for Vadinar, it was observed in the range of **1.96 to 2.6 meq/L**.
- The value of **Total Coliforms** for Kandla was observed in the range of **240 to 1600 MPN/100 ml**, whereas for Vadinar, it was observed in the range of **1600 MPN/100 ml**.

During the monitoring period, only Total Coliforms were observed to be exceeding the limits at STPs of Kandla and Vadinar while rest of the treated sewage parameters for STP outlet were within norms as specified under the CCA at both the monitoring sites. Regular monitoring of the STP performance should be conducted on regular basis to ensure adequate treatment as per the norms.

9.4 Remedial Measures:

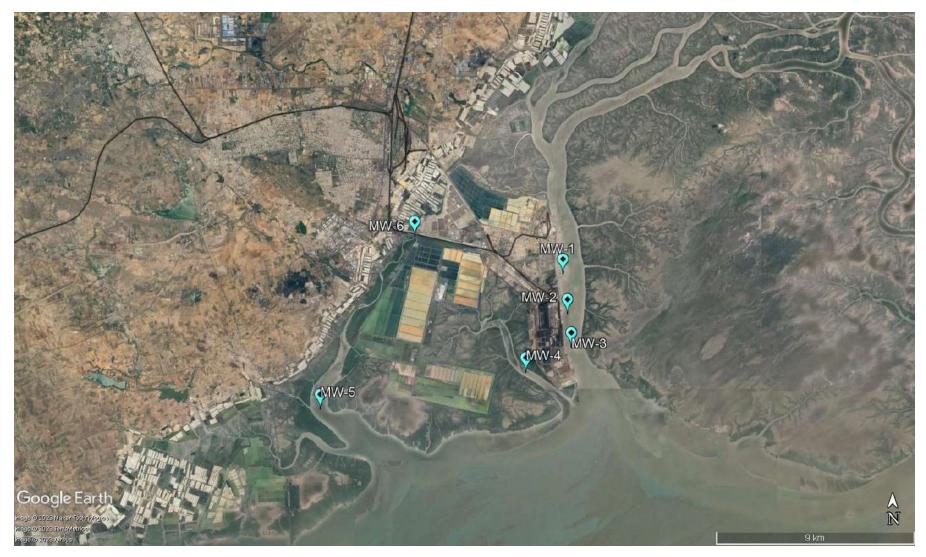

- The quantum of raw sewage (influent) entering the STP should be monitored by installation of the flow meter. If the quantity of the sewage exceeds the treatment capacity of the treatment plant, then provision of additional capacity of collection sump should be provided.
- The adequacy and efficacy of the stages of Sewage treatment units shall be conducted.
- The results show the presence of total coliforms; hence the method of disinfection (Chlorination) sodium or calcium Hypochlorite can be used.
- Effectiveness of any technology depends on factors such as the specific pollutants in the wastewater, plant size, local regulations, and available resources. There are several processes that may be implemented such as Advanced oxidation process involve using strong oxidants to break down complex organic compounds. Methods like Fenton's reagent (hydrogen peroxide and iron catalyst) and UV/H₂O₂ treatment can help in reducing COD through oxidation.

• Electrochemical processes like Electrocoagulation (EC) and Electrooxidation (EO) that involve the application of an electric current to facilitate the removal of pollutants through coagulation, flocculation, and oxidation. These methods can be useful for treating sewage containing various pollutants.

CHAPTER 10: MARINE WATER QUALITY MONITORING

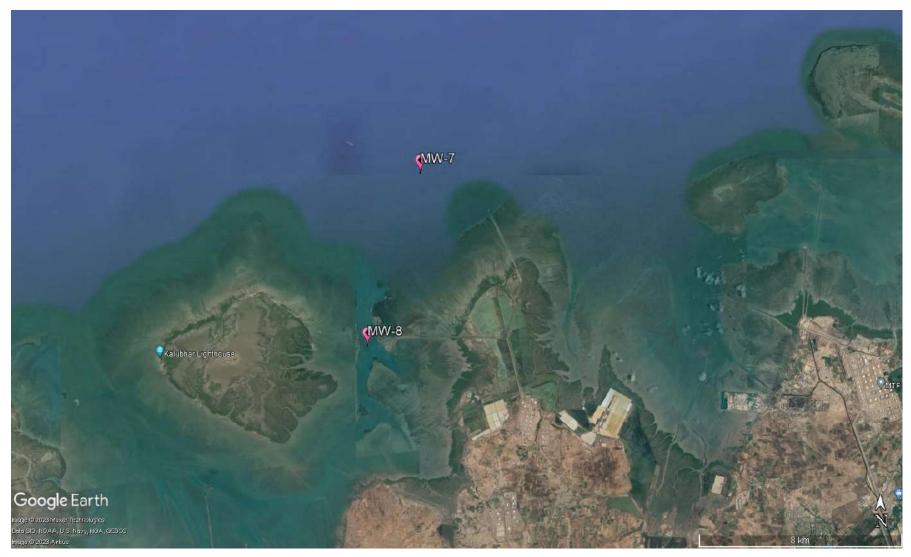
10.1 Marine Water

Deendayal Port is one of the largest ports of the country and thus, is engaged in wide variety of activities such as movement of large vessels, oil tankers and its allied small and medium vessels and handling of dry cargo several such activities whose waste if spills in water, can cause harmful effects to marine water quality.


Major water quality concerns at ports include wastewater and leakage of toxic substances from ships, stormwater runoff, etc. This discharge of wastewater, combined with other ship wastes which includes sewage and wastewater from other on-board uses, is a serious threat to the water quality as well as to the marine life. As defined in the scope by DPA, the Marine Water sampling and analysis has to be carried out at a total of eight locations, six at Kandla and two at Vadinar. The marine water sampling has been carried out with the help of Niskin Sampler with a capacity of 5L. The Niskin Sampler is a device used to take water samples at a desired depth without the danger of mixing with water from other depths. Details of the locations to be monitored have been mentioned in **Table 29**:

Sr. No.	Location Code		Location Name	Latitude Longitude	
1.		MW-1	Near Passenger Jetty One	23.017729N 70.224306E	
2.		MW-2 Kandla Creek (nr KPT Colony)		23.001313N 70.226263E	
3.	dla	MW-3	Near Coal Berth	22.987752N70.227923E	
4.	Kandla	MW-4	Khori Creek	22.977544N 70.207831E	
5.		MW-5	Nakti Creek (nr Tuna Port)	22.962588N 70.116863E	
6.		MW-6	Nakti Creek (nr NH-8A)	23.033113N 70.158528E	
7.	nar	MW-7	Near SPM	22.500391N 69.688089E	
8.	Vadinar	MW-8	Near Vadinar Jetty	22.440538N 69.667941E	

Table 29: Details of the sampling locations for Marine water
--


The map depicting the locations of Marine Water to be sampled and analysed for Kandla and Vadinar have been mentioned in **Map 16 and 17** as follows:

Map 16: Locations for Marine Water Monitoring at Kandla

Map 17: Locations for Marine Water Monitoring at Vadinar

Methodology

The methodology adopted for the sampling and monitoring of Marine Water was carried out as per the '**Sampling Protocol for Water & Wastewater'** developed by GEMI. The water samples collected through the Niskin Sampler are collected in a clean bucket to reduce the heterogeneity. The list of parameters to be monitored under the project for the Marine Water quality have been mentioned in **Table 30** along with the analysis method and instrument.

Frequency:

As defined in the scope by DPA, the sampling and analysis of Marine Water has to be carried out once in a month at the eight locations (i.e., six at Kandla and two at Vadinar).

Sr. No	Parameters	Units	Reference method	Instrument	
1.	Electrical Conductivity	μS/cm	APHA, 23 rd Edition (Section- 2510 B):2017	Conductivity Meter	
2.	Dissolved Oxygen (DO)	mg/L	APHA, 23 rd Edition, 4500 O C, 2017	Titration Apparatus	
3.	рН	-	APHA, 23 rd Edition (Section- 4500-H ⁺ B):2017	pH meter	
4.	Color	Hazen	APHA, 23 rd Edition, 2120 B: 2017	Color comparator	
5.	Odour	-	IS 3025 Part 5: 2018	Heating mantle & odour bottle	
6.	Turbidity	NTU	IS 3025 Part 10: 1984	Nephlo Turbidity Meter	
7.	Total Dissolved Solids (TDS)	mg/L	APHA, 23 rd Edition (Section- 2540 C):2017	Vaccum Pump with Filtration Assembly and	
8.	Total Suspended Solids (TSS)	mg/L	APHA, 23 rd Edition, 2540 D: 2017	Oven	
9.	Particulate Organic Carbon	mg/L	APHA, 23 rd Edition, 2540 D and E	TOC analyser	
10.	Chemical Oxygen Demand (COD)	mg/L	IS-3025, Part- 58: 2006	Titration Apparatus plus Digester	
11.	Biochemical Oxygen Demand (BOD)	mg/L	IS-3025, Part 44,1993,	BOD Incubator plus Titration apparatus	
12.	Silica	mg/L	APHA, 23 rd Edition, 4500 C, 2017		
13.	Phosphate	mg/L	APHA, 23 rd Edition, 4500 P- D: 2017	UV- Visible	
14.	Sulphate	mg/L	APHA, 23 rd Edition, 4500 SO4-2 E: 2017	Spectrophotometer	
15.	Nitrate	mg/L	APHA, 23 rd Edition, 4500 NO3-B: 2017		

Table 30: List of parameters monitored for Marine Water

Sr. No	Parameters	Units	Reference method	Instrument	
16.	Nitrite	mg/L	APHA, 23 rd Edition, 4500 NO2- B: 2017		
17.	Sodium	mg/L	APHA, 23 rd Edition, 3500 Na- B: 2017	Flame photometer	
18.	Potassium	mg/L	APHA, 23 rd Edition, 3500 K- B: 2017	Fiame photometer	
19.	Manganese	µg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017		
20.	Iron	mg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017	ICP-OES	
21.	Total Chromium	µg/L	APHA, 23 rd Edition, 3500 Cr		
22.	Hexavalent Chromium	µg/L	B: 2017	UV- Visible Spectrophotometer	
23.	Copper	µg/L			
24.	Cadmium	µg/L		ICP-OES	
25.	Arsenic	µg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017		
26.	Lead	μg/L			
27.	Zinc	mg/L			
28.	Mercury µg/L		EPA 200.7		
29.	Floating Material (Oil grease scum, petroleum products)	mg/L	APHA, 23 rd Edition, 5520 C: 2017	Soxhlet Assembly	
30.	Total Coliforms (MPN)	MPN/ 100ml	IS 1622: 2019	LAF/ Incubator	

10.2 Result and Discussion

The quality of the Marine water samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 31**. The said water quality has been represented in comparison with the standard values as stipulated by CPCB for Class SW-IV Waters.

Table 31: Results of Analysis of Marine Water Sample for the sampling period

Sr.	Parameters	Unit	Primary			Vadinar					
No ·			Water Quality Criteria for Class SW-IV Waters	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8
1.	Density	kg/m ³	-	1.021	1.02	1.02	1.021	1.022	1.021	1.02	1.021
2.	pН	-	6.5-9.0	8.13	8.11	8.19	8.24	8.12	8.2	8.19	8.24
3.	Color	Hazen	No Noticeable	5	5	5	5	5	5	5	5
4.	EC	µS/cm	-	51,500	52,300	54,100	54,300	52,400	51,800	54,100	54,300
5.	Turbidity	NTU	-	97	125	4.12	3.42	131	112	4.12	3.42
6.	TDS	mg/L	-	33,326	37,182	32,478	33,142	34,109	33,806	32,478	33,142
7.	TSS	mg/L	-	347	421	115	195	332	411	115	195
8.	COD	mg/L	-	32.7	30.9	47.89	51.26	31.56	33.11	47.89	51.26
9.	DO	mg/L	3.0 mg/L	5.9	6.3	6.1	5.7	6.1	5.8	6.1	5.7
10.	BOD	mg/L	5.0 mg/L	8.15	8.3	7.42	7.13	10.2	9.92	7.42	7.13
11.	Oil & Grease	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
12.	Sulphate	mg/L	-	2364.6	2684.7	2897.4	3157.3	2739.8	2457.3	2897.4	3157.3
13.	Nitrate	mg/L	-	4.63	3.48	3.41	2.980	3.86	4.12	3.41	2.980
14.	Nitrite	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
15.	Phosphate	mg/L		BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
16.	Silica	mg/L	-	3.01	2.71	0.93	0.79	3.83	2.76	0.93	0.79
17.	Sodium	mg/L	-	9485	9206	9,827	9,541	9642	9468	9,827	9,541
18.	Potassium	mg/L	-	360.21	320	421.7	391.40	347.60	247.67	421.7	391.40
19.	Hexavalent Chromium	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
20.	Odour	-	-	1	1	1	1	1	1	1	1
21.	Arsenic	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
22.	Cadmium	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23.	Copper	mg/L	-	BQL	6.22	BQL	BQL	6.68	BQL	BQL	BQL
24.	Iron	mg/L	-	1.831	2.281	0.586	0.378	1.819	2.192	0.586	0.378
25.	Lead	mg/L	-	3.16	3.22	2.412	2.984	2.41	3.36	2.412	2.984
26.	Manganese	mg/L	-	92.18	134.29	42.57	BQL	92.74	116.68	42.57	BQL
27.	Total Chromium	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
28.	Zinc	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
29.	Mercury	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
30.	Particulate Organic Carbon	mg/L	-	1.08	0.68	0.55	0.72	0.98	1.18	0.65	0.72
31.	Total Coliforms	MPN/ 100ml	500/100 ml	16	15	10	24	10	15	10	24

Sr.	Parameters	Unit	Primary		Kandla						Vadinar	
No			Water Quality Criteria for Class SW-IV Waters	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	
32.	Floating Material (Oil grease scum, petroleum products)	mg/L	10 mg/L	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	

10.3 Data Interpretation and Conclusion

The Marine water quality of Deendayal Port Harbor waters at Kandla and Vadinar has been monitored for various physico-chemical and biological parameters during the monitoring period. The detailed interpretation of the parameters in comparison to the Class SW-IV for Harbour Waters is as follows:

- Density at Kandla was observed in the range of 1.20 to 1.023 kg/m³, with the average of 1.021 kg/m³. Whereas for the location of Vadinar, it was observed 1.020 kg/m³ at MW-7 and 1.021 kg/m³ at MW-8, with the average of 1.020 kg/m³.
- **pH** at Kandla was observed in the range of **8.04 to 8.21**, with the average pH as **8.13**. Whereas for the locations of Vadinar, it was observed in the range of be **8.19 to 8.24**, with the average pH as **8.21**. For the monitoring location of both the study areas, pH was found to comply with the norms of 6.5-8.5.
- **Color** range varied from **5 Hazen** at all the monitoring locations in Kandla, and for Vadinar, it found **5 Hazen** for the both of the location.
- Electrical conductivity (EC) was observed in the range of 51,400 to 52,400 μS/cm, with the average EC as 51,850 μS/cm for the locations of Kandla, whereas for the locations of Vadinar, it was observed in the range of 54,100 to 54,300 μS/cm, with the average EC as 54,200 μS/cm.
- For all monitoring locations of Kandla the value of Turbidity was observed in the range of 97 to 210 NTU, with average value of 137.08 NTU. For Vadinar it ranges from 4.12 to 3.42 NTU, with average of 3.77 NTU. Materials that cause water to be turbid include clay, silt, finely divided organic and inorganic matter, soluble coloured organic compounds, plankton and microscopic organisms. Turbidity affects the amount of light penetrating to the plants for photosynthesis.
- For the monitoring locations at Kandla the value of **Total Dissolved Solids (TDS)** ranged from **32,189 to 37,182 mg/L**, with an average value of **34048.66 mg/L**. Similarly, at Vadinar, the TDS values ranged from **32,478 to 33,142 mg/L**, with an average value of **32,810 mg/L**.
- TSS values in the studied area varied between 289 to 421 mg/L at Kandla and 115 to 195 mg/L at Vadinar, with the average value of 363.5 mg/L and 155 mg/L respectively for Kandla and Vadinar.

- COD varied between 30.9 to 33.11 mg/L at Kandla and 47.89 to 51.26 mg/L at Vadinar, with the average value as 31.98 and 49.57 mg/L respectively for Kandla and Vadinar.
- DO level in the studied area varied between 5.8 to 6.3 mg/L at Kandla and 5.7 to 6.1 mg/L at Vadinar, with the average value of 6.01 mg/L and 5.9 mg/L respectively for Kandla and Vadinar. Which represents that the marine water is suitable for marine life.
- BOD observed was observed in the range of 8.15 to 10.2 mg/L, with average of 8.95 mg/L for the location of Kandla and for the locations of Vadinar, it was observed in the range of 7.42 to 7.13 mg/L, with an average value of 7.27 mg/L.
- Sulphate concentration in the studied area varied between 2364.6 to 3246.3 mg/L at Kandla and 2897.4 to 3157.3 mg/L at Vadinar. The average value observed at Kandla was 2680.63 mg/L, whereas 3027.35 mg/L was the average value of Vadinar. Sulphate is naturally formed in inland waters by mineral weathering or the decomposition and combustion of organic matter.
- Nitrate in the study area was observed in the range of 3.38 to 4.89 mg/L, with the average of 4.06 mg/L. Whereas for the Vadinar, recorded value was observed in the range of 2.98 to 3.41 mg/L, with the average of 3.19 mg/L.
- In the study area of Kandla the concentration of Potassium varied between 247.67 to 360.21 mg/L and 391.40 to 421.70 mg/L at Vadinar, with the average value as 324.88 mg/L and 406.55 mg/L respectively for Kandla and Vadinar.
- Silica in the studied area varied between 2.71 to 3.83 mg/L, with the average of 3.10 mg/L, at Kandla. Vadinar, observed value was found to be 0.93 mg/L at location MW-7 and 0.79 mg/L at MS-8 location.
- Sodium in the study area varied between 9206 to 9887 mg/L, with average of 9513.83 mg/L, at Kandla whereas at Vadinar the sodium concentration value was observed in the range of 9541 to 9827 mg/L, with the average value of 9684 mg/L.
- **Odour** was observed **1** for all locations of Kandla and Vadinar.
- **Copper** at the Kandla and Vadinar location was detected **below the quantification limit (BQL)**" for the all-sampling location.
- Iron in the studied area varied between **1.749 to 2.431 mg/L**, with the average of **2.050 mg/L**, at Kandla, and for Vadinar value were recorded **0.586 mg/L** for location MW-7 and **0.378 mg/L** for location MW-8.
- Lead concentration varied 0.00241 to 0.00336 mg/L, with an average of 0.00293 mg/L at Kandla. At Vadinar location MW-7 observed 0.00241 mg/L and MW-8 observed 0.00298 mg/L with an average of 0.00269 mg/L
- Manganese in the studied area varied between 0.0921 to 0.134 mg/L, with the average of 0.110 mg/L, at Kandla. At Vadinar location MW-7 observed 0.0425 mg/L and MW-8 observed BQL.
- **Particulate Organic Carbon** in the study area was observed in the range of **0.55 to 1.18**, with the average value of **0.86**. Whereas for the Vadinar, the value observed was **0.65** at MW-7 and **0.72** at MW-8, with the average of **0.68**.
- Oil & Grease, Nitrite, Phosphate, Hexavalent Chromium, Arsenic, Cadmium, Total Chromium, Zinc, Mercury and Floating Material (Oil grease scum, petroleum

products) were observed to have concentrations **"Below the Quantification Limits (BQL)**" for most of the locations of Kandla and Vadinar.

• **Total Coliforms** were detected complying with the specified norm of 500 MPN/100ml for all the locations of Kandla and Vadinar.

During the Monitoring period, marine water samples were analysed and found in line with Primary Water Quality criteria for class-IV Waters (For Harbour Waters).

However, as a safeguard towards marine water pollution prevention, appropriate regulations on ship discharges and provision of reception facilities are indispensable for proper control of emissions and effluent from ships. Detection of spills is also important for regulating ship discharges. Since accidental spills are unavoidable, recovery vessels, oil fences, and treatment chemicals should be prepared with a view to minimizing dispersal. Proper contingency plans and a prompt reporting system are keys to prevention of oil dispersal. Periodical clean-up of floating wastes is also necessary for preservation of port water quality.

CHAPTER 11: MARINE SEDIMENT QUALITY MONITORING

11.1 Marine Sediment Monitoring

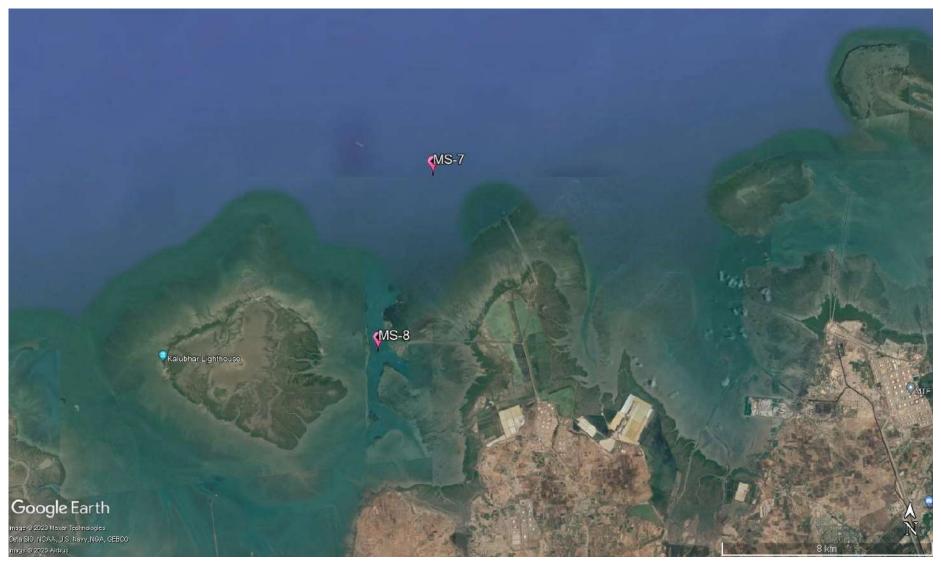
Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind. The unconsolidated materials derived from pre-existing rocks or similar other sources by the process of denudation are deposited in water medium are known as sediment. For a system, like a port, where large varieties of raw materials and finished products are handled, expected sediment contamination is obvious.

The materials or part of materials spilled over the water during loading and unloading operations lead to the deposition in the harbour water along with sediment and thus collected as harbour sediment sample. These materials, serve as receptor of many trace elements, which are prone to environment impact. In this connection it is pertinent to study the concentration and distribution of environmentally sensitive elements in the harbour sediment. However, human activities result in accumulation of toxic substances such as heavy metals in marine sediments. Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulation. Metals affect the ecosystem because they are not removed from water by self-purification, but accumulate in sediments and enter the food chain.

Methodology

As defined in the scope by DPA, the Marine Sediment sampling is required to be carried out once in a month at total eight locations, i.e., six at Kandla and two at Vadinar. The sampling of the Marine Sediment is carried out using the Van Veen Grab Sampler (make Holy Scientific Instruments Pvt. Ltd). The Van Veen Grab sampler is an instrument to sample (disturbed) sediment up to a depth of 20-30 cm into the sea bed. While letting the instrument down on the seafloor, sediment can be extracted. The details of locations of Marine Sediment to be monitored under the study are mentioned in **Table 32** as follows:

Sr. No	Loc	ation Code	Location Name	Latitude Longitude		
1.		MS-1	Near Passenger Jetty One	23.017729N 70.224306E		
2.	a	MS-2	Kandla Creek	23.001313N 70.226263E		
3.	Kandl	MS-3	Near Coal Berth	22.987752N 70.227923E		
4.	Ka	MS-4	Khori Creek	22.977544N 70.207831E		
5.		MS-5	Nakti Creek (near Tuna Port)	22.962588N 70.116863E		
6.		MS-6	Nakti Creek (near NH-8A)	23.033113N 70.158528E		
7.	Vadinar	MS-7	Near SPM	22.500391N 69.688089E		
8.	Vad	MS-8	Near Vadinar Jetty	22.440538N 69.667941E		


The map depicting the locations of Marine Sediment sampling at Kandla and Vadinar have been mentioned in **Map 18 and 19** as follows:

Map 18: Location of Marine Sediment Monitoring at Kandla

Map 19: Locations of Marine Sediment Monitoring at Vadinar

The list of parameters to be monitored under the projects for the Marine Sediment sampling been mentioned in **Table 33** as follows:

Sr. No.	Parameters	Units	Reference method	Instruments
1.	Texture		Methods Manual Soil Testing in India January 2011,01	Hydrometer
2.	Organic Matter	%	Methods Manual Soil Testing in India January, 2011, 09. Volumetric method (Walkley and Black, 1934)	Titration apparatus
3.	Inorganic Phosphates	mg/Kg	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR-Indian Institute of Pulses Research 2017	UV- Visible Spectrophotometer
4.	Silica	mg/Kg	EPA METHOD 6010 C & IS: 3025 (Part 35) – 1888, part B	
5.	Phosphate	mg/Kg	EPA Method 365.1	
6.	Sulphate as SO ⁴⁻	mg/Kg	IS: 2720 (Part 27) - 1977	
7.	Nitrite	mg/Kg	ISO 14256:2005	
8.	Nitrate	mg/Kg	Methods Manual Soil Testing in India January, 2011, 12	
9.	Calcium as Ca	mg/Kg	Methods Manual Soil Testing in India January 2011, 16.	Titration
10.	Magnesium as Mg	mg/Kg	Method Manual Soil Testing in India January 2011	Apparatus
11.	Sodium	mg/Kg	EPA Method 3051A	
12.	Potassium	mg/Kg	Methods Manual Soil Testing in India January, 2011	Flame Photometer
13.	Aluminium	mg/Kg		
14.	Chromium	mg/Kg		
15.	Nickel	mg/Kg		
16.	Zinc	mg/Kg	EDA Mathed 2051 A	ICD OFC
17.	Cadmium	mg/Kg	EPA Method 3051A	ICP-OES
18.	Lead	mg/Kg		
19.	Arsenic	mg/Kg		
20.	Mercury	mg/Kg		

Table 33: List of parameters to be monitored for Sediments at Kandla and Vadinar
--

11.2 Result and Discussion

The quality of Marine Sediment samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 34**.

	Table 34: Summarized result of Marine Sediment Quality										
Sr	Parameters	Unit	Kandla						Vadinar		
No.	rarameters	Om	MS-1	MS-2	MS-3	MS-4	MS-5	MS-6	MS-7	MS-8	
1.	Inorganic Phosphate	kg/ ha	4.41	10.27	22.43	8.63	15.6	14.5	3.16	2.17	
2.	Phosphate	mg/Kg	1055.2	1862.2	1586.7	653.7	816.3	667.1	203.5	247.4	
3.	Organic Matter	%	0.81	0.31	0.27	0.51	0.73	0.33	0.65	0.87	
4.	Sulphate as SO ⁴⁻	mg/Kg	190.09	170.70	210.19	155.27	92.28	101.26	84.17	115.9	
5.	Ca	mg/Kg	2165.50	2439.90	1890.90	2947.40	1693.10	2368.70	2427.7	2389.6	
6.	Magnesium as Mg	mg/Kg	1584.50	1725.00	1826.00	1623.00	1421.10	1089.30	1198.2	1478	
7.	Silica	g/Kg	582.9	476.3	421.3	291.71	236.4	325.63	290.1	408.3	
8.	Nitrite	mg/Kg	0.32	0.64	0.39	0.41	0.49	0.59	0.16	0.3	
9.	Nitrate	mg/Kg	21.48	18.36	29.31	23.63	14.51	16.13	13.2	7.96	
10	Sodium	mg/Kg	3514	2453	2619	3219	3442	2916	6136	8643	
11	Potassium	mg/Kg	2084	1967.9	2819	3071.2	2741	2613.7	2938	2481	
12	Copper	mg/Kg	2283.3	1826.7	1278.5	2379.5	1628.3	1347.8	1493.78	1681.39	
13	Aluminium	mg/Kg	49.51	38.7	36.83	49.1	47.2	51.3	53.6	29.7	
14	Chromium	mg/Kg	3.11	3.57	4.07	3.91	4.97	5.27	4.58	3.78	
15	Nickel	mg/Kg	43.35	38.9	21.47	28.11	22.64	24.39	14.79	26.87	
16	Zinc	mg/Kg	61.16	54.6	49.3	47.7	51.26	40.65	23.68	42.96	
17	Cadmium	mg/Kg	BQL	BQL							
18	Lead	mg/Kg	4.97	5.02	3.84	5.11	4.76	4.26	4.76	5.22	
19	Arsenic	mg/Kg	4.47	2.55	5.2	3.63	2.98	3.21	2.83	3.42	
20	Mercury	mg/Kg	BQL	BQL							
21	Texture	-	Sandy loam	Loam							

11.3 Data Interpretation and Conclusion

The Marine sediment quality at Kandla and Vadinar has been monitored for various physico-chemical parameters during the monitoring 2024. The detailed interpretation of the parameters is given below:

- **Inorganic Phosphate** for the sampling period was observed in range of **4.41 to 22.43** Kg/ha for Kandla. Whereas for Vadinar the value observed at location MS-7 (Nakti creek) is 3.16 Kg/ha and MS-8 (Near Vadinar Jetty) is 2.17 Kg/ha. For Kandla and Vadinar the average value of Inorganic Phosphate was observed 12.64 and 2.66 Kg/ha respectively.
- The concentration of **Phosphate** was observed in range of **653.7 to 1862.2 mg/Kg** for Kandla and for Vadinar the value observed at location MS-7 (Nakti creek) as 203.5 mg/Kg and MS-8 (Near Vadinar Jetty) as 247.4 mg/Kg. For Kandla and Vadinar the average concentration of Phosphate was observed 1106.86 and 225.45 mg/Kg respectively.

- The **Organic Matter** for the sampling period was observed in the range of **0.27 to 0.81** % for Kandla with the average value of 0.49% and for Vadinar the value recorded at location MS-7 and MS-8 was observed 0.65% & 0.87% respectively, with average concentration as 0.76 %.
- The concentration of **Sulphate** was observed in the range of **92.28 to 210.19 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 84.17 mg/Kg and at MS-8 is 115.9 mg/Kg. For Kandla and Vadinar the average value of Sulphate was observed 153.29 and 100.03 mg/Kg respectively.
- The value of **Calcium** was observed in the range of **1693.1 to 2947.4 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 2427.7 mg/Kg and at MS-8, is 2389.65 mg/Kg. The average value of Calcium for the monitoring period was observed 2250.91 mg/Kg and 2408.65 mg/Kg at Kandla and Vadinar, respectively.
- The value of **Magnesium** for the sampling period was observed in the range of **1089.3 to 1826 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 1198.2 mg/Kg and at MS-8, is 1478 mg/Kg. For Kandla and Vadinar the average value of Magnesium was observed 1544.81 mg/Kg and 1338.1 mg/Kg respectively.
- For the sampling period **Silica** was observed in the range of **236.4 to 582.9 mg/Kg** for Kandla with average value 389.04 mg/Kg and for Vadinar the value observed to be 290.1 and 408.3 mg/Kg at MS-7 and MS-8, respectively with average 349.2 mg/Kg.
- The value of **Nitrate** was observed in the range of **14.51 to 29.31 mg/Kg** for Kandla with average value 20.57 mg/Kg and for Vadinar the value observed to be 13.2 and 7.96 mg/Kg at MS-7 and MS-8, respectively with average 10.58 mg/Kg.
- The value of **Nitrite** was observed in the range of **0.32 to 0.64 mg/Kg** for Kandla with average value 0.47 mg/Kg and for Vadinar the value observed to be 0.16 and 0.30 mg/Kg at MS-7 and MS-8, respectively with average 0.23 mg/Kg.
- The value of **Sodium** was observed in the range of **2453 to 3514 mg/Kg** for Kandla with average value 3027.16 mg/Kg and for Vadinar the value observed to be 6136 and 8643 mg/Kg at MS-7 and MS-8, respectively with average 7389.5 mg/Kg.
- The value of **Potassium** was observed in the range of **1967.9 to 3071.2 mg/Kg** for Kandla with average value 2549.46 mg/Kg and for Vadinar the value observed to be 2938 and 2481 mg/Kg at MS-7 and MS-8, respectively with average 2709.5 mg/Kg.
- The value of **Aluminium**, was observed in the range of **1278.5 to 2379.5 mg/Kg** for Kandla with average value 1790.68 mg/Kg and for Vadinar the value observed to be 1493.78 and 1681.39 mg/Kg at MS-7 and MS-8, respectively with average 1587.58 mg/Kg.
- The value of **Mercury** was observed "Below the Quantification Limit" at all the eightmonitoring location of Kandla and Vadinar.
- Texture was observed to be "Sandy Loam" at location MS-1, MS-2, MS-3, MS-4, MS-5, MS-6 in Kandla. "Sandy Loam" at location MS-7 & "loam" at location MS-8 in Vadinar during sampling period.

Heavy Metals

The sediment quality of Kandla and Vadinar has been compared with respect to the Average Standard guideline applicable for heavy metals in marine sediment specified by EPA have been mentioned in **Table 35**.

Sr.	Metals	Sediment quality (mg/kg)									
No.	Ivictals	Not polluted	Moderately polluted	Heavily polluted							
1.	As	<3	3-8	>8							
2.	Cu	<25	25-50	>50							
3.	Cr	<25	25-75	>75							
4.	Ni	<20	20-50	>50	EPA						
5.	Pb	<40	40-60	>60							
6.	Zn	<90	90-200	>200							
7.	Cd	-	<6	>6							
ND = Not Detected											

Table 35: Standard Guidelines applicable for heavy metals in sediments

(Source: G Perin et al. 1997)

Sr.	Parameters	Unit	Kandla				Vadinar			
No.			MS-1	MS-2	MS-3	MS-4	MS-5	MS-6	MS-7	MS-8
1.	Arsenic	mg/Kg	4.47	2.55	5.2	3.63	2.98	3.21	2.83	3.42
2.	Copper	mg/Kg	3.11	3.57	4.07	3.91	4.97	5.27	4.58	3.78
3.	Chromium	mg/Kg	49.51	38.7	36.83	49.1	47.2	51.3	53.6	29.7
4.	Nickel	mg/Kg	43.35	38.9	21.47	28.11	22.64	24.39	14.79	26.87
5.	Lead	mg/Kg	4.97	5.02	3.84	5.11	4.76	4.26	4.76	5.22
6.	Zinc	mg/Kg	72.65	61.16	54.6	49.3	47.7	51.26	23.68	42.96
7.	Cadmium	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL

Table 36: Comparison of Heavy metals with Standard value in Marine Sediment

- Arsenic was observed in the range of 2.55 to 5.20 mg/Kg for Kandla with average value 3.67 mg/Kg and for Vadinar the value observed to be 2.83 and 3.42 mg/Kg at MS-7 and MS-8, respectively with average 3.12 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to arsenic falls in moderately polluted class.
- **Copper** was observed in the range of **3.11 to 5.27 mg/Kg** for Kandla with average value 4.15 mg/Kg and for Vadinar the value observed to be 4.58 and 3.78 mg/Kg at MS-7 and MS-8, respectively with average 4.18 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to copper falls in non-polluted class.
- **Chromium** was observed in the range of **36.83 to 51.3 mg/Kg** for Kandla with average Value 45.44 mg/Kg and for Vadinar the value observed to be 53.6 and 29.7 mg/Kg at MS-7 and MS-8, respectively with average 41.65 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to chromium falls in moderately polluted class.

- Nickel was observed in the range of 21.47 to 43.35 mg/Kg for Kandla with average value 29.81 mg/Kg and for Vadinar the value observed to be 14.79 and 26.87 mg/Kg at MS-7 and MS-8, respectively with average 20.83 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to nickel falls in moderately polluted class.
- Lead was observed in the range of 3.84 to 5.11 mg/Kg for Kandla with average value 4.66 mg/Kg and for Vadinar the value observed to be 4.76 and 5.22 mg/Kg at MS-7 and MS-8, respectively with average 4.99 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to lead falls in Not polluted class.
- Zinc was observed in the range of 40.65 to 61.16 mg/Kg for Kandla with average value 50.77 mg/Kg and for Vadinar the value observed to be 23.68 and 42.96 mg/Kg at MS-7 and MS-8, respectively with average 33.32 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to zinc falls in non-polluted class.
- **Cadmium** was observed BQL for all locations at Kandla and Vadinar during sampling period. With reference to the guidelines mentioned in table 35, the sediment quality with respect to cadmium falls in non-polluted class.

Analysis of the sediments indicates moderate pollution. However, it may be noted that, the sediments are highly dynamic being constantly deposited and carried away by water currents. Hence maintaining the quality of sediments is necessary as it plays a significant role in regulating the quality of the marine water and the marine ecology.

The presence of anthropic activity in the coastal areas has an effect upon the marine water and sediment. One of the primary risks associated with contaminated sediments is bioaccumulation in benthic organisms, which is a route of entry into the food chain. Generally adopted sediment remediation approaches include dredging, capping of contaminated areas, and monitored natural recovery (MNR). Dredging can remove contaminated sediments, but it requires large areas of land for sediment disposal. It is expensive and may cause secondary contamination of the water column during resuspension. MNR relies on ongoing naturally occurring processes to decrease the bioavailability or toxicity of contaminants in sediment. These processes may include physical, biological, and chemical mechanisms that act together to reduce the environmental risks posed by contaminated sediments. MNR require longer monitoring time and can be even more expensive than for dredging and capping. Capping consists of in situ covering of clean or suitable isolating material over contaminated sediments layer to limit leaching of contaminants, and to minimize their re-suspension and transport. Hence appropriate remedial measures for the polluted sediment sites may be implemented, to reduce the concentration of the heavy metals.

CHAPTER 12: MARINE ECOLOGY MONITORING

12.1 Marine Ecological Monitoring

The monitoring of the biological and ecological parameters is important in order to assess the marine environment. A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval. Deendayal Port and its surroundings have mangroves, mudflats and creek systems as major ecological entities. As defined in the scope by DPA, the Marine Ecological Monitoring is required to be carried out once a month specifically at eight locations, six at Kandla and two at Vadinar. The sampling of the Benthic Invertebrates has been carried out with the help of D-frame nets, whereas the sampling of zooplankton and phytoplankton has been carried out with the help of Plankton Nets (60 micron and 20 micron). The details of the locations of Marine Ecological Monitoring have been mentioned in **Table 37** as follows:

Sr. No.	Locat	tion Code	Location Name	Latitude Longitude
1.		ME-1	Near Passenger Jetty One	23.017729N 70.224306E
2.	_	ME-2	Kandla Creek (near KPT Colony)	23.001313N 70.226263E
3.	Kandla	ME-3	Near Coal Berth	22.987752N 70.227923E
4.	X	ME-4	Khori Creek	22.977544N 70.207831E
5.		ME-5	Nakti Creek (near Tuna Port)	22.962588N 70.116863E
6.		ME-6	Nakti Creek (near NH - 8A)	23.033113N 70.158528E
7.	nar	ME-7	Near SPM	22.500391N 69.688089E
8.	Vadinar	ME-8	Near Vadinar Jetty	22.440538N 69.667941E

The map depicting the locations of Marine Ecological monitoring in Kandla and Vadinar have been mentioned in **Map 20 and 21** as follows:

Map 20: Locations of Marine Ecological Monitoring at Kandla

Map 21: Locations of Marine Ecological Monitoring at Vadinar

The various parameters to be monitored under the study for Marine Ecological Monitoring are mentioned in **Table 38** as follows:

Sr. No.	Parameters
1.	Productivity (Net and Gross)
2.	Chlorophyll-a
3.	Pheophytin
4.	Biomass
5.	Relative Abundance, species composition and diversity of phytoplankton
6.	Relative Abundance, species composition and diversity of zooplankton
7.	Relative Abundance, species composition and diversity of benthic invertebrates (Meio, Micro and macro benthos)
8.	Particulate Oxidisable Organic Carbon
9.	Secchi Depth

 Table 38: List of parameters to be monitored for Marine Ecological Monitoring

Methodology

• Processing for chlorophyll estimation:

Samples for chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm.

• Phytoplankton Estimation

Phytoplankton are free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio-purifier and bio-indicators of the aquatic ecosystems of which diverse array of the life depends. They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem. The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine

phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are Diatoms (*Bacillariophyceae*) and Dinoflagellates (*Dinophyceae*). Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as Cyanophytes (Bluegreen algae). Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts. Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

• Zooplankton Estimation

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes. Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of 'biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior. The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

• Benthic Organisms Estimation

Benthic macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. They include dragonfly and stonefly larvae, snails, worms, and beetles. Use of benthic macroinvertebrates has been in vogue as indicator organisms for water quality monitoring since long. Traditional methods of water quality monitoring incorporates mostly monitoring of physicochemical parameters. Benthic macroinvertebrates are majorly insects that dwell on the floor of water bodies. They are found in all water bodies, as they have a wide range of pollution tolerance among various species. The benthic macro-invertebrate's community structure depends on the exposure to pollution it receives. Benthic macroinvertebrates have been used as indicator organisms to measure the water quality of water bodies across the world. Evaluating the abundance and variety of benthic macroinvertebrates in a waterbody gives us an indication of the biological condition support a wide variety and high number of macroinvertebrate taxa, including many that are intolerant of pollution. Samples yielding only pollution-tolerant species or very little diversity or abundance may indicate a less healthy waterbody. Biological condition is the most comprehensive indicator of waterbody health. When the biology of a waterbody is healthy, the chemical and physical components of the waterbody are also typically in good condition.

• Diversity Index

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

1. Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index (H), which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species. Shannon-Wiener's index (H) reproduces community parameters to a single number by using an equation are as follow:

$$H' = \sum p_i * \ln (p_i)$$

Where, \sum = Summation symbol,

pi = Relative abundance of the species,

ln = Natural logarithm

More diverse ecosystems are considered healthier and more resilient. Higher diversity ecosystems typically exhibit better stability and greater tolerance to fluctuations. e.g., The Shannon diversity index values between 2.19 and 2.56 indicate relatively high diversity within the community compared to communities with lower values. It suggests that the community likely consists of a variety of species, and the species are distributed somewhat evenly in terms of their abundance.

2. Simpson's index:

A reasonably high level of dominance by one or a small number of species is indicated by the range of **0.89 to 0.91**. The general health and stability of the ecosystem may be

impacted by this dominance. Community disturbances or modifications that affect the dominant species may be more likely to have an impact. The dominating species determined by the Simpson's index can have big consequences on how the community is organised and how ecological interactions take place.

The formula for calculating D is presented as:

$$D=1-\sum (p_i\,\hat{}\,2)$$

Where, \sum = Summation symbol, pi = Relative abundance of the species

3. Margalef's diversity index:

The number of species is significantly related to the port's vegetation cover surface, depth, and photosynthetic zone. The habitat heterogeneity is a result of these three elements. Species richness is related to the number of distinct species present in the analysed area. Margalef's index has a lower correlation with sample size. Small species losses in the community over time are likely to result in inconsistent changes.

Margalef's index D_{Mg} , which is also a measure of species richness and is based on the presumed linear relation between the number of species and the logarithm of the number of individuals. It is given by the formula:

$$D_{Mg} = \frac{S-1}{\ln N}$$

Where, N = total number of individuals collected

S = No. of taxa or species or genera

4. Berger-Parker index:

This is a useful tool for tracking the biodiversity of deteriorated ecosystems. Environmental factors have a considerable impact on this index, which accounts for the dominance of the most abundant species over the total abundance of all species in the assemblage. The preservation of their biodiversity and the identification of the fundamental elements influencing community patterns are thus critical for management and conservation. Successful colonising species will dominate the assemblage, causing the Berger-Parker index to rise, corresponding to well-documented successional processes. The environmental and ecological features of the system after disturbance may therefore simply but significantly determine the identity of the opportunistic and colonising species through niche selection processes.

The Berger-Parker index is a biodiversity metric that focuses on the dominance or relative abundance of a single species within a community. It provides a measure of the most abundant species compared to the total abundance of all species present in the community. Mathematically, it can be represented as follows:

$$d = \frac{N_{max}}{N_i}$$

Where, N_{max} = Max no of individuals of particular genera or species

 $\sum N_i$ = Total no of individuals obtained.

The resulting value of the Berger-Parker index ranges between 0 and 1. A higher index value indicates a greater dominance of a single species within the community. Conversely, a lower index value suggests a more even distribution of abundance among different species, indicating higher species diversity. The range of the Berger-Parker index can be interpreted as when the index value is close to 0, it signifies a high diversity with a more even distribution of abundances among different species. In such cases, no single species dominates the community, and there is a balanced representation of various species.

5. Evenness index-

Evenness index determines the homogeneity (and heterogeneity) of the species' abundance. Intermediate values between 0 and 1 represent varying degrees of evenness or unevenness in the distribution of individuals among species. Value of species evenness represents the degree of redundancy and resilience in an ecosystem. High species evenness = All species of a community can perform similar ecological activities or functions= even utilization of available ecological niches = food web more stable = ecosystem is robust (resistant to disturbances or environmental changes). Intermediate values between 0 and 1 represent variable degrees of evenness or unevenness.

$$EI = \frac{H}{\ln(S)}$$

Where, H= Shannon value

ln(S) = the natural logarithm of the number of different species in the community

Relative Abundance: The species abundance distribution (SAD) from disturbed ecosystems follows even/ uneven pattern. E.g., If relative abundance is 0.15, then the found species are neither highly dominant nor rare.

$$RA = \frac{No. of Individuals of Sp.}{Total no. of Individual} * 100\%$$

The basic idea of index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time. Biodiversity is commonly expressed through indices based on species richness and species abundances. Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

12.2 Result and Discussion

The details of Marine Ecological Monitoring conducted for the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 39**.

Sr.	Parameters	Unit			Vadinar					
No.			ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
1.	Biomass	mg/L	121	76	65	116	98	94	86	125
2.	Net Primary Productivity	mg/L/hr	BQL	BQL	BQL	BQL	0.91	BQL	BQL	BQL
3.	Gross Primary Productivity	mg/L/hr	1.12	0.79	1.21	1.63	1.18	0.69	0.88	1.23
4.	Pheophytin	mg/m ³	BQL	BQL	0.75	1.25	1.33	0.51	1.2	1.31
5.	Chlorophyll-a	mg/m ³	0.69	0.96	1.52	1.26	1.55	1.19	1.77	1.43
6.	Particulate Oxidisable Organic Carbon	mg/L	0.86	1.11	0.69	0.79	1.28	0.89	0.7	0.78
7.	Secchi Depth	ft	0.58	0.70	0.54	0.44	0.49	0.76	1.17	1.24

Table 39: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity (GPP), Pheophytin and Chlorophyll for Kandla and Vadinar

• Biomass:

With reference to the **Table 39**, the concentration of **Biomass** reported from location ME-1 to ME-6 in range between **65-121 mg/L** where lowest biomass presents in ME-3 (Near Coal Berth) and highest biomass present in ME-1 (Near Passenger Jetty One) during sampling period. In Vadinar, the value of biomass was observed **86 mg/L** at ME-7 (Near SPM) and **125 mg/L** in ME-8 (Near Vadinar Jetty) monitoring station.

• Productivity (Net and Gross)

Gross primary productivity (GPP) is the rate at which organic matter is synthesised by producers per unit area and time (GPP). The amount of carbon fixed during photosynthesis by all producers in an ecosystem is referred to as gross primary productivity. The monitoring location of Kandla reported GPP value in range between **0.69 to 1.63 mg/L/48 Hr** where the highest value recorded for ME-4 (Khori Creek) and lowest recorded at ME-6(Nakti creek (near NH-8A)). In Vadinar, the value of **GPP** was observed **0.88** at ME-7 (Near SPM) and **1.23** at ME-8 (Near Vadinar Jetty) monitoring station.

Net primary productivity, is the amount of fixed carbon that is not consumed by plants, and it is this remaining fixed carbon that is made available to various consumers in the ecosystem. The Net primary productivity of the monitoring location at Kandla from (ME-1 to ME-6) has been recorded in as **BQL (Below Quantification Limit)**. While in Vadinar, the value of **NPP** was observed **BQL (Below Quantification Limit)**. at ME-7 (Near SPM) and ME-8 (Near Vadinar Jetty) monitoring station.

• Pheophytin

The level of Pheophytin was detected in the range from **0.51 to 1.33 mg/m³** where the highest value observed at ME-5 (Nakti Creek (near Tuna Port)) and the lowest value observed at ME-6 (Nakti Creek (near NH - 8A)). While in Vadinar, the value of Pheophytin was observed **1.20 mg/m³** at ME-7 and **1.31 mg/m³** at ME-8 monitoring station.

• Chlorophyll-a

In the sub surface water, the value of Chlorophyll-a reported in range from **0.69 to 1.55 mg/m**³. The highest value observed at ME-5 (Nakti creek (near KPT Colony)) while the lowest value observed at ME-1 (Near Passenger Jetty One). In Vadinar, the value of chlorophyll-a was observed **1.77 mg/m**³ at ME-7 (Near SPM) and **1.43 mg/m**³ in ME-8 (Near Vadinar Jetty) monitoring station.

• Particulate Oxidisable Organic Carbon

During the sampling period, the particulate oxidisable organic carbon falls within the range of **0.69 to 1.28 mg/L** from monitoring location ME-1 to ME-6 at Kandla, whereas for Vadinar, the value of POC observed **0.70 mg/L** at ME-7 (Near SPM) and **0.78 mg/L** in ME-8 (Near Vadinar Jetty) monitoring station.

• Secchi Depth

In monitoring station of Kandla (ME-1 to ME-6) the level of Secchi Depth was observed between **0.44 to 0.76 ft** whereas at Vadinar, the value recorded at ME-7 i.e. Near SPM is **1.17 ft** and in Near Vadinar Jetty is **1.24 ft**.

Ecological Diversity

Phytoplankton: For the evaluation of the Phytoplankton population in DPA Kandla and Vadinar within the immediate surroundings of the port, sampling was conducted during the study period. Total 8 sampling locations were studied i.es. sampling locations (6 from Kandla and two from Vadinar).

The details of variation in abundance and diversity in phytoplankton communities is mentioned in **Table 40**.

Genera	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Bacillaria sp.	212	-	-	202	-	436	-	187
Biddulphia sp.	-	315	235	137	118	-	268	159
Chaetoceros sp.	317	166	-	-	-	561	186	-
Chlamydomonas sp.	185	-	188	-	298	-	-	319
Cyclotella sp.	126	468	-	266	125	-	408	107
Coscinodiscus sp.	-	-	426	-	-	286	-	160
Ditylum sp	-	225	-	271	-	-	270	-
Fragilaria sp.	486	174	142	158	210	153	-	181
Bacteriastrum sp.	252	-	-	-	119	146	161	-
Pleurosigma sp.	-	-	308	-	-	-	125	212
Navicula sp.	147	-	-	147	374	252	-	183
Merismopedia sp.	-	156	177	-	-	-	-	-
Synedra sp.	-	-	-	-	-	-	232	-
Skeletonema sp.	239	-	-	256	415	118	-	329
Oscillatoria sp.	-	201	355	-	-	-	178	-
Thallassiosira	187	-	158	-	175	123	163	280
Gomphonema sp.	-	345	-	178	-	-	135	-
Density-Units/L	2151	2050	1989	1615	1834	2075	2126	2117
No. of genera	9	8	8	8	8	8	10	10

The phytoplankton community of the sub surface water in the Kandla and Vadinar was represented by, Diatoms, green algae and filamentous Cynobacteria. Diatoms were represented by 15 genera; green algae were represented by 1 genera and filamentous Cynobacteria were represented by 1 genera during the sampling period.

The density of phytoplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **1615 to 2151 units/L**, while for Vadinar its density of phytoplankton observed **2126 units/L at ME-7 and 2117 units/L at ME-8.** During the sampling, phytoplankton communities were dominated, *Cyclotella sp, Fragilaria sp, Navicula sp & Thallassiosira* in Kandla, while *Cyclotella sp.* in Vadinar

The details of Species richness Index and Diversity Index in Phytoplankton is mentioned in **Table 41**.

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8	
Taxa S	9	8	8	8	8	8	10	10	
Individuals	2151	2050	1989	1615	1834	2075	2126	2117	
Shannon diversity	2.11	1.96	1.93	1.75	1.81	1.89	2.22	2.23	
Simpson 1-D	0.87	0.86	0.86	0.87	0.85	0.83	0.89	0.89	
Species Evenness	0.96	0.94	0.93	0.84	0.87	0.91	0.96	0.97	
Margalef richness	1.04	0.92	0.92	0.95	0.93	0.92	1.17	1.18	
Berger-Parker	0.23	0.23	0.21	0.17	0.23	0.27	0.19	0.16	
Relative abundance	0.42	0.39	0.40	0.50	0.44	0.39	0.47	0.47	

Table 41: Species richness Index and Diversity Index in Phytoplankton

- Shannon-Wiener's Index (H) of phytoplankton communities was in the range of 1.75 to 2.11 between selected sampling stations from ME-1 to ME-6 with an average value of 1.91 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of phytoplankton communities recorded to be 2.22 at location ME-7 and 2.23 at ME-8 with an average value of 2.23. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla.
- Simpson diversity index (1-D) of phytoplankton communities was ranged between 0.83 to 0.87 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.86 Similarly, for Vadinar Simpson diversity index (1-D) of phytoplankton communities was 0.89 at location ME-7 and 0.89 at ME-8 with an average of 0.89.
- Margalef's diversity index (Species Richness) of phytoplankton communities in Kandla and nearby creeks sampling stations was varying from 0.92 to 1.04 with an average of 0.95 during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of phytoplankton communities observed 1.17 at ME-7 and 1.18 at ME-8 with an average value of 1.18.
- **Berger-Parker Index (d)** of phytoplankton communities was in the range of **0.17 to 0.27** between selected sampling stations from ME-1 to ME-6 with an average value of **0.22** at Kandla creek and nearby creeks. Berger-Parker Index (d) of phytoplankton communities in the sampling stations of Vadinar, was in the range of **0.19 to 0.16** with an average value of **0.18**. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.84 to 0.96** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed **0.96** at location ME-7 & **0.97** at ME-8 location.
- During the sampling period, **Relative Abundance** of phytoplankton communities was in range of **0.39 to 0.50** between selected sampling stations from ME-1 to ME-6 with an average value of **0.42** at Kandla creek and nearby creeks. Whereas for Vadinar the Index value **0.47** at ME-7 and **0.47** at ME-8 with an average value **0.47**, thus it is concluded that the studied species can be stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in zooplankton communities is mentioned in **Table 42**.

Genera	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Acartia sp.	-	1	1	1	-	2	2	-
Acrocalanus	1	-	1	-	1	-	2	-
Amoeba	-	1	1	2	-	1	1	2
Brachionus sp.	2	1	-	-	1	2	-	1
Calanus sp.	2	1	1	2	2	-	-	-
Cladocera sp.	1	-	-	-	-	-	1	-
Cyclopoid sp.	-	1	3	2	1	1	1	3
Copepod larvae	1	2	-	1	-	1	1	1
Diaptomus sp.	-	-	1	-	2	-	1	-
Eucalanus sp.	2	1	-	1	-	1	-	2
Mysis sp.	-	-	2	-	1	-	-	1
Paracalanus sp.	1	1	-	-	-	1	1	1
Density Unit/L	10	9	10	9	8	9	10	11
No. of genera	7	8	7	6	6	7	8	7

Table 42: Zooplankton variations in abundance and diversity in sub surface sampling stations

A total of 12 groups/taxa of zooplankton were recorded in Kandla and Vadinar during the study period which mainly constituted by *Mysis, brachionus, Calanus,* fish and shrimp larval forms. *Cladocera, Mysis* and *Paracalanus* had the largest representation at all stations from (ME-1 to ME-8). The density of Zooplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **8 to 10 units/L**, while for Vadinar its density of zooplankton observed **10 units/L at ME-7** and **11 units/L at ME-8**. During the sampling, zooplankton communities were dominated by *Cyclopoid sp, Calanus sp, Amoeba* in Kandla, while *Cyclopoid sp* and *Calanus sp* had the largest representation at monitoring location of Vadinar.

The details of Species richness Index and Diversity Index in Zooplankton communities is mentioned in **Table 43**.

Table 45: Species fieldess mack and Diversity mack in Zooplankton									
Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8	
Taxa S	7	8	7	6	6	7	8	7	
Individuals	10	9	10	9	8	9	10	11	
Shannon diversity	1.89	1.93	1.83	1.66	1.56	1.8	2.03	1.93	
Simpson (1-D)	0.93	0.97	0.91	0.92	0.93	0.94	0.96	0.91	
Species Evenness	0.97	0.93	0.94	0.93	0.87	0.93	0.98	0.99	
Margalef	2.61	3.19	2.61	2.28	2.4	2.73	3.04	2.5	
Berger-Parker	0.2	0.22	0.3	0.22	0.25	0.22	0.2	0.27	
Relative abundance	70	88.89	70	66.67	75	77.78	80	63.64	

Table 43: Species richness Index and Diversity Index in Zooplankton

• Shannon- Wiener's Index (H) of zooplankton communities was in the range of 1.56 to 1.93 between selected sampling stations from ME-1 to ME-6 with an average value of 1.77 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of zooplankton communities recorded to be 2.03 at ME-7 and 1.93 at ME-8 with an average

value of **1.98**. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Near SPM (Vadinar).

- Simpson diversity index (1-D) of zooplankton communities was ranged between 0.91 to 0.97 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.93 Similarly, for Vadinar Simpson diversity index (1-D) of zooplankton communities was 0.96 at ME-7 and 0.91 at ME-8 with an average of 0.93.
- Margalef's diversity index (Species Richness) of zooplankton communities in Kandla and nearby creeks sampling stations was varying from 2.28 to 3.19 with an average of 2.63 during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of zooplankton communities observed 3.04 at ME-7 and 2.50 at ME-8 with an average value of 2.77.
- **Berger-Parker Index (d)** of zooplankton communities was in the range of **0.20 to 0.30** between selected sampling stations from ME-1 to ME-6 with an average value of **0.23** at Kandla creek and nearby creeks. Berger-Parker Index (d) of zooplankton communities in the sampling stations of Vadinar, was observed **0.20** at ME-7 and **0.27** at ME-8 with an average value of **0.23**. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.87 to 0.97** for all the six-monitoring station of Kandla whereas, for the Vadinar the species evenness was observed **0.98** at ME-7 and **0.99** at ME-8 the locations, during the monitoring month.
- During the sampling period, **Relative Abundance** of zooplankton communities was in range of 66.67 **to 88.89** between selected sampling stations from ME-1 to ME-6 with an average value of **74.72** at Kandla creek and nearby creeks. Whereas for Vadinar the Index value **80** at ME-7 and **63.64** at ME-8 with an average value **71.82**, thus it can be concluded that the studied species is stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in **Benthic organism** is mentioned in **Table 44.**

Family/Class	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Thiaridae	-	1	1	-	-	-	-	1
Mollusca	1	-	-	1	1	-	1	-
Odonata	2	2	2	-	-	2	1	1
Lymnidae	1	1	1	-	2	1	-	-
Planorbidae	-	-	-	1	-	-	-	2
Talitridae	-	1	-	1	2	-	1	1
Trochidae	1	-	1	-	-	1	-	-

Table 14 Ponthis Found		a hundanco and	dimonstry in out	auto compling
Table 44: Benthic Fauna	variations in	n abunuance and	diversity in sub	surface sampling

Family/Class	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Atydae	1		1	2	-	-	1	1
Gammaridae	-	1	-	-	1	2	2	-
Portunidae	1	-	-	2	1	1	1	-
Turbinidae	1	1	-	-	-	-	-	-
Palaemonidae	-	-	-	-	-	-	-	-
Density-Units/l	8	7	6	7	7	7	7	6
No of Class	7	6	5	5	5	6	6	5

Few Benthic organisms were observed in the collected sample by using the Van-Veen grabs during the sampling conducted for DPA Kandla and Vadinar. Majority of the species were found under the Macro-benthic organisms during the sampling period were represented by *Odonta*, Lymnidae, etc. The No. of Family of benthic fauna was varying from 6 to 8. The dominating benthic communities at Near Passenger Jetty One were represented Talitridae, Atydae. While lowest number of benthic species was represented by Palaemonidae.

The details of Species richness Index and Diversity Index in Benthic Organisms is mentioned in **Table 45**.

Tuble 45. Species memess mack and Diversity mack in Dennie Organisms								
Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Taxa S	7	6	5	5	5	5	6	5
Individuals	8	7	6	7	7	7	7	6
Shannon diversity	1.91	1.65	1.39	1.47	1.47	1.47	1.65	1.39
Simpson 1-D	0.96	0.95	0.93	0.95	0.9	0.9	0.95	0.93
Species Evenness	0.98	0.92	0.86	0.91	0.91	0.91	0.92	0.86
Margalef	2.89	2.57	2.23	2.06	2.06	2.06	2.57	2.23
Berger-Parker	0.25	0.29	0.33	0.29	0.29	0.29	0.29	0.33
Relative abundance	87.5	85.71	83.33	71.43	71.43	71.43	85.71	83.33

Table 45: Species richness Index and Diversity Index in Benthic Organisms

- Shannon- Wiener's Index (H) of benthic organism was in the range of 1.39 to 1.91 between selected sampling stations from ME-1 to ME-6 with an average value of 1.56 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of benthic organism recorded to be 1.65 at ME-7 & 1.39 at ME-8 location with an average value of 1.52. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar.
- Simpson diversity index (1-D) of benthic organism was ranged between 0.90 to 0.96 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.93. Similarly, for Vadinar Simpson diversity index (1-D) of benthic organism was 0.95 at ME-7 and 0.93 at ME-8 location with an average of 0.94.
- **Margalef's diversity index** (Species Richness) of benthic organism in Kandla and nearby creeks sampling stations was varying from **2.06 to 2.89** with an average of **2.31** during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of



benthic organism observed to be **2.57** at ME-7 and **2.23** at ME-8 location with an average of **2.4**.

- **Berger-Parker Index (d)** of benthic organism was in the range of 0.25 to 0.33 between selected sampling stations from ME-1 to ME-6 with an average value of 0.29 at Kandla creek and nearby creeks. Berger-Parker Index (d) of benthic organism in the sampling stations of Vadinar, was observed to be 0.29 at ME-7 and 0.33 at ME-8 location with an average value of 0.31. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.86 to 0.98** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed in the range of **0.86 to 0.92** at both of the location.
- During the sampling period, Relative Abundance of Benthic organisms was 71.43 to 87.5 between selected sampling stations from ME-1 to ME-6 with an average value of 78.47 at Kandla creek and nearby creeks. Whereas for Vadinar the Index value 85.71 at ME-7 and 83.33 at ME-8 location, with an average value 84.52, thus it is concluded that the studied species can be stated as neither highly dominant nor rare.

Annexure 1: Photographs of the Environmental Monitoring conducted at Kandla

Annexure 2: Photographs of the Environmental Monitoring conducted at Vadinar

Source: GEMI

Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

'An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Institute

Head Office

Plot No. B 246 & 247, G.I.D.C. Electronic Estate,

Sector-25, Gandhinagar-382024

Laboratory

Plot No. B-64, G.I.D.C. Electronic Estate,

Opp. I.P.R., Sector-25, Gandhinagar-382025

Tel: (+91) 79-23240964 (O), T: (+91) 79-23287758 (Lab), F: (+91) 79-23240965

E-mail: info-gemi@gujarat.gov.in | Website: www.gemi.gujarat.gov.in

"We Provide Environmental Solutions"

ANNEXURE D

Final Report 2023-24 - Study on dredged material for presence of Contaminants f

FINAL REPORT

for the Project on

Studies on Dredged Materials for the presence of Contaminants and suggesting suitable disposal options

(As per EC & CRZ Clearance accorded by the MoEF & CC, GoI dated 19/12/2016 -Specific Condition No. vii) DPA Work order No. EG/WK/4751/Part (EC&CRZ-1) / 84. Dt. 18.09.2021.

Submitted by

Gujarat Institute of Desert Ecology P.B. No. 83, Mundra Road, Bhuj-Kachchh, Gujarat - 370001, India

Submitted to Deendayal Port Authority Administrative Office Building Post Box No. 50, Gandhidham (Kachchh) Gujarat – 370201

OCTOBER 2024

Project Team

Project Co-Ordinator : Dr. V. Vijay Kumar, Director

S. No	Name & Designation	Role	Expertise		
Scientific Personnel					
1.	Dr. K. Karthikeyan Assistant Director	Principal Investigator	Ph.D.inEnvironmentalSciences–Experienceinwater and soil studies.		
2.	Dr. G. Jayanthi Scientist	Co- Investigator	PhD in Botany; 14 years of Research experience with 5 years of Post-Doctoral experience		
3.	Dr. Krushnakant. D. Baxi Scientific Officer	Co- Investigator	Ph.D in Zoology (Marine Biology) with 5 years of experience		
		Technical Sta	ff		
4.	Dr. Monika Sharma	Team Member	Ph.DinEnvironmentalSciences;7years analyticalexperienceinsoil,analysis		
5.	Ms. Dipti Parmar Scientific Assistant	Team member	M.Sc. in Environmental Sciences; 6 years analytical experience in soil and water analysis.		
6.	Ms. Bulbul Kushvah	Team Member	M.Sc in Chemistry; One year of experience in Water and sediment analysis.		

Dr. V. Vijay Kumar Director

Gujarat Institute of Desert Ecology

CERTIFICATE

This is to state that the **Final Report** of the work entitled, "**Studies on Dredged Material for the presence of contaminants**" has been prepared in line with the Work order issued by DPT vide No. EG/WK/4751/Part (EC & CRZ-1)/84. Dt.18.09.2021 as per the EC & CRZ Clearance accorded by the MoEF & CC, GoI dated 19/12/2016, Specific Condition No. vii.

This work order is for a period of Three years from 2021 –2024 for the abovementioned study.

ute of Bhu **Institute Seal**

Authorized Signatory

DIRECTOR Gujarat Institute of Desert Boology Bhuj - Kachchh.

> PO. Box No. 83, Opp. Changleshwar Temple, Mundra Road, Bhuj (Kachchh) - 370 001, Gujarat (India) Tel: 02832 - 235025-26

www.gujaratdesertecology.com, E-mail : desert_ecology@yahoo.com

CONTENTS

Chapters	Titles	Page No.
Project Snapshot		6
Chapter 1	Chapter 1 Background - Deendayal Port Authority	
	Aim and objectives of the study	14
Chapter 2	Sediment quality (Physico-chemical)	18
Chapter 3	Sediment quality (Sub-tidal fauna)	51
Chapter 4	Marine Water Quality (Physico-chemical)	75
Chapter 5	Marine Water Quality - Biological (Phytoplankton)	99
Chapter 6	Marine Water Quality – Biological (Zooplankton)	124
Chapter 7	Management Plan	152
Chapter 8	Conclusion and Recommendations	159
References	3	160

Addreviations					
AAS	Atomic Absorption Spectrophotometer				
Avg	Average				
BDL	Below Detectable Limit				
С	Celcius				
Cd	Cadmium				
cm	Centimetre				
Cr	Chromium				
CWPRS	Central Water and Power Research Station				
DPA	Deendayal Port Authority				
g/L	Grams per litre				
GIS	Geographical Information System				
GoK	Gulf of Kutch				
GPS	Global Positioning System				
GUIDE	Gujarat Institute of Desert Ecology				
HCl	Hydrochloric acid				
Hg	Mercury				
HNO ₃	Nitric Acid				
$K_2Cr_2O_7$	Potassium Dichromate				
kg	kilogram				
km	Kilometer				
КОН	Potassium Hydroxide				
m	meter				
max	maximum				
min	Minimum				
ml	millilitre				
MoEF & CC	Ministry of Environment, Forests & Climate Change				
Pb	Lead				
рН	Potential of Hydrogen				
РНс	Petroleum Hydrocarbon				
ppm	Parts per million				
ppt	Parts per thousands				
TOC	Total Organic Carbon				
ТР	Total Phosphorus				
μg	microgram				

Abbreviations

Project Snapshot: "Studies on Dredged Materials for the presence of Contaminants"

Deendayal Port Authority (DPA) intends to develop seven integrated facilities to meet the increasing cargo handling demands of the port. Ministry of Environment, Forests and Climate Change (MoEF & CC), New Delhi, while according environmental clearance to these developmental initiatives, among other conditions, stipulated to carry out "Studies on dredged materials for the presence of contaminants" as per the EC & CRZ Clearance accorded by the MoEF & CC, GoI dated 19/12/2016, Specific Condition No. vii and the task of carrying out the study was given to Gujarat Institute of Desert Ecology (GUIDE), Bhuj during September 2017 and the study encompasses a detailed study of various physical, chemical and biological characteristics of the sediment. This report covers the study conducted for the period from November 2023 - October 2024.

S. No	Components of the study	Remarks	
1	MoEF & CC sanction letter and	MoEF & CC's clearance to seven integrated project	
	details	and specific conditions thereof. Ref. No. F. No. 11-	
		82/2011-IA III; letter dated 19 th December 2016.	
		Specific condition No. vii.	
2	Deendayal Port letter	No. EG/WK/4751/Part (EC&CRZ-1) / 84. Dt.	
	sanctioning the project	18.09.2021.	
3	Duration of the project	Three years (01.11.2021 – 31.10.2024)	
4	Period of survey carried out for 1 st Season study (Winter) – January 2024		
	various components	2 nd Season study (Summer) – May 2024	
		3 rd Season study (Monsoon) – August 2024	
5	Survey area within the port limit	Dumping locations of dredged materials as	
		suggested by the CWPRS	
6	No of locations sampled within	Three sampling locations, <i>i.e.</i> , Two locations in sub-	
	the port limits	tidal and one creek location during all the three	
		seasons	
7	Components of the report		

The data of the present study is detailed out as snapshot below:

7.1	Sediment quality (Physico-	
	chemical)	The past three years of data, <i>i.e.</i> , 2021-22, 2022-23 and 2023-24 Offshore location has recorded the highest average petroleum hydrocarbon content $(13.19\pm 3.61 \ \mu g/kg)$, followed by Phang creek $(9.18\pm3.80 \ \mu g/kg)$ and Cargo jetty site $(6.85\pm3.30 \ \mu g/kg)$. This suggests more anthropogenic oil- related inputs in the nearshore areas. Among the parameters studied, parameters such as pH, Salinity, Petroleum Hydrocarbon, Total organic carbon, Sulphur, Lead and Cobalt showed a decreasing trend in the current year (2023-24) when compared to the previous years (2021-22 and 2022- 23).
7.2	Sediment quality (Biological)	Various diversity indices calculation, showed that Shannon Diversity Index ranging from (0.00-1.34) during Season 1, 0.00-1.52 during Season 2 and 0.00-1.45 during Season 3. Highest diversity indices were recorded in Station 2B-Cargojetty during all the seasons such as 1.34, 1.52 and 1.45.
7.3	Water quality (Physico- chemical)	Overall, the offshore waters showed signs of moderate anthropogenic impact but maintained conditions generally suitable for marine life. Notably, copper showed Below Detection Limit (BDL) values across all sampling points during almost all seasons. Similarly, manganese consistently remained Below Detection Limit (BDL) at this location.
7.4	Water quality (Biological)	When the Chlorophyll and Phaeophytin concentrations are concerned from the last three years, the concentrations of Chlorophyll was on a higher side during season 1, whereas the season 2 and season depicted a similar mean value of chlorophyll. In case of Phaeophytin, the Season 1 values were higher in the present year, and during season 2 revealed a similar mean value, whereas the

		season 3 recorded a slightly higher value of phaeophytin.
7.5	Management plan	Evaluation of physical/chemical characteristics of dredged material that is dumped at the site to avoid and minimize potential impacts to the marine environment that endanger the health of human through biomagnification and economic loss to the fishery sector. In order to ameliorate the likely impacts due to sediment load through changes in operational procedure such as appropriately timing the operation in tune with tides and tidal current direction) may be considered.4. Dewatering of the fines suspended matter through sediment traps can be followed. Dredging activity areas should be screened for the presence of presence of RET Species which are indigenous to the Gulf of Kachchh region.

Chapter 1

Background

Deendayal Port Authority, formerly known as Deendayal Port Trust, erstwhile called as Kandla Port Trust is one of the Major Twelve Ports of the Country, holds a prominent position as a significant maritime gateway in India, situated within Gujarat's Kutch district. This stands out as the largest Creek-based port, positioned at the southwestern tip of the Gulf of Kachchh, on India's north-western coastline within the state of Gujarat. Deendayal Port Authority (DPA) serves as a pivotal hub for maritime trade, facilitating the transportation needs of several hinterland states. It boasts excellent connectivity through an extensive rail and road network, functioning as a crucial gateway for the export and import activities of northern and western Indian states, including Jammu & Kashmir, Delhi, Punjab, Himachal Pradesh, Haryana, Rajasthan, Gujarat, as well as parts of Madhya Pradesh, Uttaranchal, and Uttar Pradesh. This port ranks among the largest and most essential ports in the country, playing a vital role in India's international trade and maritime infrastructure. The administration and operations of the port are overseen by the Deendayal Port Trust (DPT), an autonomous entity established under the Major Port Trusts Act of 1963.

It is one of the largest ports in the country and plays a vital role in India's international trade and maritime infrastructure. The port is managed and operated by the Deendayal Port Trust (DPT), which is an autonomous body established under the Major Port Trusts Act, 1963. The Port Authority is responsible for the overall administration, development, and management of the port. The authority consists of a team of professionals and experts who ensure the smooth functioning of the port and its associated activities.

Deendayal Port's journey has started in the year 1931 with construction of RCC Jetty and as of today Deendayal Port has risen to the No. 1 port in India since 2007-08 till date, continuing to be in the same position for the past 14 years and as the largest port of India in terms of volume of cargo handled. About 35% of the country's total export takes place through the ports of Gujarat in which the contribution by Deendayal port is considerable.

The growth of this port has been contributed not only owing to handling of crude oil imports but also in taking relevant measures to boost non-POL cargo. An assortment of liquid and dry cargo is being handled at Deendayal Port. The dry cargo includes fertilizers, iron and steel, food grains, metal products, ores, cement, coal, machinery, sugar, wooden logs, etc. The liquid cargo includes edible oil, crude oil and other petroleum products. Deendayal Port Authority has shown consistent increase in case of traffic being handled every year and is growing at a fast rate year by year. The port handled a total cargo of 105 MMTPA during 2016-17, 110 MMTPA during 2017-18, 115.0 MMTPA during 2018-19, 122.5 MMTPA during 2019-2020, 117.5 MMTPA during 2020-21, 127.10 MMTPA during 2021-22, 137 MMTPA during 2022-23 and 132.37 during the year 2023-24. During the year 2016, Deendayal Port created history by handling 100 MMT cargos in a year, which is the first of its kind for the Major port category to achieve the milestone.

Especially the cargo traffic handled by the port comprises of Iron scrap, steel, food grains, ore, timber logs, salt extractions, POL products, edible oils and broad range of chemicals compounds. Containerized cargo traffic through this port has also shown a significant growth during the last few years. The dry cargo traffic at the port has been increasing steadily every year at a much faster pace with an average annual rate of growth of around 11.94%. The Port has presently fourteen (14) jetties and six oil terminals and many other allied facilities to handle both dry and liquid cargo. Regular expansion/developmental activities such as addition of jetties, Special Economic Zones, industrial parks, go downs, ship repairing and bunkering facilities and railway lines are underway in order to cope with the increasing cargo handling demands.

Further, a regular expansion of infrastructure and port facilities is under way to cater future logistic requirements. The port has high commercial importance in the Indian maritime trade as it handled 36.1 million tons (17%) of cargo out of total cargo of 213.1 million tons of the maritime cargo of India during 2015. DPT is well connected by the network of rail and road and serves as a gate way port for export and import which caters

the maritime trade requirement of many hinterland states including northern and western Indian states of Jammu & Kashmir, Delhi, Punjab, Himachal Pradesh, Haryana, Rajasthan, Gujarat and parts of Madhya Pradesh, Uttaranchal and Uttar Pradesh.

DPT has taken up various activities including Special Economic Zone establishment and proposal to develop a multipurpose cargo terminal and a container terminal at the creek mouth. This entails regular vessel movement, and capital and maintenance dredging of different proportions. Development of multipurpose cargo terminal at Tekra off Tuna and construction of railway over-bridge at the inner end of Nakti creek is sanctioned by the ministry. The cargo terminal will come up very close to the mouth of the Nakti creek and it envisages capital and maintenance dredging to the tune of 12657175 and 1898576 m³, respectively.

As part of its ongoing expansion, Deendayal Port Authority has taken up Development of 7 Integrated facilities which include development of oil jetty and ship bunkering terminal at old Kandla, a multi-purpose oil terminal near Tuna, upgradation of barge handling facility at Kandla, construction of one rail over bridge and strengthening of existing oil jetties.

1.1. EC conditions

The Ministry of Environment, Forest and Climate Change (MoEF & CC), has put up some conditions while according Environmental and CRZ clearance. One of the conditions is to carry out the "Study on Dredged Material for presence of contaminants" as accorded by the MoEF&CC,GoI dated 19/12/2016 - Specific condition no. vii)" which states that "Dredged materials should be analyzed for presence of contaminants and also to decide the disposal options. Monitoring of dredging activities should be conducted and the findings should be shared with the Gujarat SPCB and Regional Office of the Ministry".

1.2. Need of the study

In this regard, DPA has assigned the task of carrying out this particular study to Gujarat Institute of Desert Ecology (GUIDE), Bhuj. GUIDE has received the Work order for this Dredging project with project time period being Three years (01.11.2021 – 31.10.2024). This study on Evaluation of dredging contaminants was conducted Three times in a year at two different dumping locations with the methodical investigation of evaluating physical and chemical characteristics of the bottom sediment from the dumping locations with special reference to pollutants such as heavy metals and petroleum hydrocarbon. Further, the study had objectives including the understanding of the productivity of the sediment and the water by analyzing the planktonic and benthic fauna. Further, based on the results obtained, the management plan is also elaborated which spells out the possible options for managing the dredged materials.

1.3. Selection of sampling locations for 2023-24 Offshore location has recorded the highest average petroleum hydrocarbon content (13.19 \pm 3.61 µg/kg), followed by Phang creek (9.18 \pm 3.80 µg/kg) and Cargo jetty site (6.85 \pm 3.30 µg/kg). This suggests more anthropogenic oil-related inputs in the nearshore areas.

Deendayal Port Authority has assigned the study on the presence of contaminants in the dredged materials for the year 2017-18 based on the locations for the dumping has been suggested by Hydraulic & Dredging Division to DPT on the e-mail dated 24th October 2018. 1. In line with the study conducted during 2017-18, the extension of the study was given in 2018 for a period of three years, *i.e.*, from 2018-2021 and later for a period of three years, *i.e.*, from 2018-2021 and later for a period of three years, *i.e.*, 2021-2024 and the GPS locations of all the locations are mentioned in Table 1.

Station	Latitude	Longitude
Location 1 (Offshore)	22° 51' 00" N	70° 10' 00" E
Location 2 (Phang creek)	23° 04' 28" N	70°13' 28" E
Location 3 (Cargo jetty)	22°56' 31" N	70 13' 00" E

 Table 1: GPS Co-ordinates of sampling locations (2023-24)

1.4. Port Environment

Rapid industrialization and economic growth in the world has resulted in increased pollution in various environmental matrices such as Air, Water and Soil. The marine environment receives a vast quantity of dredge spoils, sewage waste, industrial effluents and river runoff, markedly affecting the composition and quality of the aquatic environment. The coastal waters are highly at the risk of various pollution due to increase human settlement, establishment of industries, ports and harbours that use seawater and discharge solid and liquid wastes directly into the environment. In general, ports are economic instruments for trade and a vital component in the nation's economy, however, such activities also involve dredging, large-scale construction and its continuous expansion which could affect the marine ecosystems in its vicinity. In a port environment, activities like dredging, continuous movement of vessels and human create major impacts at the marine/coastal environment in its vicinity.

1.5. Study Area

The Port is located at Gandhidham taluka of Kutch district, Gujarat which is the nearest major habitation with a population of 2.49 lakhs as per the 2011 census. The coastal environs in and around the port jurisdiction is characterized by a network of creek systems and mudflats which are covered by sparse halophytic vegetation like scrubby to moderately dense mangroves, creek water and salt-encrusted landmass as major

ecological entities. The surrounding environment in a radius of 10 km from the port includes built-up areas, salt pans, human habitations and port related structures on the west and north creek system, mangrove formations and mudflats in the east and south.

1.6. Aim and objectives of the study

The present project is designed considering the scope of work given in the EC conditions with the specific objectives as detailed below and considering the general environmental setting of the entire Gulf. Coastal waters often reveal significant temporal, spatial and seasonal changes with reference to sediment and water environmental and other ecological aspects and such variations should be clearly understood for assessing the prevailing status of a coastal water body. This report covers the monitoring results for the period from November 2023 - October 2024 with specific objectives as follows:

- 1. To characterize the bottom sediment samples from the dumping grounds for physico-chemical characteristics.
- 2. To understand the biological characteristics of the marine sediment for benthic faunal density and diversity.
- 3. To study the physico-chemical characteristics of the marine water from the dumping locations.
- 4. To estimate the primary productivity (pigments) and the plankton community structures (phytoplankton and zooplankton) in the marine water samples collected near the dumping grounds.
- 5. To compare the characteristics of the sediment estimated during different seasons to understand the pattern.
- 6. To suggest suitable management plan for management of the dredged materials.

1.7. Approach Strategy

The work is designed in such a way with an initial reconnaissance survey to understand the sampling location. For this purpose, pre-fixed sampling locations as prescribed by CWPRS were considered and sampling techniques for water and sediment for all the characteristics including physical, chemical and biological aspects were well planned as per standard protocol.

1.8. Sampling frequency

The samples for each season for collection of water and sediment to study different characteristics were sampled at both the locations thrice during the study period. This detailed report represents the outcome of all the Three seasons study in which the First season sampling was conducted for a period of 3 days during January 2024, the second season study was conducted for a period of 3 days during May 2024 and the Third season study was conducted for a period of 3 days during August 2024 as per the locations details mentioned in the map as Figure 1 and the glimpses during the sampling locations are presented in Figure 2.

Studies on Dredged Materials for The Presence of Contaminants

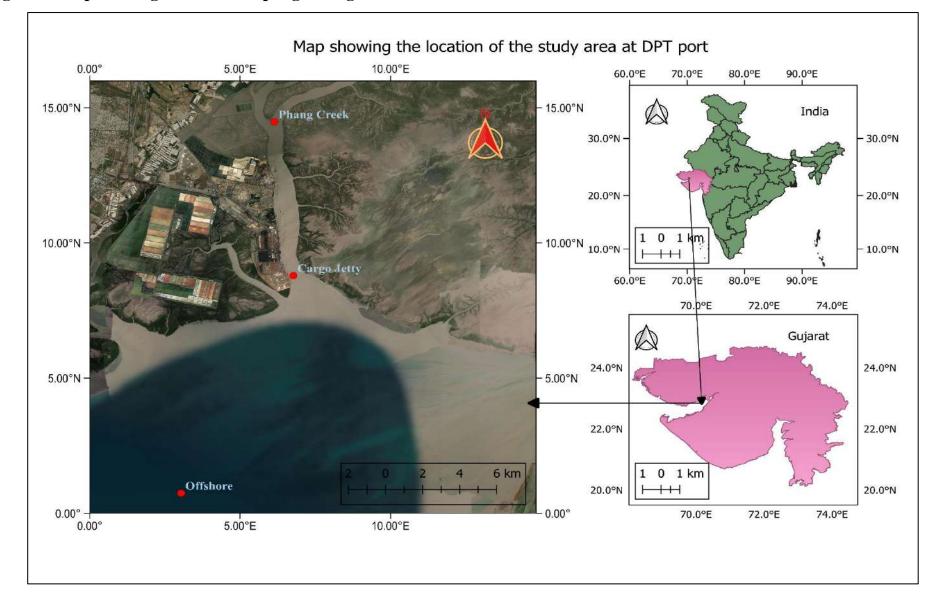


Figure 2: Photograph during sampling at the sampling locations

Chapter 2 Sediment Quality (Physico-chemical)

2.1. Background

Sediments, in general, have strong tendency to accumulate contaminants, especially heavy metals and they possess a very high physico-chemical stability and studying their characteristics usually indicates the optimum health of the marine system (Leoni and Sartori 1996). Sediment characteristics are a determinant factor in contamination of dredged marine environments. This is due to the retention and adsorption of contaminants to sediments by contaminants that have settled on the bottom of marine water bed. Such behavior of adsorption of sediment is highly influence by the sediment texture which is the relative proportions of each class including sand, silt and clay and are commonly referred as soil separates.

Table 2: Physico-chemical and biological	characteristics of sediment samples
--	-------------------------------------

S. No	Physico-chemical and Biological parameters
1	pH (1: 10 suspension)
2	Salinity (ppt)
3	Petroleum Hydrocarbon (µg/kg)
4	Magnesium (mg/kg)
5	Sand (%)
	Silt (%)
	Clay (%)
6	Total organic carbon (%)
7	Phosphorus (mg/kg)
8	Sulphur (mg/kg)
9	Nickel (mg/kg)
10	Lead (mg/kg)
11	Cadmium (mg/kg)
12	Chromium (mg/kg)

Studies on Dredged Materials for The Presence of Contaminants

13	Zinc (mg/kg)
14	Copper (mg/kg)
15	Manganese (mg/kg)
16	Cobalt (mg/kg)
17	Macrobenthos
	Biomass (g/m ² , wet wt); Population (no/m ²)
	Total Group (no); Major Groups

2.2. Materials and Methods

The sediment samples from the study area were collected for the purpose of characterization employing standard methodology and the analysis of the samples were also performed as per standard protocol and the data of sediment analysis is presented in this Chapter 1. The sediment samples were collected in pre-fixed stations using a Van-Veen type of grab sampler. After collection, the sediment samples were preserved with Rose Bengal and formalin to avoid decomposition of samples and processed for analysis and the samples after collection were brought to the laboratory on the same day of collection and air dried and used for further analysis for the test parameters (Table 2).

2.2.1. pH and Salinity (1: 10 suspension)

pH of the sediment is the measure of H⁺ ion activity of the sediment water system. It indicates whether the sediment is acidic, neutral or alkaline in nature. Since ions are the carrier of electricity, the electrical conductivity (EC) of the sediment water system rises according to the content of soluble salts. The measurement of EC can be directly related to soluble salts concentration of the sediment at any particular temperature. Ten gram of the finely sieved sediment will be dissolved in 100ml of distilled water to prepare a leachate. This will be subjected to vigorous shaking using a rotator shaker for 1 hour to facilitate proper homogenization of the suspension. The suspension will be allowed to settle for two 2 hours and the supernatant after filtration will be used for the analysis of pH and salinity using the pH and EC meter (Make: Systronics 361) and

Refractometer (Make: Atago). Each sample will be analysed in triplicates and the mean values will be taken into consideration.

2.2. 2. Textural analysis (Sand/Silt/Clay)

Sediments will be collected using Van Veen grab whereas intertidal sediments will be collected using a handheld shovel. After collection, the scooped samples will be transferred to polythene bags, labeled and stored under refrigerated conditions. The sediment samples will be thawed, oven dried at 40°C and ground to a fine powder before analyses.

For texture analysis, specified unit of sediment samples will be sieved using sieves of different mesh size as per Unified Sediment Classification System (USCS). Cumulative weight retained in each sieve will be calculated starting from the largest sieve size and adding subsequent sediment weights from the smaller size sieves. The percent retained will be calculated from the weight retained and the total weight of the sample. The cumulative percent will be calculated by sequentially subtracting percent retained from 100%.

2.2.3. Total organic carbon

Total organic carbon is the carbon stored in sediment organic matter which enters the sediment through the decomposition of plant and animal residues, root exudates, living and dead microorganisms, sediment biota etc. Total Organic carbon in the sediment is oxidized with potassium dichromate in the presence of concentrated sulphuric acid. Potassium dichromate produces nascent oxygen, which combines with the carbon of organic matter to produce CO_2 . The excess volume of $K_2Cr_2O_7$ is titrated against the standard solution of ferrous ammonium Sulphate in presence of H_3PO_4 using Ferroin indicator to detect the first appearance of unoxidised ferrous iron and thus volume of $K_2Cr_2O_7$ can be found out which is actually required to oxidize organic carbon.

Procedure

Percentage of Total organic carbon in the sediment/sediment will be determined by oxidizing organic matter in the sediment samples by chromic acid and estimating excess chromic acid by titrating it against ferrous ammonium sulphate with ferroin as an indicator. The detailed step-by-step procedure is as follows:

One gm of 0.5 mm sieved sediment will be weighed and put into 500 ml conical flask and to which 10 ml of 1N K₂Cr₂O₇ will be added with pipette and swirled. Immediately using a burette, 20 ml Conc. H₂SO₄ will be added and mixed gently until sediment and reagents are mixed. The reaction will be allowed to proceed for 30 min in a marble stone to avoid the damage caused due to release of intense heat due to reaction of sulphuric acid. Further, 200 ml of distilled water will be added slowly and 10 ml of concentrated Orthophosphoric acid and about 0.2 gm NaF will be added and allowed the sample and reagent mixture to stand for 1.5 hrs because the titration end point is better visible in a cooled solution. One ml of ferroin indicator will be added into the conical flask just before the titration and then titrated the excess K₂Cr₂O with 0.5 N Ferrous Ammonium Sulphate till the color flashes from yellowish green to greenish and finally brownish red at the end point. Simultaneously a blank test will be also run without sediment sample.

2.2.4. Total Phosphorus

Phosphorus in sediment is commonly performed by Bray's extraction method and in this method, specific-colored compounds are formed with the addition of appropriate reagents in the solution, the intensity of which is proportionate to the concentration of the element being estimated. The color intensity is measured spectrophotometrically. In spectrophotometrically analysis, light of definite wavelength (not exceeding say 0.1 to 1.0 nm in band width) extending to the ultraviolet region of the spectrum constitutes the light source. The photoelectric cells in spectrophotometer measure the light transmitted by the solution.

Fifty ml of the Bray's extractant will be added to 100 ml conical flask containing 5 gm of sediment sample and shaken for 5 minutes and filtered. Exactly 5 ml of the filtered sediment extract will be taken with a bulb pipette in a 25 ml measuring flask and 5 ml of the molybdate reagent with an automatic pipette will be added and diluted to 20 ml with distilled water and shaken well. Further, to this, 1 ml of the dilute Stannous Chloride solution will be added and volume made upto 25 ml mark and shaken thoroughly. The mixture will be kept for color development and after 10 minutes the readings will be taken in the spectrophotometer at 660 nm wave length after setting the instrument to zero with the blank prepared similarly but without the sediment.

2.2.5. Total Sulphur

Sulphur in the sediment extract was estimated turbidimetrically using a spectrophotometer. The standards of sulphur were prepared in series such as 2, 4, 6, 8 and 10 ppm working solution from stock solution. In this, 25ml of solution was added in the volumetric flask separately to each flask and 2.5 ml of conditioning reagent solution was also added followed by 5 ml of extraction solution was added. To this mixture, 0.2-0.3 gm of barium chloride was also added and shaken well and made-up to 25 ml with distilled water and the readings were taken at 340nm spectrophotometer.

The sample was analysed by taking 5g of marine sediment into a 100ml conical flask, to which, 25 ml of 0.15 % CaCl2 solution was added and shaken for 30 minutes. Then this was filtered through Whatman no. 42 filter paper and then 5 ml of sample aliquot was taken in a 25 volumetric flask, to which 2.5 ml of conditioning reagent and 0.2 to 0.3 g of barium chloride powder was added and made up to 25 ml distilled water and shaken well for 2 minutes and the absorbance was read in the same manner as standard solutions.

2.2.6. Heavy metals

Heavy metals are of concern especially as it relates to the environment are Cadmium (Cd), Lead (Pb), Chromium (Cr), Nickel (Ni), Cobalt (Co),Copper (Cu), Zinc (Zn), Manganese (Mn) etc. For the release of mineral elements from sediment and

sediments, wet oxidation of samples are generally performed. Wet oxidation employs oxidizing acids (Tri / Di-acid mixtures).

Sediment sample will be weighed to 1.0 gm and taken in 100ml beaker covered with a watch glass and 12 ml of Aqua regia in (1: 3 HNO3 : HCl) will be added and the beaker will be kept in digestion for 3 hours at 100⁰c on a hot plate using sand bath and the samples will be evaporated to near dryness and the samples will be kept cool for 5 mins and then 20 ml of 2% nitric acid will be added and kept for 15 minutes in hot plate for digestion and remove from hot plate and cooled and filtered using Whatman No. 42 mm filter paper and then the final make up to 50 ml with 2 % nitric acid will be made. The extracted sample will be then aspirated to an AAS.

2.2.7. Petroleum Hydrocarbons

Sediment after refluxing with KOH-methanol mixture will be extracted with hexane. After removal of excess hexane, the residue will be subjected to clean-up procedure by silica gel column chromatography. The hydrocarbon content will be then estimated by measuring the fluorescence as per standard method.

2.3. Results on Physico-chemical characteristics of the sediment during Season 1

2.3.1. pH (Hydrogen Ion)

When any characteristics study of water or sediment is concerned, pH is considered to be one of the major variable especially in marine sediments as it influences various biogeochemical processes and ecosystem dynamics. These values are influenced by various factors, including the carbon, oxygen, nitrogen, phosphate, silicate, sulphur, iron, and manganese cycles. They are closely associated with processes such as heterotrophic respiration, chemoautotrophic activity, photosynthesis, precipitation, and the dissolution of calcium carbonate in marine water and sediments. In our investigation, we conducted measurements of average pH values at different locations. The offshore area exhibited an average pH of 8.18 ± 0.13 , the cargo jetty had an average pH of 8.15 ± 0.05 , and the Phang Creek showed an average pH of 8.26 ± 0.07 . The data on individual values at all the locations and stations are given in Table 3.

2.3.2. Salinity

Salinity of seawater is subject to fluctuations influenced by temperature changes, following diurnal and seasonal cycles that correspond to variations in atmospheric temperature. Salinity levels in marine water and sediment exhibit a wide range, typically spanning from 0 to 36 in most estuaries. Semi-enclosed bays can experience hyper-salinity conditions. In the present study, it was observed that a broader range of salinity concentrations at different stations. The highest salinity concentration of 51.00 ppt was recorded at station 1A in the Offshore area, while the lowest salinity concentration of 19.50 ppt was found at station 2 Cargo Jetty. The mean \pm standard deviation (SD) salinity values were determined to be 41.10 ± 7.92 ppt, 35.25 ± 11.84 ppt, and 31.44 ± 4.04 ppt in the offshore, cargo jetty, and Phang creek, respectively. These findings are summarized in Tables 3-5, where all the data is presented.

2.3.3. Sediment Texture

Understanding the sediment texture at different stations provides valuable insights into the habitat characteristics and ecological dynamics of the marine environment. The sediment texture plays a significant role in determining the physical and chemical properties of the marine sediment, influencing the distribution and abundance of benthic organisms at the offshore station, the average percentage composition of sand, silt, and clay was found to be 28.65 %, 9.53 % and 61.82 %, respectively. The cargo jetty station exhibited average percentages of 44.92% for sand, 25.28 % for silt, and 29.80 % for clay. Similarly, at the Phang creek station, the average percentages were 40.60% for sand, 26.23% for silt, and 33.17% for clay. These findings are summarized in Tables 3-5, which presents the data from all the stations.

2.3.4. Total organic Carbon

Total Organic carbon in sediments primarily originates from the decomposition of animals, plants, and anthropogenic sources such as chemical waste, fertilizers, and organic-rich waste. These sources contribute to the enrichment of the marine environment with organic material, which subsequently settles to the bottom sediments from the water column. This pathway leads to an increase in Total Organic Carbon (TOC) values and can have implications for the faunal communities inhabiting the sediments. In our study, during this first season, it was investigated the TOC concentrations at different stations. The mean \pm standard deviation (SD) TOC percentages were determined to be $0.48\pm0.19\%$ at the offshore station, $0.89\pm0.20\%$ at the cargo jetty station, and $0.57\pm0.08\%$ at the Phang creek station. The TOC concentrations at all stations are presented in Tables 3-5. Understanding the dynamics of organic carbon in marine sediments is vital for assessing the health and ecological integrity of marine environments. It helps in monitoring anthropogenic influences and their potential impacts on the marine ecosystem.

2.3.5. Organic matter

Organic matter serves as the primary reservoir of organic carbon in marine sediments, encompassing the chemical, physical, and biological degradation processes that contribute to the formation of organic material in the marine environment. It consists of a mixture of materials derived from various planktonic and benthic species, forming the ecological foundation for primary producers and consumers in the overlying surface sediment.

In our study conducted during the First season, we investigated the levels of organic matter in different locations. The organic matter percentages ranged from 0.62% to 1.49% in the offshore location, 1.18% to 1.96% at the cargo jetty, and 0.77% to 1.93% in the Phang creek area and the findings are summarized in the below tables (3-5), which illustrates the variation in organic matter content across the studied locations. Understanding the presence and dynamics of organic matter in marine sediments is crucial for assessing the overall health and ecological functioning of marine ecosystems. It provides insights into the cycling of carbon and nutrients, as well as the interactions between different species and trophic levels within the sediment community. Monitoring and studying organic matter in marine sediments helps to comprehend the intricate processes that shape marine environments and their associated biota.

2.3.6. Phosphorus and Sulphur

Sulphur (S) is involved in dissimilatory sulfate reduction by microbial activity, which is a primary pathway for organic matter mineralization in anoxic sea beds. This process leads to the production of sulfide. Subsequently, chemical or microbial oxidation of the produced sulfide forms a complex network of pathways in the sulfur cycle, resulting in intermediate sulfur species and partial conversion back to sulfate. On the other hand, Phosphorus (P) is an essential nutrient for life and plays a crucial role in regulating primary productivity within marine systems. It serves as a key element in various biological processes. In marine sediments, phosphorus availability influences primary productivity, affecting the growth and development of marine organisms.

In the present study, the highest concentration of sulphur was recorded as 48.33 mg/kg was recorded at Offshore station, while the lowest concentration of 26.52 mg/kg was observed at Phang creek. The concentrations of phosphorus and sulphur at all stations are presented in Tables 3,4 and 5. Similarly, the highest phosphorus concentration was found to be 50.00 mg/kg at Phang creek location, while the lowest concentration of 6.81 mg/kg was observed at Offshore station. Further, understanding the levels of phosphorus and sulphur in marine sediments is crucial for comprehending nutrient dynamics and biogeochemical processes in marine ecosystems. These elements influence the availability of essential nutrients and can have implications for primary productivity and the overall functioning of marine ecosystems.

2.3.7. Petroleum hydrocarbon

Petroleum hydrocarbons in general have low solubility in marine water and tend to adsorb onto particulate matter, leading to their long-term persistence in sediment bottoms. This persistence can have significant negative impacts on benthic aquatic communities within the marine ecosystem. PHCs are a major source of contamination in marine environments, primarily comprising compounds from three classes: alkanes, olefins, and aromatics. In the present study, the levels of PHCs in different locations were measure. The range of PHC concentrations was found to be $0.48 - 1.39 \mu g/kg$ in

the offshore area, $06.4 - 1.10 \ \mu g/kg$ at the cargo jetty and $0.53 - 1.22 \ \mu g/kg$ in the Phang Creek. The highest concentration of PHCs with 1.39 $\mu g/kg$ was observed at station 1C (Offshore), while the lowest concentration with 0.48 $\mu g/kg$ was also found at a different point at the same station 1D (Offshore Creek). The presence of petroleum hydrocarbons in marine environments is of great concern due to their potential harmful effects on marine organisms and ecosystems. These contaminants can bioaccumulate in organisms and disrupt their physiological processes, as well as cause long-lasting damage to the benthic communities. Continuous monitoring and mitigation efforts are necessary to prevent and minimize the negative impacts of petroleum hydrocarbon contamination in marine ecosystems.

2.3.8. Magnesium

Understanding the distribution and dynamics of magnesium in marine sediments provides valuable insights into the geochemical processes occurring within the sediment column and their impact on the marine ecosystem. Continuous monitoring of magnesium levels is crucial for assessing the health and ecological integrity of marine environments. Dissolved magnesium flux from the overlying ocean into marine sediments is primarily driven by molecular diffusion. This process occurs as pore water magnesium is depleted during the formation of authigenic minerals within the sediment column. Additionally, direct burial of seawater occurs as sediment. Its concentration in sediments can have implications for nutrient availability, sediment mineralogy, and the diverse organisms inhabiting the sediment environment.

In our study conducted during the First season at Deendayal Port, we determined the concentrations of magnesium at different stations. The average \pm standard deviation (SD) magnesium concentrations were found to be 1548.42 \pm 227.70 mg/kg at the offshore station, 1450.67 \pm 365.58 mg/kg at the cargo jetty, and 1573.58 \pm 256.28 mg/kg at the Phang Creek station. The highest concentration of magnesium 1919.50 mg/kg was observed at station 2D (Cargo Jetty Creek), while the lowest concentration with 1008.00 mg/kg was found at Control point in the same location.

2.3.9. Heavy metals

The heavy metal concentration in the sediment samples were examined for the presence of heavy metals from the samples collected from various stations at different locations at Deendayal Port. The concentrations of Lead was found to be Below Detection Limit in all the three location. The highest concentration of nickel was found to be 54.50 mg/kg at Offshore and Cargo Jetty location, while the lowest concentration of Nickel was observed at Cargo Jetty (36.40 mg/kg). Among the three stations, site 2B (Cargo Jetty) recorded the highest concentration of zinc, with 55.95 mg/kg at and the Control site at the Cargo jetty location recorded the Below Detection Limit of Zinc. In case of Manganese, the 2E site at Cargo jetty had the highest concentration of 825.50 mg/kg, while Control 2 in Cargo jetty recorded the lowest mean concentration of 184.00 mg/kg. The highest concentration of cadmium of 19.90 mg/kg was observed in Cargo Jetty station, whereas the lowest concentration of 0.85 mg/kg was found at station Offshore location (Site 1C). The data is presented in Tables 3-5.

S. No	Parameters	1A	1B	1C	1D	1E	Control 1
1	pH (1: 10 suspension)	8.14	8.19	8.20	8.00	8.40	8.14
2	Salinity	33.00	30.20	44.41	45.29	51.00	42.67
3	Petroleum Hydrocarbon						
	(µg/kg)	0.988	0.9874	1.3915	0.48	0.6531	0.6512
4	Magnesium (mg/kg)	1723.5	1383	1806	1507	1667.5	1203.5
5	Sand (%)	25.1	14.8	27.5	43.4	29.6	31.5
	Silt (%)	4.8	5.0	7.8	22.3	5.9	11.4
	Clay (%)	70.1	80.2	64.7	34.3	64.5	57.1
6	Organic matter (%)	0.67	0.62	0.77	1.49	0.67	0.72
7	Total organic carbon (%)	0.39	0.36	0.45	0.87	0.39	0.42
8	Phosphorus (mg/kg)	6.81	8.63	10.68	11.59	12.50	13.63
9	Sulphur (mg/kg)	34.91	32.02	31.94	45.16	48.33	33.30
10	Nickel (mg/kg)	41.35	54.5	36.4	37.65	47.25	BDL
11	Lead (mg/kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/kg)	9.95	14.9	0.85	14.8	12.4	12.1
13	Chromium (mg/kg)	77.2	31.7	37.1	54.4	37.95	44.45
14	Zinc (mg/kg)	BDL	50.35	34.75	49.8	49.65	43.7
15	Copper (mg/kg)	5.6	5.2	11.55	26.65	13.6	11.95
16	Manganese (mg/kg)	664	645.5	750.5	824	795	732.5
17	Cobalt (mg/kg)	BDL	BDL	4.35	7.85	7.05	4.3

Table 3: Physico-chemical characteristics of sediment samples collected fromOffshore location

S. No	Parameters	2A	2B	2C	2D	2 E	Control 2
1	pH (1: 10 suspension)	8.13	8.2	8.16	8.06	8.13	8.2
2	Salinity	47.00	40.93	45.29	36.92	21.86	19.50
3	Petroleum Hydrocarbon						
	(µg/kg)	0.8864	1.0957	0.8895	0.837	0.6447	0.6573
4	Magnesium (mg/kg)	1074.5	1465	1783.5	1919.5	1453.5	1008
5	Sand (%)	43.1	36.7	34.9	29.9	47.3	77.6
	Silt (%)	28.5	34.7	20.0	18.5	32.8	17.2
	Clay (%)	28.4	28.6	45.1	51.6	19.9	5.2
6	Organic matter (%)	1.96	1.91	1.29	1.60	1.24	1.18
7	Total organic carbon (%)	1.14	1.11	0.75	0.93	0.72	0.69
8	Phosphorus (mg/kg)	17.72	18.40	14.77	43.86	47.27	31.13
9	Sulphur (mg/kg)	36.36	34.61	35.05	38.94	34.50	26.72
10	Nickel (mg/kg)	41.35	54.5	36.4	37.65	47.25	BDL
11	Lead (mg/kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/kg)	9.8	17.4	19.9	5.25	17.7	6.75
13	Chromium (mg/kg)	72.2	171.25	50.5	46.7	47.15	7.25
14	Zinc (mg/kg)	42.55	55.95	31.45	51.4	44.45	BDL
15	Copper (mg/kg)	18	28.95	16.7	18.2	20.2	BDL
16	Manganese (mg/kg)	810.5	825	816.5	775.5	825.5	184
17	Cobalt (mg/kg)	7.95	8.2	3.95	6.1	9.25	BDL

Table 4: Physico-chemical characteristics of sediment samples collected fromCargo jetty

S. No	Parameters	3A	3B	3 C	3D	3E	Control 3
1	pH (1: 10 suspension)	8.18	8.32	8.17	8.33	8.28	8.30
2	Salinity	35.62	31.87	29.09	28.91	36.66	26.47
3	Petroleum Hydrocarbon						
	(µg/kg)	1.2217	1.1875	0.8305	0.542	1.0876	0.5261
4	Magnesium (mg/kg)	1061	1630.5	1728.5	1673	1610	1738.5
5	Sand (%)	28.1	42.6	35.5	42.5	55.1	39.8
	Silt (%)	11.5	38.8	14.5	34.4	35.0	23.2
	Clay (%)	60.4	18.6	50.0	23.1	9.9	37.0
6	Organic matter (%)	0.82	0.98	1.08	1.03	0.77	1.13
7	Total organic carbon (%)	0.48	0.57	0.63	0.6	0.45	0.66
8	Phosphorus (mg/kg)	35.90	45.22	40.22	8.86	6.13	50.00
9	Sulphur (mg/kg)	33.27	30.41	28.47	26.52	35.11	31.83
10	Nickel (mg/kg)	32.55	38	36.45	40.55	53.45	36.65
11	Lead (mg/kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/kg)	15.35	9.2	10.15	16.6	18	16.85
13	Chromium (mg/kg)	38.8	51.85	45.45	55.1	71.75	113.85
14	Zinc (mg/kg)	41.7	39.75	47.35	18.9	25.65	23.2
15	Copper (mg/kg)	9.95	18.55	13.85	19.2	23.05	20.4
16	Manganese (mg/kg)	621.5	752.5	780	790.5	774	799.5
17	Cobalt (mg/kg)	3.65	0.6	5.7	5.9	3.85	1.3

Table 5: Physico-chemical characteristics of sediment samples collected fromPhang creek

2.4. Physico-chemical characteristics of the sediment samples during Season 2

2.4.1. pH (Hydrogen Ion)

When any characteristics study of water or sediment is concerned, pH is considered to be one of the major variable especially in marine sediments as it influences various biogeochemical processes and ecosystem dynamics. These values are influenced by various factors, including the carbon, oxygen, nitrogen, phosphate, silicate, sulphur, iron, and manganese cycles. They are closely associated with processes such as heterotrophic respiration, chemoautotrophic activity, photosynthesis, precipitation, and the dissolution of calcium carbonate in marine water and sediments. In our investigation, we conducted measurements of average pH values at different locations. All three locations show slightly alkaline pH levels in sediments. Offshore has the lowest average pH (7.46 \pm 0.14), followed by Cargo Jetty (7.50 \pm 0.11) and Phang Creek (7.51 \pm 0.08). The differences are minimal, indicating relatively stable and similar pH conditions across all locations. The data on individual values at all the locations and stations are given in Table 6.

2.4.2. Salinity

Salinity of seawater is subject to fluctuations influenced by temperature changes, following diurnal and seasonal cycles that correspond to variations in atmospheric temperature. Salinity levels in marine water and sediment exhibit a wide range, typically spanning from 0 to 36 in most estuaries. Semi-enclosed bays can experience hyper-salinity conditions. In the present study, it was observed that a broader range of salinity concentrations at different stations. Phang Creek shows the highest average salinity (37.36 ± 11.41 ppt), followed by Cargo Jetty (22.65 ± 6.35 ppt) and Offshore (20.77 ± 7.15 ppt), respectively. These findings are summarized in Tables 6-8, where all the data is presented.

2.4.3. Sediment Texture

Understanding the sediment texture at different stations provides valuable insights into the habitat characteristics and ecological dynamics of the marine environment. The sediment texture plays a significant role in determining the physical and chemical properties of the marine sediment, influencing the distribution and abundance of benthic organisms at the offshore station. The sediment composition across the three locations-Offshore, Cargo Jetty, and Phang Creek-shows distinct patterns in the distribution of sand, silt, and clay. In terms of sand content, the Cargo Jetty has the highest percentage at 53.60% \pm 16.99%, which indicates a more dynamic, high-energy environment. This could be due to the influence of strong currents or wave action that tends to carry away finer particles, leaving behind coarser sand. Offshore has a lower sand content at 41.73% \pm 7.85%, while Phang Creek lies in between with 49.38% \pm 20.40%. The silt content is fairly consistent between Offshore and the Cargo Jetty, with 22.32% \pm 15.55% and 21.88% \pm 14.11%, respectively. Phang Creek, however, shows a notably lower silt percentage at 13.62% \pm 4.26%. Clay content is highest in Phang Creek at 37.00% \pm 21.57%. Offshore also has a significant clay percentage at $35.95\% \pm 20.85\%$, while the Cargo Jetty has the lowest clay content at 24.52% \pm 14.72%. These findings are summarized in Tables 6-8, which presents the data from all the stations.

2.4.4. Total organic Carbon

Total Organic carbon in sediments primarily originates from the decomposition of animals, plants, and anthropogenic sources such as chemical waste, fertilizers, and organic-rich waste. These sources contribute to the enrichment of the marine environment with organic material, which subsequently settles to the bottom sediments from the water column. This pathway leads to an increase in Total Organic Carbon (TOC) values and can have implications for the faunal communities inhabiting the sediments. In our study, during this second season, it was investigated the TOC concentrations at different stations. The mean \pm standard deviation (SD) TOC percentages were determined to be Total Organic Carbon which is reported as $0.60\pm0.10\%$ at the offshore station, $0.39\pm0.12\%$ at the cargo jetty station, and $0.79\pm0.45\%$ at the Phang creek station. The TOC concentrations at all stations are presented in Tables 6-8. Understanding the dynamics of organic carbon in marine sediments is vital for assessing the health and ecological integrity of marine

environments. It helps in monitoring anthropogenic influences and their potential impacts on the marine ecosystem.

2.4.5. Organic matter

Organic matter serves as the primary reservoir of organic carbon in marine sediments, encompassing the chemical, physical, and biological degradation processes that contribute to the formation of organic material in the marine environment. It consists of a mixture of materials derived from various planktonic and benthic species, forming the ecological foundation for primary producers and consumers in the overlying surface sediment. In our study conducted during the second season, we investigated the levels of organic matter in different locations. The organic matter percentages ranged $1.06 \pm 0.22\%$ in the offshore location, $0.67\% \pm 0.21\%$ at the cargo jetty, and $1.41\% \pm 0.88\%$ in the Phang creek area and the findings are summarized in the below tables (6-8), which illustrates the variation in organic matter content across the studied locations. Understanding the presence and dynamics of organic matter in marine sediments is crucial for assessing the overall health and ecological functioning of marine ecosystems. Phang Creek shows the highest organic matter suggesting higher inputs of organic material, possibly from terrestrial sources or higher productivity. The Cargo Jetty area shows the lowest organic matter, which might be due to higher energy conditions preventing organic matter accumulation.

2.4.6. Phosphorus and Sulphur

Sulphur (S) is involved in dissimilatory sulfate reduction by microbial activity, which is a primary pathway for organic matter mineralization in anoxic sea beds. This process leads to the production of sulfide. Subsequently, chemical or microbial oxidation of the produced sulfide forms a complex network of pathways in the sulfur cycle, resulting in intermediate sulfur species and partial conversion back to sulfate. On the other hand, Phosphorus (P) is an essential nutrient for life and plays a crucial role in regulating primary productivity within marine systems. It serves as a key element in various biological processes. In marine sediments, phosphorus availability influences primary productivity, affecting the growth and development of marine organisms. In the present study, the highest concentration of sulphur was recorded as Phang Creek shows the highest average sulphur content ($54.98 \pm 2.63 \text{ mg/kg}$), followed by Cargo Jetty ($43.37 \pm 8.43 \text{ mg/kg}$) and Offshore ($39.10 \pm 8.40 \text{ mg/kg}$). The concentrations of phosphorus and sulphur at all stations are presented in Tables 6-8. The offshore has the highest average phosphorus content ($11.15 \pm 2.89 \text{ mg/kg}$), followed by Cargo Jetty ($10.72 \pm 4.33 \text{ mg/kg}$) and Phang Creek ($6.98 \pm 1.03 \text{ mg/kg}$). This could reflect differences in nutrient inputs or cycling across the locations.

Phosphorus levels are highest in the offshore and cargo jetty areas. This could indicate different sources of phosphorus, such as upwelling in offshore areas or anthropogenic inputs near the cargo jetty. The lower levels in Phang Creek might be due to higher uptake by organisms or different sediment characteristics that don't retain phosphorus as effectively. Phang Creek shows the highest sulphur content with the least variability. This could indicate more reducing conditions in the sediments, possibly due to higher organic matter content and limited oxygen penetration. The lower levels in offshore and cargo jetty areas might reflect more oxidizing conditions due to better water circulation. These elements influence the availability of essential nutrients and can have implications for primary productivity and the overall functioning of marine ecosystems.

2.4.7. Petroleum hydrocarbon (PHC)

Petroleum hydrocarbons in general have low solubility in marine water and tend to adsorb onto particulate matter, leading to their long-term persistence in sediment bottoms. This persistence can have significant negative impacts on benthic aquatic communities within the marine ecosystem. PHCs are a major source of contamination in marine environments, primarily comprising compounds from three classes: alkanes, olefins, and aromatics. In the present study, the levels of PHCs in different locations were measure.

Phang Creek has the highest average petroleum hydrocarbon content (5.82 \pm 3.81 µg/kg), followed by Cargo Jetty (5.05 \pm 4.00 µg/kg) and Offshore (2.36 \pm 1.32 µg/kg). This suggests more anthropogenic oil-related inputs in the nearshore areas. The

presence of petroleum hydrocarbons in marine environments is of great concern due to their potential harmful effects on marine organisms and ecosystems. These contaminants can bioaccumulate in organisms and disrupt their physiological processes, as well as cause long-lasting damage to the benthic communities. The higher levels of petroleum hydrocarbons in Phang Creek and Cargo Jetty compared to the offshore location suggest more significant anthropogenic inputs in these areas. This could be due to boat traffic, urban runoff, or industrial activities near these locations. The offshore area, being further from these sources, shows lower contamination levels.

2.4.8. Magnesium

Understanding the distribution and dynamics of magnesium in marine sediments provides valuable insights into the geochemical processes occurring within the sediment column and their impact on the marine ecosystem. Continuous monitoring of magnesium levels is crucial for assessing the health and ecological integrity of marine environments. Dissolved magnesium flux from the overlying ocean into marine sediments is primarily driven by molecular diffusion. This process occurs as pore water magnesium is depleted during the formation of authigenic minerals within the sediment column. Additionally, direct burial of seawater occurs as sediment. Its concentration in sediments can have implications for nutrient availability, sediment mineralogy, and the diverse organisms inhabiting the sediment environment.

In our study conducted during the second season at Deendayal Port, we determined the concentrations of magnesium at different stations. Phang Creek shows the highest average magnesium content ($5018.75 \pm 1443.26 \text{ mg/kg}$), followed by Offshore ($4324.83 \pm 957.00 \text{ mg/kg}$) and Cargo Jetty ($3508.50 \pm 1786.51 \text{ mg/kg}$). Highest magnesium content in sediments of Phang Creek could be due to differences in sediment sources, with Phang Creek possibly receiving more magnesium-rich materials from terrestrial sources. The high variability in the Cargo Jetty area suggests

a more heterogeneous sediment composition, possibly due to varied inputs from both marine and terrestrial sources.

2.4.9. Heavy metals

The heavy metal concentration in the sediment samples were examined for the presence of heavy metals from the samples collected from various stations at different locations at Deendayal Port. The analysis of sediment samples from three locations *viz.*, offshore, cargo jetty, and Phang Creek revealed varying concentrations of heavy metals. In the offshore samples, Nickel ranged from 14.20 to 70.55 mg/kg (mean 49.75 mg/kg), while Chromium, Zinc, and Copper showed moderate levels with 10.15 \pm 0.49; 22.53 \pm 28.89; 23.87 \pm 4.17. Manganese was notably high, averaging 639.88 \pm 223.92 mg/kg. The concentration of cobalt was found to be 19.21 ± 1.81 mg/kg. Lead and Cadmium were consistently below detectable limits in offshore location. The cargo jetty location exhibited below detectable limits with lead, chromium, cadmium but showed a high variability in copper levels (11.65 to 123.90 mg/kg). The concentration of zinc, manganese, cobalt was found to be 6.83 ± 5.48 mg/kg; $622.15 \pm$ 184.51 mg/kg; 12.72 ± 6.21 mg/kg. The concentration of nickel showed 13.94 ± 8.45 mg/kg. The Phang Creek location demonstrated the highest variability in Nickel (4.55 to 105.70 mg/kg) and contained below detectable limits with lead and cadmium. Manganese concentrations were consistently high across all three locations, with Phang Creek showing the highest average at 723.92 ± 17.13 mg/kg. Cobalt levels were relatively consistent across sites, ranging from 8.20 to 37.95 mg/kg. These results indicate site-specific variations in metal contamination, with some metals showing notably high concentrations in certain areas. The concentration of chromium, zinc and copper is 29.48 ± 10.78 mg/kg; 16.72 ± 14.12 mg/kg; 31.27 ± 23.13 mg/kg. The data is presented in Tables 6-8.

S. No	Parameters	1A	1B	1C	1D	1E	Control 1
1	pH (1: 10 suspension)	7.44	7.33	7.41	7.39	7.45	7.73
2	Salinity (ppt)	21.10	23.40	24.20	27.60	21.30	7.00
3	Petroleum Hydrocarbon	2.30	0.80	1.56	BDL	2.88	4.25
	(µg/kg)						
4	Magnesium (mg/Kg)	2993.5	3830.5	4445	4989	5730	3961
5	Sand (%)	49.9	37.2	28.9	40.7	48.1	45.6
	Silt (%)	30.6	9.3	10.6	20.3	13.4	49.7
	Clay (%)	19.5	53.5	60.5	39.0	38.5	4.7
6	Organic matter (%)	1.08	1.13	1.03	0.93	1.42	0.77
7	Total organic carbon (%)	0.63	0.66	0.6	0.54	0.73	0.45
8	Phosphorus (mg/Kg)	15.97	10.41	9.95	11.34	12.03	7.17
9	Sulphur (mg/Kg)	32.90	33.24	37.55	52.13	46.71	32.06
10	Nickel (mg/Kg)	70.55	14.2	63.65	49.3	51.05	BDL
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
13	Chromium (mg/Kg)	9.8	BDL	BDL	BDL	10.5	BDL
14	Zinc (mg/Kg)	BDL	BDL	42.95	2.1	BDL	BDL
15	Copper (mg/Kg)	27.25	17.55	21.9	25.25	27.4	BDL
16	Manganese (mg/Kg)	727	717	741.5	754	716	183.8
17	Cobalt (mg/Kg)	19.2	20.05	19.3	16.3	21.2	BDL

Table 6: Physico-chemical characteristics of sediment samples collected fromOffshore location

S. No	Parameters	2A	2B	2C	2D	2 E	Control 2
1	pH (1: 10 suspension)	7.4	7.33	7.53	7.59	7.6	7.54
2	Salinity (ppt)	16.60	25.20	13.60	24.50	25.20	30.80
3	Petroleum Hydrocarbon	1.02	BDL	2.88	3.54	11.25	6.58
	(µg/kg)						
4	Magnesium (mg/Kg)	5105	3491.5	5950	1710	1463.5	3331
5	Sand (%)	60.7	43.8	82.6	36.2	41.6	56.7
	Silt (%)	10.0	46.2	14.8	30.9	18.5	10.9
	Clay (%)	29.3	10.0	2.6	32.9	39.9	32.4
6	Organic matter (%)	0.41	0.72	0.41	0.88	0.72	0.88
7	Total organic carbon (%)	0.24	0.42	0.24	0.51	0.42	0.51
8	Phosphorus (mg/Kg)	7.17	14.35	3.93	13.65	10.87	14.35
9	Sulphur (mg/Kg)	31.29	40.91	37.51	46.06	50.53	53.89
10	Nickel (mg/Kg)	BDL	9	BDL	10.95	26.55	9.25
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
13	Chromium (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
14	Zinc (mg/Kg)	BDL	2.95	BDL	10.7	BDL	BDL
15	Copper (mg/Kg)	123.9	22.25	BDL	22	11.65	17.8
16	Manganese (mg/Kg)	618	730.5	254.9	718.5	720	691
17	Cobalt (mg/Kg)	BDL	17.6	3.25	11.3	12.5	18.95

Table 7: Physico-chemical characteristics of sediment samples collected fromCargo jetty

S. No	Parameters	3A	3B	3 C	3D	3E	Control 3
1	pH (1: 10 suspension)	7.40	7.43	7.54	7.61	7.53	7.57
2	Salinity (ppt)	29.90	41.80	35.87	24.30	57.30	35.00
3	Petroleum Hydrocarbon	3.56	2.85	BDL	BDL	5.62	11.25
	(µg/kg)						
4	Magnesium (mg/Kg)	6075	2798	5030	6825	4024.5	5360
5	Sand (%)	67.2	72.5	62.8	34.9	24.7	34.2
	Silt (%)	13.8	13.9	17.2	12.8	18.0	6.0
	Clay (%)	19.0	13.6	20.0	52.3	57.3	59.8
6	Organic matter (%)	1.29	2.22	2.71	1.13	0.62	0.51
7	Total organic carbon (%)	0.75	1.29	1.36	0.65	0.36	0.3
8	Phosphorus (mg/Kg)	8.56	6.94	6.25	7.87	6.01	6.25
9	Sulphur (mg/Kg)	55.53	56.18	57.32	54.50	56.41	49.96
10	Nickel (mg/Kg)	21.05	64.5	105.7	13.4	BDL	4.55
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
13	Chromium (mg/Kg)	BDL	BDL	37.1	BDL	BDL	21.85
14	Zinc (mg/Kg)	BDL	BDL	32.2	13.4	BDL	4.55
15	Copper (mg/Kg)	44.3	38.75	66.45	15.1	2.35	20.65
16	Manganese (mg/Kg)	739.5	725.5	734.5	703.5	702	738.5
17	Cobalt (mg/Kg)	23.1	20.25	37.95	14.25	8.2	15.05

Table 8: Physico-chemical characteristics of sediment samples collected fromPhang creek

2.5. Physico-chemical characteristics of the sediment characteristics during Season 3

2.5.1. pH (Hydrogen Ion)

When any characteristics study of water or sediment is concerned, pH is considered to be one of the major variable especially in marine sediments as it influences various biogeochemical processes and ecosystem dynamics. These values are influenced by various factors, including the carbon, oxygen, nitrogen, phosphate, silicate, sulphur, iron, and manganese cycles. They are closely associated with processes such as heterotrophic respiration, chemoautotrophic activity, photosynthesis, precipitation, and the dissolution of calcium carbonate in marine water and sediments. In our investigation, we conducted measurements of average pH values at different locations. All three locations show slightly alkaline pH levels in sediments. Offshore has the average pH (8.42 ± 0.12), followed by Cargo Jetty (8.44 ± 0.28) and Phang Creek (8.64 ± 0.12). The differences are minimal, indicating relatively stable and similar pH conditions across all locations. The data on individual values at all the locations and stations are given in Table 9.

2.5.2. Salinity

Salinity of seawater is subject to fluctuations influenced by temperature changes, following diurnal and seasonal cycles that correspond to variations in atmospheric temperature. Salinity levels in marine water and sediment exhibit a wide range, typically spanning from 0 to 36 in most estuaries. Semi-enclosed bays can experience hyper-salinity conditions. In the present study, it was observed that a broader range of salinity concentrations at different stations. Phang Creek shows the average salinity (18.82±3.26 ppt), followed by Cargo Jetty (16.19±7.06 ppt) and Offshore (25.07±7.22 ppt), respectively. These findings are summarized in Tables 9-11, where all the data is presented.

2.5.3. Sediment Texture

Understanding the sediment texture at different stations provides valuable insights into the habitat characteristics and ecological dynamics of the marine environment. The sediment texture plays a significant role in determining the physical and chemical properties of the marine sediment, influencing the distribution and abundance of benthic organisms at the offshore station. The sediment composition across the three locations such as Offshore, Cargo Jetty, and Phang Creek—shows distinct patterns in the distribution of sand, silt, and clay. In terms of sand content, the Offshore location has the highest percentage at 83.80±20.31%, which indicates a more dynamic, highenergy environment. This could be due to the influence of strong currents or wave action that tends to carry away finer particles, leaving behind coarser sand. Offshore has a lower clay content at 10.80 \pm 3.69%, while Phang Creek lies in between with 74.7 \pm 9.46%. The silt content is fairly consistent between Offshore and the Cargo Jetty, with 50.6 \pm 17.15% and 31.4 \pm 20.06%, respectively. Phang Creek, however, shows a notably lower silt percentage at 21.37 \pm 6.32%. Clay content is highest in Phang Creek at 63.4 \pm 9.46%. Offshore also recorded a lowest clay percentage at 7.00 \pm 3.69% and the data of all the field stations are summarized in Tables 9-11.

2.5.4. Total organic Carbon

Total Organic carbon in sediments primarily originates from the decomposition of animals, plants, and anthropogenic sources such as chemical waste, fertilizers, and organic-rich waste. These sources contribute to the enrichment of the marine environment with organic material, which subsequently settles to the bottom sediments from the water column. This pathway leads to an increase in Total Organic Carbon (TOC) values and can have implications for the faunal communities inhabiting the sediments. In our study, during this third season, it was investigated the TOC concentrations at different stations. The mean \pm standard deviation (SD) TOC percentages were determined to be Total Organic Carbon which is reported as $1.35\pm0.08\%$ at the offshore station, $0.73\pm0.09\%$ at the cargo jetty station, and $0.52\pm0.06\%$ at the Phang creek station. The TOC concentrations at all stations are presented in Tables 9-11. Understanding the dynamics of organic carbon in marine environments. It helps in monitoring anthropogenic influences and their potential impacts on the marine ecosystem.

2.5.5. Organic matter

Organic matter serves as the primary reservoir of organic carbon in marine sediments, encompassing the chemical, physical, and biological degradation processes that contribute to the formation of organic material in the marine environment. It consists of a mixture of materials derived from various planktonic and benthic species, forming the ecological foundation for primary producers and consumers in the overlying surface sediment. In our study conducted during the third season, we investigated the levels of organic matter in different locations. The organic matter percentages ranged $2.32\pm0.13\%$ in the offshore location, $1.26\pm0.15\%$ at the cargo jetty, and $0.89\pm0.11\%$ in the Phang creek area and the findings are summarized in the below tables (9-11), which illustrates the variation in organic matter content across the studied locations. Understanding the presence and dynamics of organic matter in marine sediments is crucial for assessing the overall health and ecological functioning of marine ecosystems. Phang Creek shows the highest organic matter suggesting higher inputs of organic material, possibly from terrestrial sources or higher productivity. The Cargo Jetty area shows the lowest organic matter, which might be due to higher energy conditions preventing organic matter accumulation.

2.5.6. Phosphorus and Sulphur

In the present study, the highest concentration of sulphur was recorded at Offshore followed by Cargo Jeety and Phang Creek with average sulphur content at Offshore was $(62.61\pm3.19 \text{ mg/kg})$, followed by Cargo Jetty $(44.53\pm6.57 \text{ mg/kg})$ and Phang creek $(41.53\pm4.49 \text{ mg/kg})$. The concentrations of phosphorus and sulphur at all stations are presented in Tables 9,10 and 11.

On the other hand, Phosphorus (P) is an essential nutrient for life and plays a crucial role in regulating primary productivity within marine systems. It serves as a key element in various biological processes. In marine sediments, phosphorus availability influences primary productivity, affecting the growth and development of marine organisms The Cargo jetty recorded the highest phosphorus content (38.27 mg/kg), followed by Offshore (29.64 mg/kg) and Phang Creek (27.62 mg/kg). This could reflect differences in nutrient inputs or cycling across the locations as Sulphur (S) is involved in dissimilatory sulfate reduction by microbial activity, which is a primary pathway for organic matter mineralization in anoxic sea beds. This process leads to the produced sulfide forms a complex network of pathways in the sulfur cycle, resulting in intermediate sulfur species and partial conversion back to sulfate. Phosphorus levels

are highest in the offshore and cargo jetty areas. This could indicate different sources of phosphorus, such as upwelling in offshore areas or anthropogenic inputs near the cargo jetty.

The lower levels be due to higher uptake by organisms or different sediment characteristics that don't retain phosphorus as effectively. Phang Creek shows the highest sulphur content with the least variability. This could indicate more reducing conditions in the sediments, possibly due to higher organic matter content and limited oxygen penetration. The lower levels in offshore and cargo jetty areas might reflect more oxidizing conditions due to better water circulation. These elements influence the availability of essential nutrients and can have implications for primary productivity and the overall functioning of marine ecosystems.

2.5.7. Petroleum hydrocarbon (PHC)

Petroleum hydrocarbons in general have low solubility in marine water and tend to adsorb onto particulate matter, leading to their long-term persistence in sediment bottoms. This persistence can have significant negative impacts on benthic aquatic communities within the marine ecosystem. PHCs are a major source of contamination in marine environments, primarily comprising compounds from three classes: alkanes, olefins, and aromatics. In the present study, the levels of PHCs in different locations were measure. Offshore location has recorded the highest average petroleum hydrocarbon content ($13.19 \pm 3.61 \mu g/kg$), followed by Phang creek ($9.18 \pm 3.80 \mu g/kg$) and Cargo jetty site ($6.85 \pm 3.30 \mu g/kg$). This suggests more anthropogenic oil-related inputs in the nearshore areas.

The presence of petroleum hydrocarbons in marine environments is of great concern due to their potential harmful effects on marine organisms and ecosystems. These contaminants can bioaccumulate in organisms and disrupt their physiological processes, as well as cause long-lasting damage to the benthic communities. The higher levels of petroleum hydrocarbons in Phang Creek and Cargo Jetty compared to the offshore location suggest more significant anthropogenic inputs in these areas. This could be due to boat traffic, urban runoff, or industrial activities near these locations. The offshore area, being further from these sources, shows lower contamination levels.

2.5.8. Magnesium

In the present study conducted during the third season at Deendayal Port, we determined the concentrations of magnesium at different stations. Phang Creek shows the highest average magnesium content (20991.67 ± 580.01 mg/kg), followed by Offshore (20541.67 ± 698.15 mg/kg) and Cargo Jetty (20133.33 ± 787.82 mg/kg).

Highest magnesium content in sediments of Phang Creek could be due to differences in sediment sources, with Phang Creek possibly receiving more magnesium-rich materials from terrestrial sources. The high variability in the Cargo Jetty area suggests a more heterogeneous sediment composition, possibly due to varied inputs from both marine and terrestrial sources. Understanding the distribution and dynamics of magnesium in marine sediments provides valuable insights into the geochemical processes occurring within the sediment column and their impact on the marine ecosystem. Continuous monitoring of magnesium levels is crucial for assessing the health and ecological integrity of marine environments. Dissolved magnesium flux from the overlying ocean into marine sediments is primarily driven by molecular diffusion. This process occurs as pore water magnesium is depleted during the formation of authigenic minerals within the sediment column. Additionally, direct burial of seawater occurs as sediment accumulates on the seafloor, contributing to the input of magnesium into the sediment. Its concentration in sediments can have implications for nutrient availability, sediment mineralogy, and the diverse organisms inhabiting the sediment environment.

2.5.9. Heavy metals

The heavy metal concentration in the sediment samples were examined for the presence of heavy metals from the samples collected from various stations at different locations at Deendayal Port. The analysis of sediment samples from three locations *viz.*, offshore, cargo jetty, and Phang Creek revealed varying concentrations of heavy

metals. In the offshore samples, Nickel ranged from 31.9 to 43.65 mg/kg (mean 37.21 mg/kg), while the mean concentrations of Chromium was 65.91 ± 29.69 , 44.01 ± 7.86 and 54.24 ± 39.08 at Offshore, Cargo jetty and Phang creek locations respectively. The concentration of cobalt was comparatively less when compared the concentration of other metals where mean cobalt concentrations of 5.37 ± 2.78 mg/kg, 4.42 ± 1.32 mg/kg and 4.76 ± 1.48 mg/kg as observed at Offshore, Cargo jetty and Phang creek locations respectively. Manganese was notably high with no major variation in the concentrations in the samples which was observed as 821.50 mg/kg, 817.50 mg/kg and 807.50 mg/kg at Offshore, Cargo jetty and Phang creek locations respectively. The data of all the heavy metal concentrations from all the locations are presented in Tables 9-11.

S. No	Parameters	1A	1 B	1C	1D	1 E	Control
							1
1	pH (1: 10 suspension)	8.41	8.38	8.23	8.44	8.58	8.48
2	Salinity (ppt)	23.50	26.50	25.60	30.80	32.10	11.90
3	Petroleum Hydrocarbon (µg/kg)	12.21	10.95	BDL	10.82	19.52	12.45
4	Magnesium (mg/Kg)	20250	21400	19850	20650	19800	21300
5	Sand (%)	32.3	34.7	34.9	33.8	34.9	83.8
	Silt (%)	59.9	56.1	59.7	55.4	56.7	15.8
	Clay (%)	7.8	9.2	5.4	10.8	8.4	0.4
6	Organic matter (%)	2.48	2.43	2.17	2.27	2.37	2.17
7	Total organic carbon (%)	1.44	1.41	1.26	1.32	1.38	1.26
8	Phosphorus (mg/Kg)	20.43	16.11	16.40	21.87	20.40	29.64
9	Sulphur (mg/Kg)	61.18	63.55	66.88	65.18	60.66	58.22
10	Nickel (mg/Kg)	36.65	38.35	35.5	43.65	31.9	BDL
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	9.95	14.9	0.85	14.8	12.4	12.1
13	Chromium (mg/Kg)	57.05	80.5	49.45	77.1	108.8	22.55
14	Zinc (mg/Kg)	54.4	60.95	51.45	51.8	57.7	11.65
15	Copper (mg/Kg)	24.95	35.65	19.6	23.75	31.1	BDL
16	Manganese (mg/Kg)	815	821.5	764	761	802.5	818.5
17	Cobalt (mg/Kg)	3.5	7.5	8.7	5.2	6.25	1.05

Table 9: Physico-chemical characteristics of sediment samples collected fromOffshore location

S. No	Parameters	2A	2B	2C	2D	2 E	Control
							2
1	pH (1: 10 suspension)	8.79	8.77	8.43	8.13	8.22	8.31
2	Salinity (ppt)	13.21	11.60	30.30	12.50	13.60	15.90
3	Petroleum Hydrocarbon (µg/kg)	BDL	12.25	5.62	3.48	7.24	5.68
4	Magnesium (mg/Kg)	20600	20200	21050	20550	18950	19450
5	Sand (%)	22.6	22.2	23.5	14.6	18.9	21.7
	Silt (%)	17.0	49.8	63.1	24.4	16.5	17.6
	Clay (%)	60.4	28.0	13.4	61.0	64.6	60.7
6	Organic matter (%)	1.39	1.24	1.44	1.29	1.16	1.03
7	Total organic carbon (%)	0.81	0.72	0.84	0.75	0.66	0.6
8	Phosphorus (mg/Kg)	33.09	38.27	20.14	17.84	19.85	17.84
9	Sulphur (mg/Kg)	40.37	44.40	57.29	43.03	38.22	43.85
10	Nickel (mg/Kg)	9.1	16.35	31.85	9.9	BDL	24.05
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	9.8	17.4	19.9	5.25	17.7	6.75
13	Chromium (mg/Kg)	42.9	42.6	55.3	37.4	34.8	51.05
14	Zinc (mg/Kg)	43.9	47.75	57.6	52.25	45.6	74.15
15	Copper (mg/Kg)	4.95	11.65	20.7	6.65	5.25	19
16	Manganese (mg/Kg)	770.5	773.5	784	756.5	711.5	817.5
17	Cobalt (mg/Kg)	6.35	4.3	2.65	5.45	3.55	4.2

Table 10: Physico-chemical characteristics of sediment samples collected fromCargo jetty

S. No	Parameters	3A	3B	3 C	3D	3 E	Control
							3
1	pH (1: 10 suspension)	8.55	8.70	8.69	8.43	8.71	8.73
2	Salinity (ppt)	24.60	19.20	19.90	16.40	15.80	17.00
3	Petroleum Hydrocarbon (µg/kg)	6.28	4.28	10.28	BDL	11.58	13.48
4	Magnesium (mg/Kg)	21450	20300	20850	21350	20350	21650
5	Sand (%)	13.3	10.6	10.3	13.4	27.4	16.4
	Silt (%)	27.7	14.7	25.7	12.6	21.7	25.8
	Clay (%)	59.0	74.7	64.0	74.0	50.9	57.8
6	Organic matter (%)	0.98	0.82	0.93	0.72	1.03	0.87
7	Total organic carbon (%)	0.57	0.48	0.54	0.42	0.6	0.51
8	Phosphorus (mg/Kg)	15.53	27.62	21.87	12.94	20.14	24.74
9	Sulphur (mg/Kg)	34.96	42.22	44.66	42.44	37.70	47.18
10	Nickel (mg/Kg)	BDL	2.45	BDL	15.2	14.85	BDL
11	Lead (mg/Kg)	BDL	BDL	BDL	BDL	BDL	BDL
12	Cadmium (mg/Kg)	15.35	9.2	10.15	16.6	18	16.85
13	Chromium (mg/Kg)	69.5	33.75	15.1	124.9	48.65	33.55
14	Zinc (mg/Kg)	41.7	39.75	47.35	18.9	25.65	23.2
15	Copper (mg/Kg)	6.55	2.2	6.8	19.35	11.85	7.1
16	Manganese (mg/Kg)	785.5	774	712	774	807.5	801.5
17	Cobalt (mg/Kg)	3.3	4.8	3.85	7.25	3.75	5.6

Table 11: Physico-chemical characteristics of sediment samples collected fromPhang creek

Table 12: Comparison of the physico-chemical characteristics of the sedimentsamples of the present study (2023-24) with the previous year data

Parameters	Period of study (in year)								
	2021-2022			2022-2023			2023-24		
	S1	S2	S 3	S1	S2	S 3	S1	S2	S 3
pH (1: 10 suspension)	8.52	8.77	8.67	7.60	7.76	7.69	8.20	7.49	8.50
Salinity (ppt)	17.58	22.63	21.28	15.19	19.66	19.40	35.93	26.93	20.02
Petroleum Hydrocarbons	25.55	20.01	20.87	1.74	30.38	1.95			
(µg/kg)							0.86	4.41	9.74
Magnesium (mg/kg)	565.89	459.08	493.16	1102.75	2801.44	2457.53	1524.22	4284.03	20555.56
Sand (%)	61.90	39.23	15.48	20.85	37.51	22.67	38.06	48.24	26.07
Silt (%)	15.46	27.35	15.88	21.89	11.47	15.54	20.35	19.27	34.46
Clay (%)	22.64	33.42	68.63	57.25	51.02	61.79	41.59	32.49	39.47
Total organic carbon (%)	0.95	0.86	0.70	0.66	0.36	0.36	1.11	1.05	1.49
Phosphorus (mg/Kg)	27.28	31.13	19.93	26.56	29.01	26.33	0.65	0.59	0.87
Sulphur (mg/Kg)	69.57	66.10	62.06	21.54	17.78	34.00	23.52	9.62	21.93
Nickel (mg/Kg)	45.84	64.53	48.18	58.83	6.56	27.23	34.30	45.82	49.56
Lead (mg/Kg)	3.58	10.38	8.82	BDL	BDL	2.80	42.16	35.18	22.10
Cadmium (mg/Kg)	0.79	1.08	1.27	BDL	0.19	3.64	0	0	0.00
Chromium (mg/Kg)	BDL	BDL	BDL	BDL	BDL	84.57	12.66	0	12.66
Zinc (mg/Kg)	35.90	51.98	33.45	47.91	26.37	28.85	58.59	19.81	54.72
Copper (mg/Kg)	BDL	BDL	BDL	BDL	BDL	19.46	41.19	15.36	44.76
Cobalt (mg/Kg)	16.25	23.10	19.28	12.35	BDL	5.49	16.78	31.55	15.78

Note: BDL denotes Below Detection Limit.

When the past three years of data is concerned, *i.e.*, 2021-22 and 2022-23, the consolidated mean values of the sediment quality are shown in Table 12. Among the parameters studied, parameters such as pH, Salinity, Petroleum Hydrocarbon, Total organic carbon, Sulphur, Lead and Cobalt showed a decreasing trend in the current year (2023-24) when compared to the previous years (2021-22 and 2022-23).

Chapter 3Sediment Quality (Sub-tidal Fauna)

3.1. Introduction

"Planet Earth is dominated by the seas". One of the most important natural resources that cover much of the earth's surface is Ocean. Earth surface contains more than 97% of water in which the oceans show biggest part of the life. The five oceans together constitute approximately 71% of the world's water bodies. Indian Ocean is the third largest ocean in the world with average depth of 3,890 meters (12,760 ft). The Indian ocean's connection is a very large scale, including the Red Sea, East Africa, the Persian Gulf, Southern Arabia, India and Other Indian sub continental countries. This connection network connected people from all the coastal areas of the Indian Ocean and beyond, trading in aromatics, textiles, spices, precious stones, industrial productions, grain and an incredible range of other commodities and substances. Gujarat state of India shows longest coastline compare to other Indian states. Gujarat coastline is famous for various coastal ecosystems and habitats such as estuary, coral reefs, marshes, mangroves, and lagoons, rocky and sandy areas. The Kachchh, largest district of the country with an area of 45,652 sq. km. Deendayal Port Authority is (DPT) one among the 12 major ports of the country and it is located in India's western coastal region.

Benthos is nothing but water bottom communities or the organisms (floral and faunal) live in a benthic region regarding the sediment, rock and other substratum. They include mollusca (gastropods and bivalves), coral, sponges, worms (mostly polychaetes and nematode), crustacean crabs, other crustaceans, echinoderms, oysters etc. Benthic animals are considered as the organism which lives in the bottom layer of all types of ecosystems including saline water as well as in freshwater. However, this term 'benthos' is used as an expressive term for the entire bottom community. On the basis of distribution of benthos in water, they can be classified into three types which are, Endo-benthos, Epi-benthos (Pearson and Rosenberg, 1978) and Hyper-benthos (Mees and Jones, 1997). Benthos could also recognize as one of the best indicators to assess the health and productivity of aquatic ecosystems. The benthic particularly macro benthic communities are an integral part of the coastal biotic components. They

can serve as important food resource for the diverse groups of various organisms particularly bottom feeding animals. They are sensitive to wide range of environmental challenges including water movements, pollutants and living spaces (Martin et al., 2011), which make them to be considered as the important biological indicator species, which are used for monitoring marine environment. Based on size, Benthos mainly divided into 3 types namely, Macrobenthos (> 1 mm), Meiobenthos (< 1 mm or > 0.1 mm) and Microbenthos (< 0.1 mm).

The study was conducted in winter season at 3 sites of Deendayal Port Authority with the locations namely, Offshore, Cargo Jetty and Phang Greek.

3.2. Methodology

To studying the benthic organisms, triplicate samples were collected at each station using Van veen grab which covered an area of $0.04m^2$. The wet sediment was sieved with varying mesh sizes (0.5 mm-macrofauna) for segregating the organisms. The organisms retained in the sieve were fixed in 5-7% formalin and stained further with Rose Bengal solution for easy spotting at the time of sorting. The number of organisms in each grab sample was expressed as number/ meter square (No/m²). All the species were sorted, enumerated, and identified to the advanced taxonomic level possible with the consultation of available literature. The works of Fauvel (1953), Day (1967) were referred for polychaetes; Barnes (1980) and Lyla *et al.* (1999) for crustaceans; SubbaRao *et al.* (1991) and Ramakrishna (2003) for molluscs.

Further, the data were treated with univariate statistical methods in PRIMER (Ver. 6.) statistical software (Clarke and Warwick, 1994).

a) Shannon – Wiener index

In the present study, the data were analyzed for diversity index (H') by following Shannon – Wiener's formula (1949):

 $H' = -\sum^{S} Pi \log 2 Pi \dots i = 1$

which can be rewritten as

Studies on Dredged Materials for The Presence of Contaminants

$$H' = \frac{3.3219 (N \log N - \sum ni - \log ni)}{N}$$

where, H'= species diversity in bits of information per individual

ni = proportion of the samples belonging to the ith species

(number of individuals of the ith species)

N = total number of individuals in the collection and

$$\sum = \text{sum}$$

b) Species richness(S) was calculated using the following formula given by Margalef (1958)

c) Margalef index (d)

 $d = (S-1) / \log N$

d) Pielou's evenness index

The equitability (J') was computed using the following formula of Pielou (1966):

$$\frac{H'}{\log_2 S}$$
 or $\frac{H'}{\ln S}$

Where, J' = evenness; H' = species diversity in bits of information per individual and S = total number of species.

3.3. Results on Species Composition, Population density and Biomass during Season 1

3.3.1.Offshore

In Offshore region of Kandala port, total six sites were selected namely, (1A, 1B, 1C, 1D, 1E and 1- control). A total 4groups/species(of benthic community) of benthic animalswere observed in all stations at Offshore sites and they a Bivalves (Mollusca),Gastropods (Mollusca), Polychaeta worms (Annelida), Saccostrea sp (Bivalvia). All the data(Density and Biomass) expressed in (nos./m²), (gm/m²) respectively (Table 6). Crustacean animals (Bivalve), Placuna sp (Bivalvia), Pecten sp (Bivalvia), Razor clam (Bivalvia) and Scaphopoda (Mollusca) were totally absent in Offshore.

Highest population density of benthic organisms wasrecorded in station 1C-Offshore(975 nos/m²), whereas lowest in station 1control-Offshore(125nos/m²). The density range of all stations varied from 125 to 975nos./m². Bivalves and Polychaeta worms were more abundant among all the benthic organisms might be sandy-muddy or sandy substratum in bottom part of Offshore region. Low recorded benthos were Gastropods (Mollusca) and Saccostrea sp (Bivalvia) that indicated some part of substratum are hard (rocky) and algal growth association with animals. The highest biomass value (expressed wet weight) of benthic fauna was observed in station 1C-Offshore (3.11gm/m^2) and lowest value was 1control-Offshore (1.06 gm/m^2) (Table 13). Range of the Biomass was 1.06 to 3.11 gm/m^2 . Moderately Biomass values and also density values suggested mixing substratum, less availability of plenty food items and more predator pressure by higher animals. Intermediate association was also one responsible factor for the same. Variation in density and biomass in Offshore region because more influences by the Water Currents, Up welling - Down welling (Churning process of water) movements of water and Nutrients availability and Fluctuation in turbidity of water.

3.3.2. Cargo Jetty

In Cargo Jetty, frequently observed benthic groups were Bivalves, Gastropods, Crustacean animals and Saccostrea sp (Bivalvia). Less reported benthos were Placuna sp (Bivalvia), Pecten sp (Bivalvia) and Scaphopoda whereas Polychaeta worms (Annelida) was totally absent. The population density range noted between 100 to 3725(nos/m²) among all the stations (Cargo Jetty-2A, 2B, 2C, 2D, 2E &2-Control) during the study period. Highest and Lowest density were recorded in station <u>2control- Cargo Jetty</u>(1800nos./m²) and <u>2D & 2E-Cargo Jetty</u> (100 nos./m²) respectively.

Pecten sp (Bivalvia) and Razor clams (Bivalve) were only seen in 2control-Offshore whereas Placuna sp (Bivalvia) only observed in <u>2A-Cargo Jetty</u>. The Biomass value indicated a highestvalue in station <u>2control- Cargo Jetty</u> (19.17gm/m²) and lowest in <u>2D- Cargo Jetty</u> (1.82gm/m²) (Table 13). Average Biomass and Populationdensity

value of all station were 7.74gm/m², 1083 nos./m² respectively which indicated the moderate favourable environment condition of biota, water quality as well as substratum (mostly rocky) and also substratum of cargo jetty not suitable for Annelids.

3.3.3. Phang creek

Six Stations of Phang creek were selected for the studynamely <u>3A</u>, <u>3B</u>, <u>3C</u>, <u>3D</u>, <u>3E</u> <u>and 3-control-Phang Creek</u>.In this Phang Creek benthic organisms were mostly represented byGastropoda, Polychaeta worms (annelids) and Crustaceans.Other benthos like *Placuna sp*, *Pecten sp*, *Saccostrea sp* and Scaphopoda (Mollusca) were totally absent whereas Bivalves and Razor clams were rarely recorded.The population density was highest in station <u>3E-Phang Creek</u> (2850nos./m²) and on the other side, lowest density was recorded in <u>3C-Phang Creek</u> (25nos./m²).Station <u>3control-Phang Creek</u> comprises highest wet wt (20.65 gm/m²), whereas low value was recorded in<u>3C-Phang Creek(0.03 gm/m²)</u>.

Overall result (Offshore, Cargo Jetty and Phang creek) of macrofaunal community showed highest population density in 2control-Cargo Jetty (3725nos/m²) and high biomass was observed (20.65gm/m²) in 3control-Phang creek. Table 13 showed highest population values of Bivalves in 2control- Cargo Jetty (2050nos/m²) and same highest value of Gastropoda showed in 3E-Phang creek(1425nos/m²).

The lowest value comprised by the *Pecten sp*, *Placuna sp*, Scaphopoda and Razor clam including some were totally absent in some sites.Some absent or less frequently observed benthos indicated extreme weather condition (may be suddenly change temperature of running season), more stress condition and unfavourable environment condition for their survival.Bivalves and Gastropods, dominant groups,werepreferred rocky, sandy or mix substratum, and any other hard substrata.Polychaete wormsare preferred sandy-muddy substratum or sandy habitat.

Table 13 showed that average population density and biomass higher in Offshore, Cargo Jetty and some sites of Phang Creek area wheremostly rocky, sandy or covered with muddy area providing a unique habitats for benthos.*Low density and biomass was observed in mostly Phang creek area nd some parts of Off shore and Cargo Jetty* (*Table 13 and Figure 3*) which indicated stressful environment, seasonal effect, more anthropogenic activities and also might be some chemical and biological changes in water. The population density and biomass of benthic community largely affected by the symbiotic and intermediate relation between them or with other invertebrates and suitable rocky substratum or coral reef in bottom of sea. Availability of Plankton, as a food source, also affected the benthic animals (Table 13 and Fig. 3 & 4). Extremely hot weather condition (during April and May months) also more affected in Cargo Jetty and Phang creek regions of Kandla port area.

In benthic communities, recorded species at all sites were, *Pecten sp, Placuna sp,* Umbonium vestiarium Tellina sp., Clypeomorus bifasciata, Trochus sp, Radix sp, Nassarius sp, Nerita sp, Donax sp, Turris sp, Marcia sp, Dosinia sp, Donax sp, Anadara sp, Turris SP, Solen, Nereis sp, Saccostrea sp, *Optediceros* breviculum, Euolica sp etc. The percentage of occurrence (Table 13) was revealed highest group present by Bivalves- Mollusca (67%) next Gastropoda (61%) then following araePolychaeta worms (Annelida) (50%), Crustacean animals and Saccostrea sp (39%), Placuna sp (28%) and both Pecten sp and Scaphopoda (6%) respectively. Detail status of Population density, Group composition and biomass of the benthic community of all selected sites were depicted in (Table 13) and (Figure 3). Among all the stations, highest percentage composition recorded by Bivalves(40%) followed by Gastropods (27%), Polychaeta worms & Saccostrea sp (10%), Crustaceans (7%), Razor clam (3%) and 1% by Pecten sp, Scaphopoda and Placuna sp (Figure 4).

Phytoplankton abundance and their size, zooplankton body composition, patchy distribution of zooplankton, water currents, ebb and flow tides, and water churning process, changing in structure of muddy, rocky and sandy habitats are the main reasonsfor biomass and density fluctuation in Benthic communities. In Crustacean most commonly observed species are Crabs and attached Barnacles. Main Mollucsa families recorded Trochidae, Cerithidea, Turritellidae, Tellinidae, Mitridae,

Veneridae, Donacidae and Bucciniae etc. *Nereis sp* of anneliids was mostly observed in samples. More number of the broken bivalves, debris, plant items, broken gastropods, small pebbles and soil particles are frequently observed during benthic organism's study.

3.3.4.. Diversity Indices of Benthic Community

Various diversity indices calculation, showed that Shannon Diversity Index ranging from (0.00-1.34) indicated very low diversity. Highest diversity indices were recorded in Station 2B-Cargojetty (1.34) where four groups/species of benthos presented where as Shannon indices nil (zero) observed in 3A & 3C- Phang creek where only one benthic group present and density value was very low. Comparatively less Shannon indices value very low in Phang creek area number of benthos group/species present between 1 to 4 nos. The evenness values ranged between (0.61 to 1). The highest evenness value (1) is observed in stations 2D & 2E (Cargo Jetty) and 3A,3B & 3C (Phang creek) where only 1 or 2 benthic groups were present with less population whereas the lowest evenness index value 0.61 was at 2control-Cargo Jetty. Evenness value "1" indicated all organisms occurred in same area or mostly same group.Simpson's Index value ranged between 0.00 to 0.73 indicated to lower to very less moderate diversity. The Margalef value showed range of 0.00 to 0.61 indicated high variation in species/group numbers (Table 14).

Studies on Dredged Materials for The Presence of Contaminants

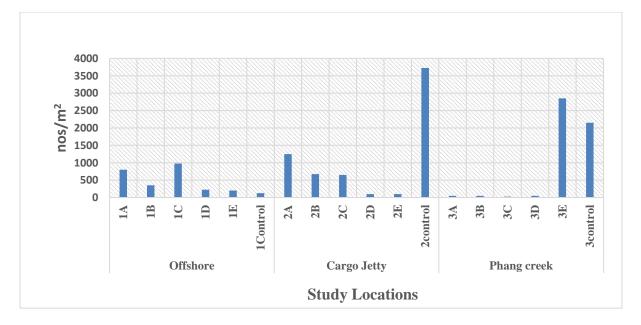


Figure 3. Population density of benthic organisms (nos/m²) in various sites

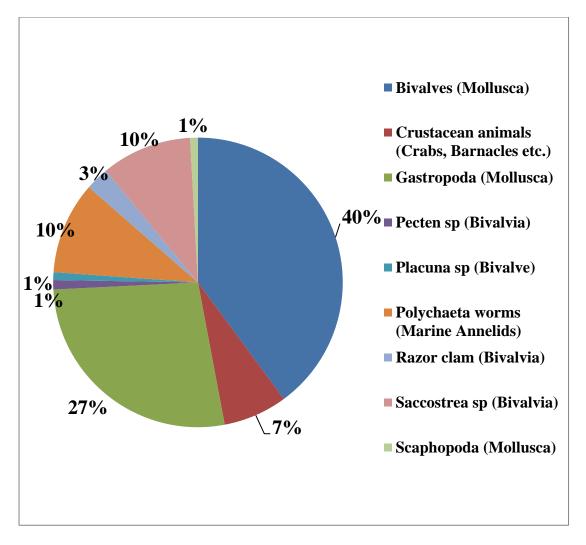


Figure 4. Percentage composition of benthic organisms in various sites

Name of Station	Offsh	ore					Cargo	Jetty					Phan	g creek					
	1A	1B	1C	1D	1E	1- Control	2A	2B	2C	2D	2E	2- Control	3A	3B	3C	3D	3E	3- Control	% of Occurrence
Name of Benthic G	roups																		
Bivalves (Mollusca)	250	125	300	100	0	50	550	125	50	50	0	2050	0	0	0	0	1025	1050	67
Crustacean animals (Crabs, Mysis etc.)	0	0	0	0	0	0	0	175	300	50	50	0	0	0	0	25	300	125	39
Gastropoda (Mollusca)	50	100	25	0	0	0	325	250	50	0	50	750	0	25	0	0	1425	850	61
Pecten sp (Bivalvia)	0	0	0	0	0	0	0	0	0	0	0	150	0	0	0	0	0	0	6
Placuna sp (Bivalve)	0	0	0	0	0	0	125	0	0	0	0	0	0	0	0	0	0	0	28
Polychaeta worms (Marine Annelids)	500	125	650	0	50	25	0	0	0	0	0	0	50	25	25	25	0	0	50
Razor clam (Bivalvia)	0	0	0	0	0	0	0	0	0	0	0	150	0	0	0	0	100	125	17
Saccostrea sp (Bivalvia)	0	0	0	125	150	50	250	125	250	0	0	500	0	0	0	0	0	0	39
Scaphopoda (Mollusca)	0	0	0	0	0	0	0	0	0	0	0	125	0	0	0	0	0	0	6
Total Population Density Nos/m ²	800	350	975	225	200	125	1250	675	650	100	100	3725	50	50	25	50	2850	2150	
Biomass (wet weight) gm/m ²	2.06	2.14	3.11	1.28	1.38	1.06	11.14	7.2	5.24	1.82	1.88	19.17	0.56	0.96	0.03	0.6	15.65	20.65	

Table 13. Macrobenthos distribution in different sites of Deendayal Port

Table 14. Diversity indices of benthic faunal groups at various station of Deendayal Port

Variables			0	ffshore					Ca	rgo Jetty					Phang	Creek		
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2E	2-contrl	3A	3B	3C	3D	3E	3cont
Taxa_S	3	3	3	2	2	3	4	4	4	2	2	6	1	2	1	2	4	4
Individuals (Nos./m ²)	800	350	975	225	200	125	1250	675	650	100	100	3725	50	50	25	50	2850	2150
Dominance_D	0	0	1	1	1	0	0	0	0	1	1	0	1	1	1	1	0	0.40
Shannon Diversity Index (H)	0.83	1.09	0.73	0.69	0.56	1.06	1.26	1.34	1.12	0.69	0.69	1.29	0.00	0.69	0.00	0.69	1.07	1.05
Simpson_1-D	0.51	0.66	0.46	0.49	0.38	0.64	0.69	0.73	0.63	0.50	0.50	0.63	0.00	0.50	0.00	0.50	0.61	0.60
Evenness_e^H/S	0.76	0.99	0.69	0.99	0.88	0.96	0.88	0.96	0.77	1.00	1.00	0.61	1.00	1.00	1.00	1.00	0.73	0.71
Menhinick	0.11	0.16	0.10	0.13	0.14	0.27	0.11	0.15	0.16	0.20	0.20	0.10	0.14	0.28	0.20	0.28	0.07	0.09
Margalef	0.30	0.34	0.29	0.18	0.19	0.41	0.42	0.46	0.46	0.22	0.22	0.61	0.00	0.26	0.00	0.26	0.38	0.39

3.4. Results on Species Composition, Population density and Biomass of Macrofauna during Season 2

3.4.1.Offshore

In Offshore region of Kandala port, total six sites were selected namely, (1A, 1B, 1C, 1D, 1E and 1- control). A total 6 groups/species(of benthic community) of benthic animals were observed in all stations at Offshore sites and they a Bivalves (Mollusca),Gastropods (Mollusca), Placuna sp (Bivalvae), Crustacean animals, Polychaeta worms (Annelida), Saccostrea sp (Bivalvia). All the data (Density and Biomass) expressed in (nos./m²), (gm/m²) respectively (Table 15). Pecten sp (Bivalvia), Worm snails and Scaphopoda (Mollusca) were totally absent in Offshore.

Highest population density of benthic organisms was recorded in station <u>1A-Offshore</u>(675 nos/m²), whereas lowest in station <u>1C-Offshore</u> (75nos/m²). The density range of all stations varied from 75 to 675nos./m². Bivalves and Gastropods were more abundant among all the benthic organisms might be sandy-muddy or rocky substratum in bottom part of Offshore region. Low recorded benthos were Polychaeta worms and Saccostrea sp (Bivalvia) that indicated less part of substratum are muddy and not suitable attachement. The highest biomass value (expressed wet weight) of benthic fauna was observed in station <u>1D-Offshore</u> (4.36gm/m²) and lowest value was <u>1C-Offshore</u> (0.06 gm/m²) (Table 15). Range of the Biomass was 0.06 to 4.36 gm/m². Moderately Biomass values and also density values suggested mixing substratum, less availability of plenty food items and more predator pressure by higher animals. Intermediate association was also one responsible factor for the same. Variation in density and biomass in Offshore region because more influences by the Water Currents, Up welling - Down welling (Churning process of water) movements of water and Nutrients availability and Fluctuation in turbidity of water.

3.4.2.Cargo Jetty

In Cargo Jetty, frequently observed benthic groups were Bivalves, Gastropods, *Placuna sp* (Bivalvae), *Pholas sp* and less reported benthos were Razor clam,

Saccostrea sp , Worm snail and Scaphopoda. Crustacean animal group was totally absent. The population density range noted between 150 to $3300(nos/m^2)$ among all the stations (Cargo Jetty-2A, 2B, 2C, 2D, 2E &2-Control) during the study period. Highest and Lowest density were recorded in station 2C- Cargo Jetty(3300nos./m²) and 2E-Cargo Jetty (150nos./m²) respectively.

Biomass value indicated a highest value in station 2C- Cargo Jetty (40.9gm/m²) and lowest in 2control- Cargo Jetty (2.27gm/m²) (Table 15). Average Biomass and Population density value of all station were 12.08gm/m², 1020 nos./m² respectively which indicated the moderate favourable environment condition of biota, water quality as well as substratum (mostly rocky).

3.4.3. Phang creek

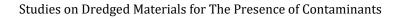
Six Stations of Phang creek were selected for the study namely 3A, 3B, 3C, 3D, 3E and 3-control-Phang Creek. In this Phang Creek benthic organisms were mostly represented by Polychaeta worms (annelids). Only three groups were present namely Polychaeta worms, Bivalve and Gastropods whereas Other were totally absent. The population density was highest in station 3A and 3B -Phang Creek (75nos./m²) and on the other side, lowest density was recorded in 3D-Phang Creek (25nos./m²). Station 3B-Phang Creek comprises highest wet wt (0.86gm/m²), whereas low value was recorded in3D & 3E-Phang Creek(0.03 gm/m²).

Overall result (Offshore, Cargo Jetty and Phang creek) of macrofaunal community showed highest population density in 2C-Cargo Jetty (3300nos/m²) and high biomass was observed (40.9gm/m²) in 2C-Cargo Jetty. Table 15 showed highest population values of Bivalves in 2C- Cargo Jetty (1750nos/m²) and same highest value of Gastropoda showed in 2C- Cargo Jetty (625nos/m²).

The lowest value comprised by the *Pecten sp, Placuna sp, Pholas sp,* Scaphopoda, Worm snails, Razor clam including some were totally absent in some sites. Some absent or less frequently observed benthos indicated extreme weather condition (may be suddenly change temperature of running season), more stress condition and

unfavourable environment condition for their survival. Bivalves and Gastropods, dominant groups were preferred rocky, sandy or mix substratum, and any other hard substrata. Polychaete worms are preferred sandy-muddy substratum or sandy habitat mostly in Phang creek.

Table 15 showed that average population density and biomass higher in Cargo Jetty and after Offshore where mostly rocky, sandy or covered with muddy area and algal growth providing a unique habitats for benthos. *Low density and biomass was observed in mostly Phang creek area and some parts of Off shore* (Table 15 and Figure 5) *which indicated stressful environment, seasonal effect, more anthropogenic activities and also might be some chemical and biological changes in water.* The population density and biomass of benthic community largely affected by the symbiotic and intermediate relation between them or with other invertebrates and suitable rocky substratum or coral reef in bottom of sea. Availability of Plankton, as a food source, also affected the benthic animals (Table 15 and Fig. 5 & 6). Extremely mix weather condition (during May and June months) also more affected in Offshore and Phang creek regions of Kandla port area.


In benthic communities, recorded species at all sites were, *Pecten sp, Placuna sp, Umbonium vestiarium Tellina sp., Clypeomorus bifasciata, Trochus sp, Radix sp,Nassarius sp, Nerita sp, Donax sp, Turris sp,Marcia sp, Dosinia sp, Donax sp, Anadara sp, Turris sp, Solen, Nereis sp, Saccostrea sp, Optediceros breviculum,Euolica sp etc. The percentage of occurrence (Table 15) was revealed highest group present by Bivalves and Gastropoda (72%) then following area Polychaeta worms (Annelida) (56%), Placuna sp (33%) and then others. Detail status of Population density, Group composition and biomass of the benthic community of all selected sites were depicted in (Table 15) and (Figure 6). Among* all the stations, highest percentage composition recorded by Bivalves (43%) followed by Gastropods (22%), *Placuna sp (14%)* and others (Figure 6).

Phytoplankton abundance and their size, zooplankton body composition, patchy distribution of zooplankton, water currents, ebb and flow tides, and water churning

process, changing in structure of muddy, rocky and sandy habitats are the main reasons for biomass and density fluctuation in Benthic communities. In Crustacean most commonly observed species are Crabs and attached Barnacles. Main Mollucsa families recorded Trochidae, Cerithidea, Turritellidae, Tellinidae, Mitridae, Veneridae, Donacidae and Bucciniae etc. *Nereis sp* of anneliids was mostly observedin samples. More number of the broken bivalves, debris, plant items, broken gastropods, small pebbles and soil particles are frequently observed during benthic organism's study.

3.4.4. Diversity Indices of Benthic Community

The data in table 16 showed various diversity indices calculation, showed that Shannon Diversity Index ranging from (0.00-1.52) indicated very low diversity. Highest diversity indices was recorded in Station 2B-Cargojetty (1.52) where six groups/species of benthos presented where as Shannon indices nil (zero) observed in 3C, 3D, 3E, 3Control- Phang creek where only one benthic group present and density value was very low. Comparatively less Shannon indices value very low in Phang creek area number of benthos group/species present between 1 to 2 nos. The evenness values ranged between (0.53 to 1). The highest evenness value (1) is observed in stations 3C, 3D, 3E and 3 Control (Phang creek) where only 1 or 2 benthic groups. Evenness value "1" indicated all organisms occurred in same area or mostly same group. Simpson's Index value ranged between 0.00 to 0.75 indicated to lower to very less moderate diversity. The Margalef value showed range of 0 - 0.86 indicated high variation in species/group numbers (Table 16).

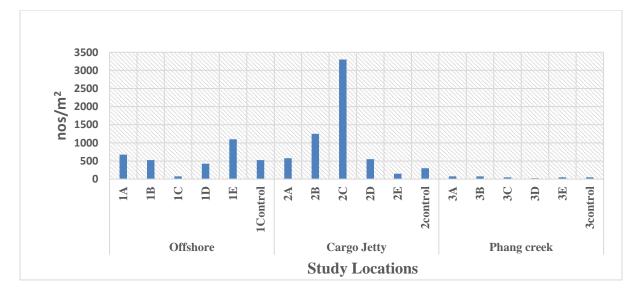


Figure 5. Population density of benthic organisms (nos/m²) in various sites

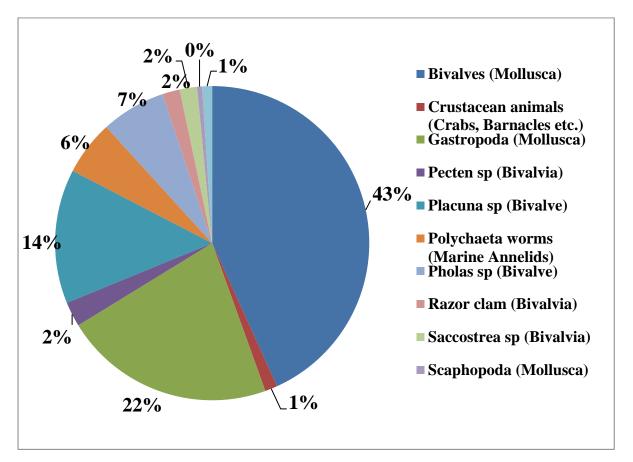


Figure 6. Percentage composition of benthic organisms in various sites

Name of Station	Offsho	ore					Cargo	Jetty					Phang	g creek					
	1A	1B	1C	1D	1E	1- Control	2A	2B	2C	2D	2E	2- Control	3A	3B	3C	3D	3 E	3- Control	% of Occurrence
Name of Benthic Groups																			
Bivalves (Mollusca)	350	225	50	250	500	175	125	250	1750	250	100	175	25	0	0	0	0	0	72
Crustacean animals (Crabs, Mysis etc.)	0	0	0	0	125	0	0	0	0	0	0	0	0	0	0	0	0	0	6
Gastropoda (Mollusca)	175	125	25	50	175	225	175	150	625	175	50	125	0	50	0	0	0	0	72
Pecten sp (Bivalvia)	0	0	0	0	0	0	0	0	250	0	0	0	0	0	0	0	0	0	6
Placuna sp (Bivalve)	150	175	0	0	300	0	175	250	300	0	0	0	0	0	0	0	0	0	33
Polychaeta worms (Marine Annelids)	0	0	0	125	0	50	0	50	0	75	0	0	50	25	50	25	50	50	56
Pholas sp (Bivalve)	0	0	0	0	0	0	50	500	50	50	0	0	0	0	0	0	0	0	22
Razor clam (Bivalvia)	0	0	0	0	0	0	0	0	175	0	0	0	0	0	0	0	0	0	6
Saccostrea sp (Bivalvia)	0	0	0	0	0	75	0	0	100	0	0	0	0	0	0	0	0	0	11
Scaphopoda (Mollusca)	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	6
Worm snail (Vermitidae)	0	0	0	0	0	0	50	50	0	0	0	0	0	0	0	0	0	0	11
Total Population Density Nos/m ²	675	525	75	425	1100	525	575	1250	3300	550	150	300	75	75	50	25	50	50	
Biomass (wet weight) gm/m ²	4.24	2.02	0.06	4.36	2.94	1.02	14.32	7.34	40.9	5.1	3.2	2.27	0.76	0.86	0.07	0.03	0.03	0.08	

Studies on Dredged Materials for The Presence of Contaminants

Variables				Offshore					Car	go Jetty	y				Phang	Creek		
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2E	2-contrl	3 A	3B	3 C	3D	3E	3cont
Taxa_S	3	3	2	3	4	4	5	6	8	4	2	2	2	2	1	1	1	1
Individuals (Nos./m ²)	675	525	75	425	1100	525	575	1250	3300	550	150	300	75	75	50	25	50	50
Dominance_D	0.39	0.35	0.56	0.45	0.32	0.32	0.25	0.26	0.34	0.33	0.56	0.51	0.56	0.56	1.00	1.00	1.00	1.00
Shannon Diversity Index (H)	1.03	1.07	0.64	0.92	1.25	1.23	1.48	1.52	1.45	1.21	0.64	0.68	0.64	0.64	0.00	0.00	0.00	0.00
Simpson_1-D	0.61	0.65	0.44	0.55	0.68	0.68	0.75	0.74	0.66	0.67	0.44	0.49	0.44	0.44	0.00	0.00	0.00	0.00
Evenness_e^H/S	0.93	0.97	0.94	0.84	0.87	0.86	0.88	0.76	0.53	0.84	0.94	0.99	0.94	0.94	1.00	1.00	1.00	1.00
Menhinick	0.12	0.13	0.23	0.15	0.12	0.17	0.21	0.17	0.14	0.17	0.16	0.12	0.23	0.23	0.14	0.20	0.14	0.14
Margalef	0.31	0.32	0.23	0.33	0.43	0.48	0.63	0.70	0.86	0.48	0.20	0.18	0.23	0.23	0.00	0.00	0.00	0.00

Table 16. Diversity indices of benthic faunal groups at various station of Deendayal Port –Kandla (Benthos)

3.5. Results on Species Composition, Population density and Biomass of Macrofauna during Season 3

3.5.1. Offshre

In Offshore region of Kandala port, total six sites were selected namely, (1A, 1B, 1C, 1D, 1E and 1- control). A total 6 groups/species(of benthic community) of benthic animals were observed in all stations at Offshore sites and they a Bivalves (Mollusca),Gastropods (Mollusca), Crustacean animals, Polychaeta worms (Annelida), Saccostrea sp (Bivalvia), *Pirenella cingulata* (gastropoda). All the data(Density and Biomass) expressed in (nos./m²), (gm/m²) respectively (Table 17).

Highest population density of benthic organisms was recorded in station 1control-Offshore(1600nos/m²), whereas lowest in station 1B-Offshore(325nos/m²). The density range of all stations varied from 325 to 1600nos./m². Bivalves and Gastropods were more abundant among all the benthic organisms might be sandy-muddy or rocky substratum in bottom part of Offshore region. Low recorded benthos were Crustacean animals and Pirenella cingulata that indicated less part of substratum are muddy and not suitable rock attachement. The highest biomass value (expressed wet weight) of benthic fauna was observed in station 1control-Offshore (17.46gm/m²) and lowest value was 1B-Offshore (2.19 gm/m²) (Table 6). Range of the Biomass was 2.19 to 17.46 gm/m². Moderately Biomass values and also density values suggested mixing substratum, less availability of plenty food items and more predator pressure by higher animals. Intermediate association was also one responsible factor for the same. Variation in density and biomass in Offshore region because more influences by the Water Currents, Up welling - Down welling (Churning process of water) movements of water and Nutrients availability and Fluctuation in turbidity of water. Variation in substratum is also a one responsible factor.

3.5.2. Cargo Jetty

In Cargo Jetty, frequently observed benthic groups were Crustacean animals and Gastropods less reported benthos were Bivalves, *Pirenella cingulta* and Polychaeta

worms. The population density range noted between 50 to 275(nos/m²) among all the stations (Cargo Jetty-2A, 2B, 2C, 2D, 2E &2-Control) during the study period. Highest and Lowest density were recorded in station 2D- Cargo Jetty(275nos./m²) and 2C-Cargo Jetty (50nos./m²) respectively.

Biomass value indicated a highest value in station 2D- Cargo Jetty (4.81gm/m²) and lowest in 2C- Cargo Jetty (0.36gm/m²) (Table 17). Average Biomass and Population density value of all station were 2.48gm/m², 167nos./m² respectively which indicated the low to moderate environment condition of biota, water quality as well as substratum (mostly rocky).

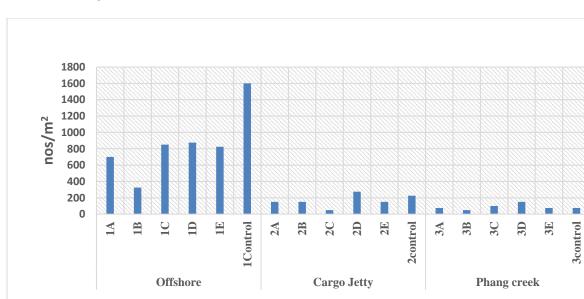
3.5.3. Phang creek

Six Stations of Phang creek were selected for the study namely 3A, 3B, 3C, 3D, 3E and 3-control-Phang Creek. In this Phang Creek benthic organisms were mostly represented by Polychaeta worms (annelids). Only four groups were present namely Polychaeta worms, Bivalve, Crustacean animals, Gastropods whereas *Pirenella cingulata* and *Saccostrea sp* were totally absent. Crustacean animals was only noted in 3D-Phang creek. Polychaeta worms ware more abundant because of suitable muddy environment. The population density was highest in station <u>3D -Phang Creek</u> (150nos./m²) and on the other side, lowest density was recorded in <u>3B-Phang Creek</u> (50nos./m²). Station <u>3D -Phang Creek</u> comprises highest wet wt (0.26gm/m²), whereas low value was recorded in<u>3B & 3control-Phang Creek</u>(0.05 gm/m²).

Overall result (Offshore, Cargo Jetty and Phang creek) of macrofaunal community showed highest population density in 1control-Offshore (1600nos/m²) and high biomass was observed (17.46gm/m²) in 1control-Offshore. Table 17 showed highest population values of Bivalves in 1control- Offshore (800nos/m²) and same highest value of Gastropoda showed in 1D- Cargo Jetty (475nos/m²). The lowest value comprised by the *Pirenella cingulata and Saccostrea sp (Bivalves)* including some were totally absent in some sites. Some absent or less frequently observed benthos indicated extreme weather condition (may be suddenly change temperature of running season), more stress condition and unfavourable environment condition for their

survival. Bivalves and Gastropods, dominant groups were preferred rocky, sandy or mix substratum, and any other hard substrata. Polychaete worms are preferred sandymuddy substratum or sandy habitat mostly in Phang creek.

Table 17 showed that average population density and biomass higher in Offshore and after Cargo jetty where mostly rocky, sandy or some part covered with muddy area and algal growth providing a unique habitats for benthos. *Low density and biomass was observed in mostly Phang creek area (Table 6 and Figure 7) which indicated stressful environment, seasonal effect (rainy time), more anthropogenic activities and also might be some chemical and biological changes in water.* The population density and biomass of benthic community largely affected by the symbiotic and intermediate relation between them or with other invertebrates and suitable rocky substratum or coral reef in bottom of sea. Availability of Plankton, as a food source, also affected the benthic animals (Table 17 and Fig. 7 & 8). Extremely mix weather condition (during June and July months) also more affected in Cargo jetty and Phang creek regions of Deendayal port area.


In benthic communities, recorded species at all sites were *Clypeomorus bifasciata*, *Trochus sp*, *Radix sp*, *Donax sp*, *Turris sp*, *Marcia sp*, *Dosinia sp*, *Donax sp*, *Anadara sp*, *Turris sp*, *Solen*, *Nereis sp*, *Saccostrea sp*, *Optediceros breviculum etc*. The percentage of occurrence (Table 17) was revealed highest group present by Gastropoda (72%) then following are Polychaeta worms (56%), Bivalves and Crustacean animals (39%), Placuna sp (33%), Saccostrea sp (17%) and and then others. Detail status of Population density, Group composition and biomass of the benthic community of all selected sites were depicted in (Table 17) and (Figure 7). Among all the stations, highest percentage composition recorded by Gastropoda (35%) followed by Bivalves (24%), *Saccostrea sp* (16%), Polychaeta worms (13%) and others (Figure 8).

Phytoplankton abundance and their size, zooplankton body composition, patchy distribution of zooplankton, water currents, ebb and flow tides, and water churning process, changing in structure of muddy, rocky and sandy habitats are the main

reasons for biomass and density fluctuation in Benthic communities. In Crustacean most commonly observed species are Crabs and attached Barnacles. Main Mollucsa families recorded Trochidae, Cerithidea, Turritellidae, Tellinidae, Donacidae and Bucciniae etc. *Nereis sp* of anneliids was mostly observed in samples. More number of the broken bivalves, debris, plant items , broken gastropods, small pebbles and soil particles are frequently observed during benthic organism's study.

3.5.4. Diversity Indices of Benthic Community

Table 18 showed various diversity indices calculation, showed that Shannon Diversity Index ranging from (0.00-1.45) indicated very low diversity. Highest diversity indices was recorded in Station 2D-Cargojetty (1.45) whereas Shannon indices nil (zero) observed in 1A, 2A, 2B, 3B. Comparatively less Shannon indices value very low in Phang creek area number of benthos group/species present between 1 to 3 nos. The evenness values ranged between (0.47 to 1). The highest evenness value (1) is observed in stations Offshore (1A), Cargo jetty (2A and 2B) and Phang creek (3B). Evenness value "1" indicated all organisms occurred in same area or mostly same group. Simpson's Index value ranged between 0.00 to 0.73 indicated to lower to very less moderate diversity. The Margalef value showed range of 0.00 to 0.56 indicated high variation in species/group numbers (Table 18).

Studies on Dredged Materials for The Presence of Contaminants

Study Locations

Figure 7. Population density of benthic organisms (nos/m²)in various sites

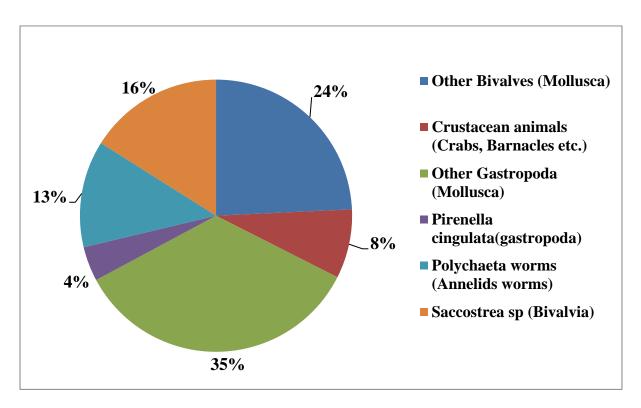


Figure 8. Percentage composition of benthic organisms in various sites.

Name of Station	Offsho	ore					Cargo	o Jetty					Phan	g creek					
	1A	1B	1C	1D	1E	1- Control	2A	2B	2C	2D	2E	2- Control	3A	3B	3C	3D	3E	3- Control	% of Occurrence
Nameof Benthic Groups													·						
Other Bivalves (Mollusca)	0	100	0	300	350	800	0	0	25	0	0	0	25	0	0	25	0	0	39
Crustacean animals (Crabs, Mysis etc.)	175	50	0	0	0	0	150	50	25	0	0	50	0	0	0	50	0	0	39
Other Gastropoda (Mollusca)	250	175	175	475	425	250	0	0	0	125	150	175	0	0	50	25	25	25	72
Pirenella cingulata(gastropoda)	0	0	125	0	0	0	0	0	0	150	0	0	0	0	0	0	0	0	11
Polychaeta worms (Marine Annelids)	0	0	300	100	50	0	0	100	0	0	0	0	50	50	50	50	50	50	56
Saccostrea sp (Bivalvia)	275	0	250	0	0	550	0	0	0	0	0	0	0	0	0	0	0	0	17
Total Population Density Nos/m ²	700	325	850	875	825	1600	150	150	50	275	150	225	75	50	100	150	75	75	39
Biomass (wet weight) gm/m ²	6.36	2.19	7.31	14.19	7.23	17.46	2.12	1.75	0.36	4.81	1.16	4.66	0.08	0.05	0.17	0.26	0.15	0.05	

Table 17. Macrobenthos distribution in different sites of Deendayal Port

			C	ffshore					Ca	rgo Jetty	7				Phang	Creek		
	1A	1 B	1C	1 D	1E	1-control	2A	2B	2C	2D	2 E	2-contrl	3 A	3B	3C	3D	3 E	3cont
Variables						1						1						
Taxa_S	1	2	3	5	4	2	1	1	5	5	4	5	3	1	3	3	4	3
Individuals (Nos./m ²)	50	75	200	3225	900	400	50	25	1400	1225	1800	2125	425	50	2300	2225	2250	2800
Dominance_D	1.00	0.56	0.38	0.39	0.41	0.63	1.00	1.00	0.32	0.27	0.33	0.28	0.45	1.00	0.74	0.72	0.67	0.68
Shannon Diversity Index (H)	0.00	0.64	1.04	1.23	1.06	0.56	0.00	0.00	1.27	1.45	1.21	1.41	0.92	0.00	0.49	0.54	0.64	0.56
Simpson_1-D	0.00	0.44	0.63	0.61	0.59	0.38	0.00	0.00	0.68	0.73	0.67	0.72	0.55	0.00	0.26	0.28	0.33	0.32
Evenness_e^H/S	1.00	0.94	0.94	0.69	0.72	0.88	1.00	1.00	0.71	0.85	0.84	0.82	0.84	1.00	0.54	0.57	0.47	0.58
Menhinick	0.14	0.23	0.21	0.09	0.13	0.10	0.14	0.20	0.13	0.14	0.09	0.11	0.15	0.14	0.06	0.06	0.08	0.06
Margalef	0.00	0.23	0.38	0.50	0.44	0.17	0.00	0.00	0.55	0.56	0.40	0.52	0.33	0.00	0.26	0.26	0.39	0.25

Table 18: Diversity indices of macrobenthic fauna in three locations during 2023-24 at Deendayal Port

Chapter 4 Marine Water Quality (Physico-chemical)

4.1. Introduction

In recent decades, there has been a notable deterioration in aquatic ecosystems primarily caused by the presence of a diverse array of organic and inorganic contaminants. Among these pollutants, heavy metals (HMs) and microplastics (MPs) have emerged as significant contributors to this environmental degradation (Frew et al., 2020; Saha et al., 2016). These substances are recognized for their capability to infiltrate and accumulate within the aquatic food chain, making them hazardous pollutants in aquatic environments (Olojo et al., 2005). Of particular concern are heavy metals due to their toxic nature, long-lasting presence, resistance to degradation, the potential for bioaccumulation, and the ability to magnify up the food chain, all of which have raised global alarms (Begum et al., 2013; Cai et al., 2017).

Heavy metal pollution in aquatic ecosystems can be attributed to a variety of sources, including natural factors such as atmospheric deposition and weathering (Ebrahimpour and Mushrifah, 2010; Hamidian et al., 2016) as well as human activities like mining, agricultural runoff, sewage discharge, industrial effluent release, gasoline leaks from fishing vessels, and accidental chemical waste spills (Arulkumar et al., 2017). It is essential to recognize that certain heavy metals, such as copper (Cu), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), manganese (Mn), and chromium (Cr), play vital roles in physiological processes and are necessary for the proper biological functioning of organisms in trace amounts. However, exposure to nonessential heavy metals can lead to various health concerns, including renal, cardiovascular, nervous, and bone diseases, as well as immune-related issues (Abadi et al., 2018; Madreseh et al., 2018). It is crucial to acknowledge that all heavy metals become toxic when their concentration exceeds a certain threshold level (Makedonski et al., 2017). In light of these concerns, it is imperative to assess the various characteristics of water in order to determine the extent of pollutant presence in aquatic environments.

4.2. Materials and Methods

In the present study, the marine water and marine sediment samples were collected using standard protocol and analysis of the same was done following standard methods for marine water and sediment analysis as prescribed by APHA (2012), NIO manual (1982) and ICMAM Manual (2012). Surface water samples for general analysis were collected using a clean polyethylene bucket while an adequately weighted Niskin sampler was used to collect water samples from the bottom. A glass bottle sampler (1 L) was used for collecting water samples at 1 m below the surface. Parameters such as pH, Temperature, Salinity were recorded on spot using hand held meters and the same was also verified in the Laboratory. The water samples collected were stored in refrigerated conditions until further analysis of other parameters. As per the standard protocol, the fixatives and preservatives were added to the samples in case of parameters such as Dissolved Oxygen using Winkler A&B solution immediately, Chemical Oxygen Demand using concentrated H₂SO₄ to bring the <2 pH and preservation using nitric acid for heavy metals. In case of biological characteristics, the marine water samples for planktonic analysis were added with formalin. In general, all the collected water and sediment samples were stored in a sterile, polythene bottles and ziplock bags in an icebox to maintain suitable conditions till it is brought to the Laboratory. The list of parameters (Table 19) and the method adopted for the analysis of samples are detailed below.

S. No	Physico-chemical and Biological parameters
1	pH
2	Salinity (ppt)
3	Total Dissolved Solids (mg/L)
4	Total Suspended Solids (mg/L)
5	Turbidity (NTU)
6	Dissolved Oxygen (mg/L)
7	Bio-Chemical Oxygen Demand (mg/L)
8	Chemical Oxygen Demand (mg/L)
9	Phenolic compound ($\mu g/L$)
10	Petroleum Hydrocarbons (µg/L)
11	Oil and grease (mg/L)
12	Cadmium (mg/L)
13	Lead (mg/L)
14	Chromium (mg/L)
15	Copper (mg/L)
16	Cobalt (mg/L)
17	Nickel (mg/L)
18	Zinc (mg/L)
19	Magnesium (mg/L)
20	Chlorophyll (mg/m ³)
21	Phaeophytin (mg/m ³)
22	Phytoplankton
	Phytoplankton cell counts (no/m3)
	Total Genera (no.)
	Major Genera
23	Zooplankton
	Biomass (ml/100m ³)
	Population (no/100m ³)
	Total Group (no.)
	Major Groups

 Table 19: Physico-chemical and biological characteristics of marine water

4.2.1. pH and Temperature

A Thermo fisher pH / EC / Temperature meter was used for pH and Temperature measurements. The instrument was calibrated with standard buffers just before use.

4.2.2. Salinity

A suitable volume of the sample was titrated against silver nitrate (20 g/l) with potassium chromate as an indicator. The chlorinity is estimated and from that salinity values were derived using formula.

4.2.3. Total Dissolved Solids (TDS)

The samples were subjected for gravimetric procedure for confirmation of the readings obtained from the hand-held meter. About 100 ml of the water sample was taken in a beaker and filtered which was then dried totally in a Hot Air Oven (105°C). TDS values were calculated using the difference in the initial and final weight.

4.2.4. Total Suspended Solids (TSS)

Hundred ml of the sample was filtered through each pre-weighed filter and placed in the Hot air oven at specified temperature as per the protocol for 1 hour. The filter paper was allowed to cool in a desiccator and obtain a constant weight by repeating the drying and desiccation steps.

4.2.5. Turbidity

The sample tube (Nephlometric cuvette) was filled with distilled water and placed in the sample holder. The lid of the sample compartment was closed. By adjusting the *SET ZERO*' knob, the meter reading was adjusted to read zero. The sample tube with distilled water was removed and the 40 NTU standard solution was filled in the tube and the meter reading was set to read 100. Other standards were also run. The turbidity of the marine water sample was then found out by filling the sample tube with the sample, and the reading was noted.

4.2.6. Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD)

DO was determined by Winkler's method. For the determination of BOD, direct unseeded method was employed. The sample was filled in a BOD bottle in the field

and incubated in the laboratory for 3 days after which DO was again determined and the difference was calculated.

4.2.7. Chemical Oxygen Demand (COD)

A known quantity of sea water was placed in a 50 ml Erlenmeyer flask and to which 3.0 g of silver sulphate was added and kept in a magnetic stirrer for proper mixing at room temperature to remove the chloride interference in the form of Silver chloride precipitate. The sample with white precipitate turned to a fade lilac mixed coloured precipitate is the indication. At this point, mixing of samples was stopped and the flasks were kept at 40° inclined position. Sedimentation of the coloured precipitate was very quick and 20 ml of the cleared sea water was taken carefully from the upper end of the flask bottom after a rest period of 5-10 min. To the 20ml of sea water sample diluted with 150 ml of distilled water, to which 10 ml of standard $K_2Cr_2O_7$ was added, to which 30 ml of Sulphuric acid was added. The tubes were connected to condensers and refluxed for 2 hours at 150 ± 2^{0} C. After refluxion, the flasks were allowed to cool and titrated against Standard Ferrous Ammonium Sulphate with Ferroin as Indicator. Green blue to wine red is the indication of the end point of the experiment and a blank was run under simultaneous conditions.

4.2.8. Phenolic compounds

Phenols in water (500 ml) were converted to an orange coloured antipyrine complex by adding 4-aminoantipyrine. The complex was extracted in chloroform (25 ml) and the absorbance was measured at 460 nm using phenol as a standard.

4.2.9. Petroleum Hydrocarbons (PHc)

Water sample (1 l) was extracted with hexane and the organic layer was separated, dried over anhydrous sulphate and reduced to 10 ml at 30°C under low pressure. Fluorescence of the extract was measured at 360 nm (excitation at 310 nm) with Saudi Arabian crude residue as a standard. The residue was obtained by evaporating lighter fractions of the crude oil at 120°C.

4.2.10. Oil and Grease

About 500 ml of sample was transferred to the separating funnel and sample bottle was carefully rinsed with 30ml of trichlorotrifluoroethane and add the solvent washings was added to the separating funnel. To this, 5ml of 1:1 HCL was added and shaken vigorously for about 2 minutes If soluble emulsion was formed, then the sample container was shaken for 5 to 10 minutes. Then the layers were allowed to separate and the lower layer (organic layer) was discarded from separating funnel. Then the solvent layer was drained through a funnel containing solvent moistened filter paper into a clean pre weight distillation flask. Then solvent was distilled from distillation flask over a water bath at 70 °C. Then the residue was transferred using minimum quantity of solvent into a clean pre weighed dried beaker and the beaker was placed on water bath for 15 minutes at 70 °C and evaporate off all the solvent and it was cooled in desiccators for 30 minutes and weight was taken.

4.2.11 Heavy metals

Heavy metals are of concern especially as it relates to the environment are Cadmium (Cd), Lead (Pb), Mercury (Hg), Chromium (Cr), Arsenic (As), Copper (Cu), Cobalt (Co), Nickel (Ni), Zinc (Zn), Magnesium (Mg) etc. For the release of mineral elements from soil and sediments, wet oxidation of samples are generally performed. Wet oxidation employs oxidizing acids (Tri / Di-acid mixtures).

Soil sample will be weighed to 0.5 gm and taken in 100ml beaker covered with a watch glass and 12 ml of Aqua regia in (1: 3 HNO3 : HCl) will be added and the beaker will be kept in digestion for 3 hours at 100^oc on a hot plate using sand bath and the samples will be evaporated to near dryness and the samples will be kept cool for 5 mins and then 20 ml of 2% nitric acid will be added and kept for 15 minutes in hot plate for digestion and remove from hot plate and cooled and filtered using Whatmann No. 42 mm filter paper and then the final make up to 50 ml with 2 % nitric acid will be made. The extracted sample will be then aspirated to an AAS.

4.3. Results on Physico-chemical characteristics of marine water samples of Season 1

In this First season study conducted in the present year, we closely monitored three distinct locations: Offshore, Cargo Jetty, and Phang Creek. A comprehensive analysis of physico-chemical characteristics in marine water samples was conducted at each of these sites. The collected data is thoughtfully presented in Tables 20-22. These findings serve as a significant source of information regarding the precise physico-chemical conditions prevailing at each of these locations. Consequently, they play a pivotal role in enhancing the comprehension of the environmental factors that exert influence on the quality of marine water in these specific areas. The description of the data in each station is detailed as below.

4.3.1. Location 1 - Offshore location

In the offshore location (Location 1), the recorded data shows that the mean value of temperature was recorded as $33.10\pm0.30^{\circ}$ C. The pH values ranged between 7.77 and 7.97, with an average pH value of 7.91 ± 0.06 . The salinity of the seawater recorded the mean value as 37.83 ± 1.94 ppt, while the TDS which indicates the presence of various anions and cations, had an average value of 47097.67 ± 2199.72 mg/L. Turbidity values ranged from 35.6 to 151.4 NTU. The maximum Dissolved Oxygen and Biochemical Oxygen Demand were in the order of 7.60 mg/L and 3.30 mg/L respectively. The average COD value was determined to be 44.33 ± 4.08 mg/L. The concentrations of Phenolic compounds and Petroleum hydrocarbons varied between 3.5 to 42.88μ g/L, and 0.28 to 0.44 μ g/L, respectively. The concentration of oil and grease ranged from 1.50 mg/L to 8.40 mg/L. Additionally, the maximum concentrations of heavy metals were observed for Magnesium (335.45 mg/L), Nickel (1.34 mg/L), Cadmium (2.89 mg/L), Manganese (2.41 mg/L), and Cobalt (0.81 mg/L), as shown in Table 20.

4.3.2. Location 2 – Cargo Jetty

At the Cargo Jetty location, the recorded data shows that the mean value of temperature was recorded as 32.53 ± 0.846 °C, and the mean value of pH was observed as 7.91 ± 0.02 . The average salinity of the seawater was 37.11 ± 1.478 ppt reflecting the

salt content, while the TDS which indicates the presence of various anions and cations, had an average value of 45412.5±2503.78 mg/L. Turbidity values ranged from 40.7 to 185.63 NTU, which is quite lower than the previous season sample data. The maximum values recorded for Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) were 8.2 mg/L and 3.0 mg/L respectively (as shown in Table 21). The average COD value was determined to be 42.00 ± 7.03 mg/L. The concentrations of Phenolic compound were between 3.29 μ g/L to 41.54 μ g/L with an mean concentration of 21.23±11.91 µg/L. In case of Petroleum hydrocarbon, all the samples were well within the permissible limits set by CPCB and the maximum recorded concentration was 0.33 µg/L. The mean concentration of oil and grease in the marine water samples was 5.00±2.09 mg/L, which falls below the acceptable limit of 10 mg/L according to GPCB norms. Regarding heavy metal concentrations, the Mean±SD values for Magnesium, Nickel, Cadmium, Manganese and Cobalt were 237.658±92.402 mg/L, 1.293±0.839 mg/L, 2.263±0.770 mg/L, 1.560±1.193 mg/L, 0.705 respectively, whereas Chromium, Zinc and Copper recorded a Below Detection Limit (BDL) in all the sampling points in Station 2 as given in Table 21.

4.3.3. Location 3 - Phang Creek

During this winter sampling in the Phang creek near the port, all the samples were subjected for analysis for various characteristics (Table 22). The mean value of temperature was recorded as 33.20 ± 0.89 °C and the pH value was recorded between 7.93 to 8.04. The average salinity of the seawater in the vicinity was found to be 36.89 ± 1.25 ppt, while the TDS which indicates the presence of various anions and cations, had an average value of 49053.83 ± 4300.43 mg/L. Turbidity values ranged from 105.5 to 161.7 NTU. Pollution indices such as Dissolved Oxygen and Biochemical Oxygen Demand, Phenolic compounds, and Oil and grease concentrations had maximum values of 8.0 mg/L, 3.1 mg/L, 27.01 µg/L, and 7.6 mg/L, respectively. The average value of PHc was 0.294±0.020 µg/L. In case of heavy metals, maximum concentrations of Mg, Ni, Cd, Mn and Co recorded were 336.2 mg/L, 2.37 mg/L, 2.41 mg/L, 2.86 mg/L and 1.365 mg/L respectively. Few heavy metals such as Pb, Cr, Zn and Cu were in the Below Detection Limits.

S. No	Parameters	1	A	1	B	1	С	1	D	1	E	Cont	trol 1
		SW	BW										
1	Temperature (⁰ C)	32.8	33.3	33.5	33.2	33.5	33.0	33.3	32.8	32.8	33.3	32.6	33.1
2	рН	7.87	7.87	7.96	7.77	7.91	7.92	7.94	7.95	7.91	7.96	7.91	7.97
3	Salinity (ppt)	35.87	40.00	37.60	38.84	37.17	35.87	38.84	36.74	41.06	36.74	40.20	35.01
4	Total Dissolved Solids (mg/L)	46235.00	52374.00	44674.00	49270.00	45684.00	48723.00	48486.00	45392.00	45570.00	46097.00	46520.00	46147.00
5	Turbidity (NTU)	66.7	62.2	42.8	35.6	53.2	81.4	135.2	151.4	103.1	93	106.3	103.3
6	Dissolved Oxygen(mg/L)	7.6	7.4	7.5	7.3	7.3	7.2	7.6	7.4	7.5	7.2	7	6.6
7	Bio-Chemical Oxygen Demand (mg/L)	0.6	1.1	0.4	1.7	0.7	1.1	0.3	0.6	1.0	1.1	1.9	1.6
8	Chemical Oxygen Demand (mg/L)	52.00	50.00	48.00	44.00	46.00	42.00	44.00	42.00	40.00	38.00	44.00	42.00
9	Phenolic Compounds (µg/L)	33.50	16.49	3.50	14.63	42.88	20.92	36.49	25.46	20.10	30.30	15.25	32.16
10	Petroleum Hydrocarbons (µg/L)	0.3226	0.4381	0.3274	0.3363	0.3148	0.29	0.3079	0.308	0.2752	0.2892	0.2963	0.281
11	Oil and grease (mg/L)	1.5	3.2	5.2	3.6	6.0	4.0	6.0	4.0	5.6	7.2	8.4	4.0
12	Magnesium (mg/L)	88.8	222.7	297	148.75	335.45	216.45	116.15	40.43	83.2	201.35	160.15	40.27
13	Nickel (mg/L)	BDL	BDL	BDL	BDL	0.495	1.34	0.63	BDL	BDL	BDL	BDL	BDL
14	Lead (mg/L)	BDL											
15	Cadmium (mg/L)	0.565	BDL	2.385	BDL	1.305	2.245	2.455	0.665	2.21	2.45	2.89	2.43
16	Chromium (mg/L)	BDL											
17	Zinc (mg/L)	BDL											
18	Copper (mg/L)	BDL											
19	Manganese (mg/L)	BDL	BDL	BDL	BDL	2.11	BDL	BDL	BDL	BDL	BDL	2.405	2.22
20	Cobalt (mg/L)	BDL	BDL	BDL	BDL	0.405	0.81	0.775	BDL	BDL	BDL	BDL	0.33

Table 20: Physico-chemical characteristics of the marine water from sampling location 1 (Offshore)

Note: BDL denotes Below Detection Limit.

		2	A	2	В	2	С	2	D	2	Е	Cont	trol 2
S. No	Parameters	SW	BW										
1	Temperature (⁰ C)	33.1	33.1	30	32	32.9	32.8	32.8	32.7	32.8	32.6	32.8	32.8
2	рН	7.87	7.94	7.94	7.91	7.92	7.93	7.89	7.89	7.89	7.94	7.89	7.92
3	Salinity (ppt)	36.31	37.17	40.2	38.04	38.04	37.32	34.58	36.47	38.04	35.18	37.6	36.47
4	Total Dissolved Solids (mg/L)	48943	38489	46473	47007	45308	47425	45802	44846	44890	45207	45217	45343
5	Turbidity (NTU)	153.7	151.6	145.6	154.5	185.3	174.4	43.2	42.1	45.4	41.8	42.8	40.7
6	Dissolved Oxygen(mg/L)	5.8	7.5	8.2	7	6.1	6.2	6.7	7.8	6.4	7.1	5.5	6.5
7	Bio-Chemical Oxygen Demand (mg/L)	0.6	1.2	2	1.7	0.6	1	0.7	2.6	0.4	1.9	0.9	1.6
8	Chemical Oxygen Demand (mg/L)	48	44	52	50	44	40	32	30	48	36	42	38
9	Phenolic Compounds (µg/L)	33.29	23.91	29.89	33.81	41.54	26.08	16.28	9.7	16.28	10.82	9.89	3.29
10	Petroleum Hydrocarbons (µg/L)	0.2804	0.2884	0.2904	0.2977	0.2949	0.3322	0.2907	0.3112	0.3109	0.3325	0.3106	0.3039
11	Oil and grease (mg/L)	6	4.8	6.8	5.6	5.6	6.8	1.6	0.8	6.4	6.4	2.8	6.4
12	Magnesium (mg/L)	284.8	346.05	385.5	300.4	151.1	127.05	226.35	104.9	183.7	152.7	299.35	290
13	Nickel (mg/L)	0.3	1.32	BDL	BDL	BDL	BDL	BDL	1.05	2.51	BDL	1.995	0.585
14	Lead (mg/L)	BDL											
15	Cadmium (mg/L)	2.195	3.04	2.83	1.275	BDL	2.22	2.665	1.14	3.02	2.16	1.175	3.175
16	Chromium (mg/L)	BDL											
17	Zinc (mg/L)	BDL											
18	Copper (mg/L)	BDL											
19	Manganese (mg/L)	BDL	2.45	2.025	BDL	BDL	BDL	BDL	0.205	BDL	BDL	BDL	BDL
20	Cobalt (mg/L)	0.705	0.705	0.705	0.705	0.705	0.705	0.705	0.705	0.705	0.705	0.705	0.705

Table 21: Physico-chemica	l characteristics of the	marine water from	sampling location	2 (Cargo Jetty)

Note: BDL denotes Below Detection Limit

		3.	A	3	В	3	С	3	D	3	Е	Cont	trol 3
S. No	Parameters	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW
1	Temperature (⁰ C)	32.8	32.6	32.7	32.5	32.7	32.5	32.6	32.4	34.4	34.4	34.4	34.4
2	рН	7.99	7.94	7.98	7.93	8.04	7.98	8.01	7.95	8.03	7.98	7.97	7.97
3	Salinity (ppt)	39.9	36.47	36.47	36.47	35.61	38.61	37.75	36.04	36.04	36.9	36.47	36.04
4	Total Dissolved Solids (mg/L)	52643	47285	54530	46275	46001	46775	47722	43492	51862	58269	46465	47327
5	Turbidity (NTU)	161.7	140.7	146.6	105.5	140.1	150.1	109.2	115.4	115.8	120.3	138.1	124.5
6	Dissolved Oxygen(mg/L)	7	8	7	6.5	6.4	6.3	6	7.4	6.7	6.6	5.5	5.5
7	Bio-Chemical Oxygen Demand (mg/L)	1.8	2.0	2	1.6	1.3	1.1	0.2	1.2	1.6	1.1	0.1	0.7
8	Chemical Oxygen Demand (mg/L)	42	38.0	40	36	42	38	42	38	40	36	48	40
9	Phenolic Compounds (µg/L)	23.19	1.96	10.1	13.6	15.46	20.51	9.79	10.51	15.56	27.01	11.44	20
10	Petroleum Hydrocarbons (µg/L)	0.3003	0.3122	0.3097	0.2989	0.3164	0.2959	0.2992	0.2955	0.284	0.297	0.2835	0.2379
11	Oil and grease (mg/L)	2.4	4.4	5.2	3.2	4.8	6.4	5.6	4.4	7.6	3.2	2.8	4.8
12	Magnesium (mg/L)	272.85	231.75	206.05	336.2	274.45	60.95	234.25	42.48	320.65	328.7	214.95	195.7
13	Nickel (mg/L)	BDL	BDL	0.46	BDL	BDL	BDL	BDL	0.52	2.11	2.235	2.37	BDL
14	Lead (mg/L)	BDL	BDL	BDL	BDL								
15	Cadmium (mg/L)	2.155	2.41	1.845	1.74	1.37	0.64	0.255	0.77	2.205	0.555	BDL	0.42
16	Chromium (mg/L)	BDL	BDL	BDL	BDL								
17	Zinc (mg/L)	BDL	BDL	BDL	BDL								
18	Copper (mg/L)	BDL	BDL	BDL	BDL								
19	Manganese (mg/L)	BDL	BDL	BDL	2.28	BDL	0.175	BDL	BDL	0.005	2.86	BDL	2.085
20	Cobalt (mg/L)	BDL	BDL	BDL	BDL	0.34	0.035	BDL	1.075	1.35	0.93	1.365	0.76

Table 22. Physico-chemical characteristics of the marine water from sampling location 3 (Phang Creek)

Note: BDL denotes Below Detection Limit

4.4. Physico-chemical characteristics of the marine water samples of Season 2

In this second season study conducted in the present year, we closely monitored three distinct locations: Offshore, Cargo Jetty, and Phang Creek. A comprehensive analysis of physico-chemical characteristics in marine water samples was conducted at each of these sites. The collected data is thoughtfully presented in Tables 23-25. These findings serve as a significant source of information regarding the precise physico-chemical conditions prevailing at each of these locations. Consequently, they play a pivotal role in enhancing the comprehension of the environmental factors that exert influence on the quality of marine water in these specific areas. The description of the data in each station is detailed as below.

4.4.1. Location 1 - Offshore location

The offshore water samples exhibited moderate levels of salinity $(40.90 \pm 5.06 \text{ ppt})$ and total dissolved solids (42,279.25 \pm 1,658.75 mg/L). The water was relatively warm $(30.49^\circ \pm 0.22^\circ \text{C})$ with a slightly alkaline pH (7.87 \pm 0.07). Turbidity was notable (141.13 \pm 57.37 NTU), which could be due to suspended particles or plankton. Dissolved oxygen levels $(5.48 \pm 0.41 \text{ mg/L})$ were adequate for marine life but the lowest BOD (1.70 \pm 0.44 mg/L), suggesting less biodegradable organic matter. However, it shows the highest levels of COD (34.50 ± 5.92 mg/L). The presence of petroleum hydrocarbons (17.12 \pm 8.10 µg/L) indicating potential anthropogenic inputs from marine activities and phenolic compounds (22.93 ± 9.68 µg/L) suggests some level of anthropogenic influence. Nutrient indicators like chlorophyll ($0.51 \pm 0.10 \text{ mg/m}^3$) and phaeophytin ($0.32 \pm 0.06 \text{ µg/L}$) were present in low concentrations. The mean value of Oil and Grease exhibited 6.10 ± 1.41 mg/L. Most heavy metals were either below detectable limits or present in low concentrations, with cadmium $(1.72 \pm 1.11 \ \mu g/L)$ showing the highest levels among the detected metals. Lead, zinc and copper showed Below Detectable Limit (BDL). The concentration of heavy metals observed for Magnesium $(301.91 \pm 109.91 \text{ mg/L})$; Nickel (1.84 \pm 0.82 mg/L); Chromium (0.23 \pm 0.30 mg/L); Manganese (0.32 \pm 0.27 mg/L); Cobalt (0.92 \pm 0.70 mg/L) were shown in Table 23. Overall, the offshore waters showed signs of moderate anthropogenic impact but maintained conditions generally suitable for marine life.

4.4.2. Location 2 – Cargo Jetty

At the Cargo Jetty location, the recorded data shows that the mean value of temperature was recorded as 30.82 ± 0.10 °C, and the mean value of pH was observed as 7.93 \pm 0.03. The average salinity of the seawater was 39.35 \pm 2.44 ppt reflecting the salt content, while the TDS which indicates the presence of various anions and cations, had an average value of $44,775.08 \pm 4,693.04$ mg/L. Turbidity values ranged from 130.76 ± 19.35 NTU. The maximum values recorded for Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) were 5.75 \pm 0.36 mg/L and 2.08 \pm 0.65 mg/L respectively (as shown in Table 24). The average COD value was determined to be $32.00 \text{ mg/L} \pm 4.26 \text{ mg/L}$. The concentrations of Phenolic compound with mean concentration is $18.90 \pm 6.99 \ \mu g/L$. In case of Petroleum hydrocarbon, all the samples were well within the permissible limits set by CPCB and the maximum recorded concentration was $15.80 \pm 8.34 \mu g/L$. The mean concentration of oil and grease in the marine water samples was 7.67 ± 3.34 mg/L, which falls below the acceptable limit of 10 mg/L according to GPCB norms. Regarding heavy metal concentrations, the Mean values for Magnesium, Nickel, Cadmium, Manganese and Cobalt were 279.89 ± 130.92 mg/L, 2.15 ± 1.48 mg/L, 0.98 ± 0.81 mg/L, 0.30 ± 0.12 mg/L, 1.39 ± 0.58 mg/L respectively. The concentration of Chromium was found to be 0.055 mg/L with only one detectable value. The concentration of lead, Zinc and Copper recorded a Below Detection Limit (BDL) in all the sampling points in Station 2 as given in Table 24.

4.4.3. Location 3 - Phang Creek

During this winter sampling in the Phang creek near the port, all the samples were subjected for analysis for various characteristics (Table 25). The mean value of temperature was recorded as 31.46 ± 0.28 °C and the pH value was recorded between 7.88 ± 0.05 . The average salinity of the seawater in the vicinity was found to be 39.95 ± 2.40 ppt while the TDS which indicates the presence of various anions and cations,

had an average value of 42,749.17 \pm 3,004.49 mg/L. Turbidity values ranged 329.73 \pm 25.94 NTU. Pollution indices such as Dissolved Oxygen and Biochemical Oxygen Demand, Phenolic compounds, and Oil and grease concentrations had maximum values of 5.34 \pm 0.21 mg/L, 2.49 \pm 0.29 mg/L, 13.23 \pm 4.59 µg/L, and 6.18 \pm 2.90 mg/L, respectively. The average value of Petroleum hydrocarbon was 13.80 \pm 7.02 µg/L. The average COD value was determined to be 30.50 \pm 4.83 mg/L. In case of heavy metals, the maximum concentrations of Magnesium, Nickel, Cadmium, Manganese and Cobalt recorded were 276.17 \pm 167.43 mg/L, 2.34 \pm 1.66 mg/L, 0.98 \pm 0.38 µg/L, 0.20 \pm 0.22 µg/L and 1.74 \pm 0.55 mg/L respectively. The mean value of Chromium is 0.29 \pm 0.31 µg/L. Few of the heavy metals such as Lead, Zinc and Copper were in the Below Detection Limits.

S. No	Parameters	1	A	1	В	1	С	1	D	1	E	Cont	trol 1
		SW	BW	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW
1	Temperature (⁰ C)	30.6	30.5	30.3	30.3	30.3	30.3	30.3	30.5	30.5	30.5	30.9	30.9
2	рН	7.79	7.72	7.86	7.88	7.90	7.80	7.92	7.88	7.93	7.91	7.92	7.93
3	Salinity (ppt)	38.61	38.61	38.18	42.47	39.04	38.61	55.35	41.61	44.19	40.33	36.47	37.32
4	Total Dissolved Solids (mg/L)	41818	44920	41748	42724	41091	41275	41098	39817	43694	43052	45168	40946
5	Turbidity (NTU)	225	260.2	151.6	152	150.1	145.8	86	88.5	49.8	130.1	127.7	126.7
6	Dissolved Oxygen(mg/L)	5.9	5.8	5.3	5.2	6.2	6.1	5.3	5	5.2	5.1	5.4	5.2
7	Bio-Chemical Oxygen Demand (mg/L)	1.40	1.30	1.30	1.20	2.00	1.80	1.40	1.30	1.80	2.10	2.40	2.40
8	Chemical Oxygen Demand (mg/L)	36.00	32.00	34.00	30.00	32.00	30.00	36.00	32.00	48.00	44.00	32.00	28.00
9	Phenolic Compounds (µg/L)	14.20	32.29	36.40	32.91	33.30	32.70	17.18	13.02	15.72	17.50	10.31	19.58
10	Petroleum Hydrocarbons (µg/L)	12.56	10.85	25.23	18.65	22.21	10.56	11.52	10.28	32.65	28.54	12.50	9.86
11	Oil and grease (mg/L)	5.6	2.8	7.6	5.6	7.2	7.6	5.2	6.8	6.4	7.6	5.2	5.6
12	Magnesium (mg/L)	339.45	414.50	237.55	93.9	234	291	218.95	349.15	269.5	449.5	245.85	479.55
13	Nickel (mg/L)	BDL	2.305	BDL	BDL	0.44	BDL	1.795	BDL	BDL	2.185	2.455	BDL
14	Lead (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
15	Cadmium (mg/L)	BDL	BDL	1.52	2.055	2.75	BDL	2.875	2.285	0.16	2.925	0.42	0.515
16	Chromium (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.57	BDL	0.05	0.06	BDL
17	Zinc (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
18	Copper (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
19	Manganese (mg/L)	BDL	BDL	BDL	0.335	0.105	0.92	0.51	0.35	0.21	0.29	0.11	0.02
20	Cobalt (mg/L)	BDL	1.655	BDL	0.39	0.225	BDL	0.7	0.365	0.41	1.945	1.87	0.73

Table 23: Physico-chemical characteristics of the marine water from sampling location 1 (Offshore)

Note: BDL denotes Below Detection Limit.

		2	A	2	В	2	С	2	D	2	Е	Cont	rol 2
S. No	Parameters	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW
1	Temperature (⁰ C)	30.6	30.9	30.9	30.8	30.8	30.7	30.8	30.7	30.9	30.9	30.9	30.9
2	pH	7.89	7.87	7.92	7.92	7.94	7.95	7.96	7.95	7.93	7.94	7.95	7.96
3	Salinity (ppt)	36.28	42.9	39.47	40.33	38.61	36.28	40.33	37.75	42.47	39.04	36.28	42.47
4	Total Dissolved Solids (mg/L)	41756	43689	46079	50188	36643	41043	51710	51507	42176	41859	42913	47738
5	Turbidity (NTU)	130.8	125.7	101.5	115.2	135.7	140	104.8	110.8	153.9	152.7	140.9	157.1
6	Dissolved Oxygen(mg/L)	6.2	5.8	5.6	5.2	5.8	5.6	5.6	5.3	6.3	5.4	6.1	6.1
7	Bio-Chemical Oxygen Demand (mg/L)	2.6	2.9	1.1	1.1	1.9	1.2	2.4	2.3	2.9	2.5	2	2.1
8	Chemical Oxygen Demand (mg/L)	36	30	28	22	32	32	34	34	36	30	38	32
9	Phenolic Compounds (µg/L)	6.56	17.39	17.81	13.85	29.06	14.47	21.66	15.72	28.54	23.95	14,27	19,27
10	Petroleum Hydrocarbons (µg/L)	10.85	9.26	25.87	19.82	10.52	9.52	15.46	10.42	35.28	22.22	10.85	9.56
11	Oil and grease (mg/L)	7.2	6.4	4.8	8.8	16	6.4	12	5.2	5.6	7.2	8	4.4
12	Magnesium (mg/L)	BDL	209.2	131.55	132.95	387.4	453.9	149	247.7	341.3	164.3	439.45	422
13	Nickel (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.365	1.495	1.3	1.435
14	Lead (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
15	Cadmium (mg/L)	0.735	0.365	BDL	1.75	BDL	0.9	BDL	0.77	0.17	0.53	2.595	BDL
16	Chromium (mg/L)	0.055	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
17	Zinc (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
18	Copper (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
19	Manganese (mg/L)	0.325	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.425	0.1	0.35	0.285
20	Cobalt (mg/L)	BDL	BDL	BDL	0.605	BDL	BDL	BDL	0.96	2.305	1.58	1.46	1.435

Table 24: Physico-chemical characteristics of the marine water from sampling location 2 (Cargo Jetty)

Note: BDL denotes Below Detection Limit

		3	Α	3	В	3	С	3	D	3	Е	Cont	trol 3
S. No	Parameters	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW
1	Temperature (⁰ C)	31	31.1	31.1	31.3	31.5	31.6	31.6	31.5	31.6	31.5	31.9	31.8
2	pH	7.86	7.83	7.82	7.8	7.88	7.91	7.9	7.92	7.93	7.91	7.92	7.92
3	Salinity (ppt)	38.61	39.04	36.61	41.61	37.75	42.9	38.61	41.61	36.47	40.76	42.04	43.33
4	Total Dissolved Solids (mg/L)	42690	40452	43570	42072	43750	43943	43651	44879	38455	37123	43840	48565
5	Turbidity (NTU)	263.3	353.2	330.2	336.6	373	325.9	338.6	341.5	315	322	326.8	330.7
6	Dissolved Oxygen(mg/L)	5.2	5	5.5	5.1	5.4	5.7	5.4	5.1	5.5	5.3	5.5	5.4
7	Bio-Chemical Oxygen Demand (mg/L)	2	2.1	2.4	2.6	2.3	2.4	2.4	2.5	2.6	2.7	2.9	3
8	Chemical Oxygen Demand (mg/L)	32	28.0	36	30	28	22	36	32	28	24	38	32
9	Phenolic Compounds (µg/L)	19.79	16.56	20.83	16.35	14.89	5.72	11.77	10.41	8.43	11.77	13.02	9.27
10	Petroleum Hydrocarbons (µg/L)	25.25	13.84	20.85	18.57	12.58	10.87	21.25	10.85	9.85	5.62	2.30	BDL
11	Oil and grease (mg/L)	12.0	7.2	4.4	4.8	5.2	6.4	4.4	5.2	2.0	5.6	10.8	4.8S
12	Magnesium (mg/L)	56.55	350.75	BDL	70.3	108.8	557.5	244.8	407.6	276.95	474	151.3	339.35
13	Nickel (mg/L)	1.91	1.77	BDL	2.06	4.125	BDL	BDL	0.295	3.235	4.93	BDL	0.37
14	Lead (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
15	Cadmium (mg/L)	BDL	BDL	0.815	BDL	0.87	1.535	BDL	BDL	BDL	BDL	BDL	0.69
16	Chromium (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	0.115	BDL	0.175	0.09	0.22	0.84
17	Zinc (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
18	Copper (mg/L)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
19	Manganese (mg/L)	0.255	0.1	0.12	0.02	0.205	0.075	0.03	0.425	0.07	0.735	BDL	BDL
20	Cobalt (mg/L)	2.425	1.515	1.42	1.195	1.725	1.95	0.69	2.255	1.695	2.535	BDL	1.725

Table 25. Physico-chemical characteristics of the marine water from sampling location 3 (Phang Creek)

Note: BDL denotes Below Detection Limit

4.5. Physico-chemical characteristics of the marine water samples of Season 3

In this third season study conducted in the present year, we closely monitored three distinct locations: Offshore, Cargo Jetty, and Phang Creek. A comprehensive analysis of physico-chemical characteristics in marine water samples was conducted at each of these sites. The collected data is thoughtfully presented in Tables 26-28. These findings serve as a significant source of information regarding the precise physico-chemical conditions prevailing at each of these locations. Consequently, they play a pivotal role in enhancing the comprehension of the environmental factors that exert influence on the quality of marine water in these specific areas. The description of the data in each station is detailed as below.

4.5.1. Location 1 - Offshore location

The offshore water samples exhibited moderate levels of salinity $(35.86 \pm 1.47 \text{ ppt})$ and total dissolved solids (44788.17 \pm 5796.20 mg/L). The water was relatively warm (29.21 \pm 0.13°C) with a slightly alkaline pH (7.41 \pm 0.10). Turbidity was notable (96.32 \pm 18.88 NTU), which could be due to suspended particles or plankton. Dissolved oxygen levels (6.01 \pm 0.63 mg/L) were adequate for marine life but the lowest BOD (2.27 ± 0.28 mg/L), suggesting less biodegradable organic matter. However, it shows the highest levels of COD ($33.83 \pm 6.00 \text{ mg/L}$). The presence of petroleum hydrocarbons (24.99 \pm 8.56 µg/L) indicating potential anthropogenic inputs from marine activities and phenolic compounds (6.70 \pm 1.77 µg/L) suggests some level of anthropogenic influence. Nutrient indicators like chlorophyll (0.59 \pm 0.09 mg/m³) and phaeophytin ($0.32 \pm 0.08 \mu g/L$) were present in low concentrations. The mean value of Oil and Grease exhibited 5.93 ± 2.23 mg/L. The heavy metals concentration of Nickel was seen only in control site with 3.02 μ g/L. Whereas Manganese showed 2.11 µg/L in 1C site. Chromium and zinc showed Below Detectable Limit (BDL) with 0.36 \pm 0.22 µg/L and 0.17 \pm 0.16 µg/L. The concentration of heavy metals observed for Magnesium is $4727.92 \pm 102.01 \text{ mg/L}$ (Table 26). Overall, the offshore waters showed signs of moderate anthropogenic impact but maintained conditions generally suitable for marine life.

4.5.2. Location 2 – Cargo Jetty

At the Cargo Jetty location, the recorded data shows that the mean value of temperature was 29.44 \pm 0.17°C, and the mean value of pH was observed as 7.77 \pm 0.03. The average salinity of the seawater was 36.75 ± 1.53 ppt reflecting the salt content, while the Total Dissolved Solids (TDS), which indicates the presence of various anions and cations, had an average value of $44,517.00 \pm 6,516.71$ mg/L. Turbidity values were notably high, averaging 289.14 ± 76.54 NTU. The Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) showed mean values of 6.33 \pm 0.50 mg/L and 1.17 \pm 0.72 mg/L respectively (as shown in Table 27). The average Chemical Oxygen Demand (COD) value was determined to be 30.00 ± 5.53 mg/L. The concentrations of Phenolic compounds showed a mean concentration of 6.43 \pm 1.93 μ g/L. Petroleum hydrocarbons were present with a mean concentration of 17.06 \pm 6.88 µg/L, and the mean concentration of oil and grease in the marine water samples was 7.80 \pm 2.09 mg/L, which falls below the acceptable limit of 10 mg/L according to GPCB norms. In terms of heavy metals, magnesium showed the highest concentration at 4,757.50 \pm 63.08 mg/L. Whereas Lead (0.19 \pm 0.15 mg/L), nickel $(1.29 \pm 1.02 \text{ mg/L})$ and manganese $(0.19 \pm 0.15 \text{ mg/L})$ was present in the sampling point 2C and 2D. While cobalt was detected at 0.135 mg/L in a single sample at 2C. Other detected metals included chromium (1.15 \pm 0.25 mg/L, cadmium (1.62 \pm 1.07 mg/L), zinc (0.34 \pm 0.14 mg/L). Notably, copper showed Below Detection Limit (BDL) values across all sampling points in Station 2 as given in Table 27.

4.5.3. Location 3 - Phang Creek

At the Phang Creek location near the port, all the samples were subjected for analysis for various characteristics (Table 28). The mean temperature recorded as 29.37 \pm 0.14°C and pH values averaging 7.94 \pm 0.03. The average salinity of the seawater was measured at 38.11 \pm 2.98 ppt, while the TDS showed an average value of 43,467.33 \pm 6,176.51 mg/L which indicates the presence of various anions and cations. Turbidity values averaged 248.95 \pm 46.94 NTU. The average value of water quality parameters revealed Dissolved Oxygen levels of 5.73 \pm 0.18 mg/L, Biochemical Oxygen Demand of 2.41 \pm 0.22 mg/L, and Chemical Oxygen Demand of 30.50 \pm 6.45 mg/L. Phenolic compounds were present with 24.81 \pm 2.88 µg/L, while mean value of petroleum hydrocarbons showed concentrations of 16.54 \pm 5.99 µg/L, and oil and grease levels were recorded at 6.33 \pm 1.29 mg/L. The heavy metal analysis revealed significant magnesium presence at 4,713.75 \pm 84.59 mg/L, with chromium showing concentrations of 1.97 \pm 0.18 mg/L. Other detected metals included nickel at 1.58 \pm 0.86 mg/L, cadmium at 1.22 \pm 1.00 mg/L, and zinc at 0.30 \pm 0.11 mg/L. The Lead (0.345 mg/L) were detected only at control sampling point, whereas cobalt (0.03 mg/L) were detected at single sampling point 3E. Both copper and manganese consistently remained Below Detection Limit (BDL) at this location.

S. No	Parameters	1	A	1	В	1	С	1	D	1	Е	Con	trol 1
		SW	BW										
1.	Temperature (⁰ C)	29.3	29.1	29.3	29.2	29.3	29.0	29.3	29.2	29.3	29.1	29.4	29.0
2.	pH	7.22	7.21	7.40	7.38	7.44	7.43	7.48	7.45	7.50	7.49	7.45	7.42
3.	Salinity (ppt)	35.18	34.75	36.90	36.04	36.04	37.33	36.90	33.46	33.89	35.18	36.04	38.61
4.	Total Dissolved Solids (mg/L)	46259	49478	40953	53420	48775	40325	49195	40245	32569	43647	49842	42750
5.	Turbidity (NTU)	81.6	84.5	86.2	80.5	84.4	75.2	93.6	93.5	132.2	123.3	120.3	100.5
6.	Dissolved Oxygen(mg/L)	6.1	5.8	5.5	5.5	5.3	5.1	6	5.8	7.1	6.6	6.8	6.5
7.	Bio-Chemical Oxygen Demand (mg/L)	2.20	1.50	2.60	2.30	2.20	2.30	2.20	2.20	2.50	2.40	2.30	2.50
8.	Chemical Oxygen Demand (mg/L)	42.00	38.00	36.00	32.00	40.00	34.00	42.00	28.00	26.00	24.00	32.00	32.00
9.	Phenolic Compounds (µg/L)	6.80	3.70	9.60	5.70	6.50	7.10	5.20	8.30	9.10	5.40	5.20	7.80
10.	Petroleum Hydrocarbons (µg/L)	25.25	12.86	13.58	20.58	32.58	28.52	40.58	32.85	20.89	25.42	30.89	15.87
11.	Oil and grease (mg/L)	5.2	3.6	4.8	6.0	3.6	4.4	10.8	9.2	7.6	6.0	5.6	4.4
12.	Magnesium (mg/L)	4800	4815	4815	4865	4830	4695	4645	4595	4650	4775	4555	4695
13.	Nickel (mg/L)	BDL	3.02	BDL									
14.	Lead (mg/L)	BDL											
15.	Cadmium (mg/L)	BDL											
16.	Chromium (mg/L)	0.14	BDL	0.24	0.08	0.28	0.28	0.57	0.75	0.51	0.21	0.27	0.63
17.	Zinc (mg/L)	0.02	BDL	0.045	BDL	BDL	BDL	0.06	0.17	0.295	BDL	0.425	BDL
18.	Copper (mg/L)	BDL											
19.	Manganese (mg/L)	BDL	BDL	BDL	BDL	2.11	BDL						
20.	Cobalt (mg/L)	BDL											

Table 26: Physico-chemical characteristics of the marine water from sampling location 1 (Offshore)

Note: BDL denotes Below Detection Limit.

S. No	Parameters	2	A	2	B	2	С	2	D	2	E	Cont	trol 2
		SW	BW										
1.	Temperature (⁰ C)	29.3	29.1	29.5	29.3	29.5	29.4	29.7	29.5	29.5	29.3	29.6	29.6
2.	pH	7.77	7.75	7.78	7.78	7.81	7.79	7.77	7.76	7.78	7.79	7.73	7.7
3.	Salinity (ppt)	36.47	39.47	35.18	38.61	34.75	36.04	37.32	36.47	36.04	38.18	37.75	34.75
4.	Total Dissolved Solids (mg/L)	47920	48323	42634	46611	52769	57974	41006	37746	35442	38480	42722	42577
5.	Turbidity (NTU)	320	335	320	334	357	334	282.8	317	145.2	190.7	168	366
6.	Dissolved Oxygen(mg/L)	6.5	6.4	6.6	6.5	6.5	5.9	5.9	5.5	7.1	7.1	6.2	5.8
7.	Bio-Chemical Oxygen Demand (mg/L)	1.9	1.5	0.6	0.4	1.2	0.4	0.9	0.4	2.6	2	0.9	1.2
8.	Chemical Oxygen Demand (mg/L)	28	22	36	28	32	26	40	28	36	32	22	30
9.	Phenolic Compounds (µg/L)	6.1	6.8	4	5.7	6.2	5.1	6	4.5	7.6	7	11.6	6.6
10.	Petroleum Hydrocarbons (µg/L)	18.50	12.50	23.85	20.78	15.28	9.87	11.58	13.58	25.68	30.85	12.87	9.42
11.	Oil and grease (mg/L)	9.6	9.6	6	10	10	9.6	7.6	7.6	3.6	6.8	8	5.2
12.	Magnesium (mg/L)	4670	4800	4745	4840	4790	4760	4635	4770	4815	4805	4775	4685
13.	Nickel (mg/L)	BDL	BDL	BDL	BDL	2.005	BDL	0.565	BDL	BDL	BDL	BDL	BDL
14.	Lead (mg/L)	BDL	BDL	BDL	BDL	0.29	0.255	0.02	BDL	BDL	BDL	BDL	BDL
15.	Cadmium (mg/L)	BDL	BDL	2.9	BDL	0.275	2.485	1.37	BDL	1.075	BDL	BDL	BDL
16.	Chromium (mg/L)	1.115	0.85	0.89	0.805	0.985	1.245	1.425	1.11	1.22	1.055	1.615	1.45
17.	Zinc (mg/L)	BDL	BDL	0.235	BDL	0.465	0.52	0.37	BDL	0.225	BDL	0.395	0.14
18.	Copper (mg/L)	BDL											
19.	Manganese (mg/L)	BDL	BDL	BDL	BDL	0.29	0.255	0.02	BDL	BDL	BDL	BDL	BDL
20.	Cobalt (mg/L)	BDL	BDL	BDL	BDL	0.135	BDL						

Table 27: Physico-chemical characteristics of the marine water from sampling location 2 (Cargo Jetty)

Note: BDL denotes Below Detection Limit

S. No	Parameters	3	A	3	В	3	С	3	D	3	E	Cont	trol 3
		SW	BW										
1.	Temperature (⁰ C)	29.5	29.2	29.5	29.3	29.4	29.5	29.5	29.1	29.4	29.3	29.5	29.2
2.	pH	7.92	7.93	7.9	7.9	7.98	7.96	7.98	7.99	7.93	7.95	7.91	7.94
3.	Salinity (ppt)	36.9	36.9	34.75	37.75	37.32	43.76	36.47	38.18	39.47	37.75	34.32	43.76
4.	Total Dissolved Solids (mg/L)	30332	36506	43126	41006	53783	47623	43605	45653	50187	43362	40155	46270
5.	Turbidity (NTU)	274.5	300	272	324	238	302	219	259	179.1	186.7	213.1	220
6.	Dissolved Oxygen(mg/L)	5.7	5.5	5.7	5.6	6.1	5.7	6	5.7	5.7	5.7	5.8	5.5
7.	Bio-Chemical Oxygen Demand (mg/L)	2.5	2.3	2.9	2.4	2.3	2.1	2.7	2.4	2.2	2.2	2.5	2.4
8.	Chemical Oxygen Demand (mg/L)	42	38.0	36	34	32	28	24	20	32	24	30	26
9.	Phenolic Compounds (µg/L)	22.8	22	24.1	25.4	19.3	27.2	30.2	25.1	25.2	24	28.3	24.1
10.	Petroleum Hydrocarbons (µg/L)	22.20	18.50	12.50	9.50	13.58	10.58	22.42	19.52	12.35	BDL	28.20	12.58
11.	Oil and grease (mg/L)	8.4	6.0	5.6	7.6	5.6	7.2	7.6	4.4	5.6	7.6	4.8	5.6
12.	Magnesium (mg/L)	4675	4865	4590	4585	4740	4660	4760	4685	4665	4795	4770	4775
13.	Nickel (mg/L)	1.855	1.47	1.74	0.85	1.595	0.75	1.49	0.11	2.79	0.925	3.005	2.37
14.	Lead (mg/L)	BDL	0.345	BDL									
15.	Cadmium (mg/L)	BDL	0.76	2.875	BDL	0.27	BDL	0.825	BDL	BDL	1.375	BDL	BDL
16.	Chromium (mg/L)	1.955	1.535	2.005	2.21	2.055	2.08	2.08	1.89	1.835	1.97	2.18	1.87
17.	Zinc (mg/L)	0.315	0.19	0.195	0.345	0.465	0.27	0.38	0.2	0.26	0.195	0.535	0.235
18.	Copper (mg/L)	BDL											
19.	Manganese (mg/L)	BDL											
20.	Cobalt (mg/L)	BDL	0.03	BDL	BDL	BDL							

Table 28. Physico-chemical characteristics of the marine water from sampling location 3 (Phang Creek)

Note: BDL denotes Below Detection Limit

Table 29: Comparison of the mean physico-chemical characteristics of the present study (2023-24) water data with the data of
2021-22 and 2022-23

Parameters				Perio	d of study (in	year)			
		2021-2022			2022-23		2023	-24 (Present s	tudy)
	S1	S2	S 3	S1	S2	S 3	S1	S2	S 3
Temperature (⁰ C)	19.31	28.69	32.21	26.92	26.44	24.90	32.94	30.92	29.34
pH	8.11	8.03	7.92	7.82	7.87	7.93	7.93	7.90	7.70
Salinity (ppt)	37.25	39.34	35.07	40.08	37.14	39.81	37.28	40.07	36.91
Total Dissolved Solids (mg/L)	39764.22	41872.28	37427.61	40367.97	44812.33	38797.14	47188.00	43267.83	44257.50
Turbidity (NTU)	65.92	96.76	67.75	10.73	29.41	11.08	106.20	200.54	211.47
Dissolved Oxygen (mg/L)	6.56	5.58	6.39	5.10	6.38	6.58	6.87	5.52	6.02
Bio-Chemical Oxygen Demand (mg/L)	3.61	0.97	1.40	3.09	2.70	2.63	2.71	2.09	1.95
Chemical Oxygen Demand (mg/L)	44.83	40.22	44.17		35.16	38.00	42.11	32.33	31.44
Phenolic Compounds (mg/L)	6.72	13.16	11.71	17.86	25.23	11.93	20.16	18.35	12.65
Petroleum Hydrocarbons (mg/L)	57.30	26.07	2.01	34.37	70.01	14.19	0.30	15.57	19.53
Oil and grease (mg/L)	6.67	2.81	3.00	4.38	2.46	8.79	4.82	6.65	6.69
Magnesium(mg/L)	1510.30	1656.04	246.85	105.12	244.30	155.08	208.93	285.99	4733.06
Nickel (mg/L)	1.91	1.37	0.08	2.32	1.64	1.55	1.22	2.11	1.96
Lead (mg/L)	0.701	0.49	3.44	BDL	BDL	0.45	0.00	BDL	0.18
Cadmium (mg/L)	0.46	0.42	0.28	0.59	0.49	0.36	1.84	1.23	0.95
Chromium (mg/L)	0	0	0.00	BDL	BDL	0.29	0.00	0.19	1.16
Zinc (mg/L)	1.02	0.89	0.42	1.51	0.68	2.60	0.00	BDL	0.27
Copper (mg/L)	0	0.169	0.00	BDL	BDL	BDL	0.00	BDL	0.00
Cobalt (mg/L)	1.31	1.46	0.07	1.60	0.53	0.61	1.76	0.27	1.15

Note: BDL denotes Below Detection Limit.

Chapter 5Marine Water Quality (Biological) - Phytoplankton5.1. Introduction

Plankton are divided in two parts which are phytoplankton and zooplankton (Brink. 1993). Phytoplanktons are the primary producers in marine ecosystems and form the basis of the food web. The animal portion of plankton is known as Zooplankton. Size is very important to understanding about the classification of both zooplankton and phytoplankton. Based on size, various categories of plankton are smallest one Picoplankton (0.2-2 µm), Nanoplankton (2-20 µm), Microplankton (20-200 µm), Mesoplankton (200 µm-2 mm), Macroplankton (2-20 mm) and Megaplakton(> 20 mm). The population of plankton diversity is largely related to Seasonal and Monthly variability in Physical, Chemical and Biological parameters; Interspecific competition among the Zooplankton; Inter-relationship for prey and predator between zooplankton and their mostly predator animals; Grazing ratio of Zooplankton; Suspension of sediment; Fluctuation in Phytoplankton abundance; Waves, Currents and Tidal turbulence effect; Fluctuation in Chlorophyll a and Nutrients; Input of Organic and other Pollution creating sources; Fish potential ratio; Monsoon effect; Suddenly changes in atmosphere; Peak time of every seasons and it's effect; Vertical migration of Zooplankton; Food selection pattern of predator; Collection time and number of collected samples, mixing of water column, high surface action, Seasonal upwelling and down welling process in water column.

Population always remains either stable or fluctuating, depending on environment conditions surrounding it (Taylor, 1988; Garzke et al. 2017). Population of plankton and other marine living organisms on which the whole aquatic life depends directly or indirectly is largely governed by the interaction of a number of biological, chemical and physical processes and tolerance to one or more of these conditions (Reid and Wood 1976).

5.1.1. Phytoplankton

Phytoplankton are single celled marine algae with great difference in shape, size and form, either use flagella for movement in water or just drift with currents (Zohari et al, 2014). These photosynthetic organisms need sunlight for photosynthesis. Diatoms dominate the phytoplankton biomass in highly productive areas of the ocean. The diatoms are one of the most important phytoplankton as a primary producer of marine ecosystem. They are estimated to produce 20-25 % of the world total net primary production (Werner, 1977).

With trapping carbon in the process of photosynthesis, they can control the atmospheric carbon dioxide and help in combating the global climate change. With this, they have significant role in the management of nutrients cycles in the ocean systems. Their role as primary producers in aquatic ecosystem, in the process of nutrients cycling in the ocean systems, also in calcification, silicification, nitrogen-fixing, etc. made them important marine component for marine life study. Their sensitiveness for various anthropogenic activities in the marine environment such as Eutrophication, introduction of invasive species, overfishing etc, make them one of the best indicators to analyse these activities.

5.1.2. Zooplankton

The faunal species particularly microscopic fauna, living inside the water bodies are known as zooplankton. Zooplankton is tiny-small animals found in all water bodies particularly the pelagic and littoral zone in the ocean. They are classified by size and or by development stages. Zooplankton community is composed of both primary consumers (which eat phytoplankton) and secodanry (which feed on the other zooplankton). Nearly all fish depend on zooplankton for food in both larval stages and entire life period (Madin et al., 2001). They are attractive, various and plentiful group of faunal species which can swim or generally drift with water currents but have no potential to swim against water currents (Alcaraz and Calbet, 2003). The important role of them is to be a major link in the marine life in between marine microalgae or phytoplankton and fish. Although they can be classified according to their habitat and

depth, distribution, size and duration of planktonic life period (Omori and Ikeda, 1984), generally, it is considered as there are two types of zooplanktons. Holoplanktons are those which live permanently in the planktonic form, while meroplanktons are the temporary members in this form. The potential of zooplankton to respond quickly to environment changes and short generation life span, make them important bioindicator of water pollution and all variation occurred in their living environment. Their study is the important part for getting knowledge of the functioning of marine ecosystems (Mees and Jones, 1997).

5.2. Estimation of Chlorophyll and Phaeophytin

Phytoplankton (Chlorophyll a) pigment which is responsible for synthesizing the energy for metabolic activities of phytoplankton through the process of photosynthesis in CO₂ is used and O₂ is released is an essential part to understand the consequence of pollutants due to release in the system. To estimate this, known volume of water (500 ml) was filtered through a 0.45 μ m Millipore Glass filter paper and the pigments retained on the filter paper were extracted in 90% acetone. For the estimation of chlorophyll *a* and phaeophytin the fluorescence of the acetone extract was measured using Fluorometer (Turner Design) before and after treatment with dilute acid (0.1N HCL).

5.3. Results on Chlorophyll and Phaeophytin concentration during Season 1

The concentration of phytopigments is inversely proportional to the turbidity of the waters and in general, waters owing to the high turbidity restricts sunlight penetration essential for nutrient uptake by phytoplankton and thus inhibiting primary production. The concentration of chlorophyll pigment in the water samples ranged from 0.52 -0.78 mg/m³ with a mean \pm SD being 0.67 \pm 0.08 mg/m³ in the Offshore (Table 30), 0.5 to 0.78 mg/m³ with mean \pm SD of 0.67 \pm 0.08 mg/m³ in the Cargo Jetty (Table 31) and 0.47 to 0.72 mg/m³ with mean \pm SD being 0.61 \pm 0.08 mg/m³ in the Phang creek location (Table 32).

Another phytopigment estimated was Phaeophytin, which is one of the breakdown products of Chlorophyll was also estimated in the water samples collected from all the three locations and the concentration of Phaeophytin in the marine water samples were in the concentrations such as 0.27-0.66 mg/m³ with a Mean±SD of 0.55±0.12 mg/m³ in the Offshore location (Table 30). In case of Cargo Jetty location, the concentration of the secondary pigment was in the range of 0.4 - 0.72 mg/m³ with a Mean±SD of 0.579±0.098 mg/m³ (Table 31) and in case of the creek location, the concentration of phaeophytin was almost similar when compared to the other two locations and was ranging between 0.36 – 0.69 mg/m³ with a Mean±SD of 0.484±0.087 mg/m³ (Table 32). An optimum ration of Chlorophyll to Phaeophytin of above 1.5 as expected for natural estuarine and coastal waters.

 Table 30: Chlorophyll and Phaeophytin concentration in the Offshore site

Parameters	1	A	1	B	1	С	1	D	1	E	1 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.65	0.72	0.75	0.78	0.52	0.65	0.59	0.71	0.64	0.59	0.74	0.750
Phaeophytin (mg/m ³)	0.270	0.560	0.640	0.660	0.480	0.580	0.480	0.650	0.550	0.430	0.640	0.640

Table 31: Chlorophyll and Phaeophytin concentration in the Cargo Jetty site

Parameters	2	A	2	В	2	С	2	D	2	E	2 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.740	0.780	0.742	0.600	0.650	0.620	0.720	0.620	0.500	0.750	0.650	0.720
Phaeophytin (mg/m ³)	0.680	0.720	0.630	0.550	0.400	0.580	0.440	0.580	0.480	0.660	0.580	0.650

Parameters	3A		3	B	3	С	3	D	3	Е	3 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.520	0.680	0.720	0.720	0.600	0.570	0.479	0.660	0.620	0.530	0.720	0.580
Phaeophytin (mg/m ³)	0.480	0.480	0.52	0.570	0.480	0.430	0.370	0.470	0.480	0.360	0.690	0.480

5.4. Chlorophyll and Phaeophytin concentration during Season 2

The concentration of phytopigments is inversely proportional to the turbidity of the waters and in general, waters owing to the high turbidity restricts sunlight penetration essential for nutrient uptake by phytoplankton and thus inhibiting primary production. The concentration of chlorophyll pigment in the water samples ranged from 0.35 -0.68 mg/m³ with a mean \pm SD being 0.51 \pm 0.10 mg/m³ in the Offshore (Table 33), 0.274 to 0.62 mg/m³ with mean \pm SD of 0.41 \pm 0.12 mg/m³ in the Cargo Jetty (Table 34) and 0.31 to 0.71 mg/m³ with mean \pm SD being 0.45 \pm 0.11 mg/m³ in the Phang creek location (Table 35).

Another phytopigment estimated was Phaeophytin, which is one of the breakdown products of Chlorophyll was also estimated in the water samples collected from all the three locations and the concentration of Phaeophytin in the marine water samples were in the concentrations such as 0.24-0.42 mg/m³ with a Mean±SD of 0.32±0.06 mg/m³ in the Offshore location (Table 33). In case of Cargo Jetty location, the concentration of the secondary pigment was in the range of 0.12- 0.32 mg/m³ with a Mean±SD of 0.228±0.059 mg/m³ (Table 34) and in case of the creek location, the concentration of phaeophytin was almost similar when compared to the other two locations and was ranging between 0.24-0.55 mg/m³ with a Mean±SD of 0.35±0.08 mg/m³ (Table 35). An optimum ration of Chlorophyll to Phaeophytin of above 1.5 as expected for natural estuarine and coastal waters.

Parameters	14	N	1	В	1	С	1	D	1	Е	1 Co	ntrol
	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW	SW	BW
Chlorophyll (mg/m ³)	0.520	0.530	0.660	0.500	0.490	0.460	0.480	0.470	0.680	0.590	0.382	0.350
Phaeophytin (mg/m ³)	0.250	0.370	0.310	0.280	0.280	0.380	0.310	0.250	0.410	0.420	0.280	0.240

Table 33: Chlorophyll and Phaeophytin concentration in the Offshore site

Parameters	2.	A	2	В	2	С	2	D	2	E	2 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.520	0.350	0.320	0.280	0.450	0.313	0.341	0.347	0.530	0.274	0.580	0.620
Phaeophytin (mg/m ³)	0.320	0.280	0.210	0.120	0.280	0.210	0.290	0.200	0.230	0.180	0.260	0.160

 Table 34: Chlorophyll and Phaeophytin concentration in the Cargo Jetty site

Table 35: Chlorophyll and Phaeophytin concentration in the Phang Creek site

Parameters	3.	A	3	В	3	С	3	D	3	Е	3 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.348	0.580	0.460	0.420	0.560	0.710	0.380	0.310	0.420	0.510	0.430	0.360
Phaeophytin(mg/m ³)	0.260	0.372	0.32	0.350	0.470	0.550	0.240	0.280	0.370	0.320	0.374	0.280

5.5. Chlorophyll and Phaeophytin concentration during Season 3

The concentration of phytopigments is inversely proportional to the turbidity of the waters and in general, waters owing to the high turbidity restricts sunlight penetration essential for nutrient uptake by phytoplankton and thus inhibiting primary production. The concentration of chlorophyll pigment in the water samples ranged from 0.48 -0.74 mg/m³ with a mean \pm SD being 0.59 \pm 0.09 mg/m³ in the Offshore (Table 36), 0.48 to 0.77 mg/m³ with mean \pm SD of 0.59 \pm 0.09 mg/m³ in the Cargo Jetty (Table 37) and 0.43 to 0.99 mg/m³ with mean \pm SD being 0.707 \pm 0.159 mg/m³ in the Phang creek location (Table 38).

Another phytopigment estimated was Phaeophytin, which is one of the breakdown products of Chlorophyll was also estimated in the water samples collected from all the three locations and the concentration of Phaeophytin in the marine water samples were in the concentrations such as 0.25-0.48 mg/m³ with a Mean±SD of 0.32±0.08 mg/m³ in the Offshore location (Table 36). In case of Cargo Jetty location, the concentration of the secondary pigment was in the range of 0.22- 0.44 mg/m³ with a Mean±SD of 0.32±0.088 mg/m³ (Table 37) and in case of the creek location, the concentration of phaeophytin was almost similar when compared to the other two locations and was ranging between 0.23-0.77 mg/m³ with a Mean±SD of 0.46±0.16 mg/m³ (Table 38).

An optimum ration of Chlorophyll to Phaeophytin of above 1.5 as expected for natural estuarine and coastal waters.

Parameters	1	A	1	B	1	С	1	D	1	E	1 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.650	0.580	0.580	0.480	0.670	0.480	0.640	0.620	0.740	0.520	0.670	0.480
Phaeophytin(mg/m ³)	0.320	0.280	0.250	0.280	0.250	0.320	0.480	0.320	0.340	0.280	0.460	0.260

Table 36: Chlorophyll and Phaeophytin concentration in the Offshore site

 Table 37: Chlorophyll and Phaeophytin concentration in the Cargo Jetty site

Parameters	2.	A	2	В	20	С	2	D	2	E	2 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.770	0.650	0.640	0.520	0.580	0.480	0.620	0.560	0.520	0.700	0.480	0.650
Phaeophytin(mg/m ³)	0.440	0.420	0.230	0.310	0.250	0.260	0.230	0.420	0.320	0.350	0.220	0.440

Table 38: Chlorophyll and Phaeophytin concentration in the Phang Creek site

Parameters	3	Α	3	В	3	С	3	D	3	Е	3 Co	ntrol
	SW	BW										
Chlorophyll (mg/m ³)	0.430	0.610	0.580	0.840	0.810	0.990	0.820	0.630	0.570	0.650	0.680	0.870
Phaeophytin(mg/m ³)	0.390	0.400	0.44	0.460	0.740	0.770	0.320	0.230	0.420	0.490	0.350	0.410

Table 39: Comparison of the mean chlorophyll and phaeophytin concentrationsin the present study (2023-24) and the previous year data (2021-22 and 2022-23)

				Perio	d of study ((in year)			
Parameters		2021-2022			2022 - 23		2023-24	4 (Present s	study)
	S1	S2	S3	S1	S2	S 3	S1	S2	S3
Chlorophyll mg/m ³	0.32	0.45	0.62	0.53	0.48	0.63	0.68	0.46	0.63
Phaeophytin mg/m ³	0.22	0.30	0.29	0.29	0.31	0.33	0.54	0.27	0.37

When the Chlorophyll and Phaeophytin concentrations are concerned from the last three years, the concentrations of Chlorophyll was on a higher side during season 1, whereas the season 2 and season depicted a similar mean value of chlorophyll. In case of Phaeophytin, the Season 1 values were higher in the present year, and during season 2 revealed a similar mean value, whereas the season 3 recorded a slightly higher value of phaeophytin.

5.6. Phytoplankton sampling and analysis

Phytoplankton samples were collected in the ten prefixed sampling sites using standard plankton net with a mesh size of 51 µm. Plankton nets are with a square mouth covering an area of 0.900 cm^2 (30cm square mouth) fitted with a flow meter (Hydrobios). Nets were towed from a moving boat for 10 minutes and the plankton adhering to the net was concentrated in the net bucket. Plankton soup from the net bucket was transferred to a pre-cleaned and rinsed container and preserved with 5% neutralized formaldehyde. The containers were appropriately labelled. The initial and final flow meter reading was noted down for calculating the amount of water filtered to estimate plankton density. As per flow meter reading, a total amount of 165 m³ of water was filtered by the net. One liter of water was separately collected for density estimation to counter check density estimation obtained by the flow meter reading. Quantitative analysis of phytoplankton (cell count) was carried out using a sedge wick-Rafter counting chamber. One ml of soup added to a Sedgwick counting chamber was observed under an inverted compound microscope. The number of cells present in individual cells of the counting chambers (1/1000) was noted and identified up to a generic level. Several observations were fixed to represent the entire quantity of the soup (generally more than 30 times) and the recorded data were used to calculate the density (No/l) using the formula, $N = n \times v/V$ (where N is the total no/l; n is an average number of cells in 1 ml; v is the volume of concentrate; V is the total volume of water filtered). The phytoplankton diversity richness and evenness were past software.

5.6.1. Phytoplankton community structure recorded during Season 1

The study was conducted at 3 sites (or regions) at Kandla Port and near area where dredging activities is going on Creek and the stations are Offshore, Cargo Jetty and Phang Greek.

5.6.1.1. Offshore

In this site, frequently observed species were Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus wailesii, Ditylum brightwelli, Thalassionema frauenfeldii colony, Trieres mobiliensis, Pleurosigma sp, Rhizosolenia setigera, Odontella sinensis, Thalassiosira sp etc. whereas less observed species were Amphiprora sp, Biddulphia sp, Coscinodiscus granii, Entomoneis sp, Fragilariopsis sp colonies, Paralia sp chain, Planktoniella sol, Rhizosolenia clevei var.communi and some unidentified.

Total 44 Phytoplankton were recorded in this Offshore area. Highest population density was recorded at site 1A-Offshore (375520nos./m³) and lowest density was recorded at site 1B-Offshore (55840nos./m³). The maximum number of species observed in site 1A-Offshore (30 nos.) followed by 1E (28nos.), 1Control (24 nos.), 1B&1C-Offshore (19nos.), 1D-Offshore(17nos.). The population density greatly varied between (55840nos./m³ to 375520nos./m³). *Biddulphia sp, Synedra ulna, Ulnaria ulna, Fragilariopsis sp colony, Pleurosigma sp, Nitzschia sp, Oocystis sp.* were recorded which are sometimes considering for pollution indicator species in water. Green algae sp and *Oocystis sp* were also recorded in some location of Offshore which may be indication of freshwater or polluted water mixing with seawater. Some Dinoflagellates were also like *Tripos furca, Tripos muelleri*. Golden brown naked biflagellate algae *Pyrophacus sp* also recorded in site 1A-Offshore. Highest population density contributor species was *Thalassionema frauenfeldii colonies (range 10240 to 90400* nos./m³)

5.6.1.2. Cargo jetty

Total 48 Phytoplankton were recorded in this Cargo Jetty area. The population density greatly varied between 37280 Nos/m³ to 72960 Nos/m³.Highest density value recorded at 2control-Cargo Jetty (72960 nos./ m³) and lowest value was at 2A-Cargo Jetty (37280 nos./m³). The lowest number of species noted in the site 2A-Cargo Jetty(19 nos.) whereas highest in 2control-CargoJetty (29 nos.).

In this Cargo Jetty station commonly or frequently observed species were *Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus radiatus, Coscinodiscus wailesii, Gyrosigma sp, Nitzschia sp, Oocystis sp, Planktoniella blanda, Pleurosigma sp, Thalassionema frauenfeldii colony, Trieres mobiliensis, Tripos furca, Tripos muelleri etc. The rarely found species were Amphiprora sp, Biddulphia sp, Cerataulina sp, Chaetoceros sp, Noctiluca sp, Planktoniella sol, Proboscia sp, Pyrophacus sp, Thalassionema nitzschioides colony, Trachyneis sp etc. The Dinoflagellates like Noctiluca sp(mostly consider deep sea species), Tripos furca, Tripos muelleri and Protoperidinium sp were also observed during microscopic analysis that may be indication of water circulation from deep water to upper surface. <i>Pyrophacus sp. are golden brown naked bi-flagellates also recorded.*

5.6.1.3. Phang Creek

The population density of phytoplankton ranged from 72480 nos./m³ to 253280 nos./m³ same way species availability ranged from 14 to 26 nos. Maximum and Minimum value of population density were recorded in site 3Control-Phang Creek (253280nos./m³) and 3A-Phang Creek (72480 nos./m³) respectively. Highest number of species recorded in site 3D & 3control-Phang Creek (26 nos.) and lowest in site 3C-Phang Creek (14 nos.). Total recorded phytoplankton was 45 in this creek area. Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus granii, Coscinodiscus radiatus, Nitzschia sp, Rhizosolenia sp, Synedra ulna, Thalassionema frauenfeldii colony, Thalassiosira sp, Trieres mobiliensis, Tripos muelleri etc. were frequently noticed during microscopic work whereas less observed species were Bellerochea sp algae (unidentified), Paralia sp chain, Planktoniella sol, chain. Green Protoperidinium sp, Silicoflagellates (protists), Tripos furca etc. Green algae were also recorded, which are generally found in fresh water and estuarine area. Silicoflagellates (protists) generally recorded deep sea but also observed in creek area may be because of water circulation pattern.

Overall view of Phytoplankton showed that a total 62 species of Marine phytoplankton were identified during winter season of the year 2024. Among them,31-Centric diatoms, 19-Pennate diatoms, 7-Dinoflagellates, 1-Blue green algae, 2-Green algae and 1-silicoflagellates and some are not identified phytoplankton was included in unidentified. Some species like *Amphiprora sp, Bellerochea sp chain, Noctiluca sp, Paralia sp chain, Planktoniella sol, Rhizosolenia imbricata, Triceratium favus, Tripos furca* and *Trichodesmium sp* etc., were rarely recorded during sample analysis. Input of the fresh water indicated by the presence of some common fresh water species like *Green algae* and blue green algae - *Trichodesmium sp*.

Presence of *Dinoflagellates (Noctiluca sp, Protoperidinium sp, Pyrophacus sp and different type of Tripos sp.)* indication of bottom water circulation up to surface water layer in some level. Noctiluca genus is also considering bioluminescent organisms and deep water species. Silicoflagellates was also recorded in some sites Kandala region. Highest phytoplankton density was observed at the site 1A-Offshore (375520nos./m³) and lowest was observed at site 2A-Cargo Jetty (37280 nos./m³) (Table 40). Total number of highest species observed at site 1A-Offshore (30nos.) and lowest in site 3C-Phang Creek (17 Nos.).

The high population density composed by species like *Coscinodiscus centralis*, *Coscinodiscus radiatus*, *Planktoniella blanda*, *Odontella sinensis*, *Rhizosolenia sp*, *Rhizosolenia setigera*, *Synedra ulna*, *Thalassionema frauenfeldii colony*, *Trieres mobiliensis* and *Tripos muelleri* (Table 40). This result indicated that genus *Coscinodiscus sp. Rhizosolenia sp*, *Thalassiosira sp*, *Trieres sp* and *Tripos sp* were very common with good numbers in all sites. In some sites, least number of species and low density of phytoplankton might be responsible due to some factors like extreme cool weather because of winter season, high pre-predation ratio, marine pollution (anthropogenic pressure), high turbidity, total suspended solids, water current and suddenly changes in environment conditions etc. Diatoms, type of phytoplankton, constitute major part in total phytoplankton composition The individual density of species of sites viz. has been depicted in Table 40. All values of phytoplankton density, list of phytoplankton and others shown in (Table 40).

5.6.1.4. Diversity Indices of Phytoplankton

According to Table 41, diversity indices calculation for phytoplankton showed that the Shannon Index ranged from (0.86 to 2.85) indicated low level to moderate level of diversity status. High Shannon Index was recorded at 1E-Offshore (2.85) where 28 species were recorded and low at 1B-Cargo Jetty (0.86) where 19 species were recorded. Lowest evenness recorded at site 1B – Offshore (0.12) whereas highest was in at 2A-Cargo Jetty (0.69). Dominance D index ranged from 0.08 to 0.72where higher value in 1B-Offshore (0.72) and lowest was at in 1E- Offshore (0.08). Value of Margalef D (1.06 to 2.45) showed more variation in species numbers (Table 41).

Table 40. Density of Phytoplankton at different sites of Deendayal Port

Name of Sites			Off	shore					Carg	go Jetty					Phan	g Creek		
	1A	1B	1C	1D	1E	1 control	2A	2B	2C	2D	2E	2 control	3A	3B	3C	3D	3E	3 control
Genus of Phytoplankton																		-
Actinocyclus sp	52000	320	4480	8320	960	7200	800	4160	800	6080	800	1600	6720	9120	14400	8320	11200	10240
Amphiprora sp	800	0	0	0	0	0	0	0	0	0	0	640	0	0	0	0	0	1120
Bacillaria paxillifera	640	320	0	0	1280	0	640	0	0	800	960	480	0	0	0	1440	640	0
colonies																		
Bellerochea sp chain	960	0	0	0	640	640	0	640	960	0	0	0	0	0	0	800	0	0
Biddulphia sp	0	0	640	0	0	640	0	0	0	0	0	640	0	0	0	0	160	0
Cerataulina sp	0	0	0	0	0	0	0	0	0	480	0	0	0	0	0	0	0	0
Chaetoceros decipiens	0	0	0	0	0	0	0	1120	0	0	480	0	0	0	0	0	0	0
Chaetoceros sp	5120	640	320	0	0	1120	800	0	0	0	0	800	0	0	0	0	0	0
Coscinodiscus centralis	16320	480	5280	6080	6560	7520	4960	5920	9120	3360	6400	10560	13920	59200	15840	11520	8800	19360
Coscinodiscus granii	64000	0	0	0	0	0	0	0	0	0	0	0	7200	88800	83200	50400	83200	48000
Coscinodiscus radiatus	68000	800	4320	5440	8320	8800	5920	4160	9120	6880	7520	15520	16800	65600	60800	69600	57600	63200
Coscinodiscus sp.	0	0	5920	0	3680	1440	1120	0	0	0	1600	1600	1600	3360	0	0	0	0
Coscinodiscus wailesii	0	1600	4480	4480	5120	3200	0	3360	4320	2720	6560	5920	0	0	0	0	0	0
Cyclotella sp	0	320	0	0	0	1120	0	0	0	0	0	0	0	0	0	0	0	0
Ditylum brightwelli	7520	480	960	1440	1440	0	640	1440	0	0	1280	0	800	0	640	0	0	0
Entomoneis sp	0	0	0	0	320	0	0	0	0	0	0	0	0	0	0	0	0	0
Fragilariopsis sp colonies	0	0	0	0	640	0	0	0	0	1120	0	0	0	0	0	640	0	640
Green algae (unidentified)	0	0	0	480	0	480	0	0	0	0	0	0	0	0	320	0	0	960
Gyrosigma sp.	1280	0	320	0	640	640	0	480	480	480	480	640	0	800	0	640	800	1280
Hemiaulus sp chain	0	0	0	0	0	0	480	0	0	0	0	0	0	0	0	0	0	0
Melosira sp colony	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	800
Navicula sp	0	0	0	0	0	0	0	0	0	0	0	0	0	640	0	480	0	640
Nitzschia sigmoidea	0	0	0	0	0	0	0	0	0	0	0	0	0	0	480	0	0	640
Nitzschia sp	320	0	480	0	0	3200	0	480	960	1120	1120	1120	800	960	0	2720	800	1440
Noctiluca sp	0	0	0	0	0	0	0	0	0	480	0	0	0	480	0	0	0	0
Odontella sinensis	12800	320	800	640	0	1120	0	640	1120	0	0	1600	1280	0	0	1920	0	320
Odontella mobiliensis	0	320	0	0	0	0	0	0	0	640	1280	0	0	1600	480	2080	2240	0
Oocystis sp	6400	320	0	0	0	0	2080	0	480	2240	1920	1280	1760	0	0	0	1600	0
Paralia sp chain	480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	0	0
Pinnularia sp	0	0	0	0	0	0	0	0	0	0	0	480	0	1120	0	0	0	
Planktoniella blanda	800	0	0	0	1600	1120	480	320	640	640	0	640	0	1760	0	1920	2400	640
Planktoniella sol	800	0	0	0	0	0	0	640	320	0	0	0	0	0	0	0	320	0

Studies on Dredged Materials for The Presence of Contaminants

Pleurosigma angulatum	0	0	0	0	640	0	0	480	0	0	0	0	0	0	0	480	800	0
Pleurosigma sp.	1440	320	0	960	800	1760	1120	800	1600	0	1280	1120	800	480	0	0	3360	1440
Proboscia sp	640	640	0	2400	0	0	0	0	0	0	1600		0	0	0	0	0	0
Protoperidinium sp	0	0	0	0	0	0	0	0	0	640	320	800	480	0	0	0	960	0
Pseudo-nitzschia sp chain	0	0	0	0	480	0	0	0	0	0	1120	0	0	0	0	0	0	0
Pyrophacus sp	640	0	0	0	0	0	0	0	0	640	0	0	0	0	0	0	0	0
Rhizosolenia bergonii	0	0	0	0	0	0	0	0	0	1440	320	0	0	0	0	0	0	0
Rhizosolenia clevei																		
var.communis	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0
Rhizosolenia imbricata	6720	480	0	0	2080	0	2080	0	640	960	0	1280	0	0	0	0	960	0
Rhizosolenia setigera	5120	0	640	960	1440	320	2400	0	1280	800	2400	1600	0	0	1600	1760	2080	2080
Rhizosolenia sp	0	320	960	2240	4000	960	0	0	1120	3200	4160	2720	2560	3840	0	3200	2400	2240
Silicoflagellates (protists)	0	0	0	0	1120	960	0	0	0	0	0	480	0	0	0	640	0	0
Surirella sp	0	0	0	0	0	0	0	0	0	0	0	0	480	480	0	0	480	0
Synedra sp	0	0	0	0	0	0	0	0	640	0	0	0	800	800	0	1120	0	1120
Synedra ulna	1600	320	480	320	1120	1440	960	800	480	480	640	1120	0	960	640	1760	2400	960
Thalassionema frauenfeldii colonies	90400	47200	30400	30400	10240	15200	7360	8320	8320	14560	12320	12960	12320	8320	14720	46400	28800	17920
<i>Thalassionema</i> nitzschioides colonies	0	0	0	0	0	0	0	0	0	640	0	0	0	0	0	0	0	0
Thalassiosira aculeata	8160	0	0	960	2400	1920	0	1280	0	0	0	1120	0	0	0	0	960	2400
Thalassiosira sp.	6080	0	640	3200	1760	4640	1600	1760	800	0	0	1600	960	800	6880	11520	9120	3200
Trachyneis sp	0	0	0	0	0	0	0	480	0	0	0	0	0	0	0	0	0	0
Triceratium favus	0	0	0	0	0	0	0	0	0	0	0	0	0	320	0	0	0	0
Triceratium sp	2240	0	0	0	480	1600	0	0	0	0	0	640	0	0	0	0	1760	1440
Trichodesmium sp	0	0	0	0	0	0	0	0	0	0	1920	0	0	0	0	0	0	0
Trieres mobiliensis	7520	320	800	1440	2560	0	1120	1760	1120	1280	960	1280	1120	1440	2880	1920	2880	1440
Tripos azoricus	0	0	0	0	0	0	0	480	0	0	960	0	0	0	0	0	0	0
Tripos furca	5120	0	480	640	480	0	960	1120	1120	0	800	1600	0	0	0	2560	0	0
Tripos fusus	0	0	0	0	0	0	0	0	0	0	0	0	0	960	0	0	0	0
Tripos muelleri	1120	320	800	0	480	0	1760	960	800	960	960	1120	1760	1440	1920	1600	0	1120
Ulnaria (Synedra) ulna	480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Unidentified	0	0	0	0	320	0	0	0	0	160	2400	0	320	0	0	640	0	320
Density of Phytoplankton	375520	55840	63200	70400	61600	67840	37280	41600	46240	52800	62560	72960	72480	253280	204800	226400	226720	184960

Table 41. Diversity Indices of Phytoplankton at different sites at Deendayal Port

Variables			Of	fshore					Carg	o jetty					Phan	g Creek		
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2E	2-contrl	3A	3B	3C	3D	3E	3- control
Taxa_S	30	19	19	17	28	24	19	23	22	25	27	29	19	23	14	26	25	26
Individuals (Nos/m ³)	375520	55840	63200	70400	61600	67840	37280	41600	46240	52800	62560	72960	72480	253280	204800	226400	226720	184960
Dominance_D	0.14	0.72	0.26	0.22	0.08	0.10	0.10	0.10	0.13	0.12	0.09	0.11	0.14	0.25	0.27	0.19	0.22	0.21
Shannon Diversity Index (H)	2.33	0.86	1.94	2.04	2.85	2.64	2.58	2.68	2.47	2.58	2.80	2.68	2.27	1.74	1.63	2.07	1.98	2.03
Simpson_1-D	0.86	0.28	0.74	0.78	0.92	0.90	0.90	0.90	0.87	0.88	0.91	0.89	0.86	0.75	0.73	0.81	0.78	0.79
Evenness_e^H/S	0.34	0.12	0.37	0.45	0.62	0.58	0.69	0.63	0.54	0.53	0.61	0.51	0.51	0.25	0.36	0.30	0.29	0.29
Menhinick	0.05	0.08	0.08	0.06	0.11	0.09	0.10	0.11	0.10	0.11	0.11	0.11	0.07	0.05	0.03	0.05	0.05	0.06
Margalef	2.26	1.65	1.63	1.43	2.45	2.07	1.71	2.07	1.96	2.21	2.35	2.50	1.61	1.77	1.06	2.03	1.95	2.06

5.7.1. Phytoplankton community structure recorded during Season 2

The study was conducted at 3 sites (or regions) at Kandla Port and near area where dredging activities is going on Creek and the stations are Offshore, Cargo Jetty and Phang Greek.

5.7.1.1. Offshore

In this site, frequently observed species were Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus wailesii, Ditylum brightwelli, Fragilaria sp, Thalassionema frauenfeldii colony, Thalassionema nitzschioides colonies, Trieres mobiliensis, sinensis, etc. whereas less observed species were Amphiprora sp, *Odontella* Bacillaria paxillifera colonies, Gyrosigma sp, Protoperidinium sp, Rhizosolenia sp etc. Total 30 Phytoplankton were recorded in this Offshore area. Highest population density was recorded at site 1E-Offshore (431680nos./m³) and lowest density was recorded at site 1B-Offshore (160000nos./m³). The maximum number of species observed in site 1Control-Offshore (20 nos.) followed by 1D (18nos.), 1E and 1A (16nos.), 1B(13nos.), 1C-Offshore(12nos.). The population density greatly varied between (160000nos./m³ to 431680nos./m³). Synedra ulna, Fragilaria sp colony, Nitzschia sp, Thalassiosira sp were recorded which are sometimes considering for pollution indicator species in water. Green algae was also recorded in some location of Offshore which may be indication of freshwater or polluted water mixing with seawater. Some Dinoflagellates were also recorded like Protoperidinium sp, Highest population density contributor species was Coscinodiscus wailesii (range 88000 to 120000nos./m^3)

5.7.1.2. Cargo jetty

Total 27 Phytoplankton were recorded in this Cargo Jetty area. The population density greatly varied between 104800 Nos/m³ to 393440 Nos/m³. Highest density value recorded at 2control-Cargo Jetty (393440nos./ m³) and lowest value was at 2C-Cargo Jetty (104800nos./m³). The lowest number of species noted in the site 2C and 2E-Cargo Jetty (09 nos.) whereas highest in 2A-CargoJetty (15 nos.). In this Cargo Jetty

station commonly or frequently observed species were *Actinocyclus sp*, *Coscinodiscus centralis*, *Coscinodiscus radiatus*, *Coscinodiscus wailesii*, *Odontella sinensis*, *Thalassionema frauenfeldii colony* etc. The rarely found species were Climacosphenia sp, *Chaetoceros sp*, *Planktoniella blanda*, *Rhizosolenia imbricata*, *Triceratium favus etc*. The Dinoflagellates *like Tripos muelleri* was also observed during microscopic analysis that may be indication of water circulation from deep water to upper surface. *Dictyocha sp* (*Silicoflagellates*) was also recorded.

5.7.1.3. Phang Creek

The population density of phytoplankton ranged from 64000nos./m³ to 121120nos./m³ same way species availability ranged from 11 to 20 nos. Maximum and Minimum value of population density were recorded in site 3Control-Phang Creek (121120nos./m³) and 3A-Phang Creek (64000 nos./m³) respectively. Highest number of species recorded in site 3B-Phang Creek (20nos.) and lowest in site 3C-Phang Creek (13nos.). Total recorded phytoplankton was 27 in this creek area. *Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus wailesii, Coscinodiscus radiatus, Odontella sinensis Thalassionema frauenfeldii colonies Rhizosolenia sp , Synedra ulna, Thalassionema frauenfeldii colonies, Thalassionema nitzschioides colonies, Thalassiosira sp etc. were frequently noticed during microscopic work whereas less observed species were Biddulphia sp, Fragilaria sp Gyrosigma sp and some unidentified phytoplankton. Green algae <i>were also recorded*, which are generally found in fresh water and estuarine area.

Overall view of Phytoplankton showed that a total 40 species of Marine phytoplankton were identified during summer season of the year 2024. Among them,20-Centric diatoms, 15-Pennate diatoms, 2-Dinoflagellates, 1-Green algae and 1-silicoflagellates and some are not identified phytoplankton's was included in unidentified. Some species like *Bacillaria paxillifera colonies, Chaetoceros sp, Climacosphenia sp, Dictyocha sp (Silicoflagellates) Planktoniella blanda, Rhizosolenia gracillima, Trachyneis sp* were rarely recorded during sample analysis. Input of the fresh water indicated by the presence of some common fresh water

species like *Green algae*. Presence of *Dinoflagellates (,Tripos muelleri Protoperidinium sp)* indication of bottom water circulation up to surface water layer in some level. *Dictyocha sp* (Silicoflagellates) was also recorded in Cargo Jetty region. Highest phytoplankton density was observed at the site 1E-Offshore (431680nos./m³) and lowest was observed at site 3A-Phang creek (64000 nos./m³) (Table 42). Total number of highest species observed at site 1control-Offshore and 3B-Phang creek (20nos.) and lowest in site 2C and 2E-Cargo jetty (09nos.).

The high population density composed by species like Actinocyclus sp, *Coscinodiscus centralis, Coscinodiscus radiates, Coscinodiscus wailesii, Thalassionema frauenfeldii colonies, Thalassionema nitzschioides colonies* (Table 42). This result indicated that genus *Coscinodiscus sp. Actinocyclus sp, Thalassionama sp* were very common with good numbers in all sites. In some sites, least number of species and low density of phytoplankton might be responsible due to some factors like extreme cool weather because of winter season, high pre-predation ratio, marine pollution (anthropogenic pressure), high turbidity, total suspended solids, water current and suddenly changes in environment conditions etc. Diatoms, type of phytoplankton, constitute major part in total phytoplankton density, list of phytoplankton and others shown in (Table 42).

5.7.1.4. Diversity Indices of Phytoplankton

According to Table 43, diversity indices calculation for phytoplankton showed that the Shannon Index ranged from (0.73 to 2.34) indicated low level to moderate level of diversity status. High Shannon Index was recorded at 3Control-Phang creek (2.34) where 18 species were recorded and low at 2E-Cargo Jetty(0.73) where 09 species were recorded. Lowest evenness recorded at site 2A and 2E-Cargo Jetty(0.23)whereas highest was in at 3B-Phang creek (0.65). Dominance_D index ranged from 0.10 to 0.72 whereas higher value in 2E-Cargo Jetty (0.72) and lowest was at in 3B-Phang creek (0.10). Value of Margalef D (0.64 to 1.67) showed more variation in species numbers. (Table 43).

Studies on Dredged Materials for The Presence of Contaminants

Table 42. Density of Phytoplankton at different sites of Deendayal Port

Name of Sites			Off	shore					Carg	o Jetty					Pha	ang Creek		
	1A	1B	1C	1D	1E	1 Con	2A	2B	2C	2D	2E	2-Con	3A	3B	3C	3D	3E	3 - Con
Actinocyclus sp	20000	9600	24000	16000	163200	22400	12000	4000	9600	24000	4000	4000	0	8000	0	3200	14400	8000
Amphiprora sp	0	0	0	0	3200	0	0	0	0	0	0	0	0	0	0	0	0	0
Bacillaria paxillifera colonies	4000	0	0	3200	0	0	0	0	0	800	0	0	0	0	0	0	0	0
Biddulphia sp	0	0	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	480	0
Chaetoceros sp	0	0	0	0	0	0	0	0	0	800	0	0	0	0	0	0	0	0
Coscinodiscus centralis	16000	8000	4000	16800	57600	20800	16800	8000	16000	0	8000	8000	4000	12000	9600	16800	10400	14400
Coscinodiscus radiatus	20000	24000	19200	32000	40800	17600	20000	16000	20000	48000	16000	41600	16000	12000	12000	20000	17600	25600
Coscinodiscus sp.	0	0		0	0	0	0	0	0	0	0	0	8000	3200	0	16000	6400	16000
Coscinodiscus wailesii	120000	88000	79200	64000	120000	88000	160000	80000	49600	16000	240000	320000	20000	17600	24800	32160	24000	24000
Climacosphenia sp	0	0	0	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0
Ditylum brightwelli	0	2400	4000	4000	1600	0	2400	0	0	2400	0	2400	0	1600	0	0	0	2400
Dictyocha sp (Silicoflagellates)	0	0	0	0	0	0	2400	0	0	0	0	0	0	0	0	0	0	0
Fragilaria sp	4800	3200	0	4000	16000	12000	0	0	0	0	0	0	0	0	0	800	0	0
Green algae (unidentified)	4000	0	0	0	0	1600	0	3200	0	0	0	0	0	1600	1600	1600	0	800
Gyrosigma sp.	0	800	0	0	0	1600	0	3200	0	0	0	0	1600	1600	0	0	0	800
Navicula sp	0	0	0	0	800	0	0	0	0	0	0	0	0	800	3200	480	1600	0
Nitzschia sp	0	2400	0	800	0	1120	0	0	0	0	0	0	1600	0	0	0	320	640
Odontella sinensis	1600	8000	7200	7200	10400	4800	1600	3200	3200	8000	4000	2400	800	5600	4000	4800	0	960
Pinnularia sp	0	0	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	0	0
Planktoniella blanda	0	0	0	0	0	0	0	0	1600	0	3200	0	0	0	0	0	0	0
Planktoniella sol	4000	2400	0	3200	0	0	2400	0	0	0	0	0	0	0	0	0	0	0
Pleurosigma sp.	640	0	0	0	1600	2400	0	0	0	0	0	0	0	1600	0	1600	800	3200
Protoperidinium sp	0	0	3200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhizosolenia gracillima	0	0	0	0	0	0	0	0	0	3200	0	0	0	0	0	0	0	0
Rhizosolenia imbricata	0	0	0	640	800	0	0	0	800	0	0	0	0	0	0	0	0	0
Rhizosolenia setigera	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0
Rhizosolenia sp	0	2400	0	0	0	1600	0	800	0	800	0	2400	0	0	0	0	0	0
Surirella sp	0	0	0	0	0	800	1600	3200	0	0	0	0	0	320	0	0	320	0
Synedra sp	0	0	1600	3200	0	0	0	4000	0	0	0	0	0	0	4000	320	8000	4000
Synedra ulna	4000	0	0	4000	1600	4000	4000	800	0	0	0	640	2400	3200	2400	2400	5600	320
Thalassionema colonies frauenfeldii	3200	0	0	8000	1600	7200	1920	2400	3200	0	4000	2400	2400	4000	4000	4800	4000	3200
Thalassionema nitzschioides colonies	800	4000	7200	4000	4800	7200	1600	0	0	4000	0	2400	0	4000	0	4800	3200	4800
Thalassiosira aculeata	8000	0	0	0	0	800	0	0	0	0	0	0	0	0	0	1600	0	0
Thalassiosira sp.	8000	0	0	4800	0	10400	800	0	0	0	4000	0	3200	4000	5600	2400	4000	2400
Thalassiosira ferelineta	0	0	3200	0	0	0	0	0	0	0	0	1600	0	0	0	1600	0	4000
Trachyneis sp	0	0	0	0	480	0	0	0	0	0	0	0	0	0	800	0	0	0
Triceratium favus	3200	0	1600	4000	0	2400	2400	2400	0	0	0	2400	0	800	0	1600	0	0
Trieres mobiliensis	0	4800	6400	8000	7200	1280	0	0	0	0	1600	3200	0	1600	1600	2400	0	5600
Tripos muelleri	0	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0
Unidentified	0	0	0	0	0	0	0	0	0	0	0	0	4000	0	1600	0	0	0
Density of Phytoplankton (no/m ³)	222240	160000	160800	187840	431680	208800	230720	131200	104800	108000	284800	393440	64000	86720	75200	119360	101120	121120
Total: 3191840 no/m ³																		
Total No. of Genus/Species=40																		

Table 43. Diversity Indices of Phytoplankton at different sites at Deendayal Port

Variables			Of	fshore					Carg	o jetty					Phan	ig Creek		
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2 E	2-contrl	3A	3B	3C	3D	3E	3- control
Taxa_S	16	13	12	18	16	20	15	13	9	10	9	13	11	20	13	19	15	18
Individuals (Nos/m ³)	222240	160000	160800	187840	431680	208800	230720	131200	104800	108000	284800	393440	64000	86720	75200	119360	101120	121120
Dominance_D	0.32	0.34	0.29	0.17	0.25	0.22	0.50	0.40	0.29	0.28	0.72	0.67	0.19	0.10	0.17	0.15	0.14	0.13
Shannon Diversity Index (H)	1.76	1.64	1.72	2.24	1.70	2.09	1.25	1.51	1.53	1.59	0.73	0.79	1.95	2.56	2.12	2.28	2.22	2.34
Simpson_1-D	0.68	0.66	0.71	0.83	0.75	0.78	0.50	0.60	0.71	0.72	0.29	0.33	0.81	0.90	0.83	0.85	0.86	0.87
Evenness_e^H/S	0.36	0.39	0.47	0.52	0.34	0.40	0.23	0.35	0.51	0.49	0.23	0.17	0.64	0.65	0.64	0.51	0.62	0.58
Menhinick	0.03	0.03	0.03	0.04	0.02	0.04	0.03	0.04	0.03	0.03	0.02	0.02	0.04	0.07	0.05	0.06	0.05	0.05
Margalef	1.22	1.00	0.92	1.40	1.16	1.55	1.13	1.02	0.69	0.78	0.64	0.93	0.90	1.67	1.07	1.54	1.22	1.45

5.8.1. Phytoplankton community structure recorded during Season 3

The study was conducted at 3 sites (or regions) at Deendayal Port and near area where dredging activities is going on Creek and the stations are Offshore, Cargo Jetty and Phang Greek.

5.8.1.1. Offshore

In this site, frequently observed species were Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus wailesii, Coscinodiscus rediatus, Ditylum brightwelli, Thalassionema frauenfeldii colony, Thalassionema nitzschioides colonies, Odontella sinensis, etc. whereas less observed species were Amphiprora sp, Green algae, Navicula sp, Bacillaria paxillifera colonies, Gyrosigma sp, Protoperidinium sp etc. Total 23 Phytoplankton were recorded in this Offshore area. Highest population density was recorded at site 1control-Offshore (36000nos./m³) and lowest density was recorded at site 1C-Offshore (19840nos./m³). The maximum number of species observed in site 1E and 1A-Offshore (13 nos.) followed by 1control (12nos.), 1B and <u>1C</u> (11nos.), <u>1D</u>(09nos.). The population density greatly varied between (19840nos./m³ to 36000nos./m³). Synedra ulna, Navicula sp, Green algae Thalassiosira sp were recorded which are sometimes considering for pollution indicator species in water. Green algae was also recorded in some location of Offshore which may be indication of freshwater or polluted water mixing with seawater. Some Dinoflagellates were also recorded like Protoperidinium sp. Highest population density contributor species was Coscinodiscus wailesii (range 5120 to 12000 nos./m³)

5.8.1.2. Cargo jetty

Total 24 Phytoplankton were recorded in this Cargo Jetty area. The population density greatly varied between 27040 nos/m³ to 38240 nos/m³.Highest density recorded at <u>2control-Cargo Jetty</u> (38240nos./ m³) and lowest value was at 2A and <u>2C-Cargo Jetty</u> (27040nos./m³). The lowest number of species noted in the site <u>2D-Cargo Jetty</u>(09 nos.) whereas highest in <u>2control-CargoJetty</u> (20nos.). In this Cargo Jetty station

commonly or frequently observed species were Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus radiatus, Coscinodiscus wailesii, Odontella sinensis, Thalassiosira sp etc. The rarely found species were Green algae, Protoperidinium sp, Thalassiosira aculeata, Triceratium favus etc. The Dinoflagellates like Protoperidinium sp was also observed during microscopic analysis that may be indication of water circulation from deep water to upper surface. Silicoflagellates were also recorded which are normally found in deep sea.

5.8.1.3. Phang Creek

The population density of phytoplankton ranged from 36800nos./m³ to 86080nos./m³ same way species availability ranged from 13 to 21 nos. Maximum and Minimum value of population density were recorded in site <u>3Control-Phang Creek</u> (86080nos./m³) and <u>3B-Phang Creek</u> (36800 nos./m³) respectively. Highest number of species recorded in site <u>3Control-Phang Creek</u> (21nos.) and lowest in site 3B and <u>3C-Phang Creek</u> (13nos.). Total recorded phytoplankton was 29 in this creek area. *Actinocyclus sp, Coscinodiscus centralis, Coscinodiscus wailesii, Coscinodiscus radiatus, Odontella sinensis Thalassionema frauenfeldii colonies, Thalassionema nitzschioides colonies, Thalassiosira sp etc. were frequently noticed during microscopic work whereas less observed species were <i>Biddulphia sp, Pinnularia sp, Trieres mobiliensis Thalassiosira aculeata* and some unidentified phytoplanktons. Green algae *were also recorded*, which are generally found in fresh water and estuarine area.

Overall view of Phytoplankton showed that a total 37 species of Marine phytoplankton were identified during summer season of the year 2024. Among them,14-Centric diatoms, 18-Pennate diatoms, 2-Dinoflagellates, 2-Green algae and 1-silicoflagellates and some are not identified phytoplankton's was included in unidentified. Some species like Biddulphia sp *Bacillaria paxillifera colonies, Dictyocha sp (Silicoflagellates) Protoperidinium sp Trachyneis sp , Tripos muelleri* were rarely recorded during sample analysis. Input of the fresh water indicated by the presence of some common fresh water species like *Green algae* and *Oocystis sp.*

Studies on Dredged Materials for The Presence of Contaminants

Presence of *Dinoflagellates (Tripos Muelleri Protoperidinium sp)* indication of bottom water circulation up to surface water layer in some level. *Dictyocha sp* (Silicoflagellates) was also recorded in Phang creek region. Highest phytoplankton density was observed at the site <u>3control-Phang creek</u> (86080nos./m³) and lowest was observed at site <u>1C-Offshore</u> (19840 nos./m³) (Table 44). Total number of highest species observed at site 3control-Phang creek (21nos.) and lowest in site 1D-Offshore and 2D-Cargo jetty (09nos.).

The high population density composed by species like Actinocyclus sp, *Coscinodiscus centralis, Coscinodiscus radiates, Coscinodiscus wailesii, Thalassionema frauenfeldii colonies, Thalassionema nitzschioides colonies, Thalassiosira sp* (Table 44). This result indicated that genus *Coscinodiscus sp. Actinocyclus sp, Thalassionama sp* were very common with good numbers in all sites. In some sites, least number of species and low density of phytoplankton might be responsible due to some factors like extreme cool or hot weather because of rainy season, mixing of water, high prepredation ratio, marine pollution (anthropogenic pressure), high turbidity, total suspended solids, water current and suddenly changes in environment conditions etc. Diatoms, type of phytoplankton, constitute major part in total phytoplankton composition The individual density of species of sites viz. has been depicted in Table 44.

5.8.1.4. Diversity Indices of Phytoplankton

According to Table 45, diversity indices calculation for phytoplankton showed that the Shannon Index ranged from (1.79 to 2.54) indicated low level to moderate level of diversity range. High Shannon Index was recorded at 3A-Phang creek (2.34) where 17 species were recorded and low at 2D-Cargo Jetty(0.73) where 09 species were recorded. Lowest evenness recorded at site 2B-Cargo Jetty(0.59) whereas highest was in at 1control-Offshore (0.81). Dominance_D index ranged from 0.09 to 0.21 where higher value in <u>2D-Cargo Jetty (0.21)</u> and lowest was at in 2control-Cargo jetty (0.09). Value of Margalef D (0.76 to 1.80) showed more to moderate variation in species numbers as shown in Table 45.

Name of Sites	Offshore						Cargo Jetty						Phang Creek					
	1A	1B	1C	1D	1E	1-Con	2A	2B	2C	2D	2E	2-Con	3A	3B	3C	3D	3E	3-Con
Actinocyclus sp	2400	800	1120	2400	2400	4000	4000	640	3200	1600	4000	1600	0	4000	3200	4800	7200	10400
Amphiprora sp	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bacillaria paxillifera colonies	0	0	0	0	0	1600	0	0	0	0	0	0	0	0	0	0	0	0
Biddulphia sp	0	0	0	0	0	0	0	0	0	0	0	0	1600	480	0	0	800	0
Campylodiscus sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	640
Coscinodiscus centralis	2400	2080	1600	2400	7200	2400	3200	8000	3840	9600	3200	3200	7200	4160	7200	10400	5600	12000
Coscinodiscus radiatus	5600	3360	4320	4800	4800	4800	1920	7200	6400	11200	8800	3200	9600	9600	10400	11200	10400	14400
Coscinodiscus sp.	1440	1920	0	0	0	0	0	0	0	0	0	0	0	1760	0	2080	0	0
Coscinodiscus wailesii	7200	8000	5120	12000	6400	9600	8000	9600	3360	7200	8800	8800	1760	2080	4800	1920	20000	19200
Ditylum brightwelli	800	1600	1600	2400	1600	2400	0	800	800	320	1600	3200	1600	0	0	0	0	800
Dictyocha sp (Silicoflagellates)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	640
Diploneis sp	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0	0
Green algae (unidentified)	800	640	0	0	0	0	0	0	1600	0	0	800	0	0	0	480	0	960
Gyrosigma sp.	0	0	0	0	800	1600	0	0	0	0	0	640	1600	0	2400	2400	0	800
Navicula sp	0	0	480	1600	0	0	0	0	0	0	800	0	800	0	480	2400	1600	
Nitzschia sp	0	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	0	0	1600
Odontella sinensis	1600	2400	0	2400	2400	0	0	2400	800	0	320	1600	3200	4000	2400	3200	0	1600
Oocystis sp	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0	0
Pinnularia sp	0	0	0	0	0	0	480	0	0	1600	0	0	800	0	1600	0	0	1600
Planktoniella sol	0	0	0	0	1600	2400	0	0	0	0	0	1600	0	0	0	0	3200	0
Pleurosigma sp.	480	0	0	0	0	0	1600	0	1440	0	0	0	0	480	0	2400	800	800
Pleurosigma angulatum	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	0	0	0	0
Protoperidinium sp	0	0	640	0	0	0	0	0	800	0	0	0	0	0	0	0	0	0
Silicoflagellates	0	0	0	0	0	0	320	0	0	0	0	800	0	0	0	0	0	0
Surirella sp	0	0	0	0	0	0	0	0	0	0	0	1600	1600	0	1600	0	800	2400
Synedra sp	0	0	0	0	0	0	0	0	0	0	0	800	0	0	0	0	0	4000
Synedra ulna	1600	1920	1440	1600	0	1600	0	640	0	1600	2400	0	2400	3200	800	640	4000	800
Thalassionema frauenfeldii colonies	0	1760	2080	2400	2400	2400	3200	2400	0	0	1600	1600	2400	3200	2400	3200	3200	4800
Thalassionema nitzschioides colonies	0	0	0	0	0	0	0	0	0	0	0	1600	0	0	0	2400	0	0
Thalassiosira eccentrica	0	0	0	0	0	0	0	0	0	0	0	800	1600	0	0	0	0	0
Thalassiosira aculeata	0	0	0	0	0	0	320	800	0	0	0	800	0	800	0	800	0	1600
Thalassiosira sp.	1120	1600	1120	0	1600	1600	1600	2400	800	1600	1600	2400	2400	2400	4000	4000	10400	4800
Trachyneis sp	0	0	0	0	0	0	0	320	800	0	0	0	0	0	0	0	0	0
Triceratium favus	800	0	0	0	1600	0	0	0	1600	2400	0	800	1600	640	4000	0	0	1600
Trieres mobiliensis	0	0	0	0	0	1600	2400	320	1600	0	1600	800	0	0	0	1600	960	640
Tripos muelleri	0	0	0	0	0	0	0	0	0	0	0	0	800	0	0	0	0	0
Unidentified	0	0	320	0	0	0	0	0	0	0	0	0	0	0	0	0	320	0
Density of Phytoplankton (no/m ³)	27040	26080	19840	32000	34400	36000	27040	35520	27040	37120	34720	38240	42560	36800	45280	53920	69280	86080
Total= 708960 no/m ³ Total No Of Genus/Species=37	-						-		-	-				-				

Table 44. Density of Phytoplankton at different sites of Deendayal Port

Variables			Of	fshore					Carg	o jetty			Phang Creek					
	1A	1B	1C	1D	1E	1-Control	2A	2B	2C	2D	2E	2- Control	3A	3B	3C	3D	3E	3- Control
Taxa_S	13	11	11	9	13	12	11	12	13	9	11	20	17	13	13	16	14	21
Individuals (Nos/m ³)	27040	26080	19840	32000	34400	36000	27040	35520	27040	37120	34720	38240	42560	36800	45280	53920	69280	86080
Dominance_D	0.14	0.15	0.15	0.20	0.12	0.13	0.16	0.18	0.12	0.21	0.16	0.09	0.11	0.13	0.12	0.11	0.15	0.12
Shannon Diversity Index (H)	2.22	2.15	2.11	1.92	2.31	2.28	2.06	1.96	2.31	1.79	2.05	2.70	2.54	2.26	2.31	2.45	2.14	2.43
Simpson_1-D	0.86	0.85	0.85	0.80	0.88	0.87	0.84	0.82	0.88	0.79	0.84	0.91	0.89	0.87	0.88	0.89	0.85	0.88
Evenness_e^H/S	0.71	0.78	0.75	0.76	0.77	0.81	0.71	0.59	0.77	0.67	0.70	0.74	0.74	0.73	0.77	0.72	0.61	0.54
Menhinick	0.08	0.07	0.08	0.05	0.07	0.06	0.07	0.06	0.08	0.05	0.06	0.10	0.08	0.07	0.06	0.07	0.05	0.07
Margalef	1.18	0.98	1.01	0.77	1.15	1.05	0.98	1.05	1.18	0.76	0.96	1.80	1.50	1.14	1.12	1.38	1.17	1.76

Table 45. Diversity Indices of Phytoplankton at different sites at Deendayal Port

Chapter 6 Marine Water Quality-Biological (Zooplankton)

6.1. Introduction

Zooplankton are the attractive, various and plentiful group of faunal species living inside the water bodies throughout the world. Most of the zooplankton are microscopic which can drift with the currents. Although most of them can swim, they have no ability to progress against water currents (Alcaraz and Calbet, 2003). They are representatives of all key invertebrate phyla and eventually support to the most marine life. They directly serve as a food resource for various young fish (larvae) and invertebrates such as larvae of squid and lobster, many small planktivorous fish such as sardine and anchovy, and even a few large marine animals such as baleen whales and manta rays etc. They also play important role in food web by indirectly supporting a few large ocean predators such as tuna, sharks etc, which feed upon the small planktivorous fish. In this way they are the major link in the marine life in between phytoplankton and fish including commercially important species, their study is the important part for getting knowledge of the functioning of marine ecosystems (Alcaraz and Calbet, 2003). They are subdivided into holoplankton and meroplankton. Holoplankton are nothing but the permanent members of the plankton which spend their entire lives in the water column while meroplankton are the temporary members. Zooplankton are powerfully approachable to environmental variables such as sunlight, temperature, salinity, pH, dissolved oxygen, food availability etc.

The study was conducted at 3 sites in Deendayal Port area and nearby areas where dredging activities are going on. The three selected study stations are Offshore, Cargo Jetty and Phang Creek.

6.2. Methodology

The present investigation was carried out in the three sampling locations such as offshore dredging, cargo jetty and Phang creek dumping site during January 2022 and September 2022 for three sampling seasons. In each location five replicate samples and one control samples were collected. Zooplankton samples were collected using a

standard zooplankton net with a mouth area of 0.25 m² fitted with a flow meter. The net was towed from a boat for 5 min with a constant boat speed of 2 nautical miles per hour. The initial and final reading in the flow meter was noted down and the soup collected in the plankton bucket was transferred to appropriately labeled container and preserved with 5% neutralized formaldehyde. To counter-check the zooplankton density values obtained, water samples of 100 Lwere collected and preserved, which was later analysed for zooplankton density. One ml of the zooplankton soup was added to a Sedgwick counting chamber and was observed under a compound microscope. The group/taxa were identified using standard identification keys and their number was counted. Random cells in the counting chamber were taken for consideration and the number of zooplankton was noted down along with their binomial name. This was repeated for five 1 ml samples and the average value was considered for the final calculation. For greater accuracy, the final density values were counter-checked and compared with the data collected by the settlement method. Univariate measures [Shannon-Wiener diversity index (H'), Margalef's species richness (d), and Pielou's evenness (J'), Simpson dominance (D)] were determined using past software.

6.3. Results

6.3.1. Distribution and density of Zooplankton during Season 1

The study was conducted at 3 sites in Kandla Port and nearby areas where dredging activities are going on. The three selected study stations are Offshore, Cargo Jetty and Phang Greek.

6.3.1.1. Offshore

Calanoida (unidentified), Euterpina sp (Harpacticoida), Foraminifera (unidentified), Nauplius larva of Copepoda, Nauplius larvae of Barnacles, Ophiopluteus Larva (Echinodermata), Ostracoda, *Paracalanus sp* (Calanoida), Sponge Spicules, Zoea larva of Crab etc. were the mostly common zooplankton and throughout observed in all sites of Offshore area. Highest population density was recorded at site 1A-Offshore (144000 nos./100m³) where number of species was highest (32 nos.) and lowest density in 1C-Offshore (26080 nos./100m³) where number of species recorded lowest numbers (23 nos.). High biomass was observed in the site 1E-Offshore (44.92 ml/100m³) and low biomass was recorded in site 1D-Offshore (15.24 ml/100m³). The range of the population density, biomass and number of species were (26080 to 144000 nos./100m³), (15.24 to 44.92 ml/100m³) and (23 32 to 31 nos.) respectively in all sites.

Less observed species were Animal egg (Unidentified), *Appendicularia sp* (Tunicata), *Bestiolina sp* (Calanoida), Egg development stage, Jellyfish (small), *Leprotintinnus sp* (Tintinnida), Narcomedusae (Hydrozoa:Cnidaria), Protozoa and Zoothamnium sp (ciliate colony) in this station. Total 58 zooplankton was recorded in Offshore area adding that more composition of zooplankton by the Phylum Arthropoda (Crustacea), Tintinnids and Foraminifera and Sponge Spicules (Porifera).

6.3.1.2. Cargo Jetty

The population density of zooplankton varied from 33440 nos./100m³ to 65440 nos./100m³. Maximum density was noticed in site 2E-Cargo Jetty (65440 nos./100m³) and minimum was at site 2D-Cargo Jetty (33440 nos./100m³). Maximum number of species (29nos.) found 2E & 2C - Cargo Jetty minimum number of species was observed in site 2control-Cargo Jetty (25nos.). Biomass ranged between 8.22 to 66.67 ml/100m³ where highest biomass noted in site2E-Cargo Jetty and lowest in 2D-Cargo Jetty. Frequently observed species were Calanoida (unidentified), Clausocalanus sp (Calanoida), Corycaeus sp (Calanoida), Euterpina sp (Harpacticoida), Medusa of Obelia sp (Hydrozoa), Mysids (shrimp like), Ophiopluteus Larva (Echinodermata), Polychaete larvae (Annelids), Protozoaea larva (Crustacea), Sagitta sp (arrow worm), Sponge Spicules, Zoea larva of Crab etc. whereas less observed species were Animal (Unidentified), Bolivina (Foraminifera), Cyclops sp (Cyclopoida), egg sp Harpacticoida (unidentified), Leprotintinnus sp (Tintinnida), Microsetella sp (Harpacticoida), Pontella sp (Calanoida), Spiroloculina sp (Foraminifera), Temora sp (Calanoida), Tortanus sp (Calanoida) etc. Some Unidentified species and larval stages were also reported. Total recorded zooplanktons were 47 in Cargo Jetty.

6.3.1.3. Phang Creek

This Creek area was represented by the zooplankton fauna majority of them were Acartia sp (Calanoida), Calanoida (unidentified), Clausocalanus sp (Calanoida), Foraminifera (unidentified), Nauplius larvae of Barnacles, Sagitta sp (arrow worm), Subeucalanus sp (Calanoida), Veliger larvae of Bivalve, Zoea larva of Crab. Very less time or rarely recorded species were Acrocalanus sp (Calanoida), Cyclops sp (Cyclopoida), Cyphonautes larva (Bryozoan), Favella sp (Tintinnida), Gnathiid isopoda larvae, Larva Of Isopoda, Leprotintinnus simplex (Tintinnida), Medusa of sp (Hydrozoa), Oncaea sp (Cyclopoida), Pontella sp (Calanoida), Obelia Radiolaria skeleton etc. The range of zooplankton biomass was between 8.06 to 20.97 ml/100m³. Highest Biomass was recorded in site 3D-Phang creek (20.97 ml/100m³) and lowest in site 3A-Phang creek (8.06 ml/100m³). Maximum and Minimum species count was at in site 3B-Phang creek (31nos.) and 3D-Phang Creek (08nos.) respectively. Population density was maximum recorded in site 3B-Phang Creek (40320 nos./100m³) and minimum in site 3D-Phang Creek (8000 nos./100m³). In site 3D-Phang creek comparatively low density according to other sites may be because of high predator pressure or some environment changes.

Overall assessment of zooplankton showed that the total number of 79 Zooplankton recorded during winter season. Out of these (79) zooplankton, 58 zooplankton recorded in Offshore region, 47 zooplankton at Cargo Jetty and 48 zooplankton in Phang Creek region. The recorded zooplankton of all 3 stations mainly representing Phylum Arthropoda (Crustacea), Protozoa (mainly foraminifera and tintinnids), Porifera (sponge spicules). Crustacean zooplankton was the dominant due to the dominance of different larval stages and Copepods which mainly feed phytoplankton. More larval stage of crustacean and other animals observed in samples that indicated reproduction and development season of animals from larval to mature animal.Generally zooplankton population dynamics and studies emphasize is given up to group level rather than to species level because of microscopic size of zooplankton so owing to the difficulty in identifying the zooplankton as some species are considered as a group or genus level. The most dominant or frequently observed

species(all 3 station) were Calanoida (unidentified), *Clausocalanus sp* (Calanoida), *Euterpina sp* (Harpacticoida), Foraminifera (unidentified), Nauplius larva of Copepoda, Nauplius larvae of Barnacles, Nauplius larvae of Crustacea, Ophiopluteus Larva (Echinodermata), Ostracoda, *Paracalanus sp* (Calanoida), Sponge Spicules, Veliger larvae of Bivalve, Zoea larva of Crab etc. Foraminifera belonging to the meroplankton were present at all three stations.

Overall range of Population density, Biomass and Number of species were (8000 to 144000no/100 m³), (8.06 to 66.67 ml/100m³) and (08 to 32 nos) respectively. Average high biomass noted at Cargo Jetty (31.42 ml/100m³) followed by Offshore (26.16 ml/100m³) than Phang Creek (13.56 ml/100m³) (Table 46-48). Highest population density was recorded in site 1A-Offshore (144000 Nos/100m³) and lowest was recorded in site 3D-Phang Creek (8000 No/100m³). Among all recorded zooplankton, majority dominance occurrence was by the Copepoda, Crustacean larvae, Spong Spicules, Foraminifera (Protozoa), Tintinnids (Protozoa), Zoea larva of Crab, Mysids (shrimp like),Egg capsules of Littorinids (Mollusca).

Maximum zooplankton faunal composition was dominated by the Phylum Arthropoda, Mollusca, Protozoa, Porifera. The Fish larva (Ichthyoplankton) was also recorded in all 3 locations. The Zooplankton of Chaetognatha, Tunicata, Cnidaria, Amoebozoa were only represented by the species namely *Sagitta sp (arrow worm)*, *Appendicularioa sp, Narcomedusae (Hydrozoa), Arcella sp.* respectively. Veliger larva of Bivalve and Gastropoda shells include in Phylum Mollusca. The Echinodermata phylum represented by the Ophiopluteus larva and Gastrula larva of Sea star.

In Offshore, maximum Occurrence (%) was by the Nauplius larva of Barnacles (11.14%) and minimum by the Hydrozoa larva (Cnidaria) (0.05%). In Cargo Jetty, maximum Percentage of Occurrence (%) by the Nauplius larva of Copepoda (9.27%) and minimum by some unidentified species (0.06%). In Phang Creek, maximum occurrence by the Nauplius larva of Copepoda (9.89%) and minimum (0.19%) by the *Acrocalanus sp* (Calanoida), Cyphonautes larva (Bryozoan), Gnathiid isopoda larvae,

Harpacticoida (unidentified), *Oncaea sp* (Cyclopoida), Zoea larva of Procelain crab and some Unidentified species (Table 46,47 and 48).

During microscopic sample analysis more number of species varieties of Foraminifera, Sponge spicules, Crustacean larva and Tintinnidswere observed. These all three are very important for paleontological study aspects and also for evolutionary, ecological and environmental rebuilding. Some species of Ostracoda, Foraminifera and Sponge spicules are considered in microfossils materials. Some deep sea species also recorded that is indication of water circulation pattern. Data on zooplankton density, list of zooplankton is shown in Table 46,47,48.

Plankton identification, both zooplankton and phytoplankton, were done by using relevant identification and taxonomic keys and with standard literatures, monographs and research articles.(Kasturirangan, 1963; APHA, 1992; Mitra et al., 2003;Goswami, 2005; Carling et al., 2004; Mandal, 2004; Hussain & Kalaiyarasi, 2013; Guglielmo et al., 2015; Hussain et al., 2016; Sreenivasulu et al., 2017; NIO,1998; NIO,2002), etc

6.3.1.4. Diversity Indices of Zooplankton

Table 49 shows diversity indices of zooplankton. The Shannon-wiener diversity index (H') fluctuated between 1.82 to 3.17 indicated moderate to quite high range of diversity added indication of healthy body of water with a maximum value in site 1D-Offshore (3.17) where maximum number of species noted (31 nos.) after 1D-Offshore (32 nos.) and minimum value in site 3D-Phang Creek (1.82) where species number was 8.Range of the evenness was 0.50 to 0.82 where lowest and highest recorded in site 1A-Offshore (0.50) and 2A-Cargo Jetty (0.82) respectively. Range of Simpson index was 0.80 to 0.95. The range value of Margalef indices was 0.78 to 2.83 that means high species number variations (Table 49).

 Table 46. Density of Zooplankton at Offshore site of Deendayal Port

Name of Genera/Group	1A	1B	1C	1D	1E	1 Control	Individual total density (no/100m ³)	% of Occurrence (Site-wise)
Acartia sp (Calanoida)	1120	480	0	480	480	0	2560	0.75
Animal egg (Unidentified)	0	160	0	480	0	0	640	0.19
Appendicularia sp (Tunicata)	0	0	0	0	0	320	320	0.09
Arcella sp (Amoebozoa)	800	0	0	1280	4000	0	6080	1.77
Bestiolina sp (Calanoida)	0	480	0	0	0	0	480	0.14
Bolivina sp (Foraminifera)	0	0	320	0	0	0	320	0.09
Calanoida (unidentified)	5600	4320	800	1760	2400	7360	22240	6.48
Centropages sp (Calanoida)	0	480	0	0	0	480	960	0.28
Clausocalanus sp (Calanoida)	2560	2880	0	0	0	3040	8480	2.47
Copepoda eggs sac(egg pouch)	0	480	0	320	640	0	1440	0.42
Cyclopoida (unidentified)	2560	1440	640	640	0	0	5280	1.54
Cyclops sp (Cyclopoida)	23520	0	0	640	0	0	24160	7.04
Cyphonautes larva (Bryozoan)	640	640	0	320	0	0	1600	0.47
Egg capsules of Littorinids	640	0	0	480	0	800	1920	0.56
Egg development stage	640	0	0	0	0	0	640	0.19
Euchaeta sp (Calanoida)	0	0	0	0	480	640	1120	0.33
Euterpina sp (Harpacticoida)	2240	800	0	640	960	1920	6560	1.91
Fish larva	320	320	0	0	320	320	1280	0.37
Foraminifera (unidentified)	9120	800	800	1600	640	800	13760	4.01
Gastrula larva of Sea star	640	0	0	640		0	1280	0.37
Globigerina sp (Foraminifera)	0	0	640	0	1600	0	2240	0.65
Heteropoda shells (gastropods)	960	0	0	1280	480	0	2720	0.79
Hydrozoa larva (Cnidaria)	0	0	0	0	0	160	160	0.05
Jellyfish (small)	0	0	0	320	0	0	320	0.09
Leprotintinnus pellucidus (Tintinnida)	0	0	480	0	0	0	480	0.14
Leprotintinnus sp (Tintinnida)	0	0	0	0	0	640	640	0.19
Microsetella sp (Harpacticoida)	4960	0	960	0	0	0	5920	1.72
Mysids (shrimp like)	1120	1440	960	0	0	480	4000	1.16
Mysis larva of Lucifera sp	0	0	0	0	0	480	480	0.14
Mysis larva of Prawn	0	0	0	0	800	1600	2400	0.70
Narcomedusae (Hydrozoa:Cnidaria) Nauplius larva of Copepoda	0 8160	480 4800	0 2880	0 3520	0 2400	0 6400	480 28160	0.14 8.20
Nauplius larvae of Barnacles								
Nauplius larvae of Barnacies Nauplius larvae of Crustacea	7200 10400	7360 3040	2560 640	5120 0	6560 0	9440 0	38240 14080	4.10
Ophiopluteus Larva (Echinodermata)	800	320	800	800	480	640	3840	1.12
Ophiophileus Larva (Echinoaermaia) Ostracoda	4480	800	800	640	480 640	800	8160	2.38
Paracalanus sp (Calanoida)	3200	3200	2560	2400	1600	2400	15360	4.47
Parvocalanus sp (Calanoida) Polychaete larvae (Annelids)	0	2720	2080 960	0 640	1280	1920 480	8000 6080	2.33
• • •	2560	800			640			
Pontellid nauplius larva (Calanoida)	0	0	320	0	0	0	320	0.09
Protozoa	0	320	0	0	0	0	320	0.09
Protozoaea larva (Crustacea)	0	0	0	640	0	480	1120	0.33
Radiolaria skeleton	0	0	0	640	0	0	640	0.19
Sagitta sp (arrow worm)	2240	0	1440	640	1600	0	5920	1.72
Spirillina limbata	960	0	0	0	0	0	960	0.28
Sponge Spicules	1120	1120	1600	800	1760	2720	9120	2.66
Subeucalanus sp (Calanoida)	3520	2560	0	2560	0	2880	11520	3.36

Studies on Dredged Materials for The Presence of Contaminants

Tardigrade (Water bear)	0	0	0	0	0	320	320	0.09
Tintinnids (unidentified)	0	480	0	0	0	0	480	0.14
Tintinnopsis beroidea (Tintinnida)	0	0	640	960	0	0	1600	0.47
Tintinnopsis cylindrica (Tintinnida)	3840	320	480	640	0	0	5280	1.54
Tintinnopsis orientalis (Tintinnida)	33600	0	0	640	0	0	34240	9.97
Tintinnopsis sp (Tintinnida)	0	0	0	2400	0	0	2400	0.70
Veliger larvae of Bivalve	1440	480	0	480	960	320	3680	1.07
Zoea larva of Crab	2400	960	2400	1600	6240	6560	20160	5.87
Zoea larva of Procelain crab	0	0	320	480	0	0	800	0.23
Zoothamnium sp(ciliate colony)	640	0	0	0	0	0	640	0.19
Unidentified larva	0	160	0	0	800	0	960	0.28
Total No. Of Genera/Groups=58		•	•	•	•	•	•	
Site-wise Total Density (no/100m ³)	144000	44640	26080	36480	37760	54400	343360	100%
Biomass (ml/100m ³)	17.86	19.29	18.99	15.24	44.92	40.63		

Table 47. Density of	1 Zoopie			50000	cy site			
Name of Genera/Group	2A	2B	2C	2D	2 E	2 Control	Individual total density (no/100m ³))	% of Occurrence (Site-wise)
Acartia sp (Calanoida)	640	0	1280	0	2560	1440	5920	2.20
Ammonia sp (Foraminifera)	320	0	0	480	0	640	1440	0.54
Animal egg (Unidentified)	0	320	0	0	0	0	320	0.12
Bolivina sp (Foraminifera)	0	0	320	0	0	160	480	0.18
Calanoida (unidentified)	2080	3200	2720	0	8160	4800	20960	7.79
Clausocalanus sp (Calanoida)	1920	3040	480	1760	1920	2080	11200	4.16
Corycaeus sp (Calanoida)	2400	3360	640	960	4160	1440	12960	4.82
Cyclops sp (Cyclopoida)	480	0	0	0	0	0	480	0.18
Cyphonautes larva (Bryozoan)	0	960	320	0	320	0	1600	0.59
Egg capsules of Littorinids	0	640	320	800	480	480	2720	1.01
Euterpina sp (Harpacticoida)	1440	2240	800	2720	2720	1600	11520	4.28
Fish larva	640	640	0	0	0	0	1280	0.48
Foraminifera (unidentified)	1280	960	0	0	320	1600	4160	1.55
Globigerina sp (Foraminifera)	800	0	800	320	640	0	2560	0.95
Harpacticoida (unidentified)	000	0	0	0	320	0	320	0.13
Heteropoda shells (gastropods)	1280	1760	0	640	0	0	3680	1.37
Leprotintinnus sp (Tintinnida)	0	0	0	320	0	0	3080	0.12
	-		-		÷	-		
Medusa of Obelia sp (Hydrozoa)	320	4320	1600	0	4160	2080	12480	4.64
Microsetella sp (Harpacticoida)	0	0	0	640	0	0	640	0.24
Mysids (shrimp like) Mysis larva of Lucifera sp	1600	1440 320	2240 320	0	3520	2240 0	11040 640	4.10
					-			
Nauplius larva of Copepoda	1760	4800	2720	4000	7520	4160	24960	9.27
Nauplius larvae of Barnacles	3520	0	4160	2400	0	2400	12480	4.64
Nauplius larvae of Crustacea	1920	0	0	960	0	0	2880	1.07
Ophiopluteus Larva (Echinodermata)	480	800	320	640	1280	960	4480	1.66
Ostracoda	800	480	320	480	640	320	3040	1.13
Paracalanus sp (Calanoida)	960	1120	640	800	1280	0	4800	1.78
Parvocalanus sp (Calanoida)	0	0	1120	0	4000	1600	6720	2.50
Polychaete larvae (Annelids)	640	2240	4160	1120	320	1600	10080	3.75
Pontella sp (Calanoida)	0	0	0	0	480	0	480	0.18
Pontellid nauplius larva (Calanoida)	0	320	0	160	320	480	1280	0.48
Prawn brood eggs	0	10080	0	0	0	0	10080	3.75
Prawn larvae (premature stage)	0	3680	1920	1600	4160	6240	17600	6.54
Protozoaea larva (Crustacea)	1600	480	1600	960	2560	0	7200	2.68
Sagitta sp (arrow worm)	480	1440	320	320	2880	1600	7040	2.62
Spirillina sp (Foraminifera)	0	0	0	480	480	0	960	0.36
Spiroloculina sp (Foraminifera)	0	0	0	0	0	320	320	0.12
Sponge Spicules	640	3200	800	960	1920	640	8160	3.03
Subeucalanus sp (Calanoida)	1120	3520	640	1760	0	0	7040	2.62
Tardigrade (Water bear)	0	0	480	0	0	640	1120	0.42
Temora sp (Calanoida)	0	0	960	0	0	0+0	960	0.36
Tintinnopsis radix (Tintinnida)	0	0	0	0	320	0	320	0.12
Tortanus sp (Calanoida)	0	320	0	0	0	0	320	0.12
Veliger larvae of Bivalve	1120	320	800	800	1280	0	4320	1.61
Zoea larva of Crab	3360	0	2240	6720	6400	5280	24000	8.92
Unidentified	0	0	0	160	0	0	160	0.06
Unidentified larva	0	0	640	480	320	160	1600	0.59
Total No. Of Genera/Groups=47								
Site-wise Total Density (no/100m ³)	33600	56000	35680	33440	65440	44960	269120	100%
Biomass (ml/100m ³)	19.09	24.59	32.89	8.22	66.67	37.04		

Table 48. Density of Zooplankton at Phang Creek site of Deendayal Port
--

Name of Genera/Group	3A	3B	3C	3D	3E	3 Control	Total density	% of
							(no/100m3)	Occurrence
								(Site-wise)
Acartia sp (Calanoida)	1920	1280	1760	0	2560	2240	9760	5.74
Acrocalanus sp (Calanoida)	0	0	320	0	0	0	320	0.19
Arcella sp (Amoebozoa)	0	0	0	2080	480	0	2560	1.51
Calanoida (unidentified)	4160	2240	3040	480	4160	960	15040	8.85
Clausocalanus sp (Calanoida)	2720	2560	1120	0	1280	480	8160	4.80
Corycaeus sp (Calanoida)	1440	1120	1280	0	0	1440	5280	3.11
Cyclopoida (unidentified)	0	320	480	0	800	0	1600	0.94
Cyclops sp (Cyclopoida)	320	0	0	0	0	320	640	0.38
Cyphonautes larva (Bryozoan)	0	320	0	0	0	0	320	0.19
Egg capsules of Littorinids	0	480	800	0	320	800	2400	1.41
Euchaeta sp (Calanoida)	0	1440	1120	0	1280	0	3840	2.26
Euterpina sp (Harpacticoida)	1440	1760	1600	0	1120	0	5920	3.48
Favella sp (Tintinnida)	0	0	640	0	0	0	640	0.38
Fish larva	0	800	0	0	320	0	1120	0.66
Foraminifera (unidentified)	1120	960	640	320	960	1280	5280	3.11
Globigerina sp (Foraminifera)	0	480	0	0	0	0	480	0.28
Gnathiid isopoda larvae	320	0	0	0	0	0	320	0.19
Harpacticoida (unidentified)	0	160	160	0	0	0	320	0.19
Heteropoda shells (gastropods)	1280	2400	1440	0	640	0	5760	3.39
Larva Of Isopoda	0	0	0	640	0	0	640	0.38
Larva of Stomatopoda (Arthropoda)	0	320	480	040	0	0	800	0.33
Leprotintinnus simplex (Tintinnida)	0	0	0	0	480	0	480	0.28
Leprotintinnus sp (Tintinnida)	0	640	480	2400	480	640	430	2.45
Medusa of Obelia sp (Hydrozoa)	1760	040	480	0	0	320	2080	1.22
Mysids (shrimp like)	480	1120	0	0	320	0	1920	1.13
Mysias (shrimp tike) Mysis larva of Lucifera sp	640	320	0	0	320	0	1920	0.75
Nauplius larva of Copepoda	4320	4320	3360	0	1600	3200	16800	9.89
Nauplius larvae of Barnacles	3040	4320 800	3300	0	2400	1440	11520	6.78
Nauplius larvae of Crustacea	0	0	0	640	0	0	640	0.78
Oncaea sp (Cyclopoida)	0	0	0	0	320	0	320	0.19
Ophiopluteus Larva (Echinodermata)	640	0	800	0	0	320	1760	1.04
Ostracoda	480	320	480	0	640	640	2560	1.51
Paracalanus sp (Calanoida)	0	960	0	0	320	640	1920	1.13
Parvocalanus sp (Calanoida)	0	1280	800	0	1120	0	3200	1.88
Polychaete larvae (Annelids)	0	960	960	0	1440	1120	4480	2.64
Pontella sp (Calanoida)	0	0	0	0	480	0	480	0.28
Prawn larvae (premature stage)	640	1600	0	0	0	0	2240	1.32
Protozoaea larva (Crustacea)	1440	1760	1280	0	800	1120	6400	3.77
Radiolaria skeleton	0	800	0	0	0	0	800	0.47
Sagitta sp (arrow worm)	1440	3040	1120	0	2240	800	8640	5.08
Small Gastropoda shells	800	0	480	0	0	320	1600	0.94
Sponge Spicules	640	480	800	1120	480	320	3840	2.26
Subeucalanus sp (Calanoida)	1440	0	1600	0	1760	1280	6080	3.58
Fintinnids (unidentified)	0	0	0	0	0	480	480	0.28
Veliger larvae of Bivalve	2080	2240	800	0	320	320	5760	3.39
Zoea larva of Crab	2400	3040	1600	0	1120	480	8640	5.08
Zoea larva of Procelain crab	0	0	0	0	0	320	320	0.19
Unidentified	0	0	0	320	0	0	320	0.19
Total No. Of Genera/Groups=48		ĺ	ĺ	ĺ				
Site-wise Total Density (no/100m ³)	36960	40320	33280	8000	30080	21280	169920	100%
Biomass (ml/100m ³)	8.06	15	10.71	20.97	8.46	18.18		

Table 49. Diversity indices of Zooplankton at different sites of Deendayal Port

Variables			Of	fshore					Car	go jetty					Phar	ng Creek		
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2 E	2-contrl	3A	3B	3C	3D	3E	3-control
Taxa_S	32	30	23	32	23	27	26	27	29	27	29	25	24	31	28	8	28	24
Individuals (nos. /m ³)	144000	44640	26080	36480	37760	54400	33600	56000	35680	33440	65440	44960	36960	40320	33280	8000	30080	21280
Dominance_D	0.10	0.07	0.06	0.06	0.09	0.09	0.05	0.07	0.06	0.08	0.07	0.07	0.06	0.05	0.06	0.20	0.06	0.07
Shannon Diversity Index(H)	2.77	2.92	2.92	3.15	2.74	2.72	3.06	2.89	3.04	2.87	2.93	2.86	2.95	3.17	3.10	1.82	3.05	2.94
Simpson_1-D	0.90	0.93	0.94	0.94	0.91	0.91	0.95	0.93	0.94	0.92	0.93	0.93	0.94	0.95	0.94	0.80	0.94	0.93
Evenness	0.50	0.62	0.80	0.73	0.67	0.56	0.82	0.67	0.72	0.65	0.65	0.70	0.79	0.77	0.79	0.77	0.76	0.78
Menhinick	0.08	0.14	0.14	0.17	0.12	0.12	0.14	0.11	0.15	0.15	0.11	0.12	0.12	0.15	0.15	0.09	0.16	0.16
Margalef	2.61	2.71	2.16	2.95	2.09	2.38	2.40	2.38	2.67	2.50	2.53	2.24	2.19	2.83	2.59	0.78	2.62	2.31

6.3.2. Distribution and density of Zooplankton during Season 2

The study was conducted at 3 sites in Kandla Port and nearby areas where dredging activities are going on. The three selected study stations are Offshore, Cargo Jetty and Phang Greek.

6.3.2.1 Offshore

Acartia sp, Calanoida (unidentified), Euterpina sp (Harpacticoida), Foraminifera (unidentified), Nauplius larva of Copepoda, Ostracoda, Paracalanus sp (Calanoida), Sponge Spicules, Zoea larva of Crab etc. were the mostly common zooplankton and throughout observed in all sites of Offshore area. Highest population density was recorded at site 1C-Offshore (125440 nos./100m³) where number of species was (24 nos.) and lowest density in 1A-Offshore (90080 nos./100m³) where number of species was recorded (20 nos.). High biomass was observed in the site 1E-Offshore (27.78 $ml/100m^3$) and low biomass was recorded in site 1D-Offshore (5.95 $ml/100m^3$). The range of the population density, biomass and number of species were (93120 to 196000 nos./100m³), (5.95 to 27.78 ml/100m³) and (20 to 27 nos.) respectively in all sites. Less observed species were Amphipoda (Crustacea), Arcella sp (Amoebozoa), Centropages sp (Calanoida), Corycaeus sp (Calanoida), Fish larva, Fish egg Leprotintinnus sp (Tintinnida), Triloculina sp (Foraminifera) etc in this station. Total 49 zooplankton was recorded in Offshore area adding that more composition of zooplankton by the Phylum Arthropoda (Crustacea), Tintinnids and Foraminifera and Sponge Spicules (Porifera).

6.3.2.2. Cargo Jetty

The population density of zooplankton varied from 53600 nos./100m³ to 105920 nos./100m³. Maximum density was noticed in site 2E-Cargo Jetty (65440nos./100m³) and minimum was at site 2A-Cargo Jetty (105920nos./100m³). Maximum number of species (27nos.) found 2A - Cargo Jetty minimum number of species was observed in site 2C-Cargo Jetty (17nos.). Biomass ranged between 7.50 to 122.95 ml/100m³ where highest biomass noted in site2Control-Cargo Jetty and lowest in 2D-Cargo Jetty.

Frequently observed species were *Acartia sp* (*Calanoida*), Calanoida (unidentified), *Clausocalanus sp* (Calanoida), Copepoda eggs sacs, *Leprotintinnus sp* (Tintinnida), Ostracoda, Polychaete larvae (Annelids), *Tintinnopsis orientalis* (Tintinnida) Sponge Spicules, Zoea larva of Crab etc. whereas less observed species were Ammonia sp (Foraminifera), *Centropages sp* (Calanoida), Corycaeus sp (Calanoida), Cyphonautes larva (Bryozoan), Euchaeta sp (Calanoida), Mysis larva of Prawn, Harpacticoida (unidentified), *Spiroloculina sp* (Foraminifera),etc. Some Unidentified larval stages were also reported. Total recorded zooplanktons were 47 in Cargo Jetty.

6.3.2.3. Phang Creek

This Creek area was represented by the zooplankton fauna majority of them were Acartia sp (Calanoida), Calanoida (unidentified), Copepoda eggs sac *Clausocalanus sp* (Calanoida), Foraminifera (unidentified), Veliger larvae of Bivalve, Sponge spicules, *Leprotintinnus sp* (Tintinnida). Very less time or rarely recorded species were, Calcarina sp (Foraminifera), Centropages sp (Calanoida) Cyclopoida (unidentified), Fish larva, Leprotintinnus nordqvistii (Tintinnida), Nauplius larva of Copepoda, *Paracalanus sp* (Calanoida), Tintinnopsis cylindrica (Tintinnida), Zoea larva of Crab. The range of zooplankton biomass was between 17.86 to 74.63 ml/100m³. Highest Biomass was recorded in site 3A-Phang creek (74.63 ml/100m³) and lowest in site 3E-Phang creek (23nos.) and 3D-Phang Creek (15nos.) respectively. Population density was maximum recorded in site 3A-Phang Creek (110080 nos./100m³) and minimum in site 3D-Phang Creek (57600 nos./100m³). In site 3D-Phang creek comparatively low density according to other sites may be because of high predator pressure or some environment changes.

Overall assessment of zooplankton showed that the total number of 66 Zooplankton recorded during summer season. Out of these (79) zooplankton, 49 zooplankton recorded in Offshore region, 47 zooplankton at Cargo Jetty and 41 zooplankton in Phang Creek region. The recorded zooplankton of all 3 stations mainly representing Phylum Arthropoda (Crustacea), Protozoa (mainly foraminifera and tintinnids),

Porifera (sponge spicules). Crustacean zooplankton was the dominant due to the dominance of different larval stages and Copepods which mainly feed phytoplankton. More larval stage of crustacean and other animals observed in samples that indicated reproduction and development season of animals from larval to mature animal.Generally zooplankton population dynamics and studies emphasize is given up to group level rather than to species level because of microscopic size of zooplankton so to the difficulty in identifying the zooplankton as some species are considered as a group or genus level. The most dominant or frequently observed species(all 3 station) were Acartia sp (Calanoida) Calanoida (unidentified), *Clausocalanus sp* (Calanoida), Copepoda eggs sac, Foraminifera (unidentified), Globigerina sp (Foraminifera), Ostracoda, Sponge Spicules, Veliger larvae of Bivalve, Zoea larva of Crab etc. Foraminifera and Ostracoda belonging to the meroplankton were present at all three stations.

Overall range of all three sites Population density, Biomass and Number of species were (53600 to 196000no/100 m³), (5.95 to 122.95ml/100m³) and (15 to 27nos) respectively. Average high biomass noted at Cargo Jetty (35.64 ml/100m³) followed by Phang creek (33.84 ml/100m³) than Offshore (20.05 ml/100m³) (Tables 50-52). Highest population density was recorded in site 1E-Offshore (196000 nos/100m³) and lowest was recorded in site 2C-Cargo Jetty (53600no/100m3). Among all recorded zooplankton, majority dominance occurrence was by the Copepoda, Crustacean larvae, Spong Spicules, Foraminifera (Protozoa), Tintinnids (Protozoa), Zoea larva of Crab..

Maximum zooplankton faunal composition was dominated by the Phylum Arthropoda, Mollusca, Protozoa, Porifera, Foraminifera. The Fish larva and Fish egg (Ichthyoplankton) was also recorded in sites of Offshore. The Zooplankton of Chaetognatha,, Amoebozoa were only represented by the species namely *Sagitta sp* (*arrow worm*), *Arcella sp*. respectively. Veliger larva of Bivalve and Heteropods shells include in Phylum Mollusca. The Echinodermata phylum represented by the Ophiopluteus larva and Gastrula larva of Sea star.

In Offshore, maximum Occurrence (%) was by the Foraminifera (unidentified) (13.24%) and minimum by the Amphipoda (Crustacea) (0.04%). In Cargo Jetty, maximum Percentage of Occurrence (%) by the Foraminifera (unidentified) (12.42%) and minimum by the Centropages sp (Calanoida) (0.06%). In Phang Creek maximum Occurrence by the Foraminifera(unidentified) (25.49%) and minimum (0.07%) by the Nematoda and some unidentified zooplankton (Tables 50-52).

During microscopic sample analysis more number of species varieties of Foraminifera, Sponge spicules, Crustacean larva and Tintinnidswere observed. These all three are very important for paleontological study aspects and also for evolutionary, ecological and environmental rebuilding. Some species of Ostracoda, Foraminifera and Sponge spicules are considered in microfossils materials. Some deep sea species also recorded that is indication of water circulation pattern. Data on zooplankton density, list of zooplankton is shown in Tables (50,51 and 52).

Plankton identification, both zooplankton and phytoplankton, were done by using relevant identification and taxonomic keys and with standard literatures, monographs and research articles (Kasturirangan, 1963; APHA, 1992; Mitra et al., 2003; Goswami, 2005; Carling et al., 2004; Mandal, 2004; Hussain & Kalaiyarasi, 2013; Guglielmo et al., 2015; Hussain et al., 2016; Sreenivasulu et al., 2017; NIO,1998; NIO,2002), etc

6.3.2.4. Diversity Indices of Zooplankton

The data in the Table 53 shows diversity indices of zooplankton. The Shannon-wiener diversity index (H') fluctuated between 2.19 to 3.03 indicated moderate to quite high range of diversity added indication of healthy body of water with a maximum value in site 1Control-Offshore (3.03) where maximum number of species noted (27 nos.) and minimum value in site 3A-Phang Creek (2.19) where species number was 19. Range of the evenness was 0.47 to 0.83 where lowest and highest recorded in site 3A-Phang creek (0.47) and 1C-Offshore (0.83) respectively. Range of Simpson index was 0.78 to 0.94. The range value of Margalef indices was 1.43 to 2.25 that means high species number variations. (Table 53).

Table 50. Density of Zooplankton at Offshore site of Deendayal Po

Table 50. Density of								A/ 80 (0)
Name of Genera/Group	1A	1B	1C	1D	1E	1 Control	Individual total density	% of Occurrence (Site-
	4000	4000	4000	0	2400	Control	(no/100m ³)	wise)
Acartia sp (Calanoida)	4000	4000	4000	0	2400	3200	17600	2.33
Ammonia sp (Foraminifera)	3200	0	0	2400	3200	4000	12800	1.69
Amphipoda (Crustacea)	0	320	0	0	0	0	320	0.04
Arcella sp (Amoebozoa)	0	0	0	3200	0	0	3200	0.42
Bolivina sp (Foraminifera)	0	4000	2400	0	0	2400	8800	1.16
Calanoida (unidentified)	0	5600	9600	8000	0	16000	39200	5.19
Centropages sp (Calanoida)	0	3200	0	0	0	0	3200	0.42
Clausocalanus sp (Calanoida)	3200	0	4000	2400	3200	4000	16800	2.22
Copepoda eggs sac	12000	4800	5600	16000	24000	8000	70400	9.32
Corycaeus sp (Calanoida)	0	0	0	0	0	1600	1600	0.21
Cyclopoida (unidentified)	0	4000	12000	0	8000	8000	32000	4.24
Euterpina sp (Harpacticoida)	1600	0	3200	2400	1600	1600	10400	1.38
Fish larva	0	0	0	0	2400	1600	4000	0.53
Fish egg	0	0	0	0	2400	0	2400	0.32
Foraminifera (unidentified)	20000	16000	8000	12000	32000	12000	100000	13.24
Gastrula larva of Echinodermata	480	0	0	0	1600	0	2080	0.28
Globigerina sp (Foraminifera)	5600	0	5600	9600	2400	0	23200	3.07
Globigerinoides sp (Foraminifera)	0	4000	5600	0	0	0	9600	1.27
Heteropoda shells (gastropods)	0	3200	0	0	0	0	3200	0.42
Leprotintinnus simplex (Tintinnida)	0	0	0	1600	0	0	1600	0.21
Leprotintinnus sp (Tintinnida)	0	0	0	2400	0	2400	4800	0.64
Leprotintinnus nordqvistii (Tintinnida)	0	0	0	0	4000	0	4000	0.53
Lucifer sp (small prawn)	1600	0	0	0	0	0	1600	0.21
Microsetella sp (Harpacticoida)	0	0	4000	0	1600	1600	7200	0.95
Mysids (shrimp like)	0	0	3200	0	0	0	3200	0.42
Mysis larva of Prawn	0	2400	0	0	0	0	2400	0.32
Nauplius larva of Copepoda	0	3200	3200	3200	0	2080	11680	1.55
Nauplius larvae of Barnacles	0	0	0	4000	0	2400	6400	0.85
Nauplius larvae of Crustacea	0	0	11200	16000	17600	0	44800	5.93
Oithona sp (Cyclopoida)	0	0	0	0	20000	0	20000	2.65
Ophiopluteus Larva (Echinodermata)	0	0	0	0	0	800	800	0.11
Ostracoda	7200	4000	8000	8000	10400	2400	40000	5.29
Paracalanus sp (Calanoida)	0	0	1600	3200	3200	0	8000	1.06
Parvocalanus sp (Calanoida)	1600	0	3200	2400	4000	3200	14400	1.91
Polychaete larvae (Annelids)	2400	8000	0	4000	7200	3200	24800	3.28
Rotallida (Foraminifera)	0	0	0	4000	4000	7200	11200	1.48
Sagitta sp (arrow worm)	1600	0	0	0	4000	0		
0.1		4000					1600	0.21
Spirillina sp (Foraminifera)	800		0	1600	1600	1600	9600	1.27
Spiroloculina sp (Foraminifera)	0	0	0	4000	0	0	4000	0.53
Sponge Spicules	4000	3200	9600	4000	12000	13600	46400	6.14
Subeucalanus sp (Calanoida)	2400	2400	2400	3200	3200	5600	19200	2.54
Tintinnopsis cylindrica (Tintinnida)	0	0	0	1600	0	0	1600	0.21
Tintinnopsis orientalis (Tintinnida)	0	12800	8000	0	10400	6400	37600	4.98
Tintinnopsis radix (Tintinnida)	5600	800	0	0	0	4000	10400	1.38
Tintinnopsis sp (Tintinnida)	8000	0	6400	0	8000	0	22400	2.96
Triloculina sp (Foraminifera)	0	0	640	0	0	7200	7840	1.04
Veliger larvae of Bivalve	0	0	1600	2400	3200	0	7200	0.95
Zoea larva of Crab	3200	3200	2400	3200	2400	4000	18400	2.44
Unidentified larva	1600	0	0	0	0	0	1600	0.21
Total No. Of Genera/Groups=49								
Site-wise Total Density (no/100m ³)	90080	93120	125440	120800	196000	130080	755520	100%
Biomass (ml/100m ³)	16.23	17.97	26.14	5.95	27.78	26.25		

Table 51: Density of Zooplankton at Cargo Jetty site of Deendayal Port

Name of Genera/Group	2A	2B	2C	2D	2 E	2 Control	Individual total density	% of Occurrence
Asantia an (Calansida)	1600	3200	0	12000	2400	1600	(no/100m ³)) 20800	(Site-wise) 4.19
Acartia sp (Calanoida) Ammonia sp (Foraminifera)	4000	<u> </u>	0	0	2400	0	4000	0.81
Arcella sp (Amoebozoa)	1600	0	0	800	0	0	2400	0.31
Calanoida (unidentified)	8000	12000	0	12000	8000	0	40000	8.07
Centropages sp (Calanoida)	0000	320	0	0	0000	0	320	0.06
Clausocalanus sp (Calanoida)	1600	0	1600	3200	3200	4000	13600	2.74
Copepoda eggs sac	2400	4000	1600	3200	2400	8000	21600	4.36
Corycaeus sp (Calanoida)	0	0	0	0	1600	0	1600	0.32
Cyclopoida (unidentified)	0	4000	8000	0	0	4000	16000	3.23
Cyclops sp (Cyclopoida)	0	0	0	4800	4000	0	8800	1.77
Cyphonautes larva (Bryozoan)	0	0	800	0	0	0	800	0.16
Euchaeta sp (Calanoida)	0	0	0	3200	0	0	3200	0.65
Euterpina sp (Harpacticoida)	1600	0	1600	0	1600	0	4800	0.97
Fish larva	800	0	800	0	0	0	1600	0.32
Foraminifera (unidentified)	32000	0	0	4000	16000	9600	61600	12.42
Globigerina sp (Foraminifera)	6400	3200	4000	0	3200	0	16800	3.39
Harpacticoida (unidentified)	0	0	0	0	1600	0	1600	0.32
Heteropoda shells (gastropods)	2400	0	0	0	0	0	2400	0.48
Hydrocaulus & Hydrotheca(Hydrozoa)	0	1600	0	0	0	0	1600	0.32
Lagena sp (Foraminifera)	0	0	800	0	0	0	800	0.16
Leprotintinnus simplex (Tintinnida)	0	1600	0	0	4000	1600	7200	1.45
Leprotintinnus sp (Tintinnida)	0	3200	1600	1600	2400	1600	10400	2.10
Microsetella sp (Harpacticoida)	0	3200	0	800	0	1600	5600	1.13
Mysis larva of Prawn	0	0	0	0	0	16000	16000	3.23
Nauplius larva of Copepoda	1120	0	4000	2400	4000	0	11520	2.32
Nauplius larvae of Barnacles	2400	0	0	3200	0	0	5600	1.13
Nauplius larvae of Crustacea	0	4800	0	16000	3200	3200	27200	5.49
Nauplius larvae of Cyclopoida	800	0	0	0	0	0	800	0.16
Oithona sp (Cyclopoida)	7200	0	0	4000	4800	3200	19200	3.87
Ophiopluteus Larva (Echinodermata)	0	800	0	640	0	0	1440	0.29
Ostracoda	1600	3200	3200	3200	2400	0	13600	2.74
Paracalanus sp (Calanoida)	1600	2400	4000	3200	1600	0	12800	2.58
Parvocalanus sp (Calanoida)	1600	0	0	0	2400	3200	7200	1.45
Polychaete larvae (Annelids)	4800	4800	4000	1600	2400	4000	21600	4.36
Pontellid nauplius larva (Calanoida)	0	0	1600	0	0	0	1600	0.32
Protozoaea larva (Crustacea)	0	0	0	1600	0	0	1600	0.32
Quinqueloculina sp (Foraminifera)	3200	1600	0	0	1600	0	6400	1.29
Sagitta sp (arrow worm)	800	0	800	0	0	800	2400	0.48
Spiroloculina sp (Foraminifera)	0	0	0	0	0	800	800	0.16
Sponge Spicules	800	4800	3200	3200	0	4000	16000	3.23
Subeucalanus sp (Calanoida)	1600	1600	0	0	2400	0	5600	1.13
Tintinnopsis beroidea (Tintinnida)	0	0	0	0	800	0	800	0.16
Tintinnopsis orientalis (Tintinnida)	9600	12000	12000	2560	8000	0	44160	8.91
Tintinnopsis sp (Tintinnida)	0	0	0	4000	0	0	4000	0.81
Veliger larvae of Bivalve	2400	4000	0	2400	2400	3200	14400	2.90
Zoea larva of Crab	3200	2400	0	2400	0	3200	11200	2.26
Unidentified larva	800	0	0	0	0	1600	2400	0.48
Total No. Of Genera/Groups=47								
Site-wise Total Density (no/100m ³)	105920	78720	53600	96000	86400	75200	495840	100%
Biomass (ml/100m ³)	11.54	22.22	25.25	7.50	24.39	122.95		

Table 52: Density of Zooplankton at Phang Creek site of Deendayal Port

Acartia sp (Calanoida)Ammonia sp (Foraminifera)Arcella sp (Amoebozoa)Bolivina sp (Foraminifera)Calanoida (unidentified)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Calcarina sp (Calanoida)Calcarina sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	2400 0 3200 1600 4000 0 800 4000 0 2400	2400 4000 0 0 0 0 1600 160	3200 1600 1600 1600 9600 0	0 0 800 0	2400 3200 800	2400 3200	12800 12000	2.65
Arcella sp (Amoebozoa)Bolivina sp (Foraminifera)Calanoida (unidentified)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Centropages sp (Calanoida)Clausocalanus sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	3200 1600 4000 0 800 4000 0 0	0 0 0 1600 160	1600 1600 9600 0	800 0		3200	12000	2.40
Bolivina sp (Foraminifera)Calanoida (unidentified)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Centropages sp (Calanoida)Clausocalanus sp (Calanoida)Clausocalanus sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	1600 4000 0 800 4000 0	0 0 0 1600 160	1600 9600 0	0	800			2.48
Calanoida (unidentified)Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Centropages sp (Calanoida)Clausocalanus sp (Calanoida)Clausocalanus sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	4000 4000 0 800 4000 0	0 0 1600 160	9600 0			0	6400	1.32
Calcarina sp (Foraminifera)Calcarina sp (Foraminifera)Centropages sp (Calanoida)Clausocalanus sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	4000 0 800 4000 0	0 1600 160	0		0	0	3200	0.66
Centropages sp (Calanoida)Clausocalanus sp (Calanoida)Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	0 800 4000 0	1600 160		5600	8000	8000	35200	7.28
Clausocalanus sp (Calanoida) Copepoda eggs sac Cyclopoida (unidentified) Euterpina sp (Harpacticoida) Fish larva Foraminifera (unidentified) Gastrula larva of Echinodermata Globigerina sp (Foraminifera) Leprotintinnus simplex (Tintinnida) Leprotintinnus sp (Tintinnida) Leprotintinnus nordqvistii (Tintinnida) Microsetella sp (Harpacticoida) Mysids (shrimp like)	800 4000 0	160		0	0	0	4000	0.83
Copepoda eggs sacCyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	4000 0		0	0	0	0	1600	0.33
Cyclopoida (unidentified)Euterpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	0		2400	3200	0	4000	10560	2.18
Euterpina sp (Harpacticoida)Futerpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	, v	4000	0	2400	8000	12000	30400	6.29
Euterpina sp (Harpacticoida)Futerpina sp (Harpacticoida)Fish larvaForaminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	2400	0	4000	1600	0	0	5600	1.16
Fish larva Foraminifera (unidentified) Gastrula larva of Echinodermata Globigerina sp (Foraminifera) Leprotintinnus simplex (Tintinnida) Leprotintinnus sp (Tintinnida) Leprotintinnus nordqvistii (Tintinnida) Microsetella sp (Harpacticoida) Mysids (shrimp like)	2400	0	0	1600	0	1600	5600	1.16
Foraminifera (unidentified)Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	0	480	0	0	0	0	480	0.10
Gastrula larva of EchinodermataGlobigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	48000	15200	12000	16000	22400	9600	123200	25.49
Globigerina sp (Foraminifera)Leprotintinnus simplex (Tintinnida)Leprotintinnus sp (Tintinnida)Leprotintinnus nordqvistii (Tintinnida)Microsetella sp (Harpacticoida)Mysids (shrimp like)	1600	0	0	3200	0	0000	4800	0.99
Leprotintinnus simplex (Tintinnida) Leprotintinnus sp (Tintinnida) Leprotintinnus nordqvistii (Tintinnida) Microsetella sp (Harpacticoida) Mysids (shrimp like)	12000	4000	4800	0 3200	4000	0	24800	5.13
Leprotintinnus sp (Tintinnida) Leprotintinnus nordqvistii (Tintinnida) Microsetella sp (Harpacticoida) Mysids (shrimp like)	0	2400	000	2400	4000	0	8800	1.82
Leprotintinnus nordqvistii (Tintinnida) Microsetella sp (Harpacticoida) Mysids (shrimp like)	3200	3200	2400	3200	4000	1600	17600	3.64
Microsetella sp (Harpacticoida) Mysids (shrimp like)	1600	0	0	0	000	0	1600	0.33
Mysids (shrimp like)	0	0	1600	0	3200	1600	6400	1.32
	0	8000	4000	0	0	0	12000	2.48
Mysis larva of Prawn	960	2400	0	0	320	0	3680	0.76
Nauplius larva of Copepoda	0	0	0	1600	0	0	1600	0.33
Nauplius larvae of Barnacles	0	0	1600	0	0	0	1600	0.33
Nauplius larvae of Crustacea	0	0	0	4800	4800	1920	11520	2.38
Nematoda	0	0	0	0000	0	320	320	0.07
Ostracoda	7200	0	4800	0	1600	4800	18400	3.81
Paracalanus sp (Calanoida)	0	0	4000	0	2400	4000	2400	0.50
Parvocalanus sp (Calanoida)	0	0	2400	2400	2400	640	7840	1.62
		-	3200					
Polychaete larvae (Annelids)	0	800 5600		3200	2400	0	9600	1.99
Prawn larvae (premature stage)	, v		0	0	0	0	5600	1.16
Reussella sp (Foraminifera) Rotallida (Foraminifera)	0	0	5600 0	0	1600 4000	0	7200 4000	1.49 0.83
Rosalina sp (Foraminifera)	4000	3200	0	0	8000	0	15200	3.14
1 (5)			-	-		-		
Sponge Spicules	4000	3200	3200	5600	12000	12000	40000	8.28
Subeucalanus sp (Calanoida)	0	0	2400	0	0	2400	4800	0.99
Tintinnopsis cylindrica (Tintinnida)	0	0	0	0	800	0	800	0.17
Tintinnopsis orientalis (Tintinnida)	4000	4000	0	0	4800	3200	16000	3.31
Triloculina sp (Foraminifera)	0	1600	0	0	0	0	1600	0.33
Veliger larvae of Bivalve	1120	800	640	0	0	800	3360	0.70
Zoea larva of Crab	0	0	480	0	0	0	480	0.10
Unidentified	0	0	0	0	320	0	320	0.07
Fotal No. Of								
Genera/Groups=41 Site-wise Total Density							1	
(no/100m ³) Biomass (ml/100m ³)	110080	67040	73120	57600	105440	70080	169920	100%

			Of	fshore			Cargo jetty							Phang Creek					
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2E	2-contrl	3A	3B	3C	3D	3E	3-control	
Variables																			
Taxa_S	20	20	24	24	27	27	27	21	17	24	24	19	19	19	21	15	23	17	
Individuals (nos. /m ³)	90080	93120	125440	120800	196000	130080	105920	78720	53600	96000	86400	75200	110080	67040	73120	57600	105440	70080	
Dominance_D	0.10	0.08	0.06	0.07	0.08	0.06	0.12	0.08	0.11	0.08	0.07	0.10	0.22	0.10	0.08	0.12	0.09	0.11	
Shannon Diversity Index(H)	2.62	2.75	3.00	2.90	2.87	3.03	2.69	2.79	2.51	2.85	2.92	2.63	2.19	2.60	2.79	2.41	2.73	2.46	
Simpson_1-D	0.90	0.92	0.94	0.93	0.92	0.94	0.88	0.92	0.89	0.92	0.93	0.90	0.78	0.90	0.92	0.88	0.91	0.89	
Evenness	0.69	0.78	0.83	0.76	0.65	0.76	0.54	0.77	0.72	0.72	0.77	0.73	0.47	0.71	0.77	0.75	0.67	0.69	
Menhinick	0.07	0.07	0.07	0.07	0.06	0.07	0.08	0.07	0.07	0.08	0.08	0.07	0.06	0.07	0.08	0.06	0.07	0.06	
Margalef	1.67	1.66	1.96	1.97	2.13	2.21	2.25	1.77	1.47	2.01	2.02	1.60	1.55	1.62	1.79	1.28	1.90	1.43	

6.3.3. Distribution and density of Zooplankton during Season 3

The study was conducted at 3 sites in Deendayal Port and nearby areas where dredging activities are going on. The three selected study stations are Offshore, Cargo Jetty and Phang Greek.

6.3.3.1. Offshore

Acartia sp, Calanoida (unidentified), Copepoda eggs sac, Egg capsules of Littorinids, Polychaete larvae (Annelids), Zoea larva of Crab, Foraminifera (unidentified), Nauplius larva of Copepoda, Sponge Spicules, Zoea larva of Crab etc. were the mostly common zooplankton and throughout observed in all sites of Offshore area. Highest population density was recorded at site <u>1D-Offshore</u> (48000 nos./100m³) where number of species was (24 nos.) and lowest density in <u>1A-Offshore</u> (26560nos./100m³) where number of species was recorded (18nos.). High biomass was observed in the site <u>1A-Offshore</u> (66.67 ml/100m³) and low biomass was recorded in site <u>1E-Offshore</u> (13.51 ml/100m³). The range of the population density, biomass and number of species were (26560 to 48000 nos./100m³), (13.51 to 66.67 ml/100m³) and (16 to 25 nos.) respectively in all sites.

Less observed species were Animal Development stage, Arcella sp (Amoebozoa), Dynamena pumila colony (Hydroid), Gastropoda shells, Spirillina sp (Foraminifera) etc. in this station. Total 44 zooplankton was recorded in Offshore area adding that more composition of zooplankton by the Phylum Arthropoda(Crustacea), Foraminifera and Sponge Spicules (Porifera).

6.3.3.2. Cargo Jetty

The population density of zooplankton varied from 26560 nos./100m³ to 77760 nos./100m³. Maximum density was noticed in site <u>2C-Cargo Jetty</u> (77760nos./100m³) and minimum was at site <u>2A-Cargo Jetty</u> (26560nos./100m³). Maximum number of species (28nos.) found 2control - Cargo Jetty minimum number of species was observed in site <u>2A-Cargo Jetty</u> (15nos.). Biomass ranged between 16.67 to 31.82

ml/100m³ where highest biomass noted in site<u>2D-Cargo Jetty</u> and lowest in <u>2B-Cargo</u> <u>Jetty</u>.

Frequently observed species were *Acartia sp* (*Calanoida*), *Ammonia sp* (*Foraminifera*), *Bolivina sp* (*Foraminifera*), *Egg capsules of Littorinids* Calanoida (unidentified), Foraminifera (unidentified), Globigerina sp (Foraminifera), Ostracoda, Polychaete larvae (Annelids), Sponge Spicules, Zoea larva of Crab etc. whereas less observed species were Egg (unidentified), Gastropoda shells, Leprotintinnus nordqvistii (Tintinnida), Sagitta sp (arrow worm), *Subeucalanus sp* (Calanoida), *Triloculina sp* (Foraminifera) etc. Some Unidentified larval stages were also reported.Total recorded zooplanktons were 44 in Cargo Jetty.

6.3.3.3. Phang Creek

This Creek area was represented by the zooplankton fauna majority of them were Calanoida (unidentified), *Clausocalanus sp* (Calanoida), Copepoda eggs sacs, Foraminifera (unidentified), Gastrula larva of Echinodermata, Globigerina sp (Foraminifera), Ostracoda, Sponge spicules, *Leprotintinnus sp* (Tintinnida). Very less time or rarely recorded species were Egg (unidentified), Euterpina sp (Harpacticoida), Fish larva, Globigerinoides sp (Foraminifera), *Leprotintinnus nordqvistii* (Tintinnida), *Nonion sp* (Foraminifera), Sagitta sp (arrow worm), *Tintinnopsis orientalis* (Tintinnida).

The range of zooplankton biomass was between 20.71 to 40.98 ml/100m³. Highest Biomass was recorded in site <u>3A-Phang creek</u> (40.98 ml/100m³) and lowest in site <u>3B-Phang creek</u> (20.71 ml/100m³). Maximum and Minimum species count was at in site <u>3E-Phang creek</u> (26nos.) and 3A-Phang Creek (18nos.) respectively. Population density was maximum recorded in site 3C-Phang Creek (88480 nos./100m³) and minimum in site 3B-Phang Creek (53600 nos./100m³). In site 3B-Phang creek comparatively low density according to other sites may be because of high predator pressure or some environment changes.

Overall assessment of zooplankton showed that the total number of 64 Zooplankton recorded during this season. Out of these (64) zooplankton, 44 zooplankton recorded in Offshore region, 44 zooplankton at Cargo Jetty and 48 zooplankton in Phang Creek region. The recorded zooplankton of all 3 stations mainly representing Phylum Arthropoda (Crustacea), Protozoa (mainly foraminifera and tintinnids), Porifera (sponge spicules). Crustacean zooplankton was the dominant due to the dominance of different larval stages and Copepods which mainly feed phytoplankton. More larval stage of crustacean and other animals observed in samples that indicated reproduction and development season of animals from larval to mature animal. Generally zooplankton population dynamics and studies emphasize is given up to group level rather than to species level because of microscopic size of zooplankton so to the difficulty in identifying the zooplankton as some species are considered as a groupor genus level. The most dominant or frequently observed species(all 3 station) were Acartia sp (Calanoida) Calanoida (unidentified), Clausocalanus sp (Calanoida), Copepoda eggs sac, Foraminifera (unidentified), Leprotintinnus sp (Tintinnida), Ostracoda, Polychaete larvae (Annelids) Globigerina sp (Foraminifera), Ostracoda, Sponge Spicules, Zoea larva of Crab etc. Foraminifera and Ostracoda belonging to the meroplankton were present at all three stations.

Overall range of all three sites Population density, Biomass and Number of species were (26560 to 88480no/100 m³), (13.51 to 66.67ml/100m³) and (15 to 26nos) respectively. Average high biomass noted at Offshore (35.65 ml/100m³) followed by Phang creek (30.15 ml/100m³) than Cargo Jetty (22.70 ml/100m³) (Tables 54-56). Highest population density was recorded in site <u>3C-Phang creek</u> (88480 nos/100m³) and lowest was recorded in site <u>2A-Cargo Jetty</u> and <u>1A-Offshore</u> (26560no/100m3). Among all recorded zooplankton, majority dominance occurrence was by the Copepoda, Crustacean larvae, Spong Spicules, Foraminifera (Protozoa), Ostracoda, Tintinnids (Protozoa), Zoea larva of Crab. Jelly fish (Hydrozoa: Cnidaria) was also recorded in Offshore and Phang creek region.

Maximum zooplankton faunal composition was dominated by the Phylum Arthropoda, Mollusca, Protozoa, Porifera, Foraminifera. The Fish larva and Fish (Ichthyoplankton) was also recorded in some sites of Offshore and Cargo jetty. The Zooplankton of Chaetognatha, Amoebozoa were only represented by the species namely *Sagitta sp (arrow worm)*, *Arcella sp.* respectively. Veliger larva of Bivalve and Heteropods shells include in Phylum Mollusca. The Echinodermata phylum represented by the Ophiopluteus larva and Gastrula larva of Sea star.

In Offshore, maximum Occurrence (%) was by the Zoea larva of Crab (9.04%) and minimum by the Dynamena pumila colony (Hydroid) and Nematoda (0.14%). In Cargo Jetty, maximum Percentage of Occurrence (%) by the Foraminifera (unidentified) (16.4%) and minimum by the *Brachionus sp* (Rotifera) (0.09%). In Phang Creek maximum. Occurrence by the Foraminifera (unidentified) (16.65%) and minimum (0.08%) by the Egg (unidentified) and some unidentified zooplankton (Table 54-56).

During microscopic sample analysis more number of species varieties of Foraminifera, Sponge spicules, Crustacean larva, Copepoda and Tintinnids were observed. These all three are very important for paleontological study aspects and also for evolutionary, ecological and environmental rebuilding. Some species of Ostracoda, Foraminifera and Sponge spicules are considered in microfossils materials. Some deep sea species also recorded that is indication of water circulation pattern. Data on zooplankton density, list of zooplankton is shown in Tables (54-56).

Plankton identification, both zooplankton and phytoplankton, were done by using relevant identification and taxonomic keys and with standard literatures, monographs and research articles (Kasturirangan, 1963; APHA, 1992; Mitra et al., 2003;Goswami, 2005; Carling et al., 2004; Mandal, 2004; Hussain & Kalaiyarasi, 2013; Guglielmo et al., 2015; Hussain et al., 2016; Sreenivasulu et al., 2017; NIO,1998; NIO,2002), etc

6.3.3.4. Diversity Indices of Zooplankton

Table 57 shows diversity indices of zooplankton. *The* Shannon-wiener diversity index (H') fluctuated between 2.39 to 3.17 indicated moderate to quite high range of diversity added indication of healthy body of water with a maximum value in site 3A-

Phang creek (2.39) where number of species noted (28 nos.) and minimum value in site 3A-Phang Creek (2.19) where species number was 18nos.Range of the evenness was 0.60 to 0.92 where lowest and highest recorded in site 3A and 3D-Phang creek (0.60) and 1A-Offshore (0.92) respectively. Range of Simpson index was 0.84 to 0.95. The range value of Margalef indices was 1.37 to 2.25 that means high species number variations. (Table 57).

 Table 54. Density of Zooplankton at Offshore site of Deendayal Port

Table 54. Density of					1			
Name of Genera/Group	1A	1B	1C	1D	1E	1 Control	Individual total density (no/100m ³)	% of Occurrence (Site-wise)
Acartia sp (Calanoida)	0	1600	0	1600	640	0	3840	1.74
Animal Development stage	0	0	0	0	3200	0	3200	1.45
Ammonia sp (Foraminifera)	800	960	0	0	0	1600	3360	1.52
Arcella sp (Amoebozoa)	0	0	1600	0	0	0	1600	0.72
Brachionus sp (Rotifera)	0	0	0	0	0	1600	1600	0.72
Calanoida (unidentified)	1600	4800	1600	4000	4000	1600	17600	7.96
Clausocalanus sp (Calanoida)	2400	0	0	2400	0	0	4800	2.17
Copepoda eggs sac	960	1920	800	2400	800	480	7360	3.33
Corycaeus sp (Calanoida)	0	800	0	480	0	0	1280	0.58
Cyclopoida (unidentified)	0	3520	960	0	0	0	4480	2.03
Cyclops sp (Cyclopoida)	0	0	0	0	2400	0	2400	1.09
Dynamena pumila colony	0	0	0	320	0	0	320	0.14
(Hydroid)	1 (00	1200	000	1000	0	2200	10000	4.02
Egg capsules of Littorinids	1600	1280	800	4000	0	3200	10880	4.92
Euterpina sp (Harpacticoida)	0	1600	0	800	0	800	3200	1.45
Fish larva	0	0	0	800	0	800	1600	0.72
Foraminifera (unidentified)	1600	1600	0	4800	2720	5600	16320	7.38
Gastropoda shells	0	0	0	1600	0	0	1600	0.72
Globigerina sp (Foraminifera)	0	960	0	2400	0	0	3360	1.52
Harpacticoida (unidentified)	0	1600	0	0	0	0	1600	0.72
Heteropoda shells (gastropods)	640	960	0	0	0	800	2400	1.09
Jelly fish (Hydrozoa: Cnidaria)	3200	1600	0	1120	4000	0	9920	4.49
Leprotintinnus sp (Tintinnida)	0	2400	0	2400	800	0	5600	2.53
Microsetella sp	320	1600	1600	0	000	0	3520	1.59
(Harpacticoida)								
Mysis larva of Prawn	1600	0	800	0	0	0	2400	1.09
Nauplius larva of Copepoda	1600	0	1600	1600	1600	800	7200	3.26
Nauplius larvae of Barnacles	1600	800	0	0	1600	0	4000	1.81
Nauplius larvae of Crustacea	0	0	4000	3200	1600	0	8800	3.98
Nematoda	0	0	0	0	0	320	320	0.14
Oithona sp (Cyclopoida)	1600	0	0	0	0	3200	4800	2.17
Ophiopluteus Larva (Echinodermata)	0	1120	0	0	800	1600	3520	1.59
Ostracoda	0	800	480	1600	0	2400	5280	2.39
Paracalanus sp (Calanoida)	0	1600	1600	800	0	0	4000	1.81
Parvocalanus sp (Calanoida)	0	800	1600	0	1600	0	4000	1.81
Polychaete larvae (Annelids)	1440	1600	4000	1600	2400	3200	14240	6.44
Sagitta sp (arrow worm)	1120	640	0	0	0	0	1760	0.80
Spirillina sp (Foraminifera)	0	0	0	0	0	1600	1600	0.72
Spiroloculina sp	0	0	0	0	0	480	480	0.22
(Foraminifera)								
Sponge Spicules	0	1600	4000	1280	0	3200	10080	4.56
Subeucalanus sp (Calanoida)	0	0	0	0	1600	0	1600	0.72
Thermocyclops sp	1280	0	1600	0	1600	0	4480	2.03
(Cyclopoida) Tintinnopsisorientalis	0	0	0	1600	800	1600	4000	1.81
(Tintinnida)	0	0	0	1000	800	1000	4000	1.01
Veliger larvae of Bivalve	0	1120	0	800	0	1600	3520	1.59
Zoea larva of Crab	1600	5600	5600	5600	1600	0	20000	9.04
Unidentified larva	1600	0	0	800	0	800	3200	1.45
Total No. Of Copore/Croups=44								
Genera/Groups=44 Site-wise Total Density	26560	42880	32640	48000	33760	37280	221120	100%
(no/100m ³)							221120	100%
Biomass (ml/100m ³)	66.67	37.04	16.30	23.26	13.51	57.14		

Table 55. Density of Zooplankton at Cargo Jetty site of Deendayal Port

Name of Genera/Group	2A	2B	2C	2D	2 E	2 Control	Individual	% of
							total density	Occurrence
	0	000	000	000	0	1.000	(no/100m ³))	(Site-wise)
Acartia sp (Calanoida)	0	800	800	800	0	1600	4000	1.16
Ammonia sp (Foraminifera) Brachionus sp (Rotifera)	960 0	2400 320	0	2400 0	8800 0	2400 0	16960 320	4.93
Bolivina sp (Foraminifera)	640	800	1600	800	2400	1600	7840	2.28
Calanoida (unidentified)	1120	800	0	1600	1600	1120	6240	1.81
Calcarina sp (Foraminifera)	0	0	800	1600	0	0	2400	0.70
Clausocalanus sp	800	2400	4000	0	1600	1600	10400	3.02
(Calanoida)								
Copepoda eggs sac	0	0	0	2400	2400	1600	6400	1.86
Cyclops sp (Cyclopoida)	0	1600	800	0	0	0	2400	0.70
Cyphonautes	800	0	800	0	0	0	1600	0.46
larva (Bryozoan)								
Egg capsules of Littorinids	0	4000	4000	0	5600	2400	16000	4.65
Egg (unidentified)	0	0	0	800	0	0	800	0.23
Euterpina sp (Harpacticoida)	0	0	800	800	0	1600	3200	0.93
Fish (small)	0	0	0	0	800	0	800	0.23
Foraminifera (unidentified)	4000	4000	16000	11200	12800	7200	55200	16.04
Gastrula larva of	640	0	480	0	800	0	1920	0.56
Echinodermata Gastropoda shells	0	0	800	0	0	0	800	0.23
Globigerina sp	2400	4000	4000	1600	3200	0	15200	4.42
(Foraminifera)	2400	4000	4000	1000	3200	0	15200	4.42
Globigerinoides sp	0	1600	0	3200	2400	1600	8800	2.56
(Foraminifera)	Ū	1000	Ū	3200	2100	1000	0000	2.50
Harpacticoida (unidentified)	0	800	0	800	0	0	1600	0.46
Heteropoda shells	1600	4000	2400	0	0	800	8800	2.56
(gastropods)								
Leprotintinnus sp	3200	4800	4800	8800	8000	3200	32800	9.53
(Tintinnida)								
Leprotintinnus nordqvistii	0	0	0	0	0	800	800	0.23
(Tintinnida)								
Microsetella sp	0	1600	0	800	0	0	2400	0.70
(Harpacticoida) Nauplius larva of Copepoda	0	1600	2400	800	0	2400	7200	2.00
Nauplius larva of Copepoaa Nauplius larvae of Crustacea	0	1600 0	2400 0	800	2080	2400 1600	7200 3680	2.09 1.07
Nonion sp (Foraminifera)	800	1600	0	0	0	1600	4000	1.16
Ostracoda	1600	1600	5760	4000	640	2400	16000	4.65
Paracalanus sp (Calanoida)	1600	0	0	0	1600	1600	4800	1.39
Parvocalanus sp (Calanoida)	0	0	4000	3200	0	1600	8800	2.56
Polychaete larvae (Annelids)	1600	1600	2080	3200	800	1600	10880	3.16
Reussella sp (Foraminifera)	0	0	0	1600	1600	0	3200	0.93
Rotallida (Foraminifera)	0	0	11200	0	1600	800	13600	3.95
Sagitta sp (arrow worm)	0	800	0	0	0	800	1600	0.46
Spirillina sp (Foraminifera)	0	0	1760	1600	800	1600	5760	1.67
Spiroloculina sp	0	0	1920	2400	0	1600	5920	1.72
(Foraminifera)								
Sponge Spicules	4800	4800	4160	8000	6400	4000	32160	9.34
Subeucalanus sp (Calanoida)	0	0	0	0	0	480	480	0.14
Tintinnopsis orientalis	0	1600	0	0	1600	1600	4800	1.39
(Tintinnida)	0	1,000	0	0	000	0	2400	0.70
Tintinnopsis sp (Tintinnida)	0	1600	0	0	800	0	2400	0.70
Triloculina sp (Foraminifera)	0	1600 0	800 1600	0 800	0 1600	0	2400 4000	0.70
Veliger larvae of Bivalve	0	2400	0	800		-	4000	
Zoea larva of Crab Unidentified	0	0	0	800	0	1600 0	800	1.16 0.23
Total No. Of Genera / Groups		U	U	000	U	U	000	0.23
Total Density (no/100m ³)	26560	53120	77760	64000	69920	52800	344160	100%
Biomass (ml/100m ³)	18.38	16.67	20.62	31.82	21.55	27.17	344100	100 70
	10.00	10.07	40.04	51.04	41.33	<i>41</i> ,11		

Table 56. Density of Zoop Name of Genera/Group	3A	3B	<u>3C</u>	3D	3E	3	Total	% of
Name of Genera/Group	34	50	50	50	JE	Contro	density (no/100m3)	Occurrence (Site-wise)
Acartia sp (Calanoida)	0	1600	1600	0	1600	0	4800	1.15
Ammonia sp (Foraminifera)	0	4000	2400	0	5600	800	12800	3.06
Arcella sp (Amoebozoa)	0	0	4000	1600	1600	800	8000	1.91
Bolivina sp (Foraminifera)	1600	1600	1600	0	0	1600	6400	1.53
Calanoida (unidentified)	3200	1920	2400	6400	4000	4800	22720	5.43
Clausocalanus sp (Calanoida)	0	1600	1600	800	0	800	4800	1.15
Copepoda eggs sac	800	1600	0	0	2400	1600	6400	1.53
Cyclops sp (Cyclopoida)	1600	0	1440	1120	1600	0	5760	1.38
Egg capsules of Littorinids	3200	1440	0	5600	1600	2400	14240	3.41
Egg (unidentified)	0	0	0	320	0	0	320	0.08
Euterpina sp (Harpacticoida)	0	0	800	800	0	0	1600	0.38
Favella sp (Tintinnida)	0	0	0	0	640	0	640	0.15
Fish larva	0	0	0	0	800	0	800	0.19
Foraminifera (unidentified)	20800	9600	17600	12800	4000	4800	69600	16.65
Gastrula larva of Echinodermata	1600	1600	1600	0	2400	1600	8800	2.10
Globigerina sp (Foraminifera)	2400	2400	3200	0	6400	3200	17600	4.21
Globigerinoides sp (Foraminifera)	0	0	4000	0	0	4800	8800	2.10
Harpacticoida (unidentified)	0	1600	0	2400	0	0	4000	0.96
Heteropoda shells (gastropods)	0	1600	3200	0	0	0	4800	1.15
Hydrocaulus & Hydrotheca(0	0	640	0	800	0	1440	0.34
Hydrozoa)	000	0	0	220		0	1120	
Jelly fish (Hydrozoa: Cnidaria)	800	0	0	320	0	0	1120	0.27
Lagena sp (Foraminifera)	1600	0	0	0	0	0	1600	0.38
Leprotintinnus sp (Tintinnida)	4000	10400	8800	10400	12000	11200	56800	13.59
Leprotintinnus nordqvistii (Tintinnida)	0	0	0	0	0	640	640	0.15
Microsetella sp (Harpacticoida)	0	0	0	0	800	1600	2400	0.57
Nauplius larva of Copepoda	0	0	0	1600	1600	1600	4800	1.15
Nauplius larvae of Barnacles	0	0	0	0	1600	0	1600	0.38
Nauplius larvae of Crustacea	0	0	0	2240	8000	4000	14240	3.41
Nonion sp (Foraminifera)	0	0	0	1600	0	0	1600	0.38
<i>Ophiopluteus Larva (Echinodermata)</i>	0	0	0	1600	800	0	2400	0.57
Ostracoda	2400	0	9600	8800	2400	9600	32800	7.85
Paracalanus sp (Calanoida)	1600	1440	3200	800	800	0	7840	1.88
Parvocalanus sp (Calanoida)	0	0	1600	0	0	800	2400	0.57
Polychaete larvae (Annelids)	2400	800	0	2400	1600	1600	8800	2.10
Quinqueloculina sp (Foraminifera)	0	0	3200	640	0	0	3840	0.92
Reussella sp (Foraminifera)	0	800	0	0	0	0	800	0.19
Rotallida (Foraminifera)	0	2400	3200	0	2400	0	8000	1.91
Rosalina sp (Foraminifera)	800	0	0	0	0	0	800	0.19
Sagitta sp (arrow worm)	0	0	0	800	800	0	1600	0.38
Spirillina sp (Foraminifera)	1600	0	0	0	0	1120	2720	0.65
Spiroloculina sp (Foraminifera)	0	0	1600	0	0	0	1600	0.38
Sponge Spicules	4800	4000	8000	7200	6400	8800	39200	9.38
Tintinnopsis cylindrica (Tintinnida)	0	0	0	0	0	800	800	0.19
Tintinnopsis orientalis (Tintinnida)	0	0	1600	0	0	0	1600	0.38
Tintinnopsis sp (Tintinnida)	0	0	0	1120	0	1600	2720	0.65
Triloculina sp (Foraminifera)	0	1600	0	0	0	0	1600	0.38
Veliger larvae of Bivalve	2400	1600	1600	0	1440	1600	8640	2.07
Unidentified larva	0	0	0	800	0	0	800	0.19
Total No. Of Genera/Groups=48	F7(00	52000	00400	701/0	74000	701.00	410000	1000/
Site-wise Total Density (no/100m ³)	57600	53600	88480	72160	74080	72160	418080	100%
Biomass (ml/100m ³)	40.98	20.71	23.53	39.06	23.36	33.33		

Table 57. Diversity indices of Zooplankton at different sites of Deendayal Port

Variables	Offshore							Cargo jetty							Phang Creek					
	1A	1B	1C	1D	1E	1-control	2A	2B	2C	2D	2E	2-contrl	3A	3B	3C	3D	3E	3-control		
Taxa_S	18	25	16	24	18	21	15	25	24	24	23	28	18	20	24	23	26	24		
Individuals (nos. /m ³)	26560	42880	32640	48000	33760	37280	26560	53120	77760	64000	69920	52800	57600	53600	88480	72160	74080	72160		
Dominance_D	0.07	0.06	0.09	0.06	0.07	0.07	0.10	0.06	0.09	0.09	0.09	0.05	0.16	0.10	0.08	0.10	0.07	0.08		
Shannon Diversity Index(H)	2.80	3.03	2.55	2.96	2.75	2.82	2.49	3.04	2.75	2.78	2.74	3.17	2.39	2.67	2.81	2.63	2.90	2.80		
Simpson_1-D	0.93	0.94	0.91	0.94	0.93	0.93	0.90	0.94	0.91	0.91	0.91	0.95	0.84	0.90	0.92	0.90	0.93	0.92		
Evenness	0.92	0.83	0.80	0.80	0.87	0.80	0.81	0.83	0.65	0.67	0.67	0.85	0.60	0.73	0.69	0.60	0.70	0.68		
Menhinick	0.11	0.12	0.09	0.11	0.10	0.11	0.09	0.11	0.09	0.09	0.09	0.12	0.08	0.09	0.08	0.09	0.10	0.09		
Margalef	1.67	2.25	1.44	2.13	1.63	1.90	1.37	2.21	2.04	2.08	1.97	2.48	1.55	1.75	2.02	1.97	2.23	2.06		

Chapter 7

Management Plan

Dredging is the major activity that increases water turbidity and suspended load thereby impacting plankton and productivity. Very high prevailing sedimentation in the Deendayal region necessitates huge quantity of maintenance dredging. A typical by product of dredging activities is the resuspension of sediments into the water column, which have effects on marine organisms. Further Dredging related suspended sediment plumes may differ in scope, timing, duration and intensity from those natural conditions, thus potentially causing conditions not normally experienced by the organisms (Snigdha, 2005). Effects of suspended sediments are highly species-specific and can vary greatly (Clarke and Wilber, 2000). Increase in suspended materials in the water column will diminish the light penetration with potential adverse effects on the photosynthetic capability of phytoplankton and other aquatic plants (Iannuzzi et al., 1996).

In general a comprehensive dredging management plan should be considered for any port environment so as to ensure that the project activities should be carried out with No or a very minimal effects to the environment. Dredging is the activity of removal of the substratum settled at the bottom of the water body. Dredging is carried out to deepen the water column for the smooth transport of vessels in the port area, particularly the navigation canal. The dredging process is intended to remove the soil or sediment which a complex constituted by a mixture of sand, clay and decomposing solid materials and a large number of benthic organisms. Further, in case of a marine environment, various physical characteristics including total suspended solids and turbidity plays a major role in affecting the water column which in turn affects the marine organisms. During dredging activities, there is a high chance of dispersal of suspended sediment load gets mixed up in the water column, thereby increasing the load of TSS.

Over the past few years, dredging has been practiced as a solution to upgrading the infrastructure to enable economic growth of the port and harbors in India however, the programme needs proper planning to achieve the objectives without environmental implications through adoption of proper management plans. Shifting and dislodging

the sediment substratum at the bottom of coastal environment no doubt brings habitat loss to the communities which inhabit as well as those found in the water above for quite a long time and the management plan should include the following objectives.

- 1. Dredging should be undertaken in such a way that it does not harm the marine organisms breeding especially the ones which are economically important.
- 2. Dredging activities during bad weather conditions should be avoided.
- 3. Implementation of the use of suction dredger instead of bucket dredger can be a better option.
- 4. Dewatering of the fines suspended matter through sediment traps can be followed.
- Dredging activity areas should be screened for the presence of presence of RET Species which are indigenous to the Gulf of Kachchh region.
- 6. Turbidity curtains, nowadays, are increasingly used during dredging operations as suggested by Researchers (Sawaragi, 1995; Elander and Hammar, 1998; Otoyo, 2003; Dreyer, 2006; Guo *et al.*, 2009; Ishizaki and Rikitake, 2010; Ueno, 2010, Trang and Keat, 2010) which could also be attempted based on its operational convenience. Moreover various other factors such as current speed, water depth and wave heights to be considered as these also play role in the efficiency of Turbidity curtains. Turbidity curtains allow suspended sediments to settle out of the water column in the dredging spot thus minimizing sediment transport towards the shore. Constructed with thermoplastic material, they serve as a primary method to control turbidity in dredging sites. There are various types of curtains like floating, hanging, solid diversion baffles and permeable and impermeable screens. However, they have proved to be an effective method to contain sediment load in ecologically sensitive areas such as mangroves and corals during dredging operations.
- 7. In order to ameliorate the likely impacts due to sediment load through changes in operational procedure such as appropriately timing the operation in tune with tides and tidal current direction) may be considered.

- 8. Similar to the current practice being followed, disposal of dredged materials continued to be done only in pre-designated sites.
- 9. The initial screening for evaluating disposal options is based on physical and chemical analysis for geotechnical character and the presence of contaminants in the sediments. Depending on the physical and chemical character of the dredged material, disposal may be confined, unconfined or treated prior to release in open water, along the shoreline, or on land.
- 10. Evaluation of the physical/chemical characteristics of dredged material that is dumped at the site to avoid and minimize potential impacts to the marine environment that endanger the health of human through biomagnification and economic loss to the fishery sector.
- 11. To mitigate potential contaminant passing from the port area, it should be addressed through proper design of storm water handling and treatment facilities; placement of sewage and wastewater outfalls; compatibility of local land use (e.g. proximity of agriculture fields or mining operations), procedures for handling hazardous materials and types of industries permitted to operate in the port area.
- 12. Many management measures such as enhancing the biodiversity of the intertidal / subtidal areas by means of artificial reef structures and controlling water column turbidity by deploying mechanisms to trap silts arising out of dredging activity may be better options which can be implemented by the port authorities.
- 13. A program for monitoring the site of dredging as well as the site of dumping the material on regular basis depending the quantity of the material to be disposed, the presence of contaminants at the new site. The main purpose of a disposal site monitoring program is to determine whether dredged material site management practices, including disposal operations, at the site need to be changed to avoid unreasonable degradation or endangerment of human health or welfare or the marine environment.

- 14. The Bioavailability of the expected contaminants and their toxicity at the different life stages of important bioresources which are commercially important.
- 15. At the site designation stage, the emphasis is on selecting a site where disposal will not have a significant adverse impact on various amenities such as fisheries, coral reefs, endangered species, or on other uses of the marine environment.
- 16. There should be proper documentation of all data on the use of the site for inclusion in the site management plan or permits authorizing site usage from the Central and state government authorities.
- 17. To manage increased levels of magnesium (Mg) and phosphate (PO₄) in marine seawater due to dredging activities involves several strategies to mitigate potential environmental impacts. Dredging can resuspend sediments, releasing nutrients like phosphate and magnesium into the water column, which can lead to eutrophication, harmful algal blooms, and other disruptions to marine ecosystems. The following management plan can be considered for addressing these issues:
 - Use of hydrodynamic and sediment transport models to predict how the resuspension of sediments will impact water quality in different areas and conditions (tides, currents).
 - Use of techniques that minimize the resuspension of sediments, such as "closed bucket" dredging or "environmentally friendly" dredgers designed to reduce sediment disturbance.
 - Implementation of silt curtains or other barriers around the dredging site to contain disturbed sediments and limit their spread into surrounding waters. This helps to control the release of phosphorus and magnesium into the water.
 - Schedule dredging activities during times when tides or currents are less likely to disperse sediments widely, ideally during calm periods when sediment disturbance is minimized.

- Deploy technologies such as algae or other bioremediation methods that absorb excess nutrients, including phosphate, to help balance water quality.
- Ensure that dredging activities comply with local, national, and international water quality standards for magnesium, phosphate, and other relevant nutrients. Regular testing should ensure that the environmental impact is within permissible limits.
- Secure appropriate permits for dredging activities, including those related to water quality and sediment management, from relevant environmental agencies.
- By integrating these strategies, the environmental issues associated with increased magnesium and phosphate levels in seawater due to dredging activities can be minimized, preserving water quality and marine ecosystems.

Further, there are three elements which can act as building blocks for developing site management plans are

- a. The disposal site's characteristics, as defined during the site designation process.
- b. Compliance with the ocean dumping criteria, including the results of effectsbased testing of the proposed dredged material; and
- c. The ability to manage the disposal operation and monitor the site for changes.

Site management plans facilitate management action by the statutory bodies and whenever the site management plan is developed, it should be prepared jointly by the concerned bodies as well as the state or local government for managing the ocean dredged material disposal site. The site management plan should provide a clear, concise statement of management objectives and an overview of its purpose and function.

The focus and intensity of site management activities are likely to vary on a case-bycase basis and site management roles and responsibilities may change. Studies on Dredged Materials for The Presence of Contaminants

Disposal history information for management plan implementation requires

- ➤ Known historical uses of the proposed disposal site.
- Transportation and disposal methods use
- ➢ Monitoring findings.
- Enforcement activities.

A monitoring program should have the ability to detect environmental change and assist in determining regulatory and permit compliance. For which the program should be designed to provide the following:

(1) Information indicating whether the disposal activities are occurring in compliance with the permit and site restrictions

(2) Information indicating the short-term and long-term fate of materials disposed of in the marine environment

(3) Information concerning the short-term and long-term environmental impacts of the disposal.

Disposal site monitoring is a key component of site management. Continuous monitoring of all physical, chemical, and biological parameters and resources in and around a typical disposal site is not necessary. Monitoring programs should be structured to address specific questions (null hypotheses) and measure the conditions of key indicators and endpoints, particularly those identified during site designation, or major project-specific issues that arise.

The most effective monitoring programs for ocean disposal sites evaluate the fate and effect of dredged material disposal and its utilization following proper technology such as shoreline strengthening structures, artificial reefs, reclamation and restoration of coastal habitats and beach recharge activities. Discharge point and allowable tolerances in position; Debris removal provisions; Provisions to address spillage, and leakage of dredged material; Inspection and surveillance provisions and Record-keeping and reporting requirements should be incorporated in the plan.

Studies on Dredged Materials for The Presence of Contaminants

The management plan should consider the anticipated use of the site over the long term, including the anticipated closure date for the site, if applicable, and any need for management of the site after the closure of the site. This can be achieved through Long-term Maintenance Dredging Management Plan (LMDMP) to document the status of responsibilities for managing natural sediment accumulation at the Port, in a way that ensures the safe and efficient operation of the Port and the ongoing protection of local environmental values.

Chapter 8 Conclusion and Recommendation

A typical by product of dredging activities is the resuspension of sediments into the water column, which have effects on marine organisms. Further, Dredging related suspended sediment plumes may differ in scope, timing, duration and intensity from those natural conditions, thus potentially causing conditions not normally experienced by the organisms (Snigdha, 2005). Effects of suspended sediments are highly species-specific and can vary greatly (Clarke and Wilber, 2000). Increase in suspended materials in the water column will diminish the light penetration with potential adverse effects on the photosynthetic capability of phytoplankton and other aquatic plants (Iannuzzi et al., 1996).

In this project, with the above scenario, the marine monitoring for the current study period was conducted in the month of January 2024, May 2024 and August 2024 as a three-season study and based on the data gathered, this Final report was prepared. During this period, marine water from the locations was also studied to understand the impact of the dredged material on the water column. The study was conducted in a systematic manner involving standard protocols and the gathered data on the physical, chemical constituents and biological characteristics were used for interpretation.

Overall, comparatively moderate biological community structure of the water and sediment was observed during this study similar to previous years such as 2021-22, 2022-23. Hence regular monitoring of the sediment matrix and water column of a coastal environment is essential not just to understand the environmental health but will be helpful to find out the pattern and to contrivance appropriate management measures arising due to dredging impacts.

References

- Airoldi, L., and Beck, M. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology: An Annual Review, 45, 345–405.
- Alcaraz, M.and Calbet, A. (2003). Zooplankton ecology, in Marine Ecology. Encyclopedia of Life Support Systems (EOLSS), eds C. Duarte and A. Lott Helgueras (Oxford: Developed under the Auspices of the UNESCO, EolssPublishers), 295–318.
- APHA (1992). Standard Methods for the Examination of Water and Waste water 18th Ed, American Public Health Association. Awwa, Wpcf, Washington D.C.
- Baird, R. and L. Bridgewater, 2017. Standard methods for the examination of water and wastewater. 23rd edition. Washington, D.C.: American Public Health Association.
- Barbier Edward, B., Hacker Sally, D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. doi: 10.1890/10-1510.1.
- Barnes, R D, 1980. Invertebrate Zoology Saunders College, Philadelphia 108pp.
- Besiktepe, S., Tang, K. W., Mantha, G. (2015). Seasonal variation of abundance and live/dead compositions of copepods in Mersin Bay, northeastern Levantine Sea (eastern Mediterranean). Turk Zool. 39: 494-506. doi:.10.3906/zoo-1405-23.
- Bhaskar P. V., Roy R., Gauns M., Shenoy D. M., Rao V. D., Mochemadkar S., 2011. "Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis", J Earth Syst Sci, pp.1145–1154.
- Bhunia, A.B. and Choudhury, A., 1998. Studies on the seasonal abundance and biomass of Crustacean Zooplankton and Chaetognaths in relation to ecological parameter of a tidal Creek (Mooriganga), of Sagar Island (north), Sunderbans, West Bengal. *Indian Journal of. Marine Science 28*, 93-198.
- Boyd, S. E., Limpenny, D. S., Rees, H. L., & Cooper, K. M. (2005). The effects of marine sand and gravel extraction on the macrobenthos at a commercial dredging site (results 6 years post-dredging). *ICES Journal of Marine Science*, 62(2), 145–162.
- Brink, K.H. (1993). The coastal ocean progresses effort. Oceanus, 36, pp. 47-49.
- Carling, K. J., Ater, I. M., Pellam, M. R., Bouchard, A. M., Mihue, T. B. (2004). A Guide to the Zooplankton of Lake Champlain. Plattsburgh State University of New York. Scientia Discipulorum. 1: 38-66.
- Chakrabarty, M., Banerjee, A., Mukherjee, J., Rakshit, N., Ray, S. (2017) Spatial pattern analysis of zooplankton community of Bakreswar reservoir, India. Energ. Ecol. Environ. 2(3): 193-206. doi:. 10.1007/s40974-017-0057-8.
- Chattopadhyay, J., R.R. Sarkar & S. Pal 2003. Dynamics of nutrient-phytoplankton interaction in the presence of viral infection. *BioSystems*, 68: 5–7.
- Clark, K R and Warwick, R M 1994. Change in Marine Communities, An Approach to Statistical Analysis and Interpretation Natural Environment Research Council, Plymouth Marine Laboratory, Plymouth, pp144.

- Cloern J. E., "Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Fransisco Bay", California. 1996. Rev Geophys, 34(2), pp.127–168, 1996.
- Covich, A. P., Palmer, M. A. and T. A. Crowl (1999): The Role of Benthic Invertebrate Species in Freshwater Ecosystems. Bio Science, 49 (2): 119-127.
- Davies, O.A., C. C. Tawari and J. F. N. Abowei, 2008. Zooplankton of Elechi Creek, Niger Delta, Nigeria. Environ. Ecol., 26 (4c): 2346 2441.
- Davis, B. J. 1977. Distribution and temperature adaptation in the teleost fish genus Gibbonsia. Mar. Biol., 42: 315-320.
- Day, J H 1967. A monograph on the Polychaeta of Southern Africa Pts I and II, Brit Mus. Nat. Hist, 656, 1-878.
- Dekker, R. 1989. The macrozoobenthos of the subtidal western Dutch Wadden Sea. I. 468 Biomass and species richness. Netherlands Journal of Sea Research 23: 57–68.
- Desai, S. R, 2008. Subashchandran, MD, Ramachandra TV; Phytoplankton Diversity in Sharavati River Basin, Central Western Ghats. Journal of Sediment and Water Sciences, 2008; 1(1):7-66.
- Descy, J. P, 1993. Ecology of the phytoplankton of river Moselle: Effect of disturbance on community structure and diversity. Hydrobiologia, 249(1-3): 111-116.
- Dodson, S. (1992). Predicting crustacean zooplankton species richness. Limnol Oceanogr. 37(4): 848-856.
- Dodson, S.I. and Frey, D. G. (2001). Cladocera and other branchiopoda. Ecology and classification of North American Freshwater Invertebrates. Academic Press. London. 850–914.
- Fauvel, P, 1953 The Fauna of India Including Pakistan, Ceylon, Burma and Malaya Annelida, Polychaeta, Allahabad pp507.
- Figueredo, C. C. & A. Giani 2001. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. *Hydrobiologia*, 445: 165-174.
- Gajbhiye, S.N. & Abidi, S.A.H. (1993). Zooplankton distribution in the polluted environment around Bombay. Environment Impact on Aquatic & Terrestrial Habitats. pp. 127-142.
- Gao, X. and J. Song 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. *Marine Poll. Bull.*, 50: 327-335.
- Garzke, J., Sommer, U., Ismar, S.M.H. (2017). Is the chemical composition of biomass the agent by which ocean acidification influences on zooplankton ecology. Aquat Sci. 79(3): 733-748. doi:. 10.1007/s00027-017-0532-5.
- Goswami, S. C. (2005). Zooplankton Methodology collection & identification manual. Published by National Institute of Oceanography, Dona Paula, Goa. Edited by V.K.Dhrgalkar & X.N.Veriecar.
- Goswami, S.C and Padmavathi, G. (1996). Zooplankton production, composition and diversity in the coastal water of Goa. *Indian Journal of. Marine Science25*, 91-97.
- Gray, J. S. (1997). Marine biodiversity: Patterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.

- Gray, J. S. (1997). Marine biodiversity: Patterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.
- Guglielmo, L., Granata, A., Guglielmo, R. (2015). Class Malacostraca Order Euphausiacea. Revista IDE@- SEA. 86(B): 1-20. ISSN 2386-7183.
- GUIDE, (2011). Comprehensive Terrestrial EIA (including Mangroves) for the Proposed Multi-Project SEZ at Kandla. EIA report submitted to Mumbai Regional Centre of National Institute of Oceanography, Dona Paula, Goa.
- Hambler, C and Speight, M R 1995. Biodiversity conservation in Britain, science replacing tradition British Wildlife, 6, 137-147yla, P S, S Velvizhi and S Ajmal Khan 1999 A Monograph on the amphipods of Parangipettai coast Annamalai University, India 78.
- Harkantra, S. N., A. Nair, Z. A. Ansari and A. H. Parulekar, 1980. Benthos of the shelf region along the West coast of India. *Indian J. Mar. Sci.*, 9: 106-110.
- Hussain, S. M., Joy, M. M., Rajkumar, A., Nishath, N. M & Fulmali, S. T. (2016). Distribution of calcareous microfauna (Foraminifera and Ostracoda) from the beach sands of Kovalam, Thiruvananthapur, Kerala, Southwest coast of India.Journal of the Palaeontological Society of India. 61(2). 267-272. ISSN 0522-9630.
- Hussain, S. M., Kalaiyarasi, A. (2013). Distribution of Ostracoda in the Mullipallam Lagoon, near Muthupet, Tamil Nadu, Southeast Coast of India —Implications on Microenvironment. In: Sundaresan J., Sreekesh S.,230 Ramanathan A., Sonnenschein L., Boojh R. (eds) Climate Change and Island and Coastal Vulnerability. Springer, Dordrecht.
- Ikeda, T., Kanno, Y., Ozaki, K., Shinada, A., 2001. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139, 587–596.
- Ingole B, Sivadas S, Goltekar R, Clemente S, Nanajkar M, Sawant R, D'Silva C, Sarkar A, Ansari Z (2006) Ecotoxicological effect of grounded MV River Princess on the intertidal benthic organisms of Goa. Environ. Internat. 32:284-289.
- Jagadeesan, L., Jyothibabu, R., Anjusha, A., Arya, P. M., Madhu, N. V., Muraleedharan, K. R., and Sudheesh, K., 2013. Ocean currents structuring the mesozooplankton in the Gulf of Manner and the Palk Bay, southeast coast of India. *Progress in Oceanography*, 110: 27-48.
- Jegadeesan, P., 1986. Studies on environmental inventory of the marine zone of Coleroon estuary and inshore waters of Pazhayar, Southeast coast of India. *Ph. D., Thesis, Annamalai University*, India.
- Jha, D. K., Devi, M. P., Vidyalakshmi, R., Brindha, B., Vinithkumar, N. V., and Kirubagaran, R. (2015). Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India. Mar. Pollut. Bull. 100, 555–561. doi: 10.1016/j.marpolbul.2015.08.032.
- Jickells, T. D. (1998). Nutrient biogeochemistry of the coastal zone. Science 281, 217–222. doi: 10.1126/science.281.5374.217.
- Jones, G., and Candy, S. (1981). Effects of dredging on the macrobenthic infauna of Botany Bay. *Marine and Freshwater Research*, *32*(3), 379–398.

- Kadam S.S. and L. R. Tiwari, 2012. Zooplankton Composition in Dahanu Creek-West Coast of Ind. Res. J. Rec. Sci., 1(5): 62-65.
- Karr, J. R., J D. Allen, and A. C. Benke 2000 River conservation in the United States and Canada. In P. J. Boon, Davies and B. R. Petts, G E (Ed.), Global perspectives on River conservation, pp 3–39 Science, Policy, and Practice. Wiley, New York.
- Kasturirangan, L. R (1963). A key for the identification of the more common planktonic Copepoda of Indian coastal waters. Publication No .2. Indian National Committee on Oceanic Research. p. 87.
- Krishnamurthy, K. and Santhanam, R. (1975). Ecology of Tintinids (Protozoa: Ciliata) in Porto Novo region. *Indian Journal of. Marine Science 4*, 181-184.
- Kumar, A., 1995 Studies of pollution in river Mayurakshi in south Bihar. Indian Journal of Environmental Pollution, 2(1): 21-26.
- Levandowsky, M., 1972. An ordination of phytoplankton population in ponds of varying salinity and temperature. *Ecology*, 53(3): 398-407.
- Lyla, P S., Velvizhi, S and Ajmal Khan, S 1999. A Monograph on the amphipods of Parangipettai coast Annamalai University, India pp78.
- Madin, L.P., Horgan, E.F., and D.K. Steinberg. 2001.Zooplankton at the Bermuda Atlantic Timeseries Study (BATS) station: diel, seasonal and inerannual variation in biomass, 1994-1998. Deep-Sea Research II. 48 (8-9): 2063-2082.
- Magurran, A 1991. Ecological Diversity and Its Measurement Princeton University Press, Princeton, pp178.
- Mahapatro, D R C., Panigrahy, K and Samal, R N 2011. Macrobenthos of shelf zone off Dhamara estuary, Bay of Bengal. J Oceanog Mar Sci 22, pp 32-42.
- Mandal, S.K. (2004). Studies on the Effect of Ship Scrapping Industry Wastes on Marine Phytoplankton at Alang, Gujarat, Ph. D thesis. M. K. Bhavnagar University, Bhavnagar.
- Margalef, R 1958. Information theory in ecology. Gen Syst, 3, 36–71.
- Marine Biology Organization (MBO), 2007. Zooplankton Retrieved from: http://www.marinebio.com/oceans/zooplankton.Askp. 62k, (Accessed on: September 29, 2006).
- Martin G.D, P.A. Nisha, K.K. Balachandran and G.V.M. Gupta (2011). Eutrophication induced changes in benthic community structure of a flowrestricted tropical (Cochin backwaters), India. Environ. Monit. Assess. 176(1-4):427-438.
- Maurer, D., Watling, L., Kinner, P., Leathem, W and Wethe, C 1978. Benthic invertebrate assemblages of Delaware Bay. Mar Biol, 45, 65-78.
- Maya, M. V., M. A. Soares, R. Agnihotri, A. K. Pratihary, S. Karapurkar, H. Naik & S. W. A. Naqvi 2011. Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary. *Environ. Monit. Assess.*, 175: 501–517.
- Mees, J. and Jones, M. B. (1997): The Hyperbenthos. Oceanography and Marine Biology: an Annual Review, 35, 221-255.
- Mishra, S., and Panigrahy, R. C. (1999). Zooplankton ecology of the Bahuda estuary (Orissa), east coast of India. *Indian Journal of. Marine Science* 28, 297-301.

- Mitra A., Davidson, K. and Flynn, K. J. (2003) The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study. *Acta Oecol* (Suppl. 1), S359–S367.
- Mitra, A., Zaman, S., Sett, S., Raha, AK and Banerjee, AK 2014. Phytoplankton cell volume and diversity in Indian sundarban. Ind J Mar Sci 43, 2 208-215.
- MitraA., Davidson, K. and Flynn, K. J. (2003) The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study.*cta Oecol* (Suppl. 1), S359–S367.
- Moura, A. N., Bittencourt-Oliveira, M. C & Nascimento, E. C. (2007). Benthic Bacillariophyta of the Paripe River estuary in Pernambuco state, Brazil. Braz. J. Biol. 67(3): 393-401.
- Murugan, A., 1989. Ecobiology of Cuddalore, Uppanar backwaters, Southeast coast of India. *Ph.D., Thesis, Annamali University*, India.
- Murugesan, P., 2002. Benthic biodiversity in the marine zone of Vellar estuary (Southeast Coast of India). *Ph. D., Thesis Annamalai University*, India, 359pp.
- Nair, VR 2002. Status of flora and fauna of Gulf of Kachchh, India NIO, Goa, pp 1-258.
- Newell, R. C., Seiderer, L. J., & Hitchcock, D. R. (1998). The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. Oceanography and Marine Biology: An Annual Review, 36, 127–178.
- NIO, (2002). Status of flora and fauna of Gulf of Kachchh, India. National Institute of Oceanography, Goa.
- NIO, 1998. Environmental studies for proposed BPCL jetty and associated facilities at Kandla Part-I Rapid marine EIA, May1998 NIO Mumbai.
- NIO. (1980). Technical Report, National Institute of Oceanography, Goa.
- Omori, M. and Ikeda. T. (1984). Methods in Marine Zooplankton ecology. John Wiley & Sons, New York.
- Parasharya D and Patel B. (2014). Spawning aggregation of Melibe viridis Kellart (1858) from Gulf of Kachchh-Western India. International Journal of Scientific and Research Publication, 4(3), ISSN 2250-3153.
- Parulekar, A. H., Dhargalkar, V. K., & Singbal, S. Y. S. (1980). Benthic studies in Goa estuaries. Part 3. Annual cycle of macrofaunal distribution, production and trophic relations. *Indian J Mar Sci.*
- Pearson, T. H. and Rosenberg, R. (1978): Macrobenthic Succession in Relation to Organic Enrichment and Pollution of the Marine Environment. Oceanography and Marine Biology-An Annual Review, 16: 229-311.
- Perumal P, Sampathkumar P, Karuppasamy PK (1999) Studies on the bloom-forming species of phytoplankton in the Vellar estuary, southeast coast of India. Ind J Mar Sci 28: 400-403.
- Pielou, E C 1966. The measurement of diversity in different types of biological collections. J Theoret Biol 13, 131-144.
- Plafkin, J. L., Barber, M. T., Poter, K. D., Gross, S. K. and Highes, R. M. 1989. Rapid bioassessment protocol for use in streams and rivers for benthic macro invertebrates and fish. EPA/444/ 4-89/001. Office of water regulation and standards. U.S. Environmental Protection Agency, Washingaton DC, USA.

- Prabhahar. C., K. Saleshrani & Enbarasan 2011. Studies on the ecology and distribution of phytoplankton biomass in Kadalur coastal zone Tamil Nadu, India. *Curr. Bot.*, 2(3): 26-30.
- Ramakrishna, D A 2003. Manual on identification of schedule molluscs from India 40pp.
- Ramakrishna, T C R., Sreeraj, C., Raghunathan, R., Raghuraman, P and Yogesh Kumar, J S 2011. An account of additions to the Icthyofauna of Andaman and Nicobar Islands Records of the Zoological Survey of India, Occasional Paper no 326, 1-140 Published-Director, Zool Surv India.
- Rao, K.K and Balasubramanian, T. (1996). Distribution of Foraminifera in the Cochin Estuary. J.mar.biol. Ass. India. 38(1 and 2): 50-57.
- Reid, G. K, 1961. Ecology in inland waters and estuaries. New York.375.
- Reid, G. K., Wood, R. D. (1976). Ecology of inland waters and estuaries. Toronto, Ontario, D. Van Nostrand Co., pp. 138–146.
- Reid, G. K., Wood, R. D. (1976). Ecology of inland waters and estuaries. Toronto, Ontario, D. Van Nostrand Co., pp. 138–146.
- Saravanan, K. R., Sivakumar, K., and Choudhury, B. C. (2013). "Important coastal and marine biodiversity areas of India," in Coastal and Marine Protected Areas in India: Challenges and Way Forward, ENVIS Bulletin: Wildlife & Protected Areas, Vol. 15, ed. K. Sivakumar (Dehradun: Wildlife Institute of India), 134– 188. doi: 10.1007/978-3-642-38200-0_30
- Shannon, C E and Wiener, W 1949. The Mathematical theory of Communication Univ of Ilinois Press, Urbana.
- Sinha B. and M. R. Islam, 2002. Seasonal variation in zooplankton population of two lentic bodies and Assam State Zoo cum Botanical Garden, Guwahati, Assam, Eco.Environ. Cons., 8: 273-278.
- Sivasamy, S.N., 1990. Plankton in relation to coastal pollution at Ennore, Madras coast. Indian J. Marine Sci., 19: 115-119.
- Sreenivasulu, G., Jayaraju, N., Raja Reddy, B.C.S., Prasad, T. L., Nagalakshmi, K., Lakshmanna, B. (2017). Foraminiferal research in coastal ecosystems of India during the past decade: A review. Geo ResJ. 13: 38–48.
- SubbaRao, N V., Surya Rao, K V and Maitra, S 1991. Marine molluscs State Fauna Series 1, Part 3 Fauna of Orissa. Zool Surv India, Kolkata, 1–175.
- Tabassum, A. and Saifullah, S. (2012). Centric Diatoms from the North Arabian Sea Shelf of Pakistan. LAP. BOOK Lambert Academic Publishing. ISBN: 978-3-659-28532-5.
- Takai N, Mishima Y, Yorozu A, Hoshika A (2002) Carbon sources for demersal fishes in the western Seto Inlan Sea, Japan, examined by delta 13C and delta 15N analyses. *Limnol Oceanogr.* 47(3):730-741.
- Taylor, B. E. (1998). Analyzing population dynamics of zooplankton. Published by the American Society of Limnology and Oceanography, Inc. Limnol.Oceanogr 33(6, part 1): 1266-1273.
- Thakur, B., Chavda, C., & Salvi, H. (2015). Phytoplankton diversity at some selected sites of the Gulf of Kachchh, Gujarat, India. Bulletin of Environmental and Scientific Researcch. 4(4): 7-12. ISSN. 2278-5205.

Studies on Dredged Materials for The Presence of Contaminants

- Thangaraja, G. S., 1984. Ecobiology of the marine zone of the Vellar estuary. *Ph. D. Thesis, Annamalai University, India.*
- Thirunavukkarasu, K., Soundarapandian, P., Varadharajan, D., Gunalan, B. (2013). Zooplankton Composition Structure and Community Structure of Kottakudi and Nari Backwaters, South East of Tamilnadu. J. Environ. Anal. Toxicol. 4(1): 200. doi:.10.4172/2161-0525. 1000200.
- Tiwari, L.R and Nair, V.R. (1998). Ecology of Phytoplankton from Dharmatar creek, West Coast of India. Indian. J. MarineScience. 27 (3 & 4).
- Uptake, A. (1999). Primary production by phytoplankton and microphytobenthos in estuaries. *Estuaries*, 29, 93.
- Zohary T, Yacobi YZ, Alster A, Fishbein T, Sh L, Tibor G.(2014). Phytoplankton. In: Zohary T, Sukenik A, BermanT, Nishri A, editors. Lake Kinneret – ecology and management. Dordrecht (Netherlands): Springer; p. 161–190.

ANNEXURE E

Inception Report 2024-25 - Study on dredged material for presence of Contaminants f

INCEPTION REPORT OF THE PROJECT

STUDIES ON DREDGED MATERIALS FOR THE PRESENCE OF CONTAMINANTS

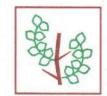
No. EG/WK/4751/Part (EC & CRZ-1). Dt. 07.10.2024

Submitted by

GUJARAT INSTITUTE OF DESERT ECOLOGY, BHUJ, KACHCHH, GUJARAT

Submitted to

DEENDAYAL PORT AUTHORITY ADMINISTRATIVE OFFICE BUILDING POST BOX NO. 50 GANDHIDHAM (KACHCHH) GUJARAT - 370201


December 2024

Project Team

Project Co-ordinator : Dr. V. Vijay Kumar, Director

S. No	Name & Designation	Role	Expertise				
	Scientific Personnel						
1.	Dr. K. Karthikeyan Assistant Director	Principal Investigator	Ph.D. in Environmental Sciences – Experience in water and soil studies with 17 years of experience.				
2.	Dr. G. Jayanthi Scientist	Co- Investigator	PhD in Botany; 14 years of Research experience with 5 years of Post- Doctoral experience				
3.	Dr. Krushnakant. D. Baxi Scientific Officer	Co- Investigator	Ph.D in Zoology (Marine Biology) with 5 years of experience				
		Technical Staff	ſ				
4.	Dr. Monika Sharma Sr. Scientific Asst.	Team Member	M.Sc. in Environmental Sciences; 7 years analytical experience in soil, water analysis				
5.	Ms. Dipti Parmar Scientific Assistant	Team member	M.Sc. in Environmental Sciences; 6 years analytical experience in soil and water analysis.				
6.	Ms. Bulbul Kushvah Jr. Scientific Assistant	Team member	M.Sc in Chemistry.				

Dr. V. Vijay Kumar Director

Gujarat Institute of Desert Ecology

Certificate

This is to state that the **Inception report** of the work entitled, "**Studies on Dredged Material for the presence of contaminants**" has been prepared in line with the Work order issued by DPT vide No. EG/WK/4751/Part (EC & CRZ-1). Dt. 07.10.2024 as per the EC & CRZ Clearance accorded by the MoEF & CC, GoI dated 19/12/2016, Specific Condition No. vii. This work order is for a period of Three years from 2024 – 2027 for the above-mentioned study.

This Inception report is for the project period from November 2024 - January 2025.

Authorized Signatory

Institute Seal

PO. Box No. 83, Opp. Changleshwar Temple, Mundra Road, Bhuj (Kachchh) - 370 001, Gujarat (India) Tel : 02832 - 235025-26 www.gujaratdesertecology.com, E-mail : desert_ecology@yahoo.com

1.0. Background

Deendayal Port Authority located in 23^o 02' 29.92" N; 70^o 13' 08.99" E, Erstwhile called as Kandla Port is one of the largest creek based Ports in India. The port is located in the northwest coast of India in the state of Gujarat and is among the twelve major ports of India is situated at the tail end of Gulf of Kachchh, the western part of Gujarat. The biggest advance of the location is high semi-diurnal tidal range of 6 to 7 m, which gives adequate draft in the dredged channels of the Port. DPA since its establishment undergoing incessant development and expansion especially in recent times.

The port caters the maritime trade requirement of many hinterland states and is well connected by the network of rail and road and serves as a gate way port for export and import of northern and western Indian states of Jammu & Kashmir, Delhi, Punjab, Himachal Pradesh, Haryana, Rajasthan, Gujarat and parts of Madhya Pradesh, Uttaranchal and Uttar Pradesh. About 35% of the country's total export takes place through the ports of Gujarat in which the contribution by Deendayal port is considerable. The port handled a total cargo of 105 MMTPA during 2016-17, 110 MMTPA during 2017-18, 115 MMTPA during 2018-19, 122.5 MMTPA during 2019-2020, 117.5 MMTPA during 2020-21, 137 MMTPA during 2022-23 and 132.37 MMTPA during 2023-24. Further, a regular expansion of infrastructure and port facilities is under way to cater future logistic requirements.

DPA has taken up Development of 7 Integrated facilities, and the Ministry of Environment, Forest and Climate Change (MoEF & CC), has put up some conditions while according Environmental and CRZ clearance. One of the conditions is to carry out the "Study on Dredged Material for presence of contaminants" as accorded by the MoEF&CC,GoI dated 19/12/2016 - Specific condition no. vii)" which states that "Dredged materials should be analyzed for presence of contaminants and also to decide the disposal options. Monitoring of dredging activities should be conducted and the findings should be shared with the Gujarat SPCB and Regional Office of the Ministry".

2.0. Need of the study

GUIDE has opined that since multi-purpose terminal project at Tuna Tekra and oil jetty bunkering projects are yet to be initiated which involve considerable dredging and further, in addition to this, maintenance dredging which is a continuous process at Deendayal port creek systems given the heavy sedimentation at this part of Gulf of Kachchh. Considering these factors and the arid nature of Kachchh, the study is conducted since November 2017 by Gujarat Institute of Desert Ecology (GUIDE), Bhuj to understand the contaminant load. The details of locations of earlier sampling are given in Figure 1 and Table 1.

This study on evaluation of dredging contamination will be carried out Three times in a year at Three specified locations by employing the methodical investigation of evaluating physical, chemical and biological characteristics of the dredged materials with special reference to pollutants, nutrients and other factors. Further, the study will envisage the evaluation of physico-chemical constituents in the dredged materials in the dumped locations in the study area (Figure 2). GUIDE has received the Work order for this Dredging project with project time period being Three years (01.11.2024 – 31.10.2027).

This Inception report is prepared considering the 3 months of work activity in the project (01.11.2024 - 31.01.2025). The present project is designed considering the scope of work given in the EC conditions with the specific objectives as detailed below:

3.0. Scope of the Study

- 1. To monitor the three locations where dredged materials are dumped will be conducted.
- 2. Dredged materials in the area will be analyzed for the presence of contaminants in three different locations.
- 3. Detailed assessment of the dredged materials for physical, chemical and biological characteristics will be studied.
- 4. Suggesting suitable options for the management of dredged material will be elaborated in the Final report.

Station	Latitude (N)	Longitude (E)
Location 1 (Offshore)	22° 51' 00" N	70° 10' 00" E
Location 2 (Phang creek)	23° 04' 28" N	70°13' 28" E
Location 3 (Cargo jetty)	22°56' 31" N	70 3' 00" E

Table 1: Locations of earlier sampling (2023-24)

4.0. Findings of the study conducted during last year (2023-24)

The past three years of data, i.e., 2021-22, 2022-23 and 2023-24 Offshore location has recorded the highest average petroleum hydrocarbon content $(13.19\pm 3.61 \ \mu g/kg)$, followed by Phang creek (9.18±3.80 $\mu g/kg$) and Cargo jetty site (6.85±3.30 $\mu g/kg$). This suggests more anthropogenic oil-related inputs in the nearshore areas. Among the parameters studied, parameters such as pH, Salinity, Petroleum Hydrocarbon, Total organic carbon, Sulphur, Lead and Cobalt showed a decreasing trend in the current year (2023-24) when compared to the previous years (2021-22 and 2022-23).

Various diversity indices calculation, showed that Shannon Diversity Index ranging from (0.00-1.34) during Season 1, 0.00-1.52 during Season 2 and 0.00-1.45 during Season 3. Highest diversity indices were recorded in Station 2B-Cargojetty during all the seasons such as 1.34, 1.52 and 1.45. Overall, the offshore waters showed signs of moderate anthropogenic impact but maintained conditions generally suitable for marine life. Notably, copper showed Below Detection Limit (BDL) values across all sampling points during almost all seasons. Similarly, manganese consistently remained Below Detection Limit (BDL) at this location. When the Chlorophyll and Phaeophytin concentrations are concerned from the last three years, the concentrations of Chlorophyll was on a higher side during season 1, whereas the season 2 and season 1 values were higher in the present year, and during season 2 revealed a similar mean value, whereas the season 3 recorded a slightly higher value of phaeophytin.


Evaluation of physical/chemical characteristics of dredged material that is dumped at the site to avoid and minimize potential impacts to the marine environment that endanger the health of human through biomagnification and economic loss to the fishery sector. In order to ameliorate the likely impacts due to sediment load through changes in operational procedure such as appropriately timing the operation in tune with tides and tidal current direction) may be considered.4. Dewatering of the fines suspended matter through sediment traps can be followed. Dredging activity areas should be screened for the presence of presence of RET Species which are indigenous to the Gulf of Kachchh region.

5.0. Selection of sampling locations for the study during 2024-25

The study on the presence of contaminants in the dredged materials for the year 2024-25 was planned by considering the location (Table 2) details as provided to DPA by Hydraulic & Dredging Division regarding location of dumping ground (Figure 2) and the details has been shared to GUIDE by DPA in the e-mail dated 24 October 2018.

Station	Latitude (N)	Longitude (E)
Location 1 (Offshore)	22° 51' 00" N	70° 10' 00" E
Location 2 (Phang creek)	23° 04' 28" N	70°13' 28" E
Location 3 (Cargo jetty)	22°56' 31" N	70 3' 00" E

Table 2: Locations of propose	d sampling (2024-25)
-------------------------------	----------------------

Figure 1: Map showing locations of earlier sampling (2024-25)

Figure 2: Photograph showing the Marine environment in Kandla, Gulf of Kachchh

5.1. Details of work planned for the 1st Quarter

5.2. General work

During the 1st Quarter of the study, the project team will be involved in collection of review of literatures from reputed sources including the technical reports to ensure the technical aspects are covered of the work. Further, based on the objectives of the study, the team will be involved in procurement of consumables related to the sampling part of the project and also for the analytical work.

In order to collect the samples from the pre-designated sites, the team will approach the Authorities of The Customs Office, Central Industrial Security Force Unit of DPA, Kandla and the Marine Police of Kandla through proper channel for according permission regarding sampling for the entire team. Based on the permission accorded by the authorities, the field work will be conducted and the sampling will be undertaken as per the standard procedures. The detailed timeline of the study of the current year is given in Table 3.

Project Activities	Period			
	Nov'24 –	Feb'25-	May'25–	Aug'2–
	Jan'25	Apr'25	July'25	Oct'25
Review of scientific literature related to work				
Permission related to field work				
• Purchase of consumables and miscellaneous related to the project				
Planning and orientation of objectives				
Submission of Inception Report				
• Conducting 1 st season sampling (winter)				
Processing and analysis of samples				
Submission of 1 st season report				
• Conducting 2 nd season sampling (summer)				
Processing and analysis of samples				
Submission of 2 nd season report				
• Conducting 3 rd season sampling (monsoon)				
Processing and analysis of samples				
Submission of 3 rd season report				
Submission of Draft report				
Submission of Final report				

Table 3: Timeline showing the Work Elements for the period 2024-25.

Figure 2: Locations of the proposed sampling as per the information provided by DPA

TCE-10343A-CV-	TATA CONSULTING ENGINEERS LIMITED	
280-GCC-01-R5	FINAL TENDER DOCUMENT FOR DREDGING AT KANDLA PORT TRUST	SHEET 129 OF 210
6.15 <u>Monit</u>	oring of the Dredging Process	
sched contin provid includ displa daily decod the Er	Contractor shall for the purpose of ensuring that the Work is lule and with a view to control and verification of op uous monitoring and recording of the dredging process. The le at its own expense, the electronic dredger positioning and ing necessary instrumentation, sensors, calibration, da ys and shall ensure the continuous operations thereof. The make available to the Engineer the data collected by the led and processed, and the same shall at all times be open ingineer or his representatives. The Contractor shall allow the sentative to check the data/ dredging process onboard on re- ed.	erations, ensure e Contractor shall d control systems ta storage and e Contractor shall e Contractor fully for inspection by e Engineer or his
everyo the ar	Contractor shall provide/submit the DLM prints, track charts day showing the areas where dredging operations are carr eas where dredged material is disposed off. All data and e available by the Contractor to the Employer shall remain in t over.	ied out including valuation thereof
6.16 <u>Depos</u>	ition of Dredged Soil	
Contra belong by the	e soil and other dredged material excavated by the Contract shall be deemed to be the property of the Employer gs to the Employer and shall be disposed off only in such material from the proposed dredg employer. The dredged material from the proposed dredg sed at the specified disposal grounds as explained below:	and deemed to
	(a) The dredged material from the maintenance dredging channel shall be disposed off within 1 km radius of Latitude 22° 51' 00" N and Longitude 70° 10' 00" E	of Navigational the location at
	b) The dredged material from the Capital dredging of Oi any) and Oil Jetty no. 7 shall be disposed off within 150 location at Latitude 23° 04' 28" N and Longitude 70° 13	0 m radius of the
(c) The dredged material from the Maintenance dredging o (if any) and Oil Jetty no. 7 shall be disposed off within the location at Latitude 22° 51' 00'' N and Longitude 70	150 m radius of
	d) The dredged material from the dredging at Cargo Jett Creek shall be disposed off within 150 m radius of the loc 22° 56' 31'' N and Longitude 70° 13' 00'' E (in the insho	ation at Latitude
as p Emplo places indica Contra The C areas.	osition of the dumping ground is indicative in nature and su er physical conditions and morphological changes, eyer/Engineer reserves the right to relocate the dumping group approximately within the haulage distances involved in the ted above. Any change in the location of the dumping Site sh actor to make any claim against the employer either for extra ontractor shall ensure that no soil is dumped beyond or outs In the event it is noticed by or brought to the notice of eer-in-charge or Engineer's Representatives that the contra	Therefore the unds at any other dumping ground hall not entitle the a time or money. side the dumping the Engineer or
Contraction of the second		
ECO NVA		

6.0. Technical work (sampling and analysis)

Study on assessing the dredged materials from the designated sites will focus on collecting marine water and bottom sediment samples from three pre-designated locations on a seasonal basis covering winter, summer and monsoon in a year. A total of 18 bottom sediment samples and 18 Surface water and 18 bottom water samples from three locations, *i.e.* two Offshore locations and one from the creek system will be collected. In each site, one sediment sample and two water samples (Surface and bottom) will be collected using standard methodical procedures.

The water samples collected will be stored in a sterile, polythene bottles and ziplock bags in an icebox to maintain suitable conditions till it is brought to the Laboratory and the water samples will be stored at 4^oC. The bottom water samples will be collected using Niskin sub-surface sampler. As per the standard protocol, the fixatives and preservatives will be added to the samples in case of parameters (Table 4) such as Dissolved Oxygen, Chemical Oxygen Demand and preservation using nitric acid for heavy metals. In case of biological characteristics, the marine water samples for planktonic analysis will be preserved using formalin.

When sediment sample collection is concerned, the same will be collected in prefixed stations using a Van-Veen type of grab sampler and the samples will be preserved with Rose Bengal and formalin to avoid decomposition of samples. Further, the sediment samples will be air dried and used for further analysis for the parameters (Table 5). In general, the planning and orientation of the objectives of the project will be made during this period (1st Quarter).

S. No	Parameters
1	Temperature
2	pH
3	Salinity
4	Total Dissolved Solids
5	Turbidity
6	Dissolved Oxygen
7	Bio-Chemical Oxygen Demand
8	Phenolic Compounds
9	Petroleum Hydrocarbons
10	Oil and grease
11	Cadmium
12	Lead
13	Mercury
14	Chromium
15	Copper
16	Cobalt
17	Nickel
18	Zinc
19	Magnesium
20	Manganese
21	Chlorophyll
22	Phaeophytin
23	Phytoplankton (Phytoplankton cell counts (no/L);
	Total Genera (no.); Major Genera
24	Zooplankton (Biomass (ml/100m ³); Population
	(no/100m ³); Total Group (no.)
	Major Groups

Table 4: Physico-chemical and biological characteristics of marine water samples

6.1. Methodology for water sample analysis

6.1.1. pH and Temperature

A Thermo fisher pH / EC / Temperature meter will be used for pH and Temperature measurements. The instrument will be calibrated with standard buffers just before use.

6.1.2. Salinity

A suitable volume of the sample will be titrated against silver nitrate (20 g/l) with potassium chromate as an indicator. The chlorinity is estimated and from that salinity values will be derived using formula.

6.1.3. Total Dissolved Solids (TDS)

The samples will be subjected for gravimetric procedure for confirmation of the readings obtained from the hand-held meter. About 100 ml of the water sample will be taken in a beaker and filtered which will be then dried totally in a Hot Air Oven (105°C). TDS values will be calculated using the difference in the initial and final weight.

6.1.4. Turbidity

The sample tube (Nephelometric cuvette) will be filled with distilled water and placed in the sample holder. The lid of the sample compartment will be closed. By adjusting the '*SET ZERO*' knob, the meter reading will be adjusted to read zero. The sample tube with distilled water will be removed and the 40 NTU standard solution will be filled in the tube and the meter reading will be set to read 100. Other standards will also be run simultaneously. The turbidity of the marine water sample will be estimated by filling the sample tube with the sample, and the readings will be noted.

6.1.5. Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD)

Dissolved Oxygen will be determined by Winkler's method. For the determination of BOD, direct unseeded method will be employed. The samples will be filled in a BOD bottle in the field and incubated in the laboratory for 3 days after which DO will be determined and the difference will be calculated.

6.1.6. Phenolic compounds

Phenols in water (500 ml) will be converted to an orange coloured antipyrine complex by adding 4-aminoantipyrine. The complex will be extracted in chloroform (25 ml) and the absorbance will be measured at 460 nm using phenol as a standard.

6.1.7. Petroleum Hydrocarbons (PHc)

Water sample of One litre will be extracted with hexane and the organic layer will be separated, dried over anhydrous sulphate and reduced to 10 ml at 30°C under low pressure. Fluorescence of the extract will be measured at 360 nm (excitation at 310 nm) with Saudi Arabian crude residue as a standard. The residue will be obtained by evaporating lighter fractions of the crude oil at 120°C.

6.1.8. Oil and Grease

About 500 ml of sample will be transferred to the separating funnel and sample bottle will be carefully rinsed with 30ml of trichlorotrifluoroethane and solvent washings will be added to the separating funnel. To this, 5ml of 1:1 HCL will be added and shaken vigorously for about 2 minutes If soluble emulsion is formed, then the sample container will be shaken for 5 to 10 minutes. Then the layers will be allowed to separate and the lower layer (organic layer) will be discarded from separating funnel. Then the solvent layer will be drained through a funnel containing solvent moistened filter paper into a clean pre-weight distillation flask. Then the solvent will be transferred using minimum quantity of solvent into a clean pre-weighed dried beaker and the beaker will be placed on water bath for 15 minutes at 70 °C and evaporate off all the solvent and it was cooled in desiccators for 30 minutes and weight will be taken for final calculation.

6.1.9. Heavy metals

Heavy metals are of concern especially as it relates to the environment are Cadmium (Cd), Lead (Pb), Mercury (Hg), Chromium (Cr), Arsenic (As), Copper (Cu), Cobalt (Co), Nickel (Ni), Zinc (Zn), Magnesium (Mg) etc. For the release of mineral elements from soil and sediments, wet oxidation of samples are generally performed.

Wet oxidation employs oxidizing acids (Tri / Di-acid mixtures). Soil sample will be weighed to 0.5 gm and taken in 100ml beaker covered with a watch glass and 12 ml of Aqua regia in (1: 3 HNO₃ : HCl) will be added and the beaker will be kept in digestion for 3 hours at 100^oc on a hot plate using sand bath and the samples will be evaporated to near dryness and the samples will be kept cool for 5 mins and then 20 ml of 2% nitric acid will be added and kept for 15 minutes in hot plate for digestion and remove from hot plate and cooled and filtered using Whatmann No. 42 mm filter paper and then the final make up to 50 ml with 2 % nitric acid will be made. The extracted sample will be then aspirated to an AAS.

6.1.10. Estimation of Chlorophyll and Phaeophytin

Phytoplankton (Chlorophyll a) pigment which is responsible for synthesizing the energy for metabolic activities of phytoplankton through the process of photosynthesis in CO_2 is used and O_2 is released is an essential part to understand the consequence of pollutants due to release in the system. To estimate this, known volume of water (500 ml) will be filtered through a 0.45 µm Millipore Glass filter paper and the pigments retained on the filter paper will be extracted in 90% acetone. For the estimation of chlorophyll, *a* and phaeophytin the fluorescence of the acetone extract will be measured using Fluorometer (Turner Design) before and after treatment with dilute acid (0.1N HCL).

6.1.11. Phytoplankton sampling and analysis

Phytoplankton samples will be collected in the ten prefixed sampling sites using standard plankton net with a mesh size of 51 μ m. Plankton nets are with a square mouth covering an area of 0.900 cm² (30cm square mouth) fitted with a flow meter (Hydrobios). Nets will be towed from a moving boat for 10 minutes and the plankton adhering to the net will be concentrated in the net bucket. Plankton soup from the net bucket will be transferred to a pre-cleaned and rinsed container and preserved with 5% neutralized formaldehyde. The containers will be appropriately labelled. The initial and final flow meter reading was noted down for calculating the amount of water filtered to estimate plankton density. As per flow meter reading, a total amount of 165 m³ of water was filtered by the net. One liter of water was

separately collected for density estimation to counter check density estimation obtained by the flow meter reading. Quantitative analysis of phytoplankton (cell count) was carried out using a sedge wick-Rafter counting chamber. One ml of soup added to a Sedgwick counting chamber was observed under an inverted compound microscope. The number of cells present in individual cells of the counting chambers (1/1000) was noted and identified up to a generic level. Several observations were fixed to represent the entire quantity of the soup (generally more than30 times) and the recorded data were used to calculate the density (No/l) using the formula, N = $n \times v/V$ (where N is the total no/l; n is an average number of cells in 1 ml; v is the volume of concentrate; V is the total volume of water filtered). The phytoplankton diversity richness and evenness were past software.

6.1.12. Zooplankton sampling and analysis

Zooplankton analysis in the marine water samples will be as carried out in the three sampling locations such as offshore dredging, cargo jetty and Phang creek dumping sites during all the three sampling seasons. In each location five replicate samples and one control samples will be collected. Zooplankton samples will be collected using a standard zooplankton net with a mouth area of 0.25 m^2 fitted with a flow meter. The net was towed from a boat for 5 min with a constant boat speed of 2 nautical miles per hour. The initial and final reading in the flow meter will be noted down and the soup collected in the plankton bucket will be transferred to appropriately labeled container and preserved with 5% neutralized formaldehyde. To counter-check the zooplankton density values obtained, water samples of 100 L will be collected and preserved, which will be later analysed for zooplankton density. One ml of the zooplankton soup will be added to a Sedgwick counting chamber and will be observed under a compound microscope. The group/taxa will be identified using standard identification keys and their number will be counted. Random cells in the counting chamber will be taken for consideration and the number of zooplankton will be noted down along with their binomial name. This will be repeated for five 1 ml samples and the average value will be considered for the final calculation. For greater accuracy, the final density values will be counter-checked and compared with the data collected by the settlement method. Univariate measures [Shannon-Wiener diversity index (H'), Margalef's species richness (d), and Pielou's evenness (J'), Simpson dominance (D)] were determined using past software.

S. No	Parameters
1	pH (1: 10 suspension)
2	Salinity
3	Petroleum Hydrocarbon
4	Cadmium
5	Lead
6	Mercury
7	Chromium
8	Copper
9	Cobalt
10	Nickel
11	Zinc
12	Magnesium
13	Manganese
14	Sand (%)
	Silt (%)
	Clay (%)
15	Total organic carbon
16	Organic matter
17	Sulphur
18	Macrobenthos
	Biomass (g/m ² ,wet wt)
	Population (no/m ²)
	Total Group (no.)
	Major Groups

 Table 5: Physico-chemical and biological characteristics of sediment samples

The detailed methodology of the mentioned parameters is described as follows:

6.2. Methodology for sediment analysis

6.2.1. pH / Salinity (1: 10 suspension)

pH of the soil is the measure of H⁺ ion activity of the soil water system. It indicates whether the soil is acidic, neutral or alkaline in nature. Since ions are the carrier of electricity, the electrical conductivity (EC) of the soil water system rises according to the content of soluble salts. The measurement of EC can be directly related to soluble salts concentration of the soil at any particular temperature. Ten gram of the finely sieved soil will be dissolved in 100ml of water to prepare a leachate. This will be subjected to vigorous shaking using a rotator shaker for 1 hour to facilitate proper homogenization of the suspension. The suspension will be allowed to settle for two 2 hours and the supernatant after filtration will be used for the analysis of pH and salinity using the pH and EC meter (Make: Systronics 361) and Refractometer (Make: Atago). Each sample will be analyzed in triplicates and the mean values will be taken into consideration.

6.2.2 Textural analysis (Sand/Silt/Clay)

Sediments will be collected using Van Veen grab whereas intertidal sediments will be collected using a handheld shovel. After collection, the scooped samples will be transferred to polythene bags, labeled and stored under refrigerated conditions. The sediment samples will be thawed, oven dried at 40C and ground to a fine powder before analyses.

For texture analysis, specified unit of sediment samples will be sieved using sieves of different mesh size as per Unified Soil Classification System (USCS). Cumulative weight retained in each sieve will be calculated starting from the largest sieve size and adding subsequent sediment weights from the smaller size sieves. The percent retained will be calculated from the weight retained and the total weight of the sample. The cumulative percent will be calculated by sequentially subtracting percent retained from 100%.

6.2.3. Total organic carbon

Total organic carbon is the carbon stored in soil organic matter which enters the soil through the decomposition of plant and animal residues, root exudates, living and dead microorganisms, soil biota etc. Total Organic carbon in the soil is oxidized with potassium dichromate in the presence of concentrated sulphuric acid. Potassium dichromate produces nascent oxygen, which combines with the carbon of organic matter to produce CO₂. The excess volume of $K_2Cr_2O_7$ is titrated against the standard solution of ferrous ammonium Sulphate in presence of H_3PO_4 using Ferroin indicator to detect the first appearance of unoxidised ferrous iron and thus volume of $K_2Cr_2O_7$ can be found out which is actually required to oxidize organic carbon.

Procedure

Percentage of Total organic carbon in the soil/sediment will be determined by oxidizing organic matter in the soil samples by chromic acid and estimating excess chromic acid by titrating it against ferrous ammonium sulphate with ferroin as an indicator. The detailed step-by-step procedure is as follows:

One gm of 0.5 mm sieved soil will be weighed and put into 500 ml conical flask and to which 10 ml of K2Cr2O7 will be added with pipette and swirled. Immediately using a burette, 20 ml Conc. H_2SO_4 will be added and mixed gently until soil and reagents are mixed. The reaction will be allowed to proceed for 30 min in a marble stone to avoid the damage caused due to release of intense heat due to reaction of sulphuric acid. Further, 200 ml of distilled water will be added slowly and 10 ml of concentrated Orthophosphric acid and about 0.2 gm NaF will be added and allowed the sample and reagent mixture to stand for 1.5 hrs because the titration end point is better visible in a cooled solution. One ml of ferroin indicator will be added into the conical flask just before the titration and then titrated the excess K_2Cr_2O with 0.5 N Ferrous Ammonium Sulphate till the color flashes from yellowish green to greenish and finally brownish red at the end point. Simultaneously a blank test will be also run without soil sample.

Calculation

% Organic carbon = $(B - S) \times N \times 0.003 \times 100$ / weight of soil

Where,

- B = ml of std. 0.5 N ferrous ammonium sulphate required for blank.
- S = ml of std. 0.5 N ferrous ammonium sulphate required for soil sample.
- N = Normality of std. ferrous ammonium sulphate (0.5N).

6.2.4. Heavy metals

Heavy metals are of concern especially as it relates to the environment are Cadmium (Cd), Lead (Pb), Mercury (Hg), Chromium (Cr), Nickel (Ni), Cobalt (Co), Arsenic (As), Copper (Cu), Zinc (Zn), Manganese (Mn) etc. For the release of mineral elements from soil and sediments, wet oxidation of samples are generally performed. Wet oxidation employs oxidizing acids (Tri / Di-acid mixtures).

Soil sample will be weighed to 0.5 gm and taken in 100ml beaker covered with a watch glass and 12 ml of Aqua regia in (1: 3 HNO3 : HCl) will be added and the beaker will be kept in digestion for 3 hours at 100⁰c on a hot plate using sand bath and the samples will be evaporated to near dryness and the samples will be kept cool for 5 mins and then 20 ml of 2% nitric acid will be added and kept for 15 minutes in hot plate for digestion and remove from hot plate and cooled and filtered using Whatmann No. 42 mm filter paper and then the final make up to 50 ml with 2 % nitric acid will be made. The extracted sample will be then aspirated to an AAS

Calculation

6.2.5. Petroleum Hydrocarbons

Sediment after refluxing with KOH-methanol mixture will be extracted with hexane. After removal of excess hexane, the residue will be subjected to clean-up procedure by silica gel column chromatography. The hydrocarbon content will be then estimated by measuring the fluorescence as per standard method.

6.2.6. Sulphur

Sulphur in the sediment extract will be estimated turbidimetrically using a spectrophotometer. The standards of sulphur will be prepared in series such as 2, 4, 6, 8 and 10 ppm working solution from stock solution. In this, 25ml of solution will be added in the volumetric flask separately to each flask and 2.5 ml of conditioning reagent solution will also be added followed by 5 ml of extraction solution. To this mixture, 0.2-0.3 gm of barium chloride will be also added and shaken well and will be made up to 25 ml with distilled water and the readings will be taken at 340nm spectrophotometer.

The sample will be analyzed by taking 5.0 g of marine sediment into a 100ml conical flask, to which, 25 ml of 0.15 % CaCl₂ solution will be added and shaken for 30 minutes. Then this will be filtered through Whatman no. 42 filter paper and then 5 ml of sample aliquot will be taken in a 25 volumetric flask, to which 2.5 ml of conditioning reagent and 0.2 to 0.3 g of barium chloride powder will be added and made up to 25 ml distilled water and shaken well for 2 minutes and the absorbance read in the same manner as standard solutions will be noted.

6.2.7. Biological characteristics (Macrobenthos)

The collected sediment sample will be sieved through a 0.5 mm mesh and retained animals will be preserved in 5% buffered formaldehyde Rose Bengal. Prior to sorting (identification), wet weight of each sample will be determined using a mono-pan electronic balance. The biomass (wet weight) will be estimated and expressed as gm m². The macrobenthic organisms will be separated in to different taxonomic groups for further identification. All the taxa will be identified to their specific, generic or other higher levels to the extent possible with the help of standard taxonomic references (Polychaeta - Fauvel, 1953; Day, 1967; Decapoda: Alcock, 1985; FAO Species Catalogue, 1991; Sethuramalingam and Ajmal Khan, 1992; Jayabaskaran, et al., 1999). Mollusca species will be identified through the following references (Satyamurty, 1952; 1956; Cernohorsky, 1967, 1972a &1972b, Abbott and Dance, 1982; Oliver, 1984; Subba Rao *et al.*, 1991 & 1992; Apte, 1998).

ANNEXURE F

Oil Spill Contingency Plan f

OIL SPILL RESPONSE CONTINGENCY PLAN DPA KANDLA AND OOT VADINAR

OIL SPILL RESPONSE CONTINGENCY PLAN

DPA KANDLA AND OOT VADINAR

OIL SPILL RESPONSE CONTINGENCY PLAN DPA KANDLA AND OOT VADINAR

	INDEX CONTENTS	Page No.
CONITI	NGENCY PLANNING COMPLIANCE CHECKLIST	5
CERTIFICATE OF ENDORSEMENT		10
DISCLAIMER		10
	ATANT NOTE	12
		13
	VIATIONS	14
DEENL	DAYAL PORT AUTHORITY KANDLA AND OOT VADINAR OSCP ACTION FLOW CHART	
	PART I – STRATEGY	
1	INTRODUCTION	17
	i CONTINGENCY PLANNING	17
	ii PURPOSE & OBJECTIVES	17
	iii AIMS & OBJECTIVES	18
1.1	AUTHORITIES & RESPONSIBILITIES	18
1.2	COORDINATING COMMITTEE	19
1.3	STATUTORY REQUIREMENTS	20
1.4	MUTUAL AID AGREEMENTS	21
1.5	GEOGRAPHICAL LIMITS OF PLAN	21
1.6	INTERFACE WITH ROS-DCP & NOS-DCP	22
2 .	RISK ASSESSMENT	25
2.1	IDENTIFICATION OF ACTIVITIES AND RISKS	
2.1.1	.1 FAILURE FREQUENCY PIPELINES	
2.1.2	2 EXITING FACILITIES AT KANDLA PORT	
2.1.3	EXITING FACILITIES AT OOT VADINAR PORT	29
2.1.4	TRAFFIC HANDLED AT KANDLA	29
2.1.5	CARGO OPS OR TRANSFER SPILL FREQUENCY	31
2.1.6	SPILL VOLUME CALCULATION-PIPELINE	32
2.2	TYPES OF OIL LIKELY TO BE SPILLED	32
2.3	SPILLED OIL MITIGATION	33
2.4	DEVELOPMENT OF OIL SPILL SCENARIOS INCLUDING WORST CASE DISCHARGE	33
2.5	SHORELINE SENSITIVITY MAPPING	33
2.6	SHORELINE RESOURCES, PRIORITIES FOR PROTECTION	37
2.7	SPECIAL LOCAL CONSIDERATIONS	38
2.8	FATE AND EFFECTS	40
2.9	WHEATHERING PROCESSES	40
3	RESPONSE STRATEGY	40
3.1	PHILOSOPHY AND OBJECTIVES	41
3.2	LIMITING AND ADVERSE CONDITIONS	41
3.3	OIL SPILL REPONSE IN OFFSHORE ZONES (OPERATIONAL PRIORITIES)	42
3.4	OIL SPILL RESPONSE IN COASTAL ZONES (OPERATIONS MANUALS & FIELD GUIDE)	42
3.5	SHORELINE OIL SPILL RESPONSE	44
3.6	REFINERIES AVAILABLE IN GUJRAT & IN INDIA	45
3.7	STORAGE AND DISPOSAL OF OIL AND OILY WASTE	45
4 .		47
4.1	MARINE OIL SPILL RESPONSE EQUIPMENT	47

INDFX

Prepared By Sadhav Shipping Ltd.

OIL SPILL RESPONSE CONTINGENCY PLAN DPA KANDLA AND OOT VADINAR

4.2	INCRECTION MAINTENANCE AND TESTING	47
4.2	INSPECTION, MAINTENANCE AND TESTING	47
4.3	SHORELINE EQUIPMENT, SUPPLIES AND SERVICES MANAGEMENT	-
5.		48
5.1	CRISIS MANAGEMENT AND FINANCIAL AUTHORITIES	48
5.2		49
5.3	MANPOWER AVAILABILITY (ON SITE, ON-CALL)	51
5.4	AVAILABILITY OF ADDITIONAL MANPOWER	52
5.5	ADVISORS AND EXPERTS-SPILL RESPONSE, WILDLIFE, AND MARINE ENVIRONMENT	52
5.6	TRAINING / SAFETY SCHEDULES AND DRILL / EXERCISE PROGRAMME	52
6.	COMMUNICATIONS	54
6.1	INCIDENT CONTROL ROOM AND FACILITIES	54
6.2	FIELD COMMUNICATIONS EQUIPMENT	54
6.3	REPORTS, MANUALS, MAPS, CHARTS AND INCIDENT LOGS	55
	PART – II ACTIONS AND OPERATIONS	
7	INITIAL PROCEDURES	57
7.1	NOTIFICATION OF OIL SPILL TO CONCERNED AUTHORITIES	57
7.2	PRELIMINARY ESTIMATE OF RESPONSE TIER	58
7.3	NOTIFYING KEY TEAM MEMBERS AND AUTHORITIES	58
7.4	MANNING CONTROL ROOM	58
7.5	COLLECTING INFORMATION	58
7.6	ESTIMATED FATE OF SLICK & PLANNING MEDIUM-TERM OPERATIONS (24-48 AND 78 HOURS):	60
7.7	IDENTIFYING RESOURCES IMMEDIATELY AT RISK, INFORMING PARTIES	64
7.7	SERVELLANCE	64
7.8	SAMPLING	65
8.	OPERATIONS PLANNING	71
8.1	ASSEMBLING FULL RESPONSE TEAM	71
8.2	IDENTIFYING IMMEDIATE RESPONSE PRIORITIES	71
8.3	MOBILIZING IMMEDIATE RESPONSE	72
8.4	MEDIA BRIEFING	74
8.5	PLANNING MEDIUM-TERM OPERATIONS (24,48- AND 72 HOURS)	74
8.6	DECIDING TO ESCALATE RESPONSE TO HIGHER LEVEL	75
8.7	MOBILISING OR PLACING ON STANDBY RESOURCES REQUIRED	75
8.8	ESTABLISHING FIELD COMMAND POST AND COMMUNICATIONS	75
9.	CONTROL OF OPERATIONS	76
9.1	ESTABLISHING A MANAGEMENT TEAM WITH EXPERTS AND ADVISORS	76
9.2	UPDATING INFORMATION	76
9.3	REVIEWING AND PLANNING OPERATIONS	76
9.4	OBTAINING ADDITIONAL EQUIPMENT, SUPPLIES AND MANPOWER	76
9.5	PREPAIRING DAILY INCIDENT LOG AND MANAGEMENT REPORTS	77
9.6	PREPARING OPERATIONS ACCOUNTING AND FINANCING REPORTS	77
9.7	PREPARING RELEASES FOR PUBLIC AND PRESS CONFERENCE	77
9.8	BRIEFING LOCAL AND GOVERNMENT	77
10.	TERMINATION OF OPERATIONS	78
10.1	DECIDING FINAL AND OPTIMAL LEVELS OF BEACH CLEAN-UP	78
10.1	STANDING DOWN EQUIPMENT, CLEANING, MAINTAING, REPLACING	78
10.2	PREPARING FORMAL DETAILED REPORT	78
10.3	REVIEWING PLANS AND PROCEDURES FROM LESSONS LEARNT	78
10.4 11		81
11	HEALTH AND SAFETY PLAN	01

11.1	INTRODUCTION	81
11.2	SITE HAZARDS	81
12	Response to HNS INCIDENTS	83
12.1	RESPONSE OPTIONS	83
12.2	MONITORING	83
12.3	RESPONSE TECHNIQUES	84
12.4	HNS RESPONSE EQUIPMENT INVENTORY	85
12.5	DISPOSAL	85
	PART – III DATA DIRECTORY	
Α	MAPS & CHARTS	
1	COASTAL CHARTS, CURRENTS, TIDAL INFORMATION (RANGES AND STREAMS), PREVAILING WINDS	87
2	RISK LOCATIONS AND PROBABLE FATE OF OIL	90
3	SHORELINE RESOURCES FOR PRIORITY PROTECTION	91
4	SHORELINE TYPES	92
5	SEA ZONES AND RESPONSE STRATEGIES	92
6	SHORELINE ZONES AND CLEAN-UP STRATEGIES	92
7	OIL AND WASTE STORAGE/ DISPOSAL SITES	93
8	SENSITIVITY MAPS/CHARTS	94
В	LISTS	
1	AUXILIARY EQUIPMENT	94
2	SUPPORT EQUIPMENT	95
3	SOURCES OF MANPOWER	95
C C	DATA/ANNEXURES	
1	EXPERTS AND ADVISORS	96
2	LIST OF ADDITIONAL RESOURCES AND INTERNATIONAL OSROS	97
3	LOCAL AND NATIONAL GOVT. CONTACTS	98
4	TRAINING PROGRAMME	101
5	MEDIA COMMUNICATIONS	101
6	BROAD CLASSIFICATION OF OILS AS PER MARPOL 73/78	102
7	ANTI-POLLUTION RESOURCES (Local Area) DPA KANDLA AND OOT VADINAR	105
8		108
9	CHARASTRISTICS OF DIFFERENT CLASS OF OILS	109
10	WEATHERING PROCESSES AND TIME SCALES	110
11	CALCULATION OF SPILL QUANTITY AS PER SLICK CHARACTERISTICS	112
12	POINT SYMBOLS FOR BIOLOGICAL RESOURCES	113
13	PORT- VESSEL POLLUTION EMERGENCY INTERPHASE	114
14	ORGANISATIONAL CHART	115
15	NET ENVIRONMENTAL BENEFIT ANALYSIS (NEBA)	115
16	INCIDENT LOG	120
17	PERSONAL LOG (ALL MEMBSERS OF SPILL RESPONSE ORGANISATION)	120
18	CONTACT DETAILS OF LOCAL ADMINISTRATION	122
19	DETAILS OF DEAL ADMINISTRATION DETAILS OF DPA POLLUTION RESPONSE EQUIPMENTS	122
20	APPROVEL OF OSD FOR USAGE IN INDIAN WATERS	125
20	DETAILS OF VESSELS USED FOR OIL SPLL RESPONSE	130
		1.52
22	DETAILS OF DEFFICIENT OSR EQUIMENT AND MANPOWER VIDE ICG STANDARDS 2018	135

24	LIST OF OSR PERSONNELS	137
25	COPY OF MOU WITH IOCL & NAYARA ENERGY	139
26	SHORTAGE OF PR EQUIPMENT AS PER NOS-DCP CIRCULAR NO 03/2018	140
27	SENSITIVITY MAPPING, RISKS ASSESSMENT STUDIES FOR MARINE OIL SPILL	141

Contingency Planning Compliance Checklist

NAME OF PORT / OIL HANDLING AGENCY	DPA KANDLA AND OOT VADINAR /
	SADHAV SHIPPING LIMITED

	DESCRIPTION	COMPLIED YES / NO	REMARKS
1	Whether the facility procedures / handles / uses / imports / stores any type of petroleum product	YES	Page-28, Para- 2.1.2.
2	Whether risk assessment is done	YES	Page-25, Para-2.1
3	Who did the risk assessment	Environ Software Pvt. Ltd.	Page-94, Para- 8, Annexure-26
4	whether maximum volume of oil spill that can occur in the worst-case scenario is considered	YES	Page-32, Para- 2.2 Annexure-11
5	Whether relative measure of the probability and consequences of various oil spills including worst case scenario are considered	YES	Page -33, Para-2.4
6	Whether all types of spills possible in the facility are considered including Grounding, Collision, Fire, Explosion, Rupture of hoses.	YES	Page -31, Para-2.1.3
7	Please specify the list of oils considered for risk assessment	YES	Heavy oils & Crude oil, Furnace oil. Page-32, Para-2.2
8	Whether the vulnerable areas are estimated by considering maximum loss scenario and weather condition.	YES	Page -33, Para-2.2.1, Annexure -15
9	Whether impacts on the vulnerable areas are made after considering the Marine protected areas, population, fishermen, saltpans, mangroves, corals, and other resources within the area	YES	Shoreline Maps Attached Page – 36, Para-2.5.3
10	Whether measures for reduction of identified high risks are included by reducing the consequences through spill mitigation measures.	YES	Page – 33, Para- 2.3.

11	Whether steps have been considered to reduce risks to the exposed population by increasing safe distances by acquiring property around the facility, if possible	YES	No Population along the coast at least about 10 Km
12	Whether risk levels are established for each month after consideration the probability with tide and current and consequences of each such spill	YES	Page 115, Annexure 15
13	Whether prevention and mitigation measures are included in the plan	YES	Page 33, Para 2.3, Annexure-7
14	Whether the spill may affect the shoreline.	YES	Annexure -15 Page -115
15	Whether time taken the oil spill to reach ashore in each quantity of spill in various months are mentioned in the plan	YES	Annexure-15, Page - 115
16	Whether sensitivity mapping has been carried out	YES	Page 147, Annexure-26
17	Does the sensitivity mapping clearly identify the vulnerable areas along with MPAs, corals, fishermen community, saltpans, mangroves and other socio-economic elements in the area	YES	Page 147, Annexure-26
18	Do the sensitivity maps indicate area to be protected on priority	YES	Page 39, Para – 2.7
19	Does the map indicate boom deployment locations	YES	Page 39, Para – 2.7
20	Whether any Marine Protected Area will be affected	YES	Annexure– 15, Para 2.5.3, Page - 36
21	Whether total number of fishermen likely to be affected is mentioned in the plan	YES	Page 30, Para 2.6.2
22	Whether any saltpan in the area is going to be affected	YES	Page 30, Para 2.6.2
23	Whether any mangroves in the area will be affected by a spill	YES	Page 30, Para 2.6.2

Preparedness:

24	Whether any containment equipment is	YES	Annexure– 7.
24	Available	TLS	Page-105.
25	Whether any recovery equipment is Available	YES	Annexure– 7 Page-105
26	Whether the facility is having any temporary storage capacity	YES	Page - 105, Para 7 Annexure– 7
27	Whether location of the oil spill response equipment is mentioned in the plan	YES	Annexure– 7 Page-105
28	Whether suitable vessels Available for deploying the boom, skimmer etc.	YES	Annexure-7 Page-106.
29	Whether OSD held with facility	YES	3000 Liters Annexure -7 Page-105
30	Whether the OSD held with the facility is approved for use in Indian Water	YES	YES
31	Whether the facility has MOU with other operators for Tier-1 preparedness	YES	MOU With IOCL & NAYARA Energy. Annexure – 25, Page No. 140
32	Whether the list of oil spill response equipment Available with each agency in MOU is deliberated	YES	Annexure– 25. Page-144
33	Whether the facility has MOU with private OSRO	NO	NO
34	Whether the procedure for evoking the mutual aid is clearly described in the plan	YES	Page – 141 of MoU, Para-1
35	Whether additional manpower is Available	YES	Page –144
36	Whether list of approved recyclers is mentioned in the plan	YES	Annexure-22, Page-136
37	Whether NEBA (Net Environmental Benefit Analysis) has been undertaken	YES	Annexure-15, Detailed Report of NEBA carried out by National Institute of Oceanography is enclosed
38	Whether the areas from priority protection have identified in the plan	YES	Page – 36 Para – 2.5.3
39	Whether relevant authorities and stakeholders were consulted for NEBA and during the areas for priority protection	YES	YES
40	Whether District administration has been appraised of the risk impact of oil spills?	YES	YES

	Action Plan		
41	Whether the plan outlines procedure for reporting of oil spills to Coast Guard	YES	Page – 57, Para. – 7.1
42	Whether the oil spill response action is clearly mentioned	YES	Page – 71, Para. – 8.1.
43	Whether the action plan includes all duties to be attended in connection with an oil spill	YES	Page – 71, Para. –9.1.
44	Whether the action plan includes key personnel by their names and designation viz. C/C, S/C	YES	Page-76, Para-9.1
45	Whether alternate coverage is planned to take care of the absence of a particular person (in case where action plan is developed basis names)	YES	Page-76, Para-9.1
46	Whether the plan includes assignment of all key coordination's viz, the communication Controller, Safety Coordinator, Emergency management team, Administration and Communication Coordinator and Safety Coordinator	YES	Page-76, Para-9.1 Page-48, Para-5.1
47	Whether contact directory containing numbers of key response and management personnel is intimated in the plan	YES	Annexure-1, Page – 96 Annexure-3, Page- 98 Annexure-18, Page-121
48	whether approved recyclers are identified for processing recovered oil and oily debris	YES	Annexure -23, Page - 136
49	Whether the shoreline likely to be affected is identified	YES	Page – 115, Annexure -15
50	Whether final report on the incident is submitted to CGHQ as per NOS-DCP 2014	NA	NA
51	Whether the spill incident and its consequences are informed to fishermen and other NGOs for environment protection through media.	NA	NA

Training and Exercises:

52	Whether mock Drill / emergency response drills are specified in the plan	YES	Page-53, Para 5.6.2
53	Whether the mock drills cover all types of probable oil spills	YES	YES
54	Whether the plan mentions list of trained manpower	YES	Page-136-137, Annexure-23-24
55	Whether the plan to updated according to the findings in mock drills and exercises	YES	YES
56	Whether the records for periodic mock drills are maintained in a well-defined format	YES	Also, entry is made in monthly log book.
57	What is the frequency of updating / revise of contingency plan?	YES	As and when required
58	Periodicity of joint exercise with mutual aid partners	YES	Once In 3 Months
59	Frequency of mock drills for practice	YES	Once In 6 Months

I hereby, declare that all the information appended above is true and correct to my knowledge or belief.

Date:

Dy. Conservator, DPA

Verified:

Date

(District Commander ICG) Or his representative

Date

(Regional Commander ICG) Or his representative

Certificate of Endorsement

I hereby certify that:

- 1. The oil spill contingency plan for the facility under my charge has been prepared with due regard to the relevant international best practices, international conventions, and domestic legislation.
- 2. The nature and size of the possible threat including the worst-case scenario, and the resources consequently at risk have been realistically assessed bearing in mind the probable movement of any oil spill and clearly stated.
- 3. The priorities for protection have been agreed, considering the viability of the various protections and clean up options and clearly spelt out.
- 4. The strategy for protecting and cleaning the various areas have been agreed and clearly explained.
- 5. The necessary organization has been outlined, the responsibilities of all those involved have been clearly stated and all those who have a task to perform are aware of what is expected of them.
- 6. The levels of equipment, materials and manpower are sufficient to deal with the anticipated size of spill. If not, back-up resources been identified and, where necessary, mechanisms for obtaining their release and entry to the country have been established.
- 7. Temporary storage sites and final disposal routes for collected oil and debris have been identified.
- 8. The alerting and initial evaluation procedures are fully explained are fully explained as well as arrangement for continual review of the progress and effectiveness of the clean-up operation.

- 9. The arrangements for ensuring effective communication between shore, sea and air have been described.
- 10. All aspects of plan have been tested and nothing significant found lacking.
- 11. The plan is compatible with plans for adjacent areas and other activities.
- 12. The above is true to the best of my knowledge and belief.
- 13. I undertake to keep the plan updated at all times and keep the Indian Coast Guard informed of any changes through submissions of a fresh certificate of endorsement.

Seal Signature : Name : Designation: Dy. Conservator Organization: Deendayal Port Authority Place: Gandhidham Date :

DISCLAIMER

The task of preparation of OSCP has been done by Sadhav Shipping Limited at the request of DPA.

Conclusion and recommendations resulting from the consulting services has been informed in good

faith and on the basis of the best information Available from sources believed to be reliable.

Sadhav Shipping Limited provides no Warranty, express or implied, as for the accuracy, completeness or correctness of the analysis and report preparation work.

Sadhav Shipping Limited accepts no liability arising out of or in connection with the results, recommendations, or omissions. It is concluded that any usage / implementation / interpretation of the recommendation is at the client's risk. In particular, the recommendations should not be considered as certified, legal, or otherwise.

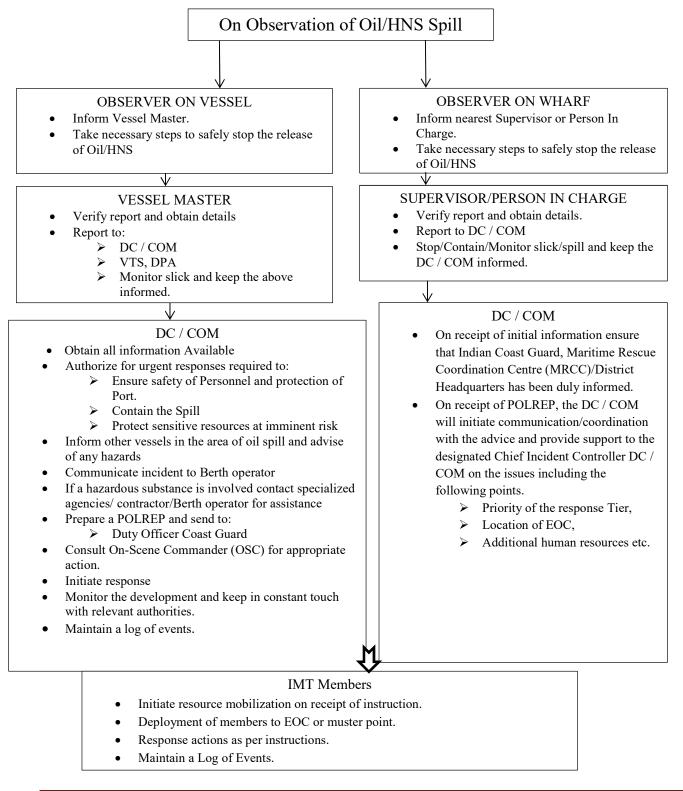
IMPORTANT NOTE

The oil spill contingency plan outlines the steps required for the management of responses to marine oil spills that are the responsibility of the Deendayal Port Authority (DPA), KANDLA and OOT VADINAR

This document should be read / referred to in conjunction with the National Oil Spill Disaster Contingency Plan (NOS-DCP).

This document is prepared in three Parts:

- Parts- I Including Strategy.
- Parts- II Including Action and Operations.
- Parts- III Includes Data Directory.



ABBREVIATIONS

COT	Crude Oil Tank farm
CRZ DPC	Coastal Regulatory Zone
DPC	Duty Port Captain Deendayal Port AUTHORITY
DWT	Dead Weight Tonnage
NBTSL	NAYARA Bulk Terminal SALAYA Limited
ECT	Emergency Control Team
ERDMP	Emergency Control Team Emergency Response Disaster Management plan
ESD	Emergency Shutdown
FCA	Forest Conversation Act
HS&F	Health, Safety & Fire
HSEF	Health, Safety, Environment & Fire
ICG	Indian Coast Guard
IOCL	Indian Oil Corporation Limited
ITOPF	International Tanker Owners Pollution Federation
ICMAM	Integrated Coastal and Marine Area Management
IPIECA	International Petroleum Industry Environmental Conservation
	Association
KPT	Kandla Port AUTHORITY
LFP	Land Fall Point
MTCB	Marine Terminal Control Building
NOSDCP	National Oil spill Disaster Contingency plan
OSC	On Scene Commander
OOT	Offshore Oil Terminal
OSR	Oil Spill Response
OHC	Occupational Health Centre
P & I	Protection and Indemnity
PIT	Product Intermediate Tank Farm
PMC	Pollution Management Cell
PO	Port Officer
SPM	Single Point Mooring
SIC	Shift In-charge
VLCC	Very Large Crude Carrier
VOTL	Vadinar Oil Terminal Limited
WLPA	Wild Life Protection Act

DEENDAYAL PORT AUTHORITYOSCP ACTION FLOWCHART

PART – I STRATEGY

1. INTRODUCTION

A. CONTINGENCY PLANNING:

In spite of best intentions to avoid oil spills through best and safe practices and rigid enforcement of good intentions in work place, the spills still occur and will keep on occurring. The next best post spill activity, then, is to address them in terms of containment and recovery within shortest possible time and through best Available means that need to be planned and kept ready in advance and spelled through a Contingency Plan for the facility or area handling oil, oil products or other pollutants.

Increase in density of marine traffic, especially oil tankers and petroleum-based installations along the Indian coast has increased the risks for occurrence of spills in harbor, coastal waters and during terminal operations apart from spills that could occur from collision, grounding of vessels and stranding. To address the fallout of incidents and accidents that could lead to pollution of marine environment, all countries handling polluting agents are required to have capabilities and create infrastructure and set up means that could handle the pollution response activity in case of any spill. The working parameters and strategy to address the response activities are spelled through a Contingency Plan.

B. PURPOSE AND OBJECTIVES:

India being signatory to number of international agreements and conventions aimed at controlling marine pollution through measures and rules applicable to marine facilities or surface units, is under an obligation to honor and implement the same through municipal legislation and through adopting means, practices and rules in accordance with Article I of the Convention 73 and Protocol 78 i.e. MARPOL 73/78.

The article has placed an obligation on the parties to the convention including India "to give effect to the provisions of the present convention and those Annexes there to by which they are bound, in order to prevent the pollution of the marine environment by the discharge of harmful substances or effluents containing such substances in contravention of the convention".

Apart from the specific obligations imposed by MARPOL, being a signatory to UN Convention on the Laws of the Sea (UNCLOS), India has an obligation to protect and preserve the marine environment in addition to obligations under International Convention on Oil Pollution Preparedness, Response and Co-operation 1990 (OPRC Convention).

Accordingly, India too had to formulate rules or administrative directions giving effect to international procedures through structures to be developed by ports and facilities handling vessels and oil cargo.

While, regulatory procedures are expected to be put in place through rules- implementing the various provisions and annexure of MARPOL 73/78, the practical aspects of marine pollution to set up a mechanism on the ground are dealt by OPRC – National Oil Spill Disaster Contingency Plan being an instrument for the same. NOS-DCP has its origin in IMO convention OPRC – 1990, ratified by India. As per the convention it is imperative upon each signatory state to have laws and mechanisms to respond to oil spills in its waters.

National Oil Spill Disaster Contingency Plan is aimed at coordination of resource agencies to combat an oil spill in Indian waters and also spells the actions required of oil handling facilities i.e. to prepare contingency plans for respective facilities and to develop Tier I response capabilities and also to report oil spills. NOSDCP mandates a number of resource agencies comprising of 03 ministries and 15 departments apart from oil industry, off shore terminals etc. to an obligation to Render resources for pollution response when called for, Report Oil Spills,

prepare contingency plans for respective spill scenario, Set up Tier I response facilities and Use of Oil Spill dispersants (OSD) in accordance with Plan.

Of the three tiers of response envisaged and planned to handle a spill situation in consonance with quantum of spill, Tier 1 is the primary and first step of responses, to be mounted by the facility where the spill takes place.

While, NOS-DCP outlines the response activities as per Tier system of addressable of spill, the facility plan is the instrument to address the spill scenario at local level. Tier 1 being the first and primary response level has to be executed and undertaken by the facility handling polluting cargo, for which purpose drafting of a CP is the primary requirement.

The National Oil Spill Disaster Contingency Plan was first drafted in India by Coast Guard during 1996 with an objective to put in place the machinery and mechanisms to combat oil spills in Maritime zones of India. The Plan has since been updated in 2002.

C. AIMS & OBJECTIVES:

The aims and objectives of the Oil Spill Response Contingency Plan (here after termed the Plan or CP) of a port or facility are to draw a methodology and strategy to indicate actions required to be taken by responders to:

- Ensure Availability of timely, measured and effective response to incident so oil spill in waters under jurisdiction of the porter facility,
- Take measures to control the spill within minimum area,
- Minimize volume of spill by securing the source in most appropriate way,
- Minimize extent of movement of released oil from the source by timely containment,
- Minimize environmental impact by timely containment and recovery response,
- Maximize effectiveness of recovery actions through selection of appropriate equipment and techniques,
- Maximize response effectiveness through trained and competent, operational and response teams,
- Guide response personnel through the process of managing a spill originating within their area of operation, Mitigate consequences of oil pollution incidents,
- Allow those involved in response to rapidly disseminate information to parties involved and to ensure optimum deployment of Available equipment.

1.1 AUTHORITIES & RESPONSIBILITIES

This OSCP has been prepared and issued in accordance with: The provisions of Merchant Shipping Act, 1958 as amended and /Major Ports AUTHORITYs Act, 1963 as amended.

Stakeholders identified as a part of this plan are DPA, individual Terminal Operators within its jurisdictional limit and other members as per Mutual Aid Plan. The institutional mechanism has been proposed for ensuring the effective participating of identified stakeholders for oil spill preparedness and response for achieving the objectives of Facility Level Oil Spill Contingency Plan for DPA at KANDLA and Vadinar.

1.1.1 Deendayal Port Authority will

- Maintain an adequate response preparedness (Tier-1 level) in Port by (Pollution response equipment preparedness)
- Providing equipment
- Providing PPE to the personnel
- Actively participate in the local, district, state, and national level committees / forums for Oil Spill Response contingency.

 Make all responsible efforts to act as early as possible on occurrence of oil spill and becomes the "First Response Agency" in the DPA.

1.1.2 Berth Operators, Associated staff, and Ship's crew

- It is the responsibility of berth operators, associated staff, stevedores, and ship's crew to report all identified Oil / HNS spills.
- Take all steps necessary to effectively prevent spills or limit the spread of spills that have occurred.

1.1.3. Other Government Agencies and CMG

• The roles and responsibilities of other relevant Government agencies and CMG group are detailed in NOS-DCP (8.6.2.5)

1.2 a. COORDINATING COMMITTEE DPA KANDLA

Chairman Deputy Chairman Management Team DPA, KANDLA

- 1) Deputy Conservator
- 2) Harbour Master
- 3) Lead HSEF
- 4) Shift in charges
- 5) Lead Diving team
- 6) Support Team Outsourced Agency.

b. COORDINATING COMMITTEE DPA OOT VADINAR Chairman Deputy Chairman

Management Team DPA, OOT Vadinar

- 1) Chief Operations Manager
- 2) Marine engineer
- 3) Lead HSEF
- 4) Shift in charges
- 5) Lead Diving team
- 6) Support Team Outsourced Agency.

The callout system for an oil spill incident is identical to any other emergency as contained in disaster management plan of DPA. Emergency Control Team (ECT) will arrange mobilization of additional resource like Emergency Response Team (ERT) as and when, required.

HEAD VOTL

Responsibilities: a) Liaise with Mutual Aid Organizations

- b) Liaise with corporate communication for press statements release.
- c) Liaise with Coast Guard Monitor as appropriate
- d) Confirm / amend initial classification
- e) Manage the VOTL response
- f) Authorize expenditure

Note: Port Captain will take the charge till the Head VOTL arrives, after that he will assist the Head VOTL.

MARINE ENGINEER

Responsibilities: a) Observe or receive report of oil spill incident

- b) Initiate measures to prevent/reduce further spillage
- c) Maintain communication with all other vessels
- d) Act as per instruction of SIC

Lead HSEF

Responsibilities: a) Initially access the situation and initiate action

- b) Verify classification
- c) Provide accurate situation to Head VOTL
- d) Manage the pollution prevention response & Resources

SHIFT IN-CHARGE

Responsibilities: a) Initially assess situation and initiate action

- b) Verify classification
- c) Provide accurate situation reports to Head VOTL/Port Captain
- d) Collect evidence and / or statements
- e) Liaise with Lead HSEF (as applicable)
- f) Liaise with incident vessel regarding status of oil spill (if applicable)

LEAD DIVING

Responsibilities: a) Observe and Initiate action upon information

- b) Provide accurate situation reports to PMC
- c) Assist in Collecting evidence and / or statements
- d) Liaise with incident vessel regarding status of oil spill (if applicable)

1.3 STATUTORY REQUIREMENTS:

1.3.1 MARPOL 73/78:

India being signatory to number of international agreements and conventions aimed at controlling marine pollution through measures and rules applicable to marine facilities or surface units, is under an obligation to honor and implement the same through municipal legislation and through adopting means, practices and rules in accordance with Article I of the Convention 73 and Protocol 78 i.e. MARPOL 73/78. BROAD CLASSIFICATION OF OILS AS PER MARPOL 73/78 is placed at **Annexure- 6**

1.3.2 International Convention on Oil Pollution Preparedness, Response and Cooperation (OPRC), 1990:

Apart from the specific obligations imposed by MARPOL, being a signatory to UN Convention on the Laws of the Sea (UNCLOS), India has an obligation to protect and preserve the marine environment in addition to obligations under International Convention on Oil Pollution Preparedness, Response and Co-operation 1990(OPRC Convention).

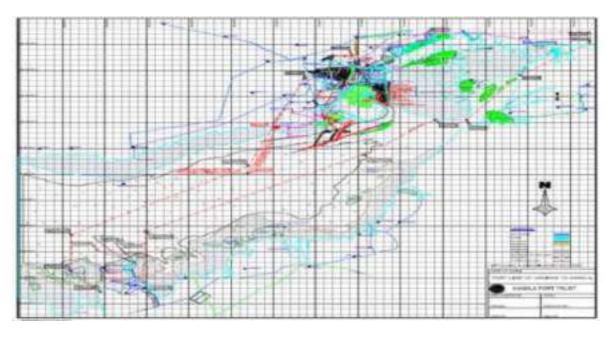
NOS-DCP has its origin in IMO convention OPRC – 1990, ratified by India. As per the convention it is imperative upon each signatory state to have laws and mechanisms to respond to oil spills in its waters.

1.3.3 National Regulations includes:

- Indian Port Act, 1908
- Coastguard Act, 1978
- Merchant Shipping Act, 1958
- Major Port Act, 1963
- Water (Prevention & Control of Pollution) Act, 1974, amended in 1988
- Environmental Protection Act, 1986 (amended 1991)
- Coastal Regulation Zones Notification 1991

1.4 MUTUAL AID AGREEMENTS:

Refer Annexure – 25, Page -138



1.5 GEOGRAPHICAL LIMITS OF PLAN:

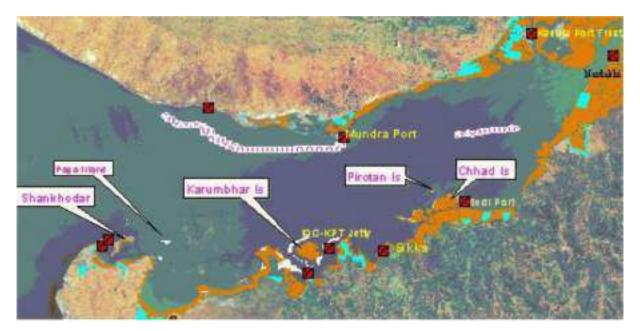
Deendayal Port Authority is located along the west bank of the Kandla creek situated at the north-east head of Gulf of Kutch which is at the west coast of India. Ships calling at Deendayal Port Authority therefore have to traverse across the GOK. This plan is limited to Deendayal Port Authority and up to anchorage area. The plan contains details of contingency arrangements required for responding to the actual or threatened oil pollution incidents within the marine terminal area, as below. BETWEEN POINT A, B, C & D MENTIONED BELOW PIC

Response strategy for the DPA KANDLA plan has been developed taking into account the spill risks, and possible sources of spillage associated with Marine Terminal operations including those at the SPM and Jetty berths and other facilitates within the Port.

The geographical area of operations is bound by, but not limited to, one mile either side of the line joining following coordinates.

POINT A COORDINATES: LAT 23° 3'7.00"N, LONG 70°13'3.17"E POINT B COORDINATES: LAT 23° 3'6.71"N, LONG 70°13'34.73"E POINT C COORDINATES: LAT 22°57'59.87"N, LONG 70°13'38.65"E POINT D COORDINATES: LAT 22°58'49.71"N, LONG 70°14'21.28"E

OIL JETTY –I LAT, 23°01.6' N LONG 70°13.3'E OIL JETTY –II LAT, 23°01.7' N LONG 70°13.3'E OIL JETTY –III LAT, 23°01.9' N LONG 70°13.3'E OIL JETTY –IV LAT, 23°02.0' N LONG 70°13.3'E OIL JETTY –V LAT, 23°02.2' N LONG 70°13.3'E OIL JETTY –VI LAT, 23°02.4' N LONG 70°13.3'E


DRY DOCK: LAT, 23°00.9' N LONG 70°13.3'E SNA JETTY: LAT, 23°00.6' N LONG 70°13.3'E

CARGO JETTY STARTING FROM NORTH TO SOUTH IN STRAIGHT LINE STARTING FROM NORTHERN END OF CARGO JETTY 1 LAT, 23°00.4' N LONG 70°13.4'E TO END OF LAST CARGO JETTY NO. 16'S SOUTHERN END LAT, 22°58.4' N LONG 70°13.8'E DISTANCE 2.030NAUTICAL MILES.

DPA KANDLA AND OOT VADINAR Port is located along the west bank of the Kandla creek situated at the north-east head of Gulf of Kutch which is at the west coast of India. Ships calling at DPA KANDLA AND OOT VADINAR port therefore have to traverse across the GOK. This plan is limited to DPA KANDLA AND OOT VADINAR port and up to anchorage area, which is 4 nautical miles from port.

The plan contain details of contingency arrangements required for responding to the actual or threatened oil pollution incidents within the marine terminal area, as below.

Response strategy for the DPA KANDLA AND OOT VADINAR plan has been developed taking into account the spill risks, and possible sources of spillage associated with Marine Terminal operations including those at the SPM and Jetty berths and other facilitates within the Port.

Note: Deendayal Port Authority port limit extends from Kandla to Vadinar and IOCL & Nayara Energy installations are located at Vadinar under port limits.

The geographical area of operations is bound by, but not limited to, one mile either side of the line joining following coordinates.

0	
SPM1:	22°30′14″ N/69°39′35″ E
LFP:	22°27'59" N/69°43'26" E
Berth B (North End):	22° 27' 15" N 069° 40' 10" E
Berth A (South End):	22°26′ 54″ N 069° 40′ 11″ E
Sea Water Intake:	22°26′ 11″ N 069° 40′ 32″ E
LO-LO/RO-RO Jetty:	22°26′ 24″ N 069° 40′ 29″ E
SPM2 (proposed):	22°31′ 48″ N 069° 40′ 18″ E
Berth C (proposed):	22°27′ 21 N 069° 40′ 09″ E
Berth D (proposed):	22°27′ 27 N 069° 41′ 10″ E

1.6. INTERFACE WITH ROSDCP & NOSDCP

Oil company and port oil spill contingency Plans (Kandla)


The companies whose installations are located in nearby area have individually prepared their own contingency plans, which detail their response to tier one incident. Agreement dated 28.12.2019 of Mutual Aid- Scheme for Oil Spill Response and control by oil handling Member Organization Between IOCL, BPCL, HPCL, strengthens Oil Spill response capability in the area, the agreement is valid for five years.

SI. No	Owner
1	Indian Oil Corporation Limited, KANDLA
2	Kesar enterprises Ltd.
3	J.R Enterprises
4	IFFCO Kandla unit
5	BPCL
6	Friends oil & chemical terminals Pvt Ltd.
7	Indo Nippon co Ltd.
8	HPCL
9	IMC Ltd.
10	Mother diary fruit & vegetables Pvt Ltd.
11	Parker agro hem product ltd.

Oil Company and port oil spill contingency Plans (OOT Vadinar)

The companies whose installations are located in nearby area have individually prepared their own contingency plans, which detail their response to tier one incident. Agreement dated 28.12.2019 of Mutual Aid- Scheme for Oil Spill Response and control by oil handling Member Organization Between VOTL, IOCL, BORL, RIL, EBTSL & Cairn India Ltd, strengthens Oil Spill response capability in the area, the agreement is valid for five years.

SI. No	Owner	
1	Indian Oil Corporation Limited, Vadinar	
2	Reliance Industries Ltd, Sikka	
3	Bharat Oman Refinery Ltd, Sikka	
4	Cairn India Limited, Bhogat	
5	Vadinar Oil Terminal Limited, NAYARA ENERGY	

District Plans

In the event of actual or threatened spread of oil extent of which is or is likely to be beyond the mitigating resources Available with DPA, then the **ICG Oil Pollution plan** may be implemented. In such case nominated officer of ICG will assume the function of On Scene Commander

National Oil Spill Disaster Contingency Plan (NOS – DCP)

In the event of an oil spill incident which calls for a Tier-III response, the coast guard will implement the NOS – DCP. DPA and all Mutual Aid Partners will continue to deploy their anti-pollution resources, as directed by the Coast Guards on scene commander

2. RISK ASSESSMENT

As required of a Contingency Plan, this Plan has tried to compare the hazard and vulnerability in a particular location to see the kind of risk that are posed and then to addresses those problems by determining how best to control the spill, how to prevent certain ecological elements or environments from exposure to oil, and how best to advise the local civil authority of the dangers that could be posed by the spill and how to address them and to repair the damage done by the spill.

2.1. IDENTIFICATION OF ACTIVITIES AND RISK:

In spite of best intentions to conduct cargo work under best practices, a spill could still occur at a port or terminal during cargo work because of the failure of pipelines, loading arms, flanges or equipment. The potential accidents associated with a plant, port, terminal or pipeline can be divided into two categories in terms of Generic and Specific operating failures.

Generic failures are associated with mechanical component of the facility or terminal like vessels, pipelines, pumps or compressors. The failures under this category could be caused by factors as corrosion, vibration or external impact. A small event like a leak may escalate into a bigger event by itself causing a bigger failure.

Specific operating failures is the prime cause of human errors but they can also include accidents.

Every significant mechanical component that could fail with its operating conditions, contents and inventory, is a contributor to failure identification. The study of Generic failures requires consideration of each component under their normal operating conditions.

The possible range of failures being large in number are generally considered under the following heads and incidents

For vessel/ storage tanks

Rupture (Full bore)

- Large leaks (20%mm equivalent leaks)
- Medium and small leaks (due to corrosion, impact and other such cases)

For pipelines

- Full bore ruptures
- Large, medium and small leaks

2.1.1 Failure frequencies - Pipelines

The failure frequency of pipelines is subject to a number of factors like rate of corrosion, age of pipeline, duration of use, size of damage and length etc. Different value of any of these will give different figures for failure frequency. The data as per table 1 gives the failures frequencies in relation to type or size of leak and represents the chances of occurrence of mentioned type of leak per unit length of pipeline per unit diameter.

ТҮРЕ	% of cross sectional	Frequency per year
Small leak	< 1	2.8x10 ⁻⁷ L/D
Big leak	5	1.2x 10 ⁻⁷ L/D
Catastrophic leak	20	5.0x10 ⁻⁷ L/D
Rupture(guillotine failure)	100	2.2x10 ⁻⁷ L/D

Table1. – Pipe leak frequencies as per size of leak.

With respect to causes of leak as per the failure of different systems, the frequencies are as per table 2

The following scenarios are identified for probable oil spills in marine operations of DPA KANDLA AND OOT VADINAR:

- I. Spill due to floating hose failure at SPM.
- II. Spill due to rupture of subsea crude oil pipeline from SPM to LFP (iii) Spill due to collision at SPM & tanker route.
- III. Spill due to overflow from tanker while transfer of Oil at Jetty.
- IV. Spill due to Loading arm failure at Jetty.
- V. Spills due to tanker collision / grounding in the vicinity of Jetty.

Kandla Port established under Major Ports Act, 1963 is now renamed as Deendayal Port Authority one of the busiest major multi-product port of India located in the Kachchh district of Gujarat. Kandla has 16 dry cargo berths with a total of 2.57 km in a straight-line and 6 dedicated LIQUID CARGO berths for handling EDIBLE OILS, PETROLEUM, POL and chemicals.

During 2019 - 20 the port handled 115 MMT of cargo and thereby retaining number one position for volume of cargo handled among the Major Ports of India. Deendayal Port is located in inner most eastern part of Gulf of Kutch, It is connected by Road by national Highway, Port is also connected with Rail connectivity Nearest Railway Stations are Kandla and Gandhidham, Port handles various types and sizes of the ships, tankers and container ships, Maximum DWT permitted at Deendayal Port is 75000mt, Max draft permitted is 14 Mtrs, Max draft permitted is 13.5 Mtrs.

DPA's Satellite Port, Vadinar Oil Terminal is located close to Jamnagar. It is connected by road through SH-25. 12.5 km spur line connects the rail gantry of Vadinar Terminal to Jodhpur railway station. Nearest railway station is Jamnagar. Oil Jetties can handle up to a maximum size of vessel 56,000 DWT. SPM handle Very Large Crude Oil Vessels (VLCC) with a maximum pumping capacity of 10000 tons per hour. Hence, it should be inferred that the area is having high density of potential sources. Images of KPT & Vadinar Terminal are given in **Figure 2.1**

DPA Kandla

DPA Kandla oil jetty

Figure 2.1. Layout of Deendayal Port & Vadinar Terminal

The port has been achieved the first position among all major ports of India, of so last decade. Presently, the port can handle dry bulk, break-bulk; liquid bulk and container cargo. Important commodities handled at the port are Coal, Petroleum Oil PRODUCTS and Lubricants (POL), Food Grains and Container Cargo, Ports, various Chemicals Oil handling facilities & Ships in and around the Deendayal Port Limit are the other potential sources of oil spill. The location map of Ports, SPMs & Captive Jetties of Gulf of Kachchh is given as

Figure 2.2. Majority of Installations are located within the DPA limit or very close to it.

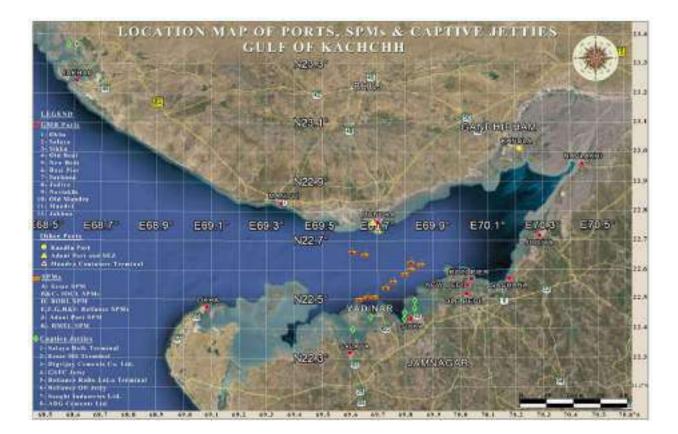


Figure 2.2. Location of Ports and allied Facilities in Gulf of Kachchh

2.1.2. Existing Facilities at Kandla Port

Deendayal Port has 16 berths, 7 oil jetties, 1 maintenance jetty, 1 dry-dock and a few small jetties for small vessels. Adjacent to all these terminals and jetties there are storage facilities for covering cargo received by pipelines, containers to petroleum products.

There is an existing steel **floating dry dock** within the port caters the need of port crafts as well as outside organizations and has capacity to accommodate vessels of following parameters.

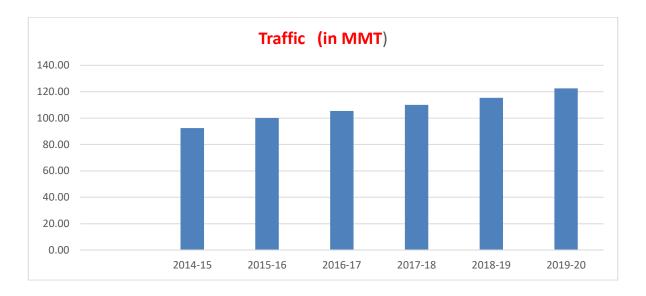
- Length Overall (LOA) maximum up to 95meters.
- Breadth maximum up to 20meters.
- Draft maximum up to 4.5meters.
- Lift displacement maximum up to 2700tones.

Port's Chemical and Liquid Handling Complex has total storage capacity for 21.9 lakh kiloliters. Private sector storage terminals have capacity for 9.8 lakh kiloliters.

Port consists of 185 hectares of custom bonded port area. Port offers an excellent and vast Dry Cargo Storage Facilities inside the Custom Bonded Area for storage of Import and Export cargoes, on very competitive rates. Also, it has the largest capacity in India for storing liquid cargoes, and it is served by a modern pipeline network. The storage facility for liquefied petroleum gas has capacity for 30 thousand cubic meters. The container handling facilities include 545 m of quays equipped with four rail-mounted quay cranes and two harbor or mobile cranes. The container facilities include an almost 11- hectare container yard, a 6.5 thousand square meter container freight station, and 90 reefer points for refrigerated containers.

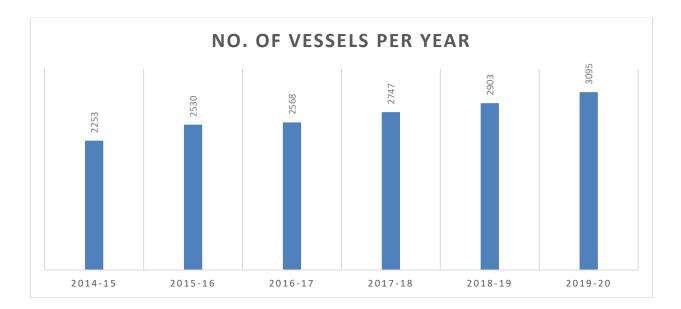
2.1.2. Offshore Oil Terminal (OOT), Vadinar

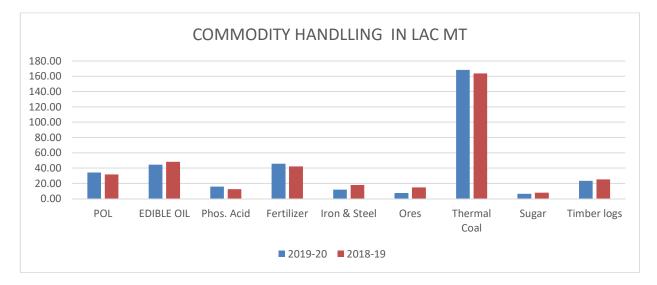
DPA had commissioned offshore oil terminal facilities at Vadinar in 1978, jointly with Indian Oil Corporation. It has capacity of 58 MMTP and handle crude oil and petroleum products. Vadinar one of the deepest natural draft terminals in India and it does not require any maintenance dredging. The facilities consist of three offshore Single Point Mooring (SPM), two jetties for handling liquid petroleum products, tanks for storage of crude oil and petroleum products and rail and road gantries for dispatch of petroleum products.


The features of the OOT Vadinar is as presented below:

- A draft of up to 33 m at SPMs and Lighterage Point Operations(LPO)
- Handling VLCCs of 300000 DWT and more.
- Providing crude oil for the refineries of Koyali (Gujarat), Mathura (Uttar Pradesh), Panipat (Haryana) and NAYARA Refinery, Jamnagar(Gujarat)
- Simultaneous handling of three VLCCs possible at the SPMs with vast crude tank age facility.
- Two nos. of 50 Tons state-of-art B.R SRP Pull-back tugs are Available for smooth and simultaneous shipping operations on the SPMs and product jetty.
- One oil and debris recovery tug for oil pollution control has been acquired and stationed at Vadinar.
- Excellent infrastructure facilitating transshipment operations, even during the monsoon.

2.1.3. Traffic Handled at Kandla


Deendayal Port has shown buoyant growth in cargo handling in the recent past. The port's share in traffic handled by all major ports has risen steadily over the years. The past traffic profile of the port is shown in **Figure 2.3.** During 2018-19 & 2019-20 total traffic handled are 115.40 MMT and 122.61 MILLION METRIC TONNES respectively


Figure 2.3 Traffic Profile OF DEENDAYAL PORT AUTHORITY

Total number of ships visited KPT during the year 2014-2020 are given as shown in **Figure.2.4**. Among them almost 75 % visited KPT and remaining 25 % visited Vadinar.

Total number of ships handled at DPA commodity wise during the period of 2014-2020 is as presented in Figure 2.5

Figure 2.5. COMMODITY Handled at DPA

Risk Assessment Summary for Maximum Oil Spillages:

Cause	Assessed Risk	Spill Quantity
SPM – Floating Hose Failure	Rare Phenomenon	153 T
Overflow from tanker while transfer of oil at Jetty	Rare Phenomenon	56 T
Jetty Berths –Loading Arm Failure	Extremely Low	10 Liter.
Rupture of subsea crude Rare Phenomenon oil pipeline from SPM to shore tanks	Very rare, Not Likely	1-2 Liter

2.1.4. Cargo Ops or Transfer Spill Frequencies

Transfer spill is defined as an event where the oil is released to sea due to failure or error during loading/ unloading of cargo or fuel oil. This includes loading in port and ship-to-ship transfer also. Typical causes for this spill include overflow, hose failure, errors in setting valves etc.

As per figures compiled by DNV, during 2000-10, ten transfer spills on oil tankers with known quantities were reported. The oil tanker exposure during this period was 74,471 ship years. Based on an Average of 80 port visits per ship year, a total of 5.6 million cargo transfers were undertaken. This figure gives a transfer spill frequency of 1.7×10^{-6} per cargo transferred.

2.1.5. Spill Volume Calculations – Pipelines

The quantity of oil spilled can be calculated in terms of total rapture and also for pin hole leaks using software taking into account the diameter of hole and flow rate. The formula for total rapture calculation is: Volume of Spill = 2 Pie X Radius of Pipeline X Length of Pipeline X Flow Volume. (Refer Annexure-11)

2.2. TYPES OF OIL LIKELY TO BE SPILLED: Characteristics of different classes of oils is placed at an Annxure-9

No	Oil Type	Specific Gravity	Genre	Characteristics	Examples
1	Light oil	< 0.84	White oils	Non-persistent, Volatile	Aviation fuel, Kerosene, Motor spirit, Naphtha, HSD.
2	Crude oil	>0.84	Black oils	Persistent, Viscous, Emulsion. Fresh oil amenable to dispersants	Arabian Light, Arabian Heavy etc.
3	Heavy oil	>0.95	Black oils	Persistent, Viscous, Emulsion, Generally not amenable to dispersants	Fuel Oils, LSWR

Table 3

Flammability (Nf) 3 – Liquids and solids that can be ignited under almost all ambient temperature conditions
 2– Materials that must be moderately heated or exposed to relatively high ambient
 Temperatures before ignition can occur

- Health (NH)
 O Materials which on exposure under fire conditions would offer no hazard beyond that of Ordinary combustible material
 1 - Materials which on exposure would cause irritation but only minor residual injury if no Treatment is given
- **Reactivity (Nr)** 0 materials which in themselves are normally stable, even under fire exposure conditions and which are not reactive with water

It is apparent that risks to human life caused by most of the hydrocarbons in terms of flammability, health and reactivity are not very significant and can be handled with some degree of expertise.

2.2.1. CAUSES OF OIL SPILL

The common causes of spill are:

- Cargo operations- loading, discharge
- Ship collision, or grounding
- Bunker/ fueling operations
- Ship distress / sinking

Pipeline ruptures /accidental spills from sub-sea/over the sea/shore approach (in the tidal zone) pipelines Location of spill within the scope of this Plan. Based on the location of vessel at the particular time of incident within the area of operation, the likely spill could occur at any of the following locations.

- I. Sea or in channel due collision etc. during passage
- II. Close shore due grounding or
- III. Alongside at jetty or at the terminal during cargo operations
- IV. Iv. Sea or at landfall point from interbreed pipelines.

Notwithstanding the above locations, it is possible that an eventuality occurring at sea like a collision or mechanical failure could lead to a situation where the consequences would be felt in some other location at a coastal location.

2.3. SPILLED OIL MITIGATION

DPA KANDLA AND OOT VADINAR is prepared to mitigate Oil Spills of Importance from routine operations, while oil spill situations of higher magnitude are dealt with neighboring industries viz. IOCL, NAYARA ENERGY, Indian coast Guard cooperation and external intervention. However, accidental leakages are arrested immediately with Remote operating controls/QSD valves by automated sensors. The exact quantities from each incident is difficult to predict due to the variables of operating conditions and the length of risk exposure, optimum risks associated with the events has been considered while devising the oil spill contingency plan

2.4. DEVELOPMENT OF OIL SPILL SCENARIOS INCLUDING WORST CASE DISCHARGE CONSIDERING MAXIMUM LOSS AND WEATHER CONDITION

DPA KANDLA AND OOT VADINAR is operating 02Nos.Berths (A & B) which can accommodate vessels ranging from 25,000 to 100,000 DWT for oil handling & one SPM which can accommodate vessels ranging from 87,000 to 350,000 DWT for crude oil. Marine Terminal is located within an area which has been declared as a Marine National Park/ Marine Sanctuary. The mean tidal range is approximate 6 meters and current speed in excess of 2 knots may be experienced alongside the jetty.

2.5. SHORELINE SENSITIVITYMAPPING:

The quantity of the spill reaching to the coast and affected areas for various seasons for various hydrological and meteorological conditions and predicted BY use of Hyrodyn-OILSOFT software is as follows.

2.5.1. Main Approach Channel

The least depth in the main approach channel to the tanker jetty is 14 meters; the maximum acceptable draft alongside jetty berths is 14 meters. A minimum under keel clearance of 6% of vessel's maximum sea going draft plus 0.60 meters is applied to all vessels under way.

While the risk of grounding is low, it cannot be totally eliminated. The most likely cause is steering or propulsion system failure which could result in grounding on the channel margins with consequent damage to the bottom and/or the mid body plating. The potential spill quantities depend upon the size / type of tanker and the area of impact damage. The vessels calling the product terminal, in bound and out bound will be escorted by minimum two tugs in fair weather condition. This considerably reduces the risk of the vessel running aground in the channel.

Deendayal Port located in the northern plank of the GOK, in an area with irregular and dissected configurations, with numerous creeks surrounded by marshy lands on the bank of Kandla creek. Located at the juncture of Kathiawar and Saurashtra peninsula, i.e., at a transition zone between arid and semi-arid zone having striking characteristics of the arid area.

The port limits extend from Navlakhi at the head of GOK to NARARA Bet in the southern arm. While from Tuna in the north coast to Kalumbhar Bet in the southern arm. The limit is bounded by Kachchh in the North & North-East, Morbi at East and Devbhoomi Dwarka and parts of Jamnagar district towards South & South- East respectively. Along the coast there are numerous coastal villages with people engaged in traditional occupation of fishing hosting large and small fish landing centers. Also, being the adjoining land masses of ports, many of them have been developed into port towns and subsequently developed as industrial pockets.

Sathsaida bet, flamingo flats, IFFCO Intake location, Fishermen Residence, Saltpans surrounding port are important sensitive areas of DPA. Important organisms include algae, mangroves, corals, sponges, mollusks, prawns, fishes, reptiles, birds and mammals. In order to protect the rich biodiversity of the GOK, several intertidal mudflats and coral reefs along its southern shore are declared as Marine National Park and Marine Sanctuary (MNPS). There are also are as declared as Important Bird and Biodiversity Areas (IBAs) and Important Within the port limit is one of the most productive and diversified habitats along the West coast of India. The high tidal influx covers vast low-lying areas comprising a network of creeks, marshy tidal flats and rocky regions, which provide congenial environment to a wide variety of marine biota. The northern shore is predominantly sandy or muddy confronted by numerous shoals, creeks and sustains large stretches of mangroves. There are vast mudflats towards the Mundra coast. There are narrow beaches along the coast behind the mudflats. Towards the southern limit, shoreline is comprised of numerous islands and inlets, which harbor vast areas of mangroves and coral reefs with living corals Coastal and Marine Biodiversity Areas (ICMBAs).

Thus, the peculiarities of Deendayal Port area which are to be duly considered with respect to oil spill sensitivity can be briefed as follows:

- An all-weather Major Port with several oil handling facilities including SPMs within port limits
- Dry Weather and Mild Monsoon
- High tidal ranges and strong tidal currents
- Extensive creek system acting as tidal channels
- Valuable ecological resources such as Corals, Mangroves, Mudflats and bird flocking areas around the vast creek system

Association (IPIECA), & International Association of Oil & Gas Producers (OGP). NOS-DCP-2015 put forwards the same scheme for the preparation oil spill contingency plan at various levels in the Indian context.

• ESI index is based on three parameters including Extensive socio-economic activities including Special Economic Zone (SEZ), saltpans, fishing areas and intake points of shore-based industries.

Environmental Sensitivity Index (ESI) is an international scheme used for classifying as well as ranking the shoreline based on their sensitivity towards oil spill. This methodology was prepared by National Oceanic and Atmospheric Administration (NOAA) further promulgated jointly by IMO, The International Petroleum Industry Environmental Conservation:

- Shoreline Classification, which takes sensitivity of the shore habitats, natural persistence of oil and ease of cleanup.
- Biological Resources including oil-sensitive animals, rare plants
- Human-Use Resources that have sensitivity because of their typical use, such as beaches, parks and

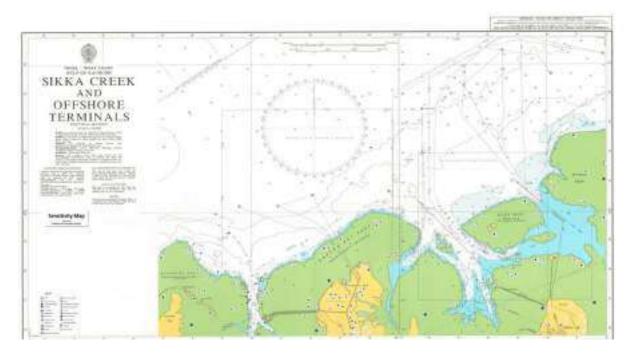
marine sanctuaries, water intakes, and archaeological sites.

While preparing the ESI maps, the sensitivity of the shore is represented by color-codes along the coast while, biological and human-use resources are represented by symbols. The coastal area has been studied and the ecological resources have been mapped for the Deendayal Port Area.

2.5.2. Approach to SPM

Tankers bound for SPM will follow the deep-water route. Berthing and unberthing of the tankers on to the SPM will be done by DPA Pilots. Charted depth at SPM location is 34.5 meters. Grounding of Tankers in the SPM area is considered as very remote.

A detailed shore line sensitive mapping has been carried out. The Sensitivity chart is attached below for reference. Further CZMP map is showing sensitive shoreline is attached as Annex – 06 for our area. Map showing sensitive areas i.e. Saltpans, Mangroves, Fishing Grounds Landing ground, Boat jetty etc.



Map-1 Sensitive areas - Overview

AREA CHART OF DPA KANDLA AND OOT VADINAR PORT

Map-2

2.5.3 ENVIRONMENTAL SENSITIVITY INFORMATION (Refer Annexure15)

This section summarizes the environmental sensitivity information derived from a variety of studies. It should be consulted, in conjunction with the Spill Response Guidelines to identify priority Areas for protection and the most appropriate response technique(s).

The Marine Terminal is located within an area which has been designated a National Marine Park / Marine Sanctuary. The Authorities have listed the following as their priorities for protection, in descending order, from spilled oil;

- 1. Marine National Park
- 2. Marine Sanctuary
- 3. Salt works
- 4. Forest Areas
- 5. NAYARA refinery intake location
- 6. Mangroves area

2.6. SHORELINE RESOURCES, PRIORITIES FOR PROTECTION:

2.6.1. SHORELINE RESOURCES

The adequate shoreline clean up equipment Available to deploy and effective clean up shall be done. **Annexure-7**

Deendayal Port is located inside extensive creek system surrounded by bets including intertidal and high tidal mudflats, while its limit extends to the Port. Because of its geographical extent, the area is described as two zones- Kandla Zone for the areas in Northern side of the port limit and Vadinar Zone is located towards the southern side of port limit. The inner portion of Gulf area has more uniform and stable environmental conditions. The important shoreline features of the port limit are given as **Table 2.1**. Deendayal Port limit is free from significant wave disturbances while the Vadinar has marine meteorological conditions dominated by tides and monsoons.

SI. No.	Nature of Coast	Coastal Stretch	Length(km)	Major Feature
1	Mix- Wave & Tide	Mundra -	45	Mudflat, Paleo-mudflat/ Salt Pan,
	dominating Coast	Tuna		Ebb Delta/ Sand Ridges
2	Tide Dominating Coast	Tuna – Kandla	15	Mudflat including Hard Mudflats bordering LRK, Paleo-mudflat/ Salt Pan, Mangrove
3	Tide Dominating Coast	Kandla – Vadinar	60	Islands of southern arm such as Kalumbhar and NARARA with Corals, Mangroves & Mudflats.

Table 2.1. Important Shoreline Features of the Port Limit

2.6.2. PRIORITIES FOR PROTECTION AND CLEAN-UP

In the event of a major oil spill, large stretches of the coastline may be threatened and, ultimately, impacted by oil. The response to such a spill can be divided into two aspects:

- a) Protection
- b) Clean-up

The priority shall be given as per sensitivity mapping as shown in Map-1, like Marine national park and marine sanctuary where corals and mangroves are surviving.

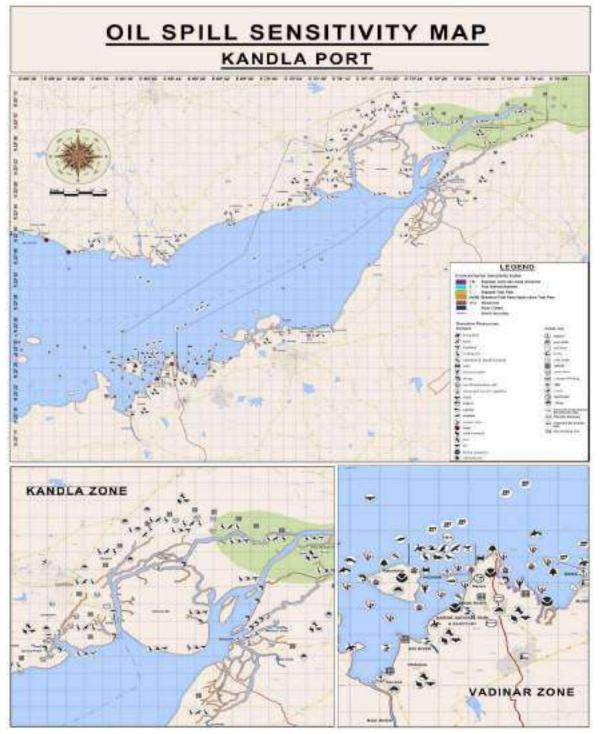
Prioritization of resources is an integral part of sensitivity mapping since it will be helpful in determining the response priorities, achieving optimal resource use and essentially ensure maximum resource protection. This was done by giving ranks to each resource types which has been already described under the heads of Environmental sensitivity i.e. Sensitivity to Oil Pollution, Environmental Value, Cultural & Social values and Economic values (Kandla et al, 2008). Ranks between 10 were assigned for the resource. Same rank was given to different resource when the occupied same position in different heads. Two resources may take a same value as required by the circumstance. Hence, it is not necessary that all the values must be present under one category at a time. Intake points considered here are only of industrial use. Weight ages were given to each head i.e., Sensitivity to Oil Pollution (30), Environmental Value (30), Cultural & Social values (20) and Economic values (20). Priority Index (PI) was worked out based on this. Details of Prioritization of Resources are given as **Table 2.2.** below.

Resources	Sensitivity for Oil	Cultural & Social	Scientific Values	Environmenta I Importance	Economic Considerations	Total Relative	Risk Value	Priority	
	Pollution (1-10) Weight (30%)	Values (10%)	(20%)	(30%)	(10%)	Response of Sensitivity		Index	Order
Rocky Coast	3	1	2	2	1	2.1	1	2.1	D
Port/ Harbor/ Jetties	1	7	2	4	8	3.4	2	6.8	С
Intake Locations	10	2	1	1	2	3.9	3	11.7	В
Salt Pans	3	8	2	6	5	4.4	1	4.4	D
Sandy Beach	6	8	3	5	2	4.9	2	9.8	D
Fishing Grounds	7	8	5	6	8	6.2	2	12.4	В
Sub tidal Coral Reefs	2	9	10	9	6	6.8	1	6.8	С
Intertidal Mudflats	7	4	7	8	3	6.6	2	13.2	В
Mangroves	9	10	8	10	8	9.1	3	27.3	А
Intertidal Corals	10	9	10	9	9	9.5	3	28.5	A

Table 2.2. Prioritization of Resources

Areas requiring special consideration include presence of protected areas such as SATHSAIDA BET, MANGROVES, birding areas and other animal frequenting areas, estuaries, mangroves & fish breeding areas, tourist areas including recreational & heritage areas, industrial water intake points, resource extraction areas such as salt pans and aquaculture ponds and multi-featured areas - especially in the coral islands with variable features within a short distance from the shoreline along the southern arm.

2.7. SPECIAL LOCAL CONSIDERATION


Marine National Park/Marine Sanctuary in Gulf of Kutch is located in close vicinity of DPA KANDLA AND OOT VADINAR. Special consideration be made for handling of crude & product oil in the area.

The area identified in this region is mangroves habitat, corals reef and mudflats which needs a special consideration.

The Authorities have listed the following as their priorities for protection, in descending order,

- a) Marine National Park
- b) Marine Sanctuary
- c) Salt pans
- d) Forest Areas
- e) NAYARA refinery intake location

AREA CHART OF DPA DEENDAYAL PORT

2.8. FATE AND EFFECTS

Oil spilled on water undergoes a progressive series of changes in physical and chemical properties which are referred to as weathering. The weathering of oil starts immediately after it has been spilled and proceeds at a rate which varies according to the type of oil involved and ambient climatic conditions. Weathering rates are not constant throughout the duration of an oil spill, and are usually highest in the first few hours. The process of weathering occurs simultaneously with the spreading and movement of an oil slick. Major processes which contribute to the weathering of oil spilled on water include evaporation, dissolution, oxidation, emulsification, and microbial degradation. In effect, weathering is the loss of certain components of the oil through a series of natural processes which begin when the spill occurs and continue indefinitely while oil remains in the environment. The lighter and more volatile components of the spilled oil are lost most rapidly. Consequently, the rate of weathering is highly dependent on the type of oil spilled light crude and fuel oils typically weather at a much faster rate than heavy crude or heavy fuel oils which contain a smaller proportion of light fractions.

Indefinitely while oil remains in the environment. The lighter and more volatile components of the spilled oil are lost most rapidly. Consequently, the rate of weathering is highly dependent on the type of oil spilled; light crude and fuel oils typically weather at a much faster rate than heavy crude or heavy fuel oils which contain a smaller proportion of light fractions.

Movement of Oil on Water

In large oil slicks, the waves will be partly suppressed and wave transport will be reduced. The movement of an oil slick on the surface of water is determined mainly by the current and wind velocity in the area.

Current velocities depend on wind velocities, geographical latitude, eddy viscosity, position in the water column, water depth, and proximity to coasts. Surface currents are directed to the right decreasing and turning more to the right with depth.

Winds can be broadly divided into prevailing winds, which vary over time periods of weeks to seasons, and short-term winds which vary over time periods of hours to weeks. High winds are also generated infrequently by summer tropical storms and cyclones.

When wind and currents are in different directions, they can interact in a complex manner to break up an oil slick into windrows. Windrows are long, narrow columns of relatively thick oil separated by wide bands of relatively oil-free water. In most mathematical models of oil slick drift, the oil is assumed to drift with the same velocity as the surface current. A floating oil slick is dragged along the water surface by wind friction whereas oil dispersed into the water column is not. When wind and current are not in the same direction, each tends to drive the slick in a different direction at a different speed.

The spilled crude oil and products such as FO (Fuel Oil), HSD (High Speed Diesel) and MS (Motor Sprit) undergo a number of physical and chemical changes (weathering).

2.9 Weathering Processes:

WEATHERING PROCESSES AND TIME SCALES Refer Annexure-10

3. RESPONSE STRATEGY:

3.1 PHILOSOPHY AND OBJECTIVES:

Within the scope of this Plan, a response action required to be mounted could be at any of these locations

- I. Sea or channel, incident due collision etc. during passage,
- II. Close shore due grounding or stranding,
- III. Alongside at jetty or at the terminal during cargo operations.

It is feasible that a casualty occurring at sea like a collision or mechanical failure could lead to a situation where the consequences would be felt in some other location or at a coastal location due movement of pollutants from the site of incident.

The factors that would dictate immediate and long-term strategies to deal with the spill are

- I. Location of discharge,
- II. Spill movement and likely fate of spilled oil,
- III. Time window Available for response before hitting the coastline,
- IV. Nature of shoreline and priority for protection.

Keeping in account the location of spill, the response will be required to be initiated either at the jetty / terminal or at sea and guided by this OPERATIONS MANUAL. The actions required to be initiated would be immediate and long term, depending on a study and analysis of spill movement.

3.2 LIMITING AND ADVERSE CONDITION:

Weather and Time play very important role in conducting the Oil Spill Response activities. However other factors also play important role in OSR operation:

- Weather: Weather, sea conditions and time factor play an important role in oil spill response operations. While, operations could continue at terminal or at the jetty most of the time, operations at sea would be largely restricted during night hours and sea conditions. The area of operations of this CP is subject to rough and severe weather conditions during SW monsoon i.e. June to September. An appreciable weather change in the area is subject to heavy rains, high winds and waves. The sea conditions being rough, it is not possible to mount sustained operations or deploy equipment at the Harbor mouth or in the channel. However, it is possible to continue operations at DPA and KPT, though at a restricted scale. Best use of good weather windows would be required to be made to mount operations.
- **ii. Terrain**: A large portion of the area being mudflats is not accessible from sea and is constrained by Availability of depths for vessels to approach.
- iii. Site approach: Certain areas especially mudflats and mangrove vegetation stretching long distances are not approachable by road or tracks from the shore.
- iv. Other limitations: that might need consideration while planning response activity could include the Following:
 - Safety factors including vessel limits, night movements, risk of fire and explosion, toxicity (oil contact/inhalation/ingestion) and hazardous environments such as fast flowing rivers and steep terrain.

• Environmental conditions that can influence logistics including inclement weather, hazardous terrain and accessibility including condition of roads.

3.3 OIL SPILL RESPONSE IN OFFSHORE ZONES:

Containment and recovery will be the strategy for offshore zones. Immediately on noticing the oil slick/oil spill, all endeavors will be to contain the spill by deploying suitable Oil Spill Response equipment and then efforts will be made to recover the oil as soon as possible.

Allowing the oil slick to hit the shores and then initiate shore cleanup measures will be the last resort, as it leads to excessive manpower requirements and also time-consuming effort.

The strategies for responding to Offshore Oil Spills are as follows:

- a) Monitor and Evaluate
- b) Containment & Recovery
- c) Dispersant Spraying

3.4 OIL SPILL RESPONSE IN COASTALZONES:

The strategies for responding to Offshore Oil Spills are as follows:

- a) Monitor and Evaluate
- b) Containment & Recovery
- c) Dispersant Spraying

Containment of Oil

Booms are the primary method used to contain, deflect, or exclude oil floating on the water. Booms are typically classified according to form or location of use and have the following characteristics:

A flotation unit or freeboard designed to contain or divert the oil as well as to resist oil splashing over the top;
 A skirt or curtain to prevent oil from being carried beneath the boom;

3. A longitudinal strength member (usually, cable, chain, or high tensile strength fabric) that serves to join boom sections and provide anchoring points; and

4. A ballast unit or weight designed to hold the skirt perpendicular to the current flow. Containment booming encircles and contains the floating oil so that it can be collected and recovered. A simple spill in calm weather and with minimal current movement can be contained by stretching a boom across a waterway perpendicular to the path of the spill.

Deflection booming attempts to intercept, deflect, or shunt a slick towards a more desirable recovery site. Deflection booming is used when swift currents render containment booming ineffective.

Exclusion booming is largely a protective measure. Instead of being deployed to contain or intercept the oil slick, exclusionary boom is used to protect sensitive areas such as marshlands, water intakes, and shorelines by keeping oil out of an area. Exclusionary booming may have to be coupled with deflection booming to provide the best overall defense.

Mechanical Recovery of Oil

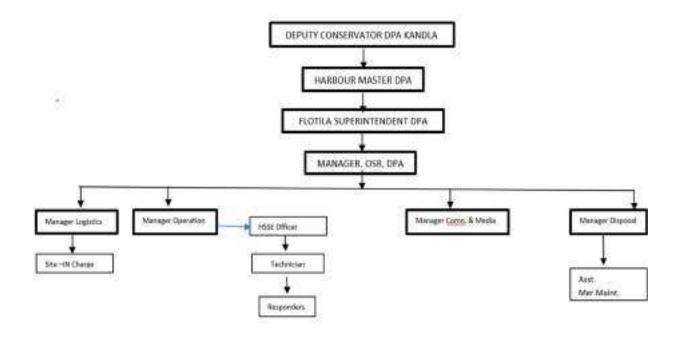
In offshore areas, mechanical clean-up with skimmers is usually begun immediately after containment measures have been implemented. Oil skimmers are used to recover oil from the surface of the water. Skimmers come in a variety of designs and sizes. Small skimming units can be used successfully on spills ranging from minor spills to major offshore disasters. Large skimming vessels are generally used on larger, open-water spills. They are usually self-propelled and are much more expensive to purchase and maintain than small skimming units.

In shoreline areas, clean-up efforts are not subject to the same time constraints imposed upon protection efforts. As a result, planning may be conducted with greater attention to detail, damage assessment, selection of techniques, and cost effectiveness. Shoreline cleanup, however, should be implemented as rapidly as possible to reduce the effects of oil migrating to adjacent clean shorelines.

In Situ Burning

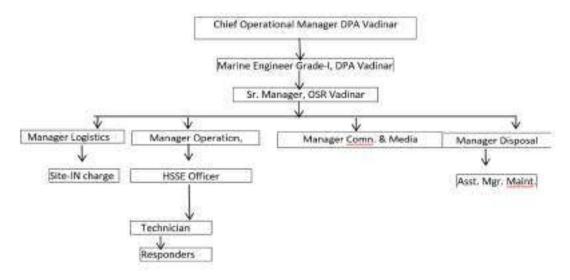
In situ burning involves the containment of oil with fire-proof boom so it can be ignited. In order for in situ burning to be effective in most situations, the burn must take place within a few hours after the spill, or the oil will have dispersed too much to be burned successfully.

Use of Dispersants


Dispersants are chemicals that reduce the interfacial tension between oil and water. This enables waves to break an oil slick into tiny droplets and suspend them in the water column. As a result, the oil will present less of a threat to shorelines and coastal resources. Once the oil is dispersed into the water, chemical and biological processes convert it to carbon dioxide, oxygen, salts and other materials. High sea states which prevent oil spill containment and clean-up with booms and skimmers will mix the oil and dispersant together, providing excellent conditions for dispersant effectiveness. Chemical dispersants are effective in areas where environmental or logistical considerations will not allow the deployment of clean-up equipment and personnel. Dispersants are most effective if used within 24 hours after the spill occurs, and will:

- 1. Remove oil slicks from the water surface;
- 2. Break the slick into tiny droplets which expedites biodegradation and decomposition of the oil spill;
- 3. Reduce the overall level of effort and manpower requirements necessary for responding to major spills; and
- 4. Prevent or reduce adverse effects on birds and mammals.

However, dispersants are not effective for oil spills in waters with low temperatures, low salinity, broken ice, or high energy. They accelerate the transfer of oil into the water column and thereby temporarily create high localized concentrations of dispersant/oil mixtures which could be toxic to some marine life.


The use of dispersants at and in the vicinity of our site is prohibited. The decision to use the dispersants rests with the ICG. Reference is made of Policy and Guidelines for use of oil spill Dispersants (OSD) in Indian Water. Refer Annexure- 20

Pollution Management Cell under the chairman ship of Chairman, DPA / Dy. Chairman, will be established at MTCB to manage the initial response to the incident.

3.5. SHORELINE OIL SPILL RESPONSE: ORGANIZATION CHART

The Vadinar Oil Terminal Port (DPA KANDLA AND OOT VADINAR) is situated in the middle of the most ecological sensitive marine environment. In order to conserve and protect this precious marine environment, Government has the area around it as Marine National Park and Marine Sanctuary

The response to shoreline oiling, clean-up effectiveness, and eventually, to conduct final evaluations of shorelines to ensure they meet clean-up end points.

Shoreline oil spill response process includes eight basic steps:

- 1. Conduct reconnaissance survey(s).
- 2. Segment the shoreline.
- 3. Assign teams.
- 4. Develop clean-up guidelines and endpoints.
- 5. Monitor effectiveness of cleanup.
- 6. Conduct post-cleanup inspections.
- 7. Conduct final evaluation of cleanup activities.

Manual recovery is the most common method of shoreline cleanup, involving teams of workers using rakes, shovels and the like to pick up oil and debris. The oily materials are collected in buckets and drums for transfer to a processing station. Workers may also use suction hoses, pumps and vacuum trucks to recover spilled oil. While manual cleanup is a slow, painstaking process, it generates less waste than other techniques.

Monitor Only: Spill clean-up operations inevitably have their own environmental impacts. For example, heavy equipment can damage sensitive plants and disrupt wildlife habitats. When the potential harm caused by a spill is less than the potential harm caused by attempts to remove it, spilled petroleum products are allowed to degrade naturally. Technicians periodically monitor the breakdown of the spill to be sure there is no unforeseen threat to sensitive ecosystems and/or groundwater supplies.

Wildlife Cleanup: Oiled fish, birds and animals may absorb potentially lethal toxins through their skin. Following spills, birds, otters, seals and walruses may be collected for cleaning and treatment, and then returned to the environment. This is an expensive, time-consuming undertaking and, although techniques have improved greatly in the past few years, recovery rates are often poor. Many other species cannot be rehabilitated because they are either too difficult to capture, or the stress of captivity is likely to have more negative effect than the oiling.

3.5.1. PORT- VESSEL POLLUTION EMERGENCY INTERPHASE: For appropriate action & responsibility to be initiated as per table placed at an**Annexure-13**

The spilled oil contained on the terminal/ jetty will be handled manually. While, use of vacuum pumps could be made, the absorbents will be required to be used to collect the spilled oil. In respect of oil released or introduced into water, response as per water body procedures are to be initiated. (Refer Annexure-13).

3.5.2. Water Response:

The spill at sea could occur at anchorage or in channel due any eventuality or accident. An oil spill occurring due damage to vessel is a point source spill which would need to be addressed earliest. Taking into account the fact that a multiple response may be required, the vessel and responders will have to mount a rapid reaction.

3.5.3. Vessel Response

While, the first action is expected of the vessel operator in containing the spill by way of plugging of leak as far as possible, the first action of the response team is to be to contain the spill by placing booms attached to ship's hull to isolate the damaged area. Recovery of spilled oil would also be required to be undertaken simultaneously.

OSR Response

The response team being stationed afloat with equipment placed on response vessel, would deploy the equipment to contain the spill. In the event of a spill originating from the ship side, containment will be handled by placing booms along the ship side.

In case of a large spill, the actions to lighter the ship or transfer the cargo will be initiated by the port authority or ship owners.

While, Containment and recovery would be the preferred option, the other alternatives like dispersion could also be put to use subject to local restriction

3.6. REFINERIES AVAILABLE IN GUJRAT & IN INDIA

The details of Refineries Available near DPA KANDLA AND OOT VADINAR, In Gujarat State and in India are placed as an **annexure- 8**

3.7. STORAGE AND DISPOSAL OF OIL AND OILY WASTE:

3.7.1. Storage:

Initially, when the skimmer recovers the oil, it is to be stored in the floating storage tank onboard Oil Spill Response Vessel and OSRO Centre, specially designed for the purpose.

3.7.2. Disposal:

Disposal of recovered oily waste is an integral part of the Operation Manual and is explained in detail in "WASTE DISPOSAL PLAN". The purpose of disposal is not only to direct the recovered oil and waste to a final processing facility but also to bring to attention of responders, the methods to minimize the amount of waste generated during operations.

All disposal is to be undertaken keeping in view the provisions of different statutes and legal parameters like 'The Environmental Protection Act 1986' and the Hazardous Waste (Management & Handling and Trans boundary Movement) Rules 2008. Disposal of certain waste like solids and debris etc. that cannot be processed by participating oil companies will be required to be undertaken in close consultation with local administrative authority. In the event, where, spill originates from any unit of the participating oil companies, the custody of waste and recovered oil is to be handed over to the company for transportation, storage and disposal.

Any dispute arising on this account will be settled by respective CMT, whose decision will be final and binding. The details of refineries Available in Gujarat & in India are placed as below:

Refer Annexure – 23

LIST OF DISPERSANTS APPROVED FOR APPLICATION BY COAST GUARD

The NHO and Coast Guard approved list of oil split dispensants (OSD) are enumerated below.
Type II - Vistor dilutable (1 part of dispension): 10 parts of
Type III - Concen
sea water is to be used in the ratio 1 part of diluted
depensant; 2-3 parts of oil)

COREXIT-9500 - (JAN 2003)

B5 Explorates & Production India Lot., Int Roor, Mitox Sater Palza Rondivita, MV Road, Andhen (E), Mambai - 400 059 Phone - 022-38365841 Fax: 023-38365001

Gold Crew - (Feb 2003) MS Conterprise Mayarpankh, 5th Floor Agiany Lan, Jambi Naka, Thana (W) - 400 601 Phone - 022-0540 1016/25971690 Fax 022-05373542

FireChem - (Feb 2003) MS Fire Chem Private (2d 8-4. Rana Commercial Complex Sector-32 B, Near Ayronita, Fanidaliad - 121 067 Phone: 0129-25285189/252881897 Fax: 0129-25285189/252881897

Spilcare-O - (Dec 2004) Spilcare - O Netocleon Prt. Ltd AB-146. 3rd Main Road. Anna Nagar. Chennal - 600 346. Phone - 044-35200482 Fax : 544-35381457 Type III - Concentrate (to be used near in the ratio 1 part of dispersant : 25 parts of oil)

COREXIT-6501 - (JAN 2003) SIG Exploration & Production India Ltd. 1st Floor: Mittas Sahar Placa Kondivita, MY Road, Anchevi (E) Mantaal 400 059 Phone : 022-08365641 Faa: 022-08395201

Challenger-050 EF III - (Aug 2003) Challenger Chemicals & Polymers Private Ltd. PR No. (517), 3 Baleschatzen Lag Out Siddhanaide School Rood. New Siddhanaide, Comhatore - 641 044 Phone - 644-2218224 Fax : 0422-2215181

Spilcare-O - (Dec 2004) Spilcare - O Matadwan Pvt. Ltd AB-148, 3rdMain Road, Aena Nagar, Channa - 600 040 Phone - 044-35300482 Fax - 044-25081457

NOVA CHEMICAL 5 - (JUNE 2005) Pragi Unindaxas CHS Room No.50, 4th floor, 20/24 Clid Hanaman Lane Kalbadek, Mumbai - 400/002 Phone Fax: 022-00947337

ICG requirements for selection of OSD :

Physical State	. Rowing situal and homogeneous liquid have from supported solid.
Date Hy	Between 100-90%
Efficiency	Above 10% for Type-12 Above 50% for Type-12 after cluster:
Rash Part	60°C Weimum
Cloud Point	0 k-0/C
ShellUk	5 to 10 years
usidy	Should be in presention of valid N/O excituation perificate
Date of Marchisters	Within 3 meetins of date of supply

4. EQUIPMENT:

4.1. Marine Oil Spill Response Equipment:

The typical response equipment required for mounting an operation consists of equipment for water response and shoreline operations and could include:

Off Shore

Control Station Booms Skimmers Absorbents Sprayers & dispersants Radio communication Equipment Boats / tugs / response vessel Pumps / hoses Aircraft Transportation

4.2 INSPECTION, MAINTAINANCE AND TESTING:

Inspection & maintenance are being carried out as per manufacturer's manuals. (Annexure- 4)

4.3. SHORELINE EQUIPMENT, SUPPLIES AND SERVICES:

General provisions

- 1) Control Station
- 2) Protective clothing for everybody (including boots and gloves), spare clothing cleaning material, rags, soap, detergents, brushes
- 3) Equipment to clean clothes, machinery etc. with jets of hot water
- 4) Plastic bags (heavy duty) for collecting oily debris.
- 5) Heavy duty plastic sheets for storage areas especially
- 6) temporary storage pits
- 7) Spades, shovels, scrapers, buckets, rakes
- 8) Ropes and lines
- 9) Anchors, buoys
- 10) Lamps and portable generators
- 11) Whistles
- 12) First Aid Material
- 13) Special equipment which may be used
- 14) Workboats
- 15) Trucks / cars (fours wheel drive)
- 16) Radio transmitter/ receivers
- 17) Workshop / repair facilities
- 18) Bulldozers, mechanical scrapers and similar earthmoving Equipment
- 19) Vacuum trucks Tank trailers
- 20) Life vests
- 21) Explosive meters

5. MANAGEMENT:

5.1 CRISIS MANAGEMENT AND FINANCIAL AUTHORITIES CHART: ReferAnnexure-15

5.1.1 Crisis Management Team:

	DESIGNATION	APPOINTED MEMBER		
1	Chief Incident Controller (CIC)	Dy. Conservator		
2	On Scene Commander	Sr. Manager OSR/ Harbour Master		
3	Member Admin & Finance	FA&CAO		
4	Member HSE & Media	Port safety and Fire officer		
5	Member legal	Secretary		
6	Member Tech	Chief Mechanical Engineer		
7	OSRO/ Response Specialist	To be appointed by OSRO, in case response being undertaken by OSRO		

	DESIGNATION	APPOINTED MEMBER		
1	Chief Incident Controller (CIC)	Chief Operations Manager		
2	On Scene Commander	Sr. Manager OSR/ ME Gr.– I		
3	Member Admin & Finance	Accounts Officer OOT		
4	Member HSE & Media	Port safety and Fire officer		
5	Member legal	Secretary		
6	Member Tech	XEN (E&M)		
7	OSRO/ Response Specialist	To be appointed by OSRO, in case response being undertaken by OSRO		

CMT is the primary unit for incident management and is composed of senior managers from various departments for providing advice and resources and take 'on the spot decisions' to meet any immediate requirements arising during the response.

The major functions that would need to be carried out by CMT to discharge the Plan are as per table below:

Field Operations	 Initiation, Control of Operations and response activity Emergency Control room functions Implementing tired response and disposal Shoreline cleaning (when initiated through this CP) Planning and strategy
	 Victuals Transport Additional Manpower and Equipment Security
Technical matters	 Cargo ops, Availability of response items, repairs Communication- operational and with other Government / non govt. authorities, Media
Legal	 Documentation of damages, claims and compensation, notifications

Health and	
safety	Medical assistance
	TABLE 12 Major functions of Crisis Management Team

5.1.2 Financial Authorities:

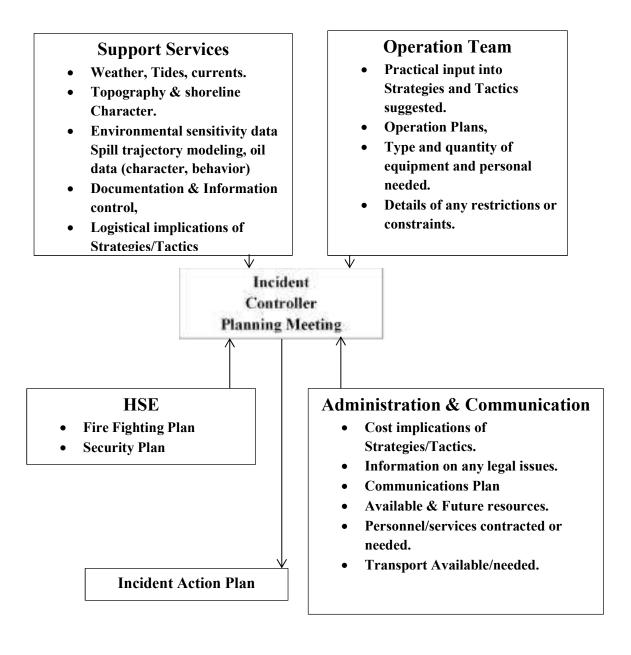
The Financial Authorities of DPA is as per the existing organization structure. At the time of the crisis, the need of the hour will be understood and requirements of OSC /ERT will be met at a faster rate than normal. Since all Head of Departments (HODs) would be Available, immediate on the spot approval will be accorded.

5.2 Incident Organization chart:

CMT is the primary unit for incident management and is composed of senior managers from various departments for providing advice and resources and take 'on the spot decisions' to meet any immediate requirements arising during the responses. Organization Chart is as follows: Refer **Annexure -14**

INCIDENT ORGANIZATION CHART:

INCIDENT AND SPILL INFOR	MATION
\checkmark	
Port Control / COM / DC	
Communication and Ops Cent	re
\checkmark	Major
ASSESS SPILL QUANTUM —	>CONVIENE CMT
	(Assess enhanced Tier Response)
Minor	
Tier I	
Inform QSC / OSR0 ←	Take over Operation (As per CP)
Undertake response ops.	Inform Coast Guard
	\checkmark
Resource agencies	close out


Responsibilities: -

Liaise with Mutual Aid Organizations Liaise with corporate communication for press statements release Liaise with Coast Guard Monitor as appropriate Confirm / amend initial classification Manage the DPA KANDLA AND OOT VADINAR response Authorize expenditure

Alert

Indian Coast Guard, Mutual Aid Partners, OISD and other External organizations.

5.2.1 Functional Designations:

Following functional designations stand identified and notified through the Plan, to give effect to this Plan:

- (i) Crisis Management Team
- (ii) Chief Incident Controller
- (iii) Incident Controller (On Scene Commander)
- (iV) Incident Manager / OSRO Manager
- (V) On Scene Coordinator / Response Specialist
- (Vi) Responders

5.3 Manpower Availability (on-site, on-call):

Terminal Area is manned on 24x7 hours basis; manpower is Available at site to meet any exigency. However, DPA department will provide assistance of water craft, vehicles, cranes etc. for movement of men and material.

5.3.1 Afloat Operations and Response Team/ Teams

Incident operations and response team comprises of CMT or part thereof, as decided by CIC as per the magnitude of spill (Reference 9.2.1 Note v). While, the CMT would be activated to meet in the event of a major accident, a comparatively small incident may need only limited action of CMT to be performed by a part of team.

- I. Chief Incident Controller (CIC) DC / COM is nominated permanent Chief Incident Controller irrespective of the magnitude of spill. While, in the event of a large spill, major decisions and duties are expected of him to be discharged along with CMT, in the event where the spill can be handled by response team alone, the incident will be handled by Incident Controller (IC). The appointed IC will carry out the functions of On Scene Commander for the operation. However, the CIC is to keep account of the operation and ensure to be kept informed.
- II. Incident Manager (IM) is a member appointed by DC / COM or respective CMT leader to undertake the responsibilities associated with administration of operations and giving effect to decisions arrived at by CMT. He is to ensure timely execution of demands and decisions with a view to provide continuity to operations. To facilitate ease of operations and administration, a permanent IM is to stand nominated at all times by DC / COM or CMT leader.

In the event, the response activity is assigned by the port to an OSRO; the OSRO will appoint a manager in addition to Incident Manager to undertake the responsibility of meeting the demands of response teams.

III. Operations Response Team (OSRO specialist/ Responder / OSC) - the response team is to have a permanent status and is to be nominated by CIC on behalf of CMT. The team would comprise of persons specifically nominated on account of their experience of response operations, their qualification or expertise in the matter. The nominated members could be employee of the port or any department in addition to nomination to response team. Being of permanent status, the details of identified members are to be Available at Communication and Operations Center at all times and is to be inserted as a temporary enclosure to this plan. All responders are to be qualified in terms of having undergone IMO Level I course are to be inserted as a temporary enclosure to this plan.

The functions of response team can be assigned to an identified and qualified OSRO also. (The details of National & International OSRO are placed at an **Annexure-2** in such an event of nomination, all functions with respect to response team and On Scene Co-coordinator will be carried out by the OSRO or OSRO representative, while, CMT and CIC will continue to function hitherto.

Response resources like equipment to be deployed having been identified in terms of quantity and location, additional resources like spill response vessel (SRV) and work boat etc. along with responders would be as per identification and notification by CMT leader. In the event of an OSRO being assigned the responsibility to provide resources, OSRO will have to mobilize the different units.

5.4 AVAILABILITY OF ADDITIONAL MANPOWER:

The response team is to comprise of a Manager, Specialists, responders and response workers apart from the crew of the vessel or work boat assigned to response duties. The team and additional resource composition is

- (i) Incident Manager / OSRO Manager
- (ii) OSC- Incident Controller/On Scene Coordinator
- (iii) SR Vessel and Captain
- (iv) Responders
- (V) Vessel crew
- (VI) Work boat, master and crew

Additional responders or additional teams could be assembled during response ops as the requirement demands.

5.5 ADVISORS AND EXPERTS (Contact details are placed at anAnnexure-1) – SPILL RESPONSE, WILDLIFE, AND MARINE ENVIRONMENT:

The following Authorities and Organization have been consulted during the preparation of this plan:

- 1. Indian Coast Guard
- 2. Integrated Marine Facilities at Kandla & Vadinar.

Oil Industry Safety Directorate (OISD) has decided that, all the Ports and Oil companies should create Tier 1 facilities for maintenance and combating oil spills, Therefore, DPA KANDLA AND DPA OOT VADINAR has established Tier-1 facilities.

This report presents the methodology and results of an assessment of the risk of a significant oil spill occurring at DPA KANDLA AND DPA OOT VADINAR in or around SPM, channel route, along pipeline corridor at product jetty and in the area proposed for expansion in the Gulf of Kutch. The assessment has considered low to moderate frequency with low to moderate impact events, i.e. Tier-I spills.

5.6 TRAINING / SAFETY SCHEDULES AND DRILL / EXERCISE PROGRAMME:

5.6.1 Training:

Oil Spill Response Requires Specialist Training which should be developed at all levels of the response. Also, the Management of an oil spill incident is a major task and has a crucial bearing on the outcome of an oil spill response, issues such as the control of crisis situations, political interest, media pressure, public environmental awareness and legal and financial implications can add substantial burdens to the oil spill response team and must be effectively handled if the overall response has to be successful. Effective Training hence becomes crucial for the response team in order to handle the situation aptly and correctly. There is no denying the fact that oil spill combating in any capacity is a rare event for most people and therefore, it is important to keep in touch with skills and knowledge gained as a part of ongoing personnel Training. This too, will help in ensuring that all those involved in the response operation understand each other's role in an oil spill incident.

At present Organization has 10 employees trained in IMO Level-I Oil spill response and 04 employees trained in IMO Level-II Oil spill response.

5.6.2 Exercises and Drills

The purpose of exercises and drills is to test the knowledge of persons and members associated with response activity and maintain them in the highest state of readiness and professional competence. The exercises would aim to assess acquaintance of response teams with operation ability and initiation of Plan and also the knowledge of operational parameters.

For this purpose, it is required to conduct both in house training and evaluation exercises and also multi agency co-ordination exercises are being conducted at regular intervals.

In addition to classroom training, the responders would need to go through regular internal and external exercises that would include deployment of equipment to demonstrate level of proficiency. With respect to management of operations in consonance with the plan, it is desirable to conduct real time CP exercises with all industrial stake holders involved. Such an exercise conducted at a large magnitude would need to incorporate the staff from DPA, Participating Oil Companies and the Indian Coast Guard and scheduled as mutually agreed.

The purpose of exercises and drills would be to check the following:

1. Organizational and Planning

- (a) Knowledge of Contingency Plan and Procedures
- (b) Personnel Notifications and Staff Mobilization
- (c) Ability to operate as per CP and Operations Manual

2. Operational Response

- (a) Oil spill assessment
- (b) Response equipment selection
- I Containment strategies
- (d) Spilled oil recovery techniques
- (e) Disposal of recovered oily water and contaminated material

3. Response Support

- (a) Communications
- (b) Logistics
- (c) Personnel support
- (d) Documentation

5.6.3 SAFETY-Refer Page-64

5.6.4 Types of exercise:

Exercise requirement as per contract is to conduct internal and external exercise. In addition to classroom training, Exercises are to include deployment of equipment to demonstrate satisfactory levels of proficiency. External exercises are to incorporate with the staff from DPA, participating oil companies and the Indian Coast Guard.

- (i) **Type A:** Internal exercises lasting approx. One day for ensuring OSR readiness of all equipment, services and personnel.
- ii. Type **B**: Emergency Response Exercise (Tier-I) is to be conducted once a year.

iii. **Type C:** These exercises designed to test either specific scenarios or emergency plans and include external participation (i.e. mutual aid, govt. agencies)

6. COMMUNICATION

6.1 INCIDENT CONTROL ROOM AND FACILITIES:

Communications plan

Communications between the MTCB, COT and PIT Control Room and Marine personnel during the response to any oil spill within the local area will be primarily by VHF private channel radio. Communications between the MTCB and other vessels will be established on VHF Radio Channel 16/12. Use of cellular telephones is to be kept to minimum. Cellular phones are **NOT** to be used in the vicinity of spill.

Contact details OOT Vadinar:

Port Control	Landline - DPA	02882573005
	VHF - DPA	Marine channel 12, 16
		Marine Channel 13
COC/ME Gr-I	Landline number	02882573033
	Mobile	9979126681
	VHF	Marine Channel 12 and 13,16
COM /CIC	Landline- KPT	02882573001
	Mobile	9819999227
Marine Engineer Grade - I	Mobile	9979126681

Table 13

Contact details Kandla:

Port Control	Landline - Kandla/Gandhidham	Kandla-02836-270529/270194	
		Gandidham-02836-233585	
	VHF - Kandla	Marine channel, 08,10,12,16	
COC/HM	Landline number	02836270201	
	Mobile	8976741054	
	VHF	Marine Channel 08 and 10,16	
DC / CIC	Landline- DPA	02836233585	
	Mobile	9603123449	
Flotilla Superintendent	Mobile	9825227610	

Table 14

6.2 FIELD COMMUNICATION EQUIPMENT:

6.2.1 Equipment:

The communication center is to be provided the following equipment

- i. VHF 2 numbers
- ii. Walkie-talkies as per the number of response teams and functional team leaders
- iii. Telephone (landline or wireless) 1
- iv. Computer and printer with internet and projector facility

6.2.2 Publications: NOS-DCP

6.3 REPORTS, MANUALS, MAPS CHARTS AND INCIDENT LOGS:

For Reports use formats described

- 1) Map of Local Area
- 2) Geographical limit and sensitivity map
- 3) Sensitivity Mapping CZMP as annexure -
- 4) Refer the logs maintain by MTCB & Individuals log if any

The Log Incident Report form as per **Annexure-17** sample has to be developed to ensure that the basic information required to formulate a response to an Oil Spill Emergency is obtained during the notification (if required). Port Control / COM /Communication and Ops Centre will complete the form and dispatch to the concerned authorities by the fastest means. In all cases, the original status report forms will be handed over to ECT, who, in turn, would maintain record of all such documents.

The personal log form and continuation sheets have to be as per **Annexure -18** to allow all personnel involved on the emergency response to maintain a personal log of event. The personal log forms and the continuation sheets are to be used during the oil spill response to record the contacts and activities carried out during such emergency.

Incident Logs are for logging of all the events taking place. This will help in preparing a comprehensive Incident Report on a day to day basis as well as on completion of operation.

After the response work is over, the personal log form as per sample at annexure-18and the continuation sheets are to be numbered, signed and handed over to the COM.

PART II ACTIONS AND OPERATIONS

7. INITIAL PROCEDURS

7.1 NOTIFICATION OF OIL SPILL TO CONCERNED AUTHORITIES

Any INFORMATION RECEIVED WITH RESPECT TO A SPILL, BEING OF IMPORTANCE TO ARRIVE AT A DECISION FOR ACTIVATION OF CMT and RESPONSE REQUIRED TO BE TAKEN, HAS TO BE RECORDED WITH CARE AND WITH ALL POSSIBLE DETAILS.

Correct knowledge of the quantity of spill is a factor that would facilitate the CMT and other responders to decide on the scale of response action and also the requirements to decide on Tier responsibility. The information has to contain the following details

- Authority reporting spill (with all details)
- Time and position of spill
- Type of oil
- Assessed quantum of spill

INCIDENT AND INFORMATION FLOW CHART

INCIDENT AND SPILL INFORMATION Port Control /COM / DC Communication and Ops Centre ASSESS SPILL QUANTUM -CONVIENE CMT \rightarrow (Assess enhanced Tier Response) Major Minor Tier I Inform QSC / OSR0 ← Take over Operations (As per CP) Undertake response ops. Inform Coast Guard close out Resource agencies

Notification matrix

The matrix gives the primary telephone contact number; alternative telephone and facsimile numbers are included in **Annexure-19**

7.1.1 ADDITIONAL INFORMATION:

In addition to the above information, following info is also to be recorded and provided to the responder or OSRO,

- Detailed weather conditions wind, direction and speed
- Sea conditions

7.2 PRELIMINARY ESTIMATE OF RESPONSETIER:

The moment oil spill takes place or is detected, immediately the time and place of the spill started and stopped should be ascertained from the originator of the oil spill. The information about diameter of pipe, rate of pumping /flow of oil would help in determining the quantity of oil that has spilled into water. In case, accident is due to collision the sounding of the tank would talk about the quantum of oil spilled into the water and then only magnitude of spill could be established. The notification as per NOSDCP will be adopted for declaring Tier I, II or Tier III spill or spill of a minor nature.

7.3 NOTIFYING KEY TEAM MEMBERS AND AUTHORITIES:

The Key Team Members are – COM, Marine ENGG GR -I, Fire Officer, Sr. Manager OSRC and other HODs. These members can be informed over Phone /Mobile phone, and same be also logged at ECR.

7.4 MANNING CONTROL ROOM:

Marine Terminal Control Building (MTCB) will be the control room, unless otherwise location nominated by the Head DPA KANDLA AND OOT VADINAR

7.5 COLLECTING INFORMATION (OIL TYPE, SEA / WIND FORECASTS, AERIAL SURVEILLANCE, BEACH REPORTS):

Samples to be collected from various points, clearly marked and sealed. Samples to be stored for further investigations, as required. The following equipment shall be held for the purpose of storing samples

- a) At least 6 sampling bottles,
- b) One seal tag for each sampling bottle
- c) Prognosis and Synopsis weather reports
- d) Any other relevant matter

The moment oil spill is reported /intimated to the various departments, the action by

- i. Marine department will provide all the relevant data for that day to ECR i.e. Tide conditions at that time, Tide timings, Current, Wind direction /speed, Weather forecast, Vessel movements, Vessel position in DPA Port, Water crafts Availability for pollution response activities. Relevant Navigation Charts and any other important data /information Available may also be provided. Also number of Security Personnel Available at that time will be made Available.
- ii. Traffic department to provide information regarding Availability of type and number of vehicles Available for transportation of men and equipment. Also, number of Casual Labors Available at that time will be made Available.

- iii. Fire department to indicate readiness about FIRE CONTINGENCY including OIL FIRE and also number of spare Life Jackets Available.
- iv. ECT Ensure that no individual is working / supervising / observing OSR operations/ Exercise Without Life Jackets "ON".

OSC is to collect following information immediately in case of oil spill:

- Time of oil spill occurred.
- Position with reference to prominent land mark and also, if possible, in latitude and longitude.
- Visual appearance, apparent thickness of oil and extent of area covered.
- Percentage covers of various thickness of oil.
- Existing weather condition and weather forecast
- Current and tide conditions
- Immediate Availability of support vessel, equipment and manpower.
- Estimate oil spill trajectory and likely area and time of its landfall.

7.5.1Information Display:

The following latest information is to remain displayed at all times on wall boards in the Control and Operations Center:

- Vessels working cargo in port quantity of cargo, location and expected times of completion
- Prevailing weather conditions and future forecast
- Vessels expected to arrive and depart port in next 24 hrs., cargo and quantity
- Important contact numbers of CMT, OSRO and other CP aid agencies

Continuous watch on working frequencies used by ships, port and terminal for POL cargo ops

- Watch on Ch 16 at all times
- Log all information in respect of an oil spill (with maximum details) received through keeping watch or from any other source
- In case of first receipt of information, pass all the details regarding spill to CMT leader to facilitate complete or partial activation of team or response actions by OSRO
- Pass all information regarding spill to OSRO and duty vessel or tug assigned response duties.
- Remain in constant touch with designated response team leader and response / support vessels as per working channel decided for operations
- Collect latest information from MET dept. on weather conditions in the area including wind direction & speed, tide condition and other weather parameters (all received information is to be logged)
- Provide weather data to operational teams as demanded

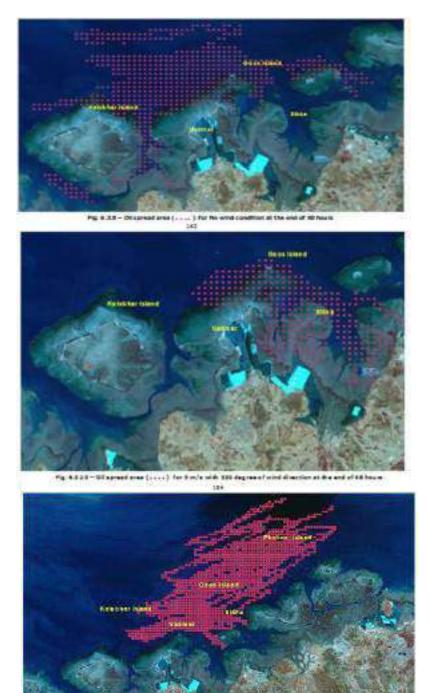
7.6 ESTIMATED FATE OF SLICK&PLANNING MEDIUM-TERM OPERATIONS (24-48 AND 78 HOURS):

The likelihood of oil spill taking place are from two factors mostly, during vessel operations and secondly due to collision. Since, during vessel operations, OSRO personnel as well as ship's staff present at the site, any mishap taking place could be tackled immediately as reaction time will be very less and damage control could be done very fast. Therefore, quantity of oil spilling into water is expected to be minimum and the spill could be neutralized quiet easily. Here in this case dispersants, sorbents may be used and whole operation is likely not to last more than 24 hours. In fact, OSR items are kept handy in OSRV to use any time.

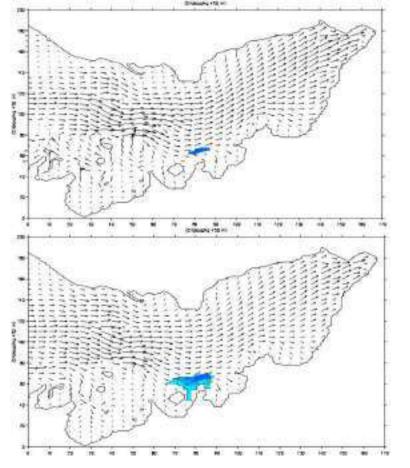
However, in case of oil spill occurring due to Collision, it is certainly going to be at a higher magnitude. As, when the collision takes place, everybody's attention is likely to be toward safety of the vessel i.e. to Avoid vessel getting grounded, Avoid colliding with other vessels, preventive action against fire or carryout firefighting, damage control action against flooding and so on. It is anticipated that in case of collision the oil spill is likely to occur due to rupture of or crack in fuel tanks. It should be clearly understood that

i. In case of rupture of fuel tanks a sudden gush of oil will be there, and for some time it will be uncontrollable. By the time any effective damage control action is taken, a substantial amount of oil would have already gone overboard. This would necessitate immediate oil containment measures, as well as starting of oil recovery action. This oil spill recovery action may go well beyond 48 hours, keeping weather and sea conditions in mind, because one does not know at what time of the Day or Night accident takes place which will determine the time delay in appreciation of the situation and mobilization of OSR team and equipment. It may clearly be understood that appreciation of oil slick between sunset and sunrise is quite difficult and at times it may be fully incorrect, hence slight time delay may be anticipated.

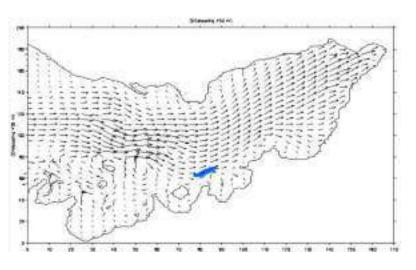
Such accidents don't happen quite often, but very rarely. Hence readiness of OSR team and Equipment shall be maintained at all times.


ii. The oil spill scenario through cracked fuel tank /tanks is not very different than the previous one, because due to cracked/fractured /material failure occurred in the fuel oil tank/tanks, oil would continue leaking in a small /moderate rate. But it would be difficult to locate the source/point of oil leak and by the time source /point of leak is detected, suitable action is initiated and leak is arrested, a sizeable quantity of oil would have already been over board. Detection of oil leak will become more difficult if the crack /fracture develops after some time due Collision related structural stress and ship is secured alongside jetty with the damaged /leaking side situated between shipside and jetty. The problem will become more compounded if the accident takes place after sunset during severe monsoon conditions and detection of oil slick in the night would be really quiet difficult. Like above serial (i), here also one cannot deploy OSR men and equipment preciously and reaction time to deploy OSR men and equipment, subsequently recovery of spilled oil is going to take more or less the same time.

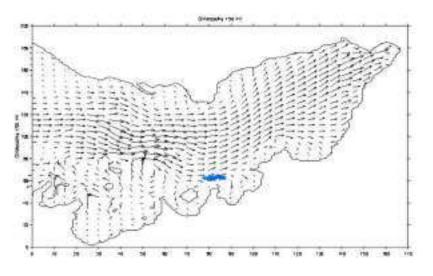
Here the vessels taken on consideration are visiting ships of various sizes in all weather conditions but not the minor vessels or tug boats.


7.7.1 ESTIMATED FATE OF SLICK: (24, 48 AND 72 HOURS):

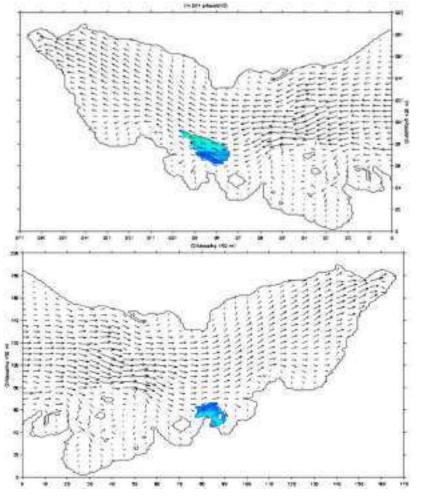
Please refer to the picture below and apply the prevailing factors deduced from the weather reports.



Estimating fate of slick.



Oil trajectories at the end of 2 hour and 24 hours for scenario I: No wind condition:


Oil trajectories at the end of 2 hour and 24 hours for scenario II: 5m/s wind from 240 degree N

Oil trajectories at the end of 2 hour and 24 hours for scenario III: m/s wind from 330 degree N

Prepared By Sadhav Shipping Ltd.

7.6 IDENTIFYING RESOURCES IMMEDIATELY AT RISK, INFORMINGPARTIES:

There are no resources which will be immediately at risk except Marine national park & ESSR intake. No population along the coast up to about 10 km, the mangroves are at about 5 km. salt pans are at about 7-8 km. The mangroves and salt pans are likely to be affected only at highest high water during NE monsoon . Depending upon the place of spill, the resources at risk will be assessed.

7.7. Surveillance

The aim of surveillance is to detect, characterize and preferably quantify spilled oil that may be present in a range of settings (on-water, in-water and onshore). This is of critical importance in enabling the incident command to effectively determine the scale and nature of the oil spill scenario, make decisions on where and how to respond, control various response operations and, over time, confirm whether or not the response ineffective. Irrespective of the final response strategy selected monitoring of oil spill will commence immediately after the oil spill and will continue until the response operation is terminated. The information gathered through monitoring and evaluation will be used by the IMT to steer the response, and ensure that the most effective and efficient response strategies are being adopted.

Five monitoring and evaluation methods are discussed in this section:

- Aerial Surveillance
- Vessel Surveillance
- Satellite Surveillance
- Surface Plume Tracking
- Spill Trajectory Modeling.

7.7.1 Aerial Surveillance

Aerial surveillance is the first response for any ongoing reportable incident as it allows the Incident Management Team to quickly gather initial information about the incident and formulate tactical plans to combat the spill. Aerial surveillance can be carried out throughout the incident management process to provide feedback to the command Centre on daily progress and to help evaluate the success of the response strategies.

A written or verbal flight task is given to the aerial observer detailing the purpose of the mission, such as:

- Confirming the location of the spill using ladder or spiral search path
- Quantifying the amount of oil on the water and verifying the results from modeling
- Directing response operations such as directing vessels/aerial dispersant application planes onto the thickest part of the oil
- Conducting shoreline surveys to identify areas that may have been, or may be impacted.

Followed by the aerial surveillance and preliminary shoreline survey substantiated by notes, sketches, photographs and videos supported by GPS readings. In case considerable part of oil spill sunk due to environmental conditions, oil characteristics or both, under water survey may be required. The survey may be undertaken using visual assessment, divers, remotely operated vehicles, acoustic sensors or sorbents. Environmentally hazardous areas must be marked specifically based on the secondary data already Available so that many accidents resulting in loss of life and property can be Averted.

7.7.2 Vessel Surveillance

Before the arrival of aircraft for aerial surveillance, vessels Available on the scene can help to conduct initial visual surveillance by following the leading edge of the slick. This location in formation can then be communicated to the Incident Management Team to guide the aerial surveillance aircraft to the slick. This is only a temporary measure as the vessel's visibility ranges restricted and there is a risk of secondary contamination of the vessel.

7.7.3 Satellite Surveillance

Surveillance of oil spill is also possible through satellites with sensors such as SAR (Synthetic Aperture RADAR–an active sensor that send out a micro wave pulse and reads there turn) and Optical sensors– (Relies on reflected energy). RADAR imagery is the preferred option as the active pulse from space reacts with surface textures giving all-weather day / night imaging. This service may be gauged through Space Application Centre, Ahmedabad.

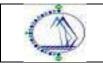
7.8. SAMPLING

Identification of the responsible source for an oil spill incident is essential because of its legal implication. Laboratory analysis of the oil samples is thus required following a spill incident. From the same it is possible to identify differences between one type of oil & the other and also to determine the similarities between spilled oil and its source. Source of the oil could be identified by the comparison of the spilled with the potential source samples. Sampling is as important as laboratory analysis and investigation.

Sampling of both biotic and abiotic resources from spill affected area is the first and foremost part of the oil spill testing. Resources can be water, oil, sediment, air or biota. Samples should be representative, since they are used to quantify the oil, predict its weathering characteristics and to identify the source.

Improper samples or sampling will lead to wrong results and conclusions that will not stand up in legal examination and subsequently laboratory analysis and investigations will become mere wastage. Personnel who are supposed to collect the samples should be given minimum training and practice to do better response in a real spill situation. A sampling plan shall be adopted that will describe the sampling procedures in brief and will ensure that all the required operations are taking place accurately and sequentially without any missing.

Sampling of oil from different environment site, from vessel engine to water body or even from an organism will be required. Also they can be of varied forms mainly of heterogeneous nature some of which are given below.


- Oil, oily water, heavily emulsified oil, tar balls or lumps on the water surface
- Mixtures of oil, sorbents or other materials which are soaked with oil
- Oiled animals on the water surface or on beaches mainly in the intertidal area
- Oil in tanks on ships, offshore constructions or land facilities
- Oily water bilges and slop tanks on ships, offshore constructions or land facilities
- Oily sludge in the sludge tanks on ships, offshore oil installations/ drilling rigs or land facilities.

Sampling equipment shall be pre cleaned to remove any oil residues including finger oils that may mix with the oil collected and interfere with the laboratory analysis. Oil contaminated sampling containers should be Avoided. Sampling equipment if not purchased preleased shall be cleaned with a detergent wash, rinsed with distilled water and then rinsed with solvents like dichloromethane, hexanes. Pre cleaned supplies can be wrapped in aluminum foil to prevent contamination while being stored or transported to the spill.

Table 7.1: Details for Oil Spill Sampling

SI. No	Sample Type	Sample Container	Quantity of Sample			Sample Container Quantity of Sample	
1	Oil	Glass Bottle 500 ml Clean. Colored (dark) glass is preferred for water samples. Preferably supplied by laboratory. Top should be sealed with aluminum foil under the cap.	Pure Oil Source Sample	30-50 ml			
			Contaminated Oil (Emulsified Oil, oil from the sea or shore, sandy tar ball)	10-20 g			
			Debris with oil, oil stained sand	Sufficient quantity that oil content is approx.10g			
2	Water		Water sample with visible oil	1 liter			
			Water sample with no visible oil	3-5 liter			
3	Sediment	Fine: Silt - Pebble	Glass Jar 250 ml Clean. Colored (da preferred for water containing san Preferably supplied by laboratory. Top should be sealed with aluming	nining samples. poratory.			
		Coarse: Cobble	Wrapped in aluminum foil Once wrapped they can be s in plastic bags.				
4	Biota	Glass Jar same as Glass Bottle/ Jar	Oiled feather	5-10 feathers depending on the quantity of oil present			
		Wrapped in aluminum foil Whole specimens. Once wrapped they can be stored in plastic bags.	Fish, shellfish (flesh and organs)	Multiple individuals of the same species totaling 30g			

A sampling kit may be arranged for this with necessary sampling equipment's as described in the **Table 7.2** given below.

SI. Item Details No 1 Sample jars (250 ml or other size) Pre cleaned, Teflon or aluminum cap or Alf oil barrier as required. Plastic should not be used 2 Slick/pooled oil sampling equipment Wooden spatulas/tongue depressors or stainlesssteel spatulas/spoons. 3 Sheen sampling equipment TFE fluorocarbon polymer nets or small squares of sorbent. Polymer nets or bags with rings and extension poles, TFE polymer sheets of mesh fabric can also be used. **Disposable gloves** 100% nitrile medical examination gloves 4 5 Sorbent padding for storage cooler. 6 Sample storage coolers with pre-frozen freezer blocks. 7 Waterproof plastic envelope. 8 Sample identification labels >1/sample. White Adhesive 5cm to 10cm water and oil resistant 9 Sample Log Sheets. 10 Chain of Custody Forms. 11 Decontamination equipment if needed, 12 Cardboards Shipping Tubes, & Fiber (25cm x 25cm x 25cm), For packing sample board boxes jars for shipment Sorbent material Grease proof plastic bags 50cm x 65cm 13 Tape for sealing jars, shipment tubes and fiberboard box 2 to 10 cm wide 14 Towels absorbent cloth or paper, twine 15 Tongue depressors or pre-cleaned metal To aid collecting samples of heavy oil or tar scoop Balls 16 Sediment Sampler e.g. DO, Turbidity, Conductivity, Odor, Ambient 17 **Onsite Probes** Hydrocarbon Detector, Multi Wavelength Fluor meter etc. 18 Kit/ Pouch to hold all sampling equipment to spill location

Table 7.2 Components of the Sampling Kit

7.8.1. Sample Identification and Security

Sample identification, labeling and security are very important part of oil spill sampling, especially when it has a forensic value. The sample jar is to be sealed using tape to seal the lid to the jar, before placing the labels on the jar. While placing the labels on the jar, two labels should be kept one for the purpose of sample identification and the other for chain of custody. Writings on the jar should be legible and written using indelible ink. A sample identification label has been shown in **Figure7.1**. Below.

Figure 7.1. Sample Identification Label

CASE NO:	SAMPLE NO:
TIME	DATE
SPILL D SUSPEC	TED SOURCE
SAMPLE DESCRIPTION	
LOCATION	
SAMPLER	

7.8.2. LABELING AND SEALING

All necessary information required for identification of the sample shall be there on the label such as geographic location, signature on suspected source sample from master or crew man, dates sealed and who sealed sample, etc., should be a part of the label.

Case number is a unique number as signed by investigator to help keep track of spills overtime. Sample number stands for serial number given for each sample 1, 2, 3 etc. Sample description used to distinguish one sample from another sample. For water samples the description should have information relating the sample to a fixed point like name of creek, distance from a bridge pier or any other identifiable structure. For sample from suspected vessels, the description should have the name of the vessel and specific location of the sample such as engine oil bilge. Samples taken from a shore facility should include the name of the facility including a city, location of the sample on the facility (IMO).

7.8.3. SAMPLE LOG

For each sampling operation a sample log should be prepared and transferred along with along with sampling jars and kept in safe custody. It should contain all the Available details regarding the sample including the necessary things given below.

- A. Sample number or code (Optional, but advisable for multiple sampling at a single location).
- B. Sample description (oil, debris, thick slick, film, sediment, air and biotitic).
- C. Time and Date (24 hr. Clock, Day/Month/Year).
- D. Location (GPS coordinates or other description).
- E. Name of person taking the sample.
- F. Witness (If a sample for legal purposes).
- G. Identification and description of samples and locations.
- H. Subcontractor information and name(s) of on-site personnel.
- I. Dates and times of sample collections and chain-of-custody information.
- J. Records of photographs.
- K. Site sketches of sample location including identification of nearest roads and surrounding developments.
- L. Calibration results

7.8.4. CHAIN OF CUSTODY (COC)

8. After sampling it is important that samples are to be kept in a person's custody or possession so that either he can see them or they are locked up. The sample description here should be exactly same as that of sample label. All persons who have control of the samples need to sign in the signature part of the COC as well as the chain of custody label on the sample. COC document should be sent with the samples to the laboratory. Format for chain of custody is attached as **Table 7.3**.

Table 7.3. Format for Chain of Custody

Chain of Custody Record					
Organizatio	Organization's name				
Address:	Address:				
Spill	Source	Sample no	Description of samples for case no:		
Person Assuming Responsibility for Samples Time/ Date					

Chain of Custody Record						
Sample number	Relinquished by:	Time/ date	Received by	Time/ date	Reason for change of custody	
Sample number	Relinquished by:	Time/ date	Received by	Time/ date	Reason for change of custody	
Sample number	Relinquished by:	Time/ date	Received by	Time/ date	Reason for change of custody	

Page of _

7.8.5. HANDLING THE SAMPLES

Samples must be handled, stored and transported with care so that they remain uncontaminated, intact and fit for purpose. Handling procedures should also be documented such that sample integrity can be demonstrated. Containers should be filled as full as possible toe clued air and Avoid vocative losses of light hydro carbons. All samples should be labeled immediately. Labels should not be placed inside the sample container. Labels should be applied to containers after the sample has been sealed. This will allow the container' exterior to be cleaned and dried before the label is attached. While sampling care should be taken that there is no contamination from exhausts of engines or cooling water of sampling vehicles.

7.8.6. Storing the Samples

Samples should be held overnight or for any extended time in a secure room, with in a suitable containerize. a refrigerator. A sample room may be established and a sample room controller may be appointed and log may also be kept for the room. Samples should have a Chain of Custody record attached to track the location and handling of samples. Samples are stored in a cool dark room. Weathering may be accelerated in the presence of heat and sunlight. The samples may be placed in an

insulated pouch or Stay of a cooler's closed vehicle is no desirable especially in summer even when a cooler issued. Hence it is better to Avoid such journeys or for the optimum condition i.e., keep the samples in an explosion proof refrigerator at 2 to 7° C. Samples should not be freeze and hence the temperature should be maintained above - 4° C. The preservation methods are given **Table 7.5**below.

Table 7.5. Preservation Methods for Different Types of Samples

SI. No.	Sample Type	Preservation Method
1	Sediment	Chilled to < 4 °C- but not frozen
2	Oil	Chilled to < 4 °C- but not frozen
3	Soft Marine Fauna/Fish	10 % formalin in sea water Or freshwater if sample is from fresh water
4	Crustaceans/ Fish	Freezing (for large fish and crustaceans)

All areas where samples are handled or stored must be decontaminated before and after use, designated to be NO smoking areas, isolated from combustion engines, exhausts or other sources of hydrocarbon contamination. Samples will be transferred to the sample intake team to be frozen as soon as possible especially for sediment and tissue chemistry samples. Water samples will be analyzed immediately due to holding time limitations, while sediment and tissue samples collected for VOC and PAH analyses will be archived. Sediment samples collected for nutrient analyses will be analyzed within the 28-day holding time. (*MC2520ilSpill–Jean Lafitte National Historic Park and Preserve Submerged Aquatic Vegetation NRDA*)

7.8.7. Shipping of Samples

The guidelines for this are laid down by International Air Transport Association (IATA). This ensures safe, intact arrival of samples and prevents damage to other parcels. Packaging and Shipping of the mis regulated under IATA's Dangerous Goods Regulations. Most of the samples belongs to the following to categories Flammable Liquid, packaging group II consists of oils with flash points less than 23°C e.g. gasoline, naphtha and most of the crude oil. Flammable Liquid, packaging group with flashpoints more than 23°C but less than 60.5°C e.g. Kerosene, jet fuels, turbine fuels, No.1 fuel oils etc.

8. OPERATIONS PLANNING

8.1 ASSEMBLING FULL RESPONSE TEAM

Area of operation of this Plan being confined to DPA Port. All responses and actions would get limited to coastal zone and within the estuary.

8.1.1 Crisis Management Team/s (CMT)

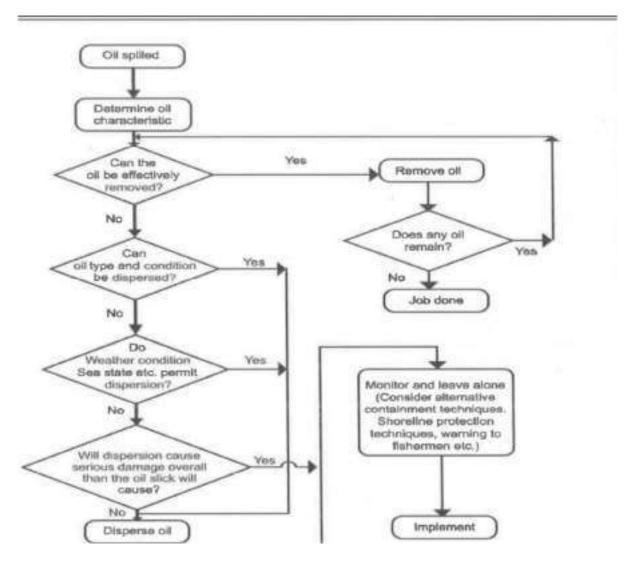
The core operational team discharging the functions of incident control, administration and management is designated as Crisis Management Team/s (CMT) operating from the identified control center located in the Port Administrative building.

8.1.2CMG:

Apart, from the designated CMT, another senior level team designated as Core Management Group (CMG), headed by the respective head of DPA, will get activated in times of major spill crisis that may require liaison with senior level state, center authorities or other agencies. The other team members of CMG will be the heads of departments. The functions of CMG will be the same as CMT with a view to provide support to operations in terms of administrative requirements. CMG will assemble on the recommendation of Chief Incident Controller.

This Plan formulates the policies and strategies to be followed in case of a response and to be executed on the ground by CMT along with response team or Oil Spill Response Organization (OSRO).

The operational spill prevention provisions of this CP will be discharged by three CMTs - headed by Chief Incident Controller, one each for the area of jurisdiction of DPA, NAYARA, Reliance. Duties and responsibilities of all the three teams would largely remain the same- as spelled in this CP, with additions and amendments undertaken by each team as per operational situation and requirements particular to their area of operation. Each team would be responsible for operations in their respective area of Jurisdiction.


8.2 IDENTIFYING IMMEDIATE RESPONSE PRIORITIES

Major actions that would be required to be taken when a spill occurs are mentioned below. While, some actions like containment are required to be initiated immediately following a spill, some actions like shore line clean up etc. will get initiated in due time. The purpose of fast response is to minimize hazards to human health and environment. The following response is accordingly addressed through the Contingency Plan and Operations Manual:

- Stoppage of discharge and containing spill within a limited area.
- Defining size, position and content of spill, direction and speed of movement and likelihood of Affecting sensitive habitats.
- Notification to private companies or government agencies responsible for cleanup actions.
- Movement of trained personnel and equipment to site.
- Initiation of Response activity.
- Ensuring safety of response personnel and public.
- Oil removal and disposal.

8.3 MOBILIZING IMMEDIATE RESPONSE:

8.3.1 LIGHT OIL RESPONSE GUIDELINES Oil snill CAN THE OIL RECOVER USING; YFS CONTAINED WEIR SKIMMER YES IS IT VACUUM SKIMMER ABSORBENT BOOMS YE ADVISE COAST GUARD CONSULT HEAD -IS A HIGH FIRE DOES THE OIL POSE A **MONITOR &** THREAT TO THE NΟ **EVALUATE** SHORELINE CONSULT HEAD RESOURCE MOBILISE/DEPLOY **ENVIRONMENT** UNDER THREAT: BOOMS EC YE TRACK THE S LEADING EDGE INSTAL/AUGMENT DEFENCE/DEFLECTIO APPLY NBOOMS MECHANICAL DISPERSION IDENTIFY SWEEP THICK POTENTIAL OIL WITH ABSORBENT SACRIFICIAL BOOM AREAS IGNORE SHEEN TILL DEPLOY LW LAST MARK ABSORBENT

8.4 MEDIA BRIEFING:

Release of Information to media is to be as per 'Media policy' of the respective organization heading the CMT for particular operation. Refer **Annexure-5**

Media Holding Statement (Tier 1 incident)						
Timed at:	hrs	day	Date			
At	hrs.	on	Date			
	day					

An oil spill current at (location)

The estimated quantity of oil (state type) spilled is.....liters/tones or

The quantity of oil (state type) spilled is not yet known.

DPA KANDLA AND OOT VADINAR has initiated spill response measures and is investigating the cause. The Indian Coast Guard and all other concerned authorities have been informed

NEXT PRESS STATEMENTS AT HRS IST

8.5 PLANNING MEDIUM-TERM OPERATIONS (24-48 AND 78 HOURS):

The likelihood of oil spill taking place are from two factors mostly, during vessel operations and secondly due to collision.

Since, during vessel operations, OSRO personnel as well as ship's staff present at the site, any mishap taking place could be tackled immediately as reaction time will be very less and damage control could be done very fast. Therefore, quantity of oil spilling into water is expected to be minimum and the spill could be neutralized quiet easily. Here in this case dispersants, sorbents may be used and whole operation is likely not to last more than 24 hours. In fact, OSR items are kept handy in OSRV to use any time.

However, in case of oil spill occurring due to Collision, it is certainly going to be at a higher magnitude. As, when the collision takes place, everybody's attention is likely to be toward safety of the vessel i.e. to Avoid vessel getting grounded, avoid colliding with other vessels, preventive action against fire or carryout firefighting, damage control action against flooding and so on. It is anticipated that in case of collision the oil spill is likely to occur due to rupture of or crack in fuel tanks. It should be clearly understood that

- i. In case of rupture of fuel tanks, a sudden gush of oil will be there, and for some time it will be uncontrollable. By the time any effective damage control action is taken, a substantial amount of oil would have already gone overboard. This would necessitate immediate oil containment measures, as well as starting of oil recovery action. This oil spill recovery action may go well beyond 48 hours, keeping weather and sea conditions in mind, because one does not know at what time of the Day or Night accident takes place which will determine the time delay in appreciation of the situation and mobilization of OSR team and equipment. It may clearly be understood that appreciation of oil slick between sunset and sunrise is quite difficult and at times it may be fully incorrect, hence slight time delay may be anticipated. Such accidents don't happen quite often, but very rarely. Hence readiness of OSR team and Equipment shall be maintained at all times.
- ii. The oil spill scenario through cracked fuel tank /tanks is not very different than the previous one, because due to cracked/fractured /material failure occurred in the fuel oil tank/tanks, oil would continue leaking in a small /moderate rate. But it would be difficult to locate the source/point of oil leak and by the time source /point of leak is detected, suitable action is initiated and leak is arrested, a sizeable quantity of oil would have already been over board. Detection of oil leak will become more difficult if the crack /fracture develops

after some time due Collision related structural stress and ship is secured alongside jetty with the damaged /leaking side situated between shipside and jetty. The problem will become more compounded if the accident takes place after sunset during severe monsoon conditions and detection of oil slick in the night would be really quite difficult. Like above serial (i), here also one cannot deploy OSR men and equipment preciously and reaction time to deploy OSR men and equipment, subsequently recovery of spilled oil is going to take more or less the same time.

Here the vessels taken on consideration are visiting ships of various sizes in all weather conditions but not the minor vessels or tug boats.

8.6 DECIDING TO ESCALATE RESPONSE TO HIGHER LEVEL:

If oil spill is larger magnitude and is beyond spill combating capabilities of DPA KANDLA AND OOT VADINAR, in such case Head DPA KANDLA AND OOT VADINAR in consent with senior management, will inform Indian Coast Guard accordingly and shall provide all further assistance required by ICG.

8.6.1 NEBA May be Considered while deciding to escalate if required. Refer Annexure -15

8.7 MOBILIZING OR PLACING ON STANDBY RESOURCES REQUIRED

To be decided by the On-scene commander and Head DPA KANDLA AND OOT VADINAR considering the control on spillage, mitigation progress and weather forecast. It should be borne in mind that mobilization of resources from out stations is a time consuming and cumbersome process, therefore the anticipated arrival time of the Pollution Response Equipment should be calculated well before hand on account of:

- (i) Transportation time by rail /road /sea/air.
- (ii) Time taken by Custom /Government formalities.
- (iii) Time taken in loading/unloading.
- (iV) Availability of specialized loading /unloading machineries and accessories.

8.8 ESTABLISHING FIELD COMMAND POST AND COMMUNICATIONS

The OSC will be equipped with VHF (Walkie-Talkie) and mobile phone. The OSR team leaders would also be having hand held VHF sets. (They can also be provided with mobile phones). Therefore, establishing Field Command Post is considered not necessary, unless the spill is of large magnitude.

9. CONTROL OF OPERATIONS

9.1 ESTABLISHING A MANAGEMENT TEAM WITH EXPERTS AND ADVISORS: -

The members of the DPA Executive Advisory Committee are:

NAME	DESIGN.	ALTERNATE	DESIGN
Capt. Pradeep Mohanty	Deputy Conservator	Shri Lalji Meena	Harbour Master
Shri A. Ramasamy	Chief Operations	Shri Narendra Naik	ME Gr-I
	Manager		
Shri B Ratna Shekhar Rao	Traffic Manager	Shri Sudipto Mukherjee	Sr. Dy. Traffic Manager
Shri Sushil Chandra Nahak	Chief Mechanical	Shri Rajdeo Kumar	ME Gr-I
	Engineer		
Shri B. Bhagyanath	FA&CAO	Shri Hitesh Thakkar	Dy. CAO

9.2 UPDATING INFORMATION (SEA/WIND/WEATHER FORECASTS, AERIAL SURVEILLANCE, BEACH REPORTS):

VTMS, (Port Control) is entrusted the responsibility of providing initial information pertaining to wind direction & speed, water current, tide position at the time of oil spill, high water & low water timings, sea condition, swell /wave heights, weather forecasts & existing weather warning, navigational warnings, any Coast Guard or Naval aircraft or helicopter sighted /in contact, any other relevant information Available. The moment information about OIL SPILL is received all these data / information is to be provided to ECR. This information is to be automatically updated as and when received. Regular inputs must be obtained from local sources regarding health of the surrounding coastal areas.

9.3 REVIEWING AND PLANNINGOPERATIONS:

The ongoing operations should be assessed and reviewed as and when the ECT considers it necessary or suggested by OSC. This is necessary to upgrade the level of operations or scale down the operations due to different prevailing factors /compulsions. Review of operations is an ongoing process and accordingly the planning is to be reoriented to maximize the utilization of men and machinery without compromising on safety of both. Here operational rest to men and machinery should also be kept in mind because response teams can be rotated at regular intervals but continuous running machinery also needs rest after certain stipulated continuous running hours.

9.4 OBTAINING ADDITIONAL EQUIPMENT, SUPPLIES ANDMANPOWER

The equipment maintained on the vessel will be the first to be deployed for containment and would be augmented by movement of additional equipment as required by the situation. In the event of a decision being taken by the team managing the spill, the equipment held with the participating units will be made Available to response teams.

In the event of an ongoing spill or a spill that requires declaring of Tier 2 or 3 responses, the additional equipment and manpower held with any other OSRO or facility will be sourced in an accelerating manner including resourcing from the international spill handling companies. Contact details of companies holding equipment in India and International OSROs are as follows:

9.5 PREPARING DAILY INCIDENT LOG AND MANAGEMENT REPORT:

To maintain detailed daily log of activities undertaken by OSR Manager / Responders/Control Room and their team including deployment of equipment, advice rendered or demands rose. The log is to mention action taken daily (in narrative form) and observations made as per **Annexure-16 & 17**.

IC/ OSC / VESSEL MASTER DAILY LOG

INCIDENT TITLE: ------

DATE:

Incident Severity – Minor / Major / Tier I / Tier II / Tier III

1. RESPONSE RESOURCES AVAILABLE

VESSEL BOAT

EQUIPMENT

2. ACTION INITIATED

CONTAINMENT

EQUP DEPLOYED

POLLUTION COLLECTED AND DISPOSED TODAY

TODAY TONS: -----

TOTAL TONS: -----

3. REPORTING AUTHORITY (DESIGNATION)

9.6 PREPARING OPERATIONS ACCOUNTING AND FINANCING REPORTS:

This will be done by Finance and Legal Department. As one of their members is always in the ECR they would find it easier to take stock of the situation and prepare the accounts and reports on a day-to-day basis.

9.7 PREPARING RELEASES FOR PUBLIC AND PRESS CONFERENCES:

Information to media is to be released by the person identified through respective Media policy of the organization. In the event of non-authorization of any one person, the Media release will be made by CIC or by a person nominated by him after authorization by head of the Organization.

The daily report of actions taken on a particular day as prepared by COC and OSC is to be shared with the person nominated to brief the media. Each press brief is too cleared by CIC prior being provided to media.

While, providing factual details and information to media assists in passing the situational report to public likely to be affected by a spill, it is advisable not to sensualist the information with unwanted figures or actions that could shock or distress the public.

Most of the factual information like precautions required by public to be taken with respect to fishing activity, closure of beaches, demand for beach cleaning volunteers could be disseminated through media.

9.8 BRIEFING LOCAL AND GOVERNMENT OFFICIALS:

Consequent upon releases cleared by Chairman, local and government officials are to be briefed by the PRO or any other person authorized to do so.

10. TERMINATION OF OPERATIONS

10.1. DECIDING FINAL AND OPTIMAL LEVELS OF BEACH CLEAN-UP

The coastal stretches off DPA are varied in terms of ecological sensitivity; with large stretches of mangroves inter spread with sandy beaches and rocky shores. DPA harbor estuary shows differences in physical environment, the degree of exposure to waves and energy levels and currents. Geomorphic features like the terrain greatly influence the distribution and persistence of oil.

While, the first priority would be to stop the ingress of oil onto the coast, still the requirement of coastal or beach cleaning operations cannot be ruled out. The local administration being responsible for shore cleaning activity is to be notified in time about the movement of spill and advised about the strategy to be adopted.

Tactical beach cleaning ops are to be conducted as per the physical properties of the terrain with respect to retention of oil. Operations are to be guided as per OPERATIONAL MANUAL parameter.

10.2. STANDING-DOWN EQUIPMENT, CLEANING, MAINTAINING, AND REPLACING

Once the Pollution Response Operations are over, the equipment and machineries are to be accounted for, consumables are to be accounted for, checked for their serviceability and then stored in their respective places.

All equipment and machineries are to be thoroughly washed with fresh water as per the OEM"s guidelines, necessary maintenance carried out and then equipment is to be secured.

10.3. PREPARING FORMAL DETAILED REPORT

After the operations are complete, the OSC will prepare a detailed report covering all the aspects of the oil spill cleanup, which will include success and failures as well, lesson learnt recommendations about equipment, man power, plans etc. The report will be forwarded to Deputy Conservator for submission to ECT. Detailed report for the incident will be prepared by Head-DPA KANDLA AND OOT VADINAR as per prescribed format.

INVESTIGATION

Every oil pollution incidence is followed by investigation both by the Company as well as Nodal agencies In order to assist such investigations complete and accurate records, as specified below, shall be maintained,

- a. Certificates and records of equipment issued by regulatory authorities,
- b. Log Book showing weather and details of the incidents,
- c. Chronological record of loading / discharging bunkering including agreed plans of such loading / discharging / bunkering,
- d. Brief report on spill including:
 - i. Time,
 - ii. Location,
 - iii. Cause and Type of oil.
- e. Samples of spilled oil shall be taken as per procedures described g) Estimate of amount spilled and the process of such estimation,
- f. Copies of notification & update reports,
- g. Record relating to direction and rate of spread,
- h. Weather reports and recorded weather in log book and
- i. Where possible photographic evidence shall also be collected. Such photographic records shall be identified with date, time and location.

Where any original evidence is demanded by Nodal Authorities, photocopies of such evidence be retained and the concerned authority shall request to certify the same as true copy of the original

10.4 REVIEWING PLANS AND PROCEDURES FROM LESSONS LEARNT:

Contingency Plan being a sequence and layout of dynamic operating procedures and parameters is subject to revision due changes in operational parameters of port, cargo, equipment innovations and changing response strategies. Exercises and real time drills being operational tasks might also necessitate a review of plan to be undertaken to incorporate the observations made, apart from the above mentioned.

Accordingly, a study in detail of observations made during every response operation would be undertaken by CMT with a view to incorporate the observations into the Plan for easy and flaw less implementation.

ROLES AND RESPONSIBILITIES OIL TERMINAL LIMITED (DPA KANDLA AND OOT VADINAR)

DPA KANDLA AND OOT VADINAR has responsibility for dealing with oil spills which occur within the Marine Terminal Local Area.

Responsibility for management of the response remains with DPA KANDLA AND OOT VADINAR unless the slick migrates outside the Local Area or more than 500 meters from the spill source/marine facilities of the company. In the event that the oil migrates to the port area administered by Deendayal Port AUTHORITY, the AUTHORITY will assume responsibility for leading the pollution response.

Should the spill migrate to other areas, or to other areas in addition the Deendayal Port AUTHORITY harbour area, the Coast Guard Monitor will assume the position of On Scene Commander and will direct the response effort. In both cases, DPA KANDLA AND OOT VADINAR will act and deploy their resources as required by the relevant On Scene Commander.

Deendayal Port AUTHORITY (DPA)

The Statutory Port Authority responsible for administering the area embraced by the Deendayal port AUTHORITY limits. The IOC Terminal along with DPA KANDLA AND OOT VADINAR Marine facilities at Vadinar is located within the port limits.

Indian Coast Guard (ICG)

The Indian Coast Guard has a statutory duty to protect the maritime and other national interests of India in the Maritime Zones of India and to prevent and control marine pollution. Coast Guard is also the Central Coordination Authority for marine pollution control in the country. The Indian Coast guard is responsible for implementation and enforcement of the relevant marine pollution laws.

The coast guard will assume the role of On-Scene commander in the event of oil spill exceeding the capability and jurisdiction of DPA (Deendayal Port AUTHORITY)

Gujarat Pollution Control Board

The Gujarat Pollution Control Board is responsible for, and controls, waters up to 5 km from the shoreline. They require to be advised of all pollution incidents.

Gujarat Maritime Board

Gujarat Maritime Board is required to be informed of all pollution incidents; however, DPA KANDLA AND OOT VADINAR facility is not under the jurisdiction of GMB.

Ministry of Environment, Gujarat

The Ministry requires to be informed of all pollution incidents.

Oil Industry Safety Directorate (OISD)

OISD is required to be informed of all oil spill incidents.

Oil Pollution Management cell

Pollution Management Cell (PMC) is the nomenclature used to describe the command-and-control team established for a spill incident within the Marine Terminal Local Area.

The PMC will convene at the MTCB, under the chairmanship of the Head -DPA KANDLA AND OOT VADINAR and will consist of a Management Team and a Support Team.

Nearest Bird Handlers Details:

 Nature Conservation society, Lakota Nature club Jamnagar, Contact no. +919377526667, +919879516990
 "Sir Peter Scott Bird Hospital", Saat Rasta, Jamnagar, Contact No. 7574000108.

11 HEALTH AND SAFETY PLAN

11.1 Introduction

Full account must be taken of the health and safety requirements for all personnel involved in oil spill response activities. The site-Specific Health and safety Plan Assessment Form list site characteristics, site hazards and personnel protective equipment and site facility needs. This plan is intended to act as an aide-memoir to ensure that all applicable health and safety requirements are considered and appropriate action are taken. The applicable requirements noted in the **Company's HSEF Procedures** must also be observed. **Following Section** gives guidance on specific oil spill clean-up tasks and hazards.

11.2. SITE HAZARDS

11.2.1. Bird Handling

Handling or birds must be undertaken by properly trained personnel to ensure the protection of both bird and handler; wild birds have no way of understanding human intentions. Even a greatly weakened bird can inflict serious injury to handlers, especially to their eyes. Open wounds on hands and arms from such injuries can present opportunities for oily contaminants and disease to enter the handler's blood stream.

Handling of oiled birds is usually best left to experts, or to volunteers who have received some training. Chasing and man handling birds puts them under additional stress.

11.2.2. Equipment Required:

- a) thick gloves (able to withstand nasty pecks),
- b) Overalls
- c) Safety footwear
- d) Cardboard Box with lid of a suitable size to give the bird some room for movement
- e) Goggles to protect eyes,
- f) Optional long handled net to help catch bird

11.2.3. Procedures:

- a) Do not let the bird get close to your head, as it may try to peck your eyes.
- b) Catch the bird by hand or with the aid of a long-handled net. Do not put the birds under any more stress than necessary. Only attempt capture if it can be done quickly and efficiently.
- c) Hold the bird with both hands to hold the wings in.
- d) Put the bird in a cardboard box lined with absorbent material (e.g. newspaper), with a lid.
- e) Do not wrap the bird up in anything it may get too hot and too stressed.
- f) Take the bird to a cleaning station as soon as possible. Let them know where and when the bird was caught.
- g) Keep a note of all birds caught and sent to cleaning station. Make a note of species if possible.

11.2.4. Tug & Work Boat Safety

- a) Boat operators must familiarize themselves and passengers with safety features and Equipment on their boats.
- b) Boats must be operated by qualified individuals.
- c) Lifejackets must be worn by personnel on boats.
- d) Use of cold-water immersion suits is particularly critical under conditions of cold stress.
- e) Boats should generally not be used after sunset for oil recovery. If this is required or poses minimal risk, areas of operation should be carefully prescribed, and individual boat operators should maintain a communication schedule with a shore base. Each boat should be fully equipped with appropriate navigation lights.
- f) Distress signals should be carried on all vessels.

- g) Boat operators must keep their supervisors informed of their area of operation, especially when they change their work area (if plans call for a boat to move to another location during a shift, the operator should advise the supervisor of his actual time of departure)
- h) Portable fuel tanks should be filled outside of the boat. All sources of ignition in the area of refuelling should be isolated.

Personnel working in or operating boats should wear appropriate non-slip footwear.

- Fixed ladders or other substantial access/egress should be provided at boat transfer locations from a) low water line to platform.
- Workers should be cautioned about using their arms or legs to fend off during berthing or getting their b) hands, arms, or legs between vessels and docks or fixed structures.

11.2.5. Chemical Hazards

Attach appropriate Material Safety Data Sheets for all hazardous substances likely to be used at a spill site.

11.2.6. Cold Stress

Cold stress can occur among responders as a result of prolonged exposure to low environmental air temperatures or from immersion in low temperature water. It can lead to a number of adverse effects including frostbite, chilblain and hypothermia. This single most important aspect of life-threatening hypothermia is the fall in the deep core temperature of the body.

11.2.7. Drum Handling / Manual Handling

Drum handing at a spill site will primarily involve drums of waste and contaminated clothing. Several types of drums and containers may be used ranging from 25 to 200 litters in size. All drums and containers must be properly labelled. If in doubt as to the contents of a drum - seek advice.

- Manual lifting and moving of drums should be kept to a minimum. A guide to manual handling is as allows: (a) Wear gloves.
 - (b) Assess the weight of the load and get help if it is beyond your capability.
 - (c) Where appropriate, use mechanical aids provided.
 - (d) Size up the job remove any obstructions; note any snags and make sure there is a clear space where the load has to be set down. Ensure that you can see over the load when carrying it.
 - (e) Look out for any splinters, projecting nails or sharp edges or wire.
 - (f) Stand close to the object and with your feet 20 to 30 c apart, place one foot in advance of the other, pointing in the direction you intend to move.
 - (g) Bend your knees to a crouch position, keeping your back straight.
 - (h) Get a firm grip at opposite corners of the load with the palm of the hand and the roots of the fingers, arms as close to the body as possible.
 - (i) Lift with your thing muscles by looking up and straightening your legs.
 - (j) Bend your knees to a crouch position, keeping your back straight.
 - (k) Get a firm grip at opposite corners of the load with the palm of the hand and the roots of the fingers, arms as close to the body as possible.
 - (I) Lift with your thigh muscles by looking up and straightening your legs.

AIN I LIVIPEN	ATORE CE	13103								
Relative	21º	24º	26º	30º	32 <u>⁰</u>	35 <u>°</u>	38º	40º	44º	46º
Humidity										
20%	19º	22º	25⁰	28º	31º	34º	37⁰	41º	45º	49º
40%	20º	24º	26º	30º	34º	39º	*44º	*51º	**58º	**66º
60%	21º	25⁰	28º	32º	38º	*46⁰	**56º	**65		
80%	22º	26º	30º	36º	*45⁰	**58º				
D Heat cram	ns or evha	istion like	alv Hoat	stroko				•		

AIR TEMPERATURE CELSIUS

Heat cramps or exhaustion likely. Heat stroke

12. Response to HNS Incidents

12.1. RESPONSE OPTIONS

In many cases, particularly if the release involves a chemical that evaporates or dissolves rapidly, it will not be possible to physically contain or recover the spilled product from the sea. In these cases, the response options may be limited to monitoring and measures designed to mitigate the potential hazards, for example communication to advise local residents to remain indoors or prohibition of fishing.

Following the identification of the hazards posed by the release, including consideration of the effects of fire and potential reactivity, the response operation must evaluate which techniques can be used. It is important to rapidly establish which response techniques are feasible in order to reduce or if possible, eliminate the impacts of the hazardous substance on humans and the environment.

In most chemical incidents the rapid communication of relevant information, both internal and external to the response activities is likely to be the most important action that response agencies need to carry out. The polluter will, therefore, maintain continuous liaison with the chemical/ HNS manufacturer and repositories of data (such as the French Centre of Documentation, Research and Experimentation, or CEDRE) regarding HNS properties and response and promptly provide such data to the responders.

12.2. MONITORING

Many chemical spills will be difficult or impossible to observe with the naked eye and it is essential that an appropriate monitoring strategy is put in place to ensure the safety of responders and to confirm predictions of the spread and dispersion of the slick. The type of monitoring implemented will depend on the specific properties and hazards posed by the substance involved.

12.2.1 MONITORING GASES IN AIR

It is essential to systematically monitor the concentrations of chemicals in air throughout any incident involving gases or vapors. Key aspects of monitoring include:

• **Oxygen concentrations** any atmosphere having <19.5% oxygen i.e., an oxygen-deficient atmosphere, should be entered only by personnel wearing self-contained breathing apparatus, monitoring is carried out using oxygen cells.

• **Combustible or explosive gas levels** to identify areas where flammable air/fuel mixtures exist; a value below 10% of the Lower Explosive Limit may be considered safe. Typical instruments are combustible gas detectors and explosion meters. Continuous monitoring must be carried out as the situation and the concentration of gas can change rapidly raising the value over 10% LEL.

• **Toxic substances** to identify areas where toxic substances are present and to establish safe outer limits where it is reasonably safe for unprotected personnel. Instruments must be capable of measuring at ppm level and include gas detection tubes, flame ionization detectors, photo- ionization devices, IR trace gas detection (these instruments typically provide only approximate levels) and portable gas chromatographs and portable mass spectrometers (these instruments typically require specialist personnel to operate them).

12.2.2 MONITORING THE WATER COLUMN

Monitoring the concentration of chemicals in the water column typically involves two main techniques:

- Collecting water samples these are then transferred for analysis at fixed or mobile laboratories;
- Use of towed probes a number of monitoring devices can be towed through the water column to establish the extent of a slick and to provide real-time data. Typical measurements include: pH, light absorption, electrical conductivity.

12.2.3 MONITORING SURFACE SLICKS

Thin films on the sea surface can damp capillary waves. A number of techniques have been developed that make use of the altered properties of the sea surface:

• **Side-Looking Airborne Radar** (SLAR) makes use of the reduced intensity of the backscatter and the surface slick appears as a darker area on the SLAR image;

• UV scanners can identify changes in the UV reflectivity of the sea surface;

• **IR scanners** and **Forward-Looking Infrared Imagers** (FLIR) identify changes in the radiation Temperature of the sea surface.

The effectiveness of these techniques differs depending on the properties of the chemical involved and the environmental conditions. Understanding the Available resources and their applicability is a key part of the contingency planning process.

12.2.4 MONITORING SUNKEN SPILLS

When a pool of liquid chemical collects on the seabed, there will be a phase boundary between the chemical and the sea water. It may be possible to use echo sounders to locate this phase boundary and hence to identify the area affected by the spill. Monitoring of the concentration of the spilt substance at different depths may also be useful to delineate the area affected.

12.3 RESPONSE TECHNIQUES

12.3.1 RESPONSE TO GASES AND EVAPORATORS

Plume modeling, air monitoring and defensive strategies such as water sprays are commonly used to respond to gas leaks. When applied as a fine droplet, i.e., as a mist and in calm conditions, they can:

- knock down water soluble gases;
- stop, steer or disperse sparingly soluble or insoluble gas clouds;

• Reduce the risk of fire and explosion in flammable clouds of gases, by cooling hot surfaces, putting out sparks and suppressing flame formation.

When applying water sprays, it is also important to be aware of consequences such as high volume waste streams and, in extreme cases, contributing to the instability of the vessel.

12.3.2 RESPONSE TO FLOATING CHEMICALS

A chemical that floats on the water surface will spread and form a large contact surface with the air. Depending on its vapor pressure, it may evaporate and give rise to a vapor cloud above the slick. Monitoring of air concentrations is important in these situations to assess fire and explosion risks and health risks. The selection of response technique must also take account of these hazards and the overall objective of the response. It is possible to attempt to contain and recover spills of floaters, but only of those substances that evaporate or dissolve slowly i.e., category F substances. Typical techniques involve:

• **Covering the slick with foam** – for flammable substances, this reduces evaporation and hence reduces possible fire and explosion risks (taking care to use the type of foam appropriate to the chemical involved).

It also restricts spread over the water surface and hence can increase the effectiveness of containment and recovery operations. In this case, consideration must be given to the toxicity of the foam to marine life.

• **Application of sorbents** either loose, as mats or in "sausages". As many low viscosity chemical spills rapidly spread to cover a large surface area, these techniques are most applicable if the spread of the chemical can be confined.

• **Bubble curtains** created by releasing compressed air through a perforated hose may be used to contain floating slicks in shallow, slow-flowing waters.

• **Conventional oil spill response booms and skimmers** may be used to contain and recover spills of floating chemicals. The effectiveness of these techniques depends on the physical properties of the substance involved, as the equipment may not be able to deal with the thin films and low viscosity of some floating chemicals. Compatibility of the equipment with the chemical must also be considered.

12.3.3. RESPONSE TO DISSOLVED CHEMICALS

The potential to contain and recover spills of chemicals that dissolve is extremely limited. Response techniques are generally restricted to forecasting their spread, monitoring and mitigation of their effects. In the case of spills in shallow or confined waters, treating agents can include:

- Neutralizing agents;
- Flocculation agents
- Oxidizing agents;
- Reducing agents
- Gelling agents
- Activated carbon; and
- Ion exchangers.

In practice though, the use of these treating agents is often ineffective as the dosage is difficult to estimate and recovery of the substance may be difficult. Curtain barriers may also be used to contain dissolved chemical spills in shallow and almost stagnant waters. Response to sunken chemicals must consider not only the recovery of the chemical itself, but the removal and treatment of contaminated sediments. The principal technique is that of dredging.

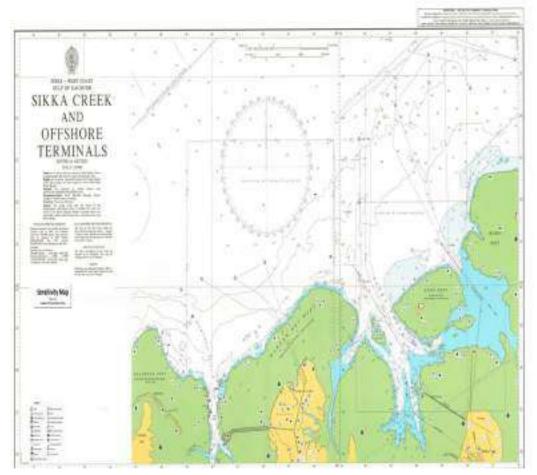
12.4 HNS RESPONSE EQUIPMENT INVENTORY

It is submitted that no HNS being handled at KANDLA. No HNS Inventory held with port however, if at all an importer handling agent has been instructed to maintain required equipment as per MOU/Permission granted for handling.

12.5 DISPOSAL

Before commencing any actions that may lead to the recovery of spilled chemical, it is essential that an appropriate and legal disposal route has been identified for both the recovered chemical and any waste generated. Even temporary storage must take proper account of the physical properties of the chemical and its potential to evaporate or leak. Waste streams may be subject to transportation regulations covering hazardous waste, so relevant national regulations must be identified.

NOTE: It is submitted that no HNS being handled at OOT Vadinar.


PART – III

DATA DIRECTORY

COATAL CHARTS, TIDAL INFORMATION, CURRENTS (RANGES AND STREAMS) PREVAILING WINDS

1.1COASTAL CHART:

REPORTS, MANUALS, MAPS, CHARTS AND INCIDENT LOGS.

A copy of the relevant manual is kept with DPA Office at Vadinar. Maps/charts of creak & the Costal Charts, currents, tidal information prevailing wind are Available with survey section of port.

1.1.1. COASTAL FACILITIES, ACCESS ROADS.

DPA includes jetty area and oil terminal. The distance between these two is about 500 m. These terminals are connected by road as well as by sea.

1.1.2. TIDAL INFORMATION

The dominant tide in the DPA KANDLA AND OOT VADINAR is the semi-diurnal tide with a period of 12 hours and 40 minutes. The following are the particulars of tidal levels related to Chart Datum.

Month	High	n Tide	Low Tide		
Month	Max	Min	Max	Min	
January	5.87	4.11	2.45	0.15	
February	5.89	4.04	2.50	0.29	
March	5.77	3.75	2.35	0.43	
April	5.74	3.79	2.16	0.31	
May	5.72	3.94	2.05	0.32	
June	5.62	4.17	2.19	0.41	
July	5.76	4.37	2.34	0.30	
August	5.90	4.28	2.37	0.22	
September	5.90	4.08	2.28	0.31	
October	5.90	3.89	2.15	0.13	
November	5.84	3.79	2.07	0.16	
December	5.68	3.82	2.29	0.32	

YEAR	Tide (Mtrs.)	
	Max.	Min.
2015	7.27	-0.02
2016	7.27	-0.02
2017	7.19	-0.16
2018	7.25	-0.06
2019	7.25	-0.02

The dominant tide in the DPA KANDLA is the semi-diurnal tide with a period of 4 years 2015-2019 The following are the particulars of tidal levels related to Chart Datum.

1.1.3. CURRENTS:

The currents in DPA and the near shore zones are tide induced with reversal at high and low waters. The current strength ranges from 1.5 to 3 knots.

Current speeds and directions within the Bay and associated tributaries are largely due to the tidal movements and show little variation from non-monsoon to monsoon. The maximum current speed in the outer Bay exceeds 1 m/s and the variation in the water column at any given time is not significant.

Lateral variations in the speed however occur with current in the eastern area being somewhat stronger. The maximum current speeds decrease in the inner creek and are typically around 8.0 m/s, decreasing markedly during neap tide.

As characterized for a tide dominated system, the alongshore components are fairly strong with the dominance of seaward component while cross shore components are relatively weak. Their relative magnitude and directions are indicative of net seaward movement over a tidal cycle though shoreward drift can be significant around the change of tide.

Excursion lengths and Average current speeds observed for the Bay based on the Available drogue trajectories are as per table below:

	WAVE LENGTH PATTERN AT OTP		
YEAR	Significant wave	Maximum wave	
	length	length	
2015	2.20 mt.	3.70 mt.	
2016	2.20 mt.	3.70 mt.	
2017	2.20 mt.	3.70 mt.	
2018	2.20 mt.	3.70 mt.	
2019	2.20 mt.	3.70 mt.	
2020	2.20 mt.	3.70 mt.	

October	6.5
November	6.2
December	6.5
Total / Average	6.4
Tabla 15	

Table 15

1.1.4. WIND:

General direction of wind is from the North to the West Quarter, with seasonal variations as shown below: Seasonal wind Variations

	Wind Speed	Wind Speed		
YEAR	Max.	Avg.		
2015	46 KMPH(July)	9 KMPH		
2016	36 KMPH(June)	9 KMPH		
2017	32 KMPH(July)	9 KMPH		
2018	32 KMPH(April)	9 KMPH		
2019	34 KMPH(July)	9 KMPH		
2020	39 KMPH (JULY)	10 KMPH		

Month	Wind speed max	Wind speed min
IVIOIILII	(Km/hrs.)	(Km/hrs.)
January	28.00	4.00
February	22.00	2.00
March	22.00	2.00
April	22.00	4.00
May	28.00	6.00
June	32.00	8.00
July	38.00	10.00
August	28.00	4.00

September	24.00	4.00
October	14.00	2.00
November	16.00	4.00
December	34.00	4.00
Total/Average	25.66	4.5
	Table 16	

The physical and chemical characteristics of spilled oil change almost immediately when spilled in the marine environment due to evaporation, dispersion, emulsification, dissolution, oxidation, sedimentation and biodegradation. All of these processes that set in together are collectively referred to as oil weathering and decide the final fate of spilled oil and quantities that would need to be removed physically. An uncertainty in a trajectory fore-cast builds over time due to these processes that the spilled oil goes through.

If the oil is persistent and does not vaporize immediately or disperses and comes ashore, then the costs in terms of cleanup, damages and economic loses can be considerable.

1.1.5 POINT SYMBOLS FOR BIOLOGICAL RESOURCES Refer Annexure -12

2. Risk Locations and probable fate of oil

The Following are the Risk Locations near/vicinity of DPA KANDLA, Gujarat

- 1) Mangroves inside / Surrounding Port Area
 - 2) Sathsaida bet, consist of 10 sq. Km mangroves & marshy area.
 - 3) IFFCO Intake
 - 4) Fishermen hutments & Basti & fishing boat parking area north of Dry Dock
 - 5) Salt pans
 - 6) Flamingo flat

The Following are the Risk Locations near/vicinity of DPA OOT VADINAR, Gujarat

- 1) Marine National Park
- 2) Marine Sanctuary
- 3) NAYARA Refinery Intake
- 4) Mangroves
- 5) Salt pans
- 6) Forest Areas

The physical and chemical characteristics of spilled oil change almost immediately when spilled in the marine environment due to evaporation, dispersion, emulsification, dissolution, oxidation, sedimentation and biodegradation. All of these processes that set in together are collectively referred to as oil weathering and decide the final fate of spilled oil and quantities that would need to be removed physically. An uncertainty in a trajectory fore-cast builds over time due to these processes that the spilled oil goes through.

If the oil is persistent and does not vaporize immediately or disperses and comes ashore, then the costs in terms of cleanup, damages and economic loses can be considerable.

OIL THICKNESS AND APPEARANCE OF SLICK:

Oil slicks form very thin films on open water. Depending on the properties of the product, the thickness can range from a tenth of a micron to hundreds of microns. The color of oil film post spreading is a good measure of quantity of oil that may be contained within the slick.

When direct light from the sun contacts a very thin oil film (<0.1 micron; μ), much of the light is reflected back to the observer as gray or silver sheen.

If the film is thicker (0.1 to 3 μ), the light passes through the film and is reflected off the oil-water interface and back to the viewer. The observer will then see a film that can range from rainbow to darker-colored sheens.

For very thick films (> 3 μ), the light is absorbed and the slick appears dark- colored (i.e., black or brown) to the observer. However, the viewer can no longer deter- mine film thickness based on color. If the slick is dark-colored, the observer cannot tell whether the film is 3 μ or 100 μ thick.

Appearance	Thickness
Silver Sheen	0.0001mm
Rainbow sheen	0.003 mm
Light brown/ Black slick	0.1 mm
Dark brown/ Black slick	more than 1 mm

In order to quantify oil thickness, the following is used as guidelines

To determine an approximate quantity of spilled oil, the following formula is used: L (Length of slick) meters X W (Width) X <u>Thickness (mm)</u> = Cubic meters100

The extent of spread in terms of length and breadth along with % of area showing a particular color as per thickness can be used for calculation of quantity of spill through spill calculation software. Calculation of spill quantity as per slick characteristics are placed at **Annexure-12**

3. Shoreline Resources for priority Protection Held At DPA KANDLA AND OOT VADINAR:

ANTI – POLLUTION RESOURCES (Local Area) DPA KANDLA AND OOT VADINAR are placed at Annexure-7&19

3.1 LIST OF REFINERIES

Refer Annexure -8

4. Shoreline Types:

SHORELINE TYPES AND RANKING

Vulnerability index of shores in order of increasing vulnerability to oil spill damage as per Gundlach and Hayes 1978

1. Exposed rocky headlands	Wave reflection keeps most of the oil offshore. No cleanup necessary.
2. Eroding wave- cut platforms	Most oil removed by natural processes within wave swept weeks.
	Oil does not usually penetrate into the sediment, facilitating mechanical removal if
3.Fine-grained sand beaches	necessary. Otherwise, oil may persist several months. (Some evidence suggests
	that penetration can occur)
4. Coarse-grained beaches	Oil may sink and/or be buried rapidly, making clean-up difficult. Under moderate to
	high-energy condition, oil will be removed naturally from up difficult. Under
	moderate to high-energy conditions, oil will be removed naturally from most of the

be	ach face. Most oil will not adhere to, nor penetrate into, the Compacted tidal		
fla	t. Clean-up is usually unnecessary		
5. Mixed sand and gravel beaches Oil may penetrate the beach rapidly and become buried. Under moderate to low			
energy conditions, oil may persist	for years.		
6. Gravel beaches same as above. Cle	ean-up should concentrate on high-tide/swash area. A solid asphalt pavement		
may form under heavy oil accumu	lations.		
7. Sheltered rocky coasts	Areas of reduced wave action. Oil may persist for		
8. Sheltered tidal flats	Concentration is very heavy.		
	Areas of great biological activity and low wave Most productive of aquatic		
	environments. Oil may persist for years. Cleaning of salt marshes by burning or		
	cutting should be undertaken only if heavily soiled. Protection of these		
9. Salt marshes/mangroves	environments by booms or absorbing material should receive first priority		

5. Sea Zones and Response Strategies:

Within the scope of this Plan, a response action required to be mounted could be at any of these locations (i) Sea or channel, incident due collision etc. during passage,

- (ii) Close shore due grounding or stranding,
- (iii) Alongside at jetty or at the terminal during cargo operations.

Notwithstanding the above locations, it is possible that an eventuality occurring at sea like a collision or mechanical failure could lead to a situation where the consequences would be felt in some other location at a coastal location.

6. Shorelines Zones and Clean-up Strategies:

A number of shoreline response strategies are Available as per table below, but shorelines should be assessed so see whether these are suitable. This will depend on:

- Rate and likelihood of natural cleaning
- Access for personnel and machinery
- Nature and distribution of the Oil / HNS
- Shoreline character
- Availability of personnel and machinery
- Safety issues
- Environmental sensitivity to Oil / HNS and cleanup methods.

		PRIMARY	CLEANUP			FINAL CLEANUP						
	Pumping/ skimming	Mechanic al removal	Manual removal	Natural recovery	Comments	Low pressure flushing	High Pressure washing/ Sand blasting	Dispersan ts	Natural organic sorbents	Batch recovery	Natural recovery	Comments
Rocks, Boulders and artificial structures	V	NA	V	+	Poor access may prevent pumping / skimming. Exposed / remote shorelines best left to natrual recovery	NA	V	+	+	NA	V	Avoid excessive abrasion of rocks / artificial structures. Cleanup of boulders difficult and often gives poor results.
Cobbles, Pebbles and shingle	V	x	V	+	Exposed / remote shorelines bestg left to natural recovery	V	X	+	+	+	+	If load bearing character good, consider pushing oiled material to surf zone to enhance natural recovery
Sand	V	+	V	+	Heavy equipment only applicable on firm beaches	V	x	+	NA	+	+	Solid oil can be recovered using beach cleaning machines. Enhance natural recovery by ploughing / harrowing
Mud flats marshes and mangroves	+	x	+	V	Operation preferably carried out on the water from small, shallow drought vessels.	+	x	x	+	NA	V	Operations should preferably be carried out on the water from small, shallow-drought vessels.

Table : Application of techniques to different shoreline types

V:Viable

+ = Possibly useful

X = Not recommended

NA : Not Appicable

7. Oil and Waste Storage / Disposal sites:

An efficient and monitored disposal of waste includes immediate classification, segregation, packaging and labeling at source. List of Approved Recyclers –Placed at Annexure -23

	Packaging	Storage Capacity (m ³⁾
ON WATER	On board Storage	100 to >1,000
	Barges	10 to 10000
	Flexible / towable bladders or tanks	500 to 15000
SHORELINE	Plastic bags or sacks	0.25 to 15,000
	Super sacks	0.5 to 2.5
	Barrels or drums	~0.2
	Portable tanks	1 to 5
	Skips or dumpsters	10 to 40
	Lined pits	Up to 200
	Vacuum trucks	7.5 to 20

HW: Hazardous Waste, MTA: Metric Tons per Annum, TSDF: Treatment, Storage and Disposal Facility

WASTE	PRIMARY OPTION	SECONDARY OPTION	ALTERNATE OPTION
Fresh Oil	Refining	Fuel Blending	Ex Situ burning
Weathered	Fuel blending	Land Treatment	Landfill
Emulsions	Fuel Blending	Land Treatment	Landfill
Hydraulic Fuels	Refining		
Oil debris	Incineration	Open burning	Landfill
Oily PPE	Incineration	Landfill	
Oily Sand / Gravel	Ex situ burning	Land treatment	Landfill
Oily sorbents	Fuel blending	Incineration	Landfill
Oily Waste water	Electro coagulation treatment		
Animal carcasses	For research	Incineration	
Domestic waste	Incineration	Landfill	
Non oily debris	Incineration	Landfill	
Pallets	Recycle / reuse	Open burning	Landfill
Paper board	Recycle / reuse	Open burning	Landfill
Drums	Recycle / reuse	Landfill	
Hazardous wastes	Social handling, storage treatment		

WASTE DISPOSAL OPTIONS

8. SENSITIVITY MAPS/CHARTS.

The Gulf abounds in marine wealth and is considered as one of the biologically richest marine habitats along the west coast of India. It is endowed with a great diversity of natural ecosystems, of which the major systems are salt pans, intertidal zones, marine algae (seaweeds), sea grass and sand dunes, mangroves, coral reefs, creeks, and Open Ocean. The Risk Assessment Studies for Marine Oil Spill for Jetties and SPMs and sensitive mapping of (Gulf of Kutch) has been carried out by NAYARA Energy Limited, Vadinar recently in February 2024 through Environ Software Pvt. Ltd., and is placed as an **Annexure -26**.

B. LIST OF EQUIPMENT AND MANPOWER REQUIREMENT

1) AUXILIARY EQUIPMENT:

- a) OSR DUMP BARGE: ANURADHA
- b) Harbor Tugs
- c) Pilot Vessels, launches and others ReferAnnexure-21

2) SUPPORT EQUIPMENT:

- a) Computer and printer with internet
- b) Walkie-talkie Sets
- c) Telephone Lines
- d) Mobile Sets

3) SOURCES OF MANPOWER

In the event of oil spill, Traffic, Mechanical as well as Civil department of DPA shall provide required facility with regard to catering, housing, transportation, field sanitation and shelter etc.

The Following are the Sources of Manpower to combat any oil spill incident in DPA KANDLA AND OOT VADINAR:

- A. OSR Manager
- B. OSR Operational Managers
- C. OSR responders
- **D.** DPA Fire Brigade Department

A: OSR Manpower: Following qualified OSR man power are presently available at DPA Kandla & OOT Vadinar:

- 1. IMO Level III
- 2. IMO Level -II
- 3. IMO Level -I

ReferAnnexure-23 & 24

4) LOCAL AND NATIONAL GOVT. CONTACTS:

Refer Annexure-3

5) CONTACT DETAILS OF LOCAL ADMINISTRATION.

Refer Annexure-18

6) CONTACT DETAILS OF EXPERTS AND ADVISORS Refer Annexure- 01

ANNEXURE -1 (Page-77, Refer Para 6)

CONTACT DETAILS OF EXPERTS AND ADVISORS:

The Management group will seek assistance from experts indicated in the following:

Name of Body	Telephone No.	Fax
Nautical Advisor	022-2613651-54	9122-22613655
DG Shipping, Mumbai	022-22613651-54,	22-22613655
	022-226131156	
Indian Register of Shipping	022-30519400	022-25703611
IIT- Gujarat	079 2395 2800	022-25723480
Cyclone Detection Radar	022-22150431/	-
	22174707	
Area Cyclone Warning Centre (ACWC)-	022-22150431	022-22160824
Colaba, Mumbai		
Ministry of Environment and Forest	011-24360721,	011-24362746
(MOEF)	011-24361896	
The National Environmental Engineering &	0712-2249999/66	0712-2244900
Research Institute (NEERI)		
Directorate of Maharashtra Fire Services	022-26670438/39	022-266600287
Ministry of Petroleum & Natural Gas	011-23387404	011-23383100
National Institute of Ocean Technology	044-667893300	044-22460275/
(NIOT)		22460645
National Ship Design and Research Centre	07386677846	
Department of Explosives	0712-2510248	
	022-27575946	
	27575946,27564941	
Inspectorate Dock Safety, Mumbai	022-22692180/	022-22613391
	56565511/56565558	
	9757222853	
GPCB, GUJRAT	079 2323 2152	079 2323 2156
GPCB, JMNAGAR	0288 2752366	0288 2753540
Meteorological Observatory, Ahmedabad	079-22865165	22865449

ANNEXURE-**2** (Refer 5.3, Page 40) <u>LIST OF ADDITIONAL RESOURCES AND INTERNATIONAL</u> OSROs

1. SADHAV Shipping LTD.

Oil Spill Response Unit, 618, Laxmi Plaza New Link Road, Andheri (West) Mumbai-400053 Tel- 022-400053, Fax-022-40003366. Mail- <u>Shipping@SADHAV.com</u>. Web - www.SADHAV.com

2. Australian Marine Oil Spill Centre

PO Box 305 Victoria 3214 Australia Tel + 61 3 5272 1555 Fax + 61 3 5272 1839 Mail: <u>amose@amosc.com.au</u> Web: <u>http://www.aip.com.au</u>

3. Fast Oil Spill Team

C/o PIM 40 G 23 Tour Elf 92078 Paris- La Defense Cedex France Tel: + 33 1 4744 5636 Fax : + 33 1 4744 2677 Mail : <u>giefost@club-internet.fr</u>

4. Oil Spill Response Ltd

Oil Spill Services Centre Lower William Street Northam Southampton SOI 1 QE, UK Tel: + 44 1703 331 551 Fax: + 44 1703 331 972 Mail: <u>osrl@osrl.co.uk</u> Web: <u>http://www.oilsillresponse.com</u>

5. Petroleum association of Japan

Oil Spill response Department Keidanren Building 9-4, 1 – Chome, Ohtemachi Chiyoda Ku, Tokyo 100, Japan Tel: + 81 3 3279 3819 Fax: + 81 3 3242 5688 Mail: <u>mail@pcs.gr.ip</u>Web :<u>http://www.pcs.gr.ip</u>

ANNEXURE-3 (Ref Para-4 Page-77)

LOCAL AND NATIONAL GOVT. CONTACTS:

- The Commander Coast Guard Region (North West) Gandhinagar, Gujarat Tel 079 23243315, 23243316 Fax: 079 23243305 Email ID: rhq-nw@indiancoastguard.nic.in
- The Commander Coast Guard Dist. HQ -15,Okha Tel -02892262260, 61223421
 Email ID: cgs-okh@indiancoast.nic.in
- The Commanding Officer, Indian Coast Guard Station, Vadinar. Tel 02833256333 Email ID: vdr@indiancoastguard.nic.in
- 4. Coast Guard Pollution Response Team (NW) Tel- 079 23243315, 23243316
 Ops- 079 23243264, 3283,3292
 Fax 079 23243305
 EmailID-prt-nw@indiancoastguard.nic.in

2. FISHERIES

Nature Conservation society, Lakota Nature club Jamnagar, Contact no. +919377526667, +919879516990

3. STATE POLLUTION CONTROL BOARD – REGIONAL OFFICES

Sardar Patel Commercial Complex, Rameshwar Nagar Kasturba Gandhi Vikas Gruh Marg, Bedi Bandar Road Jamnagar- 361 008 Tel-(0288) 2752366

CONTACT DETAILS OF STATE GOVERNMENT

DEPARTMENT	DESIGNATION	TELEPHONE	FAX
Gujarat Maritime	Chairman GMB	079-23234696	23234703
board, Gandhinagar	Chief Engineer	079-23234699	23244132
	Traffic manager	079-23246726	23234705
	Dy Secretary Control Room GBM	079-23234706	23234706
	Nautical Officer	079-23234716	23234716
	Officer on Special duty	079-23234698	23240274
Forest & Environment	Principal Chief Conservator of Forests	079-2354100	
	Director Environment, Govt. of Gujarat Gandhinagar	079-23251062	23252156

CONTACT DETAILS OF PORTS

NAME OF PORT	DESIGNATION	TELEPHONE	FAX
Okha	Port officer	02892-262008	262002
Vadinar	Chief Operation	02882573001	
	Manager	9819999227	
Bedi Port	Port Supervisor	0288-2755207	
Sikka Port	Port Supervisor	0288-2344230	
Salaya Port	Port Supervisor	02833-285526	
Jakhau Port	Traffic Inspector	02834-223033	230033
Sangchi Port	Port Officer	02831-287233	274115
Kandla Port	Dy Conservator	02836-220235	02836-233585
	VTS GOK	02836-270110	02836-270110
	Harbor Master	02836-270624	270427
	Signal Station Port Officer	02836-270194	270624
Old Port Mundra GMB	Traffic Inspector	02838-222136	222136
Mandvi Port GMB	Port Officer	02834-230033	230033
Tuna Port	Superintendent	02836-299510	271465

CONTACT DETAILS OF OHA

NAME	DESIGNATION	TELEPHONE	FAX
Vadinar			
IOCL	CGM, IOCL	02833-256464	256543
	Manager Marine	07894407768	
Nayara energy	Head VOTL	09909908611	
RIL	Head Security	0288-4011911	4010000,4011253
BORL	Vice President	02833-	256499
		256499,08238069222	
	Port Control Room	9726701985,07069073711	
HPCL-MITTAL,	DGM Pipe line	02838-271050	271050
Mundra			
APSEZL, Mundra	Marine Services	02838-	02838-255110
		255671,9825228673	

DISTRICT ADMINISTRATION

OFFICE	DESIGNATION	TELEPHONE	FAX
Devbhoomi-Dwarka	District Collector & District Magistrate	02833 <mark>232803,</mark>	232102
Jamnagar	Office of the Collector	0288-2555869	2555869
Kachchh	District Collector	02832-252347	02832-250020
Morvi	District Collector	02822-240701	02822-243703

ANNEXURE-4

(Page-36,41, Ref Para-4.2,5.6)

WEEKLY MAINTENANCE / TRAINING PROGRAMME, DPA

Date	Event of the Day	Duty Staff
	Tool Box Meeting	
Monday	General cleaning and maintenance of equipment	
	Training/Starting of Power pack and DBD Skimmer	
	Lecture/Discussion on HSE	
	Tool Box Meeting	
Tuesday	General cleaning and maintenance of equipment	
	Training/Starting of Spate 75 pump and Mini Max skimmer	
	Lecture/Discussion on OSD	
	Tool Box Meeting	
Wednesday	General cleaning and maintenance of equipment	
	Training/Power pack & Terminator Skimmer and	
	Discussion on Firefighting appliances	
	Tool Box Meeting	
Thursday	General cleaning and maintenance of equipment	
	Training and Maintenance of Equipment -Onboard OSR Dumb barge	
	Anuradha. OSD pump and spraying system	
	Training/Instruction on OPRC IMO Level I	
	Tool Box Meeting	
Friday	General cleaning and maintenance of equipment	
	Training/Ro Boom, Anchor and anchor chain	
	Discussion on Booms/Skimmers	
	Tool Box Meeting.	
Saturday	General cleaning and maintenance of equipment	
	Training/Maintenance of Skimmer Disc/brush	
	Davit and OSD back pack sprayer.	
	Discussion on safety of Men and Materials during	
	loading/unloading of OSR Equipment/items	

ANNEXURE - 5 (Refer Para-8.4, Page-57)

MEDIA COMMUNICATIONS GUIDELINES

The degree of interest from the press in a specific oil pollution incident is unpredictable but normally closely related to the number of other news items at the time of the incident. Experience shows that even quite extensive pollution does not always attract the attention from the media, while minor, rather insignificant pollution can create a media storm when there is little else to report.

The media can be an effective means of ensuring that the public is kept informed of the incident, its effects and what is being done. Therefore, proper attention to the media and providing the correct information is very important.

The responsibilities of First Responders do not include dealing with the media. Though, it is advisable to refer all and any questions to the media liaison officer identified through the Contingency Plan, still the response leaders on all levels should be prepared to answer questions from the press because of media's persistence for news.

The lesson to be learned is that - unless otherwise instructed, it should always be remembered that even precise information can be misinterpreted or misunderstood. It is therefore recommended to obtain the name and telephone number of members of the press who have received information in order to verify or correct wrong news stories based on misunderstood information.

The basic questions from the press are likely to be:

- What happened?
- Why did it happen?
- What are the measures being taken by the authorities with respect to the pollution?
- What is being done to prevent such an incident happening again?

How to deal with these approaches is a matter of experience but the following guidelines can be used by First Responders:

- Tell the truth. If there is something you do not know, then say so to Avoid getting chased by the press,
- comment only about your area of responsibility and do not speculate on other topics, avoid offering opinions,
- Emphasize the positive points of the operation like outcome of operations, objectives going to be achieved etc.,
- Never make assumptions, your information must be verified and solid before released,
- Do not offer a personal opinion,
- Beware of language (e.g. it is better to say that two ships collided than one crashed

into the other if it is not clear which was at fault),

- Be polite, patient and never get personal or sarcastic (you will normally be treated in the same way you treat a person and aggressive behavior from your side can cause you a lot of unnecessary problems),
- Insist that the press observe local safety regulations.

ANNEXURE -6 (Refer 1.3.1Page -20)

BROAD CLASSIFICATION OF OILS AS PER MARPOL 73/78

	Gasoline blending
Asphalt solutions	S
Blending stocks	Alkylates- fuel
Roofers flux	Reformates
Straight run residue	Polymer - fuel
Clarified	Casing head (natural)
Crude oil	Automotive
Mixtures containing crude oil	Aviation
Diesel oil	straight run
	Fuel oil no.1
Fuel no. 4,5 and 6	(Kerosene)
Residual fuel oil	Fuel oil no. 1-D
Road oil	Fuel oil no. 2
	Jet fuels
Transformer oil	Fuel oil no. 2-D
Aromatic oil (excluding vegetable oil)	
Lubricating oils and blending stocks	JP-1 (Kerosene)
Mineral oil	JP- 3, 4
	JP–5 (Kerosene,
Motor oil	heavy)
	naphtha
Penetrating oil	Mineral spirit
Spindle oil	
Turbine oil	Solvent
	Petroleum
Straight run	Heart cut distillate oil

ANNEXURE-7

(Refer Para-3, Page -74)

ANTI – POLLUTION F	-				
Equipment List as per NOSDCP 2018	List of Equipment available at DPA Kandla	List of Equipment available at DPA OOT Vadinar	Total List of Equipment available with DPA	Requirement	Shortfa II/ Excess (if any)
Inflatable Booms	1200	2000	3200 Mtrs.	1000 Mtrs.	+2200
Fence boom (Material: Neoprene rubber/Neoprene rubber/ PU/ PV)	200	Nil	200 Mtrs.	1000 mtrs	-800
Skimmer (20TPH 50% weir type, 50vo Brush type)	02 Nos.	03 Nos.	05 Nos.	06 Nos.	-01
OSD Applicator with Spray arms type along with 02 Nozzles system and 02 hand lancers (No')	03 Nos.	05 Nos	08 Nos.	07 Nos.	+01
Oil Spill Dispersant (Chemical Dispersant) (liters)	5000 ltrs.	3000 Ltrs.	8000 Ltrs.	5000 Ltrs.	+3000 Ltrs.
Bio-remediation (liters)	Nil	Nil	Nil	3000 Ltrs.	-3000 Ltrs.
Flex Barge 10 Tons (no.)	5 Nos.	4 Nos.	09 Nos.	07 Nos.	+2 Nos.
Weir Boom 100 meters with minimum 02 weirs with power pack and accessories (no's) or integrated containment cum recovery system with power pack and accessories (no's	Nil	02 Nos.	02 Nos.	03 Nos.	-1 Nos.
Sorbent boom size min. 5 inch Dia, min. length 5 feet (no')	Nil	500 Nos.	500 Nos.	700 Nos.	-200 Nos.
Sorbent Pads min. 20 inch x 20 inch (no.)	Nil	2000 Nos.	2000 Nos.	2200 Nos.	-200 Nos.
Mini Vacuum pumps	01 Nos.	04 Nos.	05 Nos.	07 Nos.	-02 Nos.
Portable Oil temporary storage facility capacity 10 m3	Nil	05 Nos.	05Nos.	08 Nos.	-03 Nos.
200 meters Shoreline sealing boom with power pack and accessories (material: Rubber/Neoprene rubber) (nos.)	Nil	Nil	Nil	04 Nos.	-04 Nos.
VOC Portable Monitor	Nil	Nil	Nil	02 Nos.	-02 Nos.
Level A protection: Positive pressure, full faces	Nil	05 Nos.	05 Nos.	08 Nos.	-03 Nos.

ANTI – POLLUTION RESOURCES (Local Area) DPA KANDLA AND OOT VADINAR

Prepared By

Sadhav Shipping Ltd.

escape SCBA; Totally encapsulated					
Totally encapsulated					
chemical and vapor protective					
suit;					
Inner and outer chemical					
resistant gloves; and					
.Disposable protective suit					
gloves, and boots					
	Nil	Nil	Nil	16 Nos.	-16
Level B protection:					Nos.
. Positive pressure, full face					
piece self-contained breathing					
apparatus (SCBA) or posiWe					
pressure supplied air					
respirator with escape SCBA;					
. Inner and outer chemical-					
resistant gloves;					
. Face shield;					
. Hooded chemical					
resisantdathing;					
.overall; and					
. Outer chemical-resistant					
boot.					
Level C protection:	10 Nos.	20 Nos.	30 Nos.	Nil	30
.Full face air purifying					
respirators;				Nil	30
.inner and outer chemical-				05	25
resistant gloves;				Nil	30
' Hard hat;				Nil	30
' Escape mask; and					
. disposable					
chemical{resistant outer					
boots"					
OSR Vessels					
Work Boats	2	2	4	4	NIL
Tugs	4	4	8	4	+4

ANNEXURE – 8 (Refer Para-3.6,page-34)

LIST OF REFINERIES

NEARBY AND IN GUJRAT STATE

Reliance Industries Ltd. (Domestic Tariff Area) (RIL-DTA) (Private Sector). JAMNAGAR (Gujarat) Reliance Industries Limited – SEZ (RIL-SEZ) (Private Sector). Jamnagar Nayara Oil Limited (EOL) (Private Sector), Vadinar, Gujarat

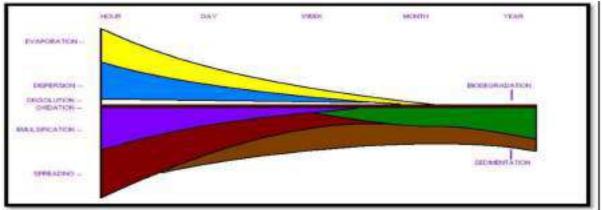
REFINERIES AVAILABLE IN INDIA:

Guwahati Refinery (Assam) – Indian Oil Corporation Limited (IOCL) Barauni Refinery (Bihar) - Indian Oil Corporation Limited (IOCL) Koyali Refinery (Gujarat) - Indian Oil Corporation Limited (IOCL) Haldia Refinery (West Bengal) - Indian Oil Corporation Limited (IOCL) Mathura Refinery (Uttar Pradesh) - Indian Oil Corporation Limited (IOCL) Digboi Refinery (Assam) – Indian Oil Corporation Ltd (IOCL) Panipat Refinery (Haryana) - Indian Oil Corporation Ltd (IOCL) Bongaigaon Refinery (Assam) – Indian Oil Corporation Limited (IOCL) Visakha Refinery (Andhra Pradesh)- Hindustan Petroleum Corporation Limited (HPCL) Kochi Refinery (Kerala) – Bharat Petroleum Corporation Limited (BPCL) Manali Refinery (Tamil Nadu) – Chennai Petroleum Corporation Ltd (CPCL) Basin Refinery (Nagapattinam-Tamil Nadu) – Chennai Petroleum Cauvery Corporation (CPCL) NumaligarhRefinery (Assam) - Numaligarh Refinery Limited (NRL) Mangolare Refinery (Karnataka) – Manglore Refinery Limited (MRL) Tatipaka Refinery (Andhra Pradesh) – Oil & Natural Gas Corporation Limited (ONGC) Reliance Industries LTD. (Domestic Tariff Area) (RIL-DTA) (Private Sector). JAMNAGAR (Gujarat) Reliance Industries Limited - SEZ (RIL-SEZ) (Private Sector). Jamnagar NAYARA Oil Limited (EOL) (Private Sector), Vadinar, Gujarat Bina Refinery – Bharat Oman Refineries Limited (BORL) (Madhya Pradesh) Guru Gobind Singh Refinery – HPCL – Mittal Energy Limited (HMEL), Bhatinda (Punjab)

ANNEXURE-9 (Refer Para-2.2, Page-25)

CHARASTRISTICS OF DIFFERENT CLASS OF OILS

OIL TYPE	DENSITY	Viscosity	Pour point C	Flash point C
	(kg/l) At 15C	mPa at 20C		
Crude oil	0.8- 0.95	1-100	+10 to – 35	Variable
Gasoline	0.70 - 0.78	0.5	Na	Less than 0
Kerosene	0.8	2	Less than – 40	38-60
Jet fuel	0.8	1.5-2	Less than – 40	38-60
Diesel oil	0.85	5	-5 to -30	More than 55
Light FO IFO60	0.9	60 at 50 C	+ 50 to -20	More than 60
Medium FO IFO 180	0.9	180 at 50 C	+ 30 to – 20	More than 60
HeAvgy FO IFO 380	0.99	380 at 50 C	+ 30 to – 20	More than 60



ANNEXURE-10 (Refer Para-2.9,Page-29)

WEATHERING PROCESSES AND TIME SCALES

Process		Importance	Time frame
Evaporation	Conversion of liquid to Gaseous state. Lighter factions are lost first	Major process accounting for loss of oil. At 15 C gasoline will evaporate completely over a 2 day period, 80% of diesel fuel and 40% of light crude , 20% of heavy crude and about 5- 10% Of Bunker C fuel.	< 5 days
Emulsification or mousse formation	Small water droplets get mixed into liquid oil. Water content will reach 50-80%	Will increase the amount of pollutant to be Recovered by a factor of 2-4.	Onset may be delayed but emulsification process will start Rapidly.
Natural	Breakup of an oil sleek	Removes oil from water surface	< 5 days
dispersion	into small droplets		
Dissolution	Mixing of soluble oil components into water	Water soluble components are most toxic	< 5 days
Biodegradation	Breaking of oil by microbes into smaller compounds and finally to water and carbon dioxide	Rate depends on oil type, temperature, nutrients, oxygen and amount of oil	Weeks to months
Formation of tar balls	Breakup of heavy crudes and refined oils into small patches with long persistence	Hard to detect	Days to weeks

Shows schematic diagram of weathering processes with time

The physical and chemical changes, which spilled oil undergo are sometimes collectively known as weathering. However, the main processes are as follows:

2.9.1 Spreading: -Open out (something) so as to extend its surface area, width, or length. Oil spreads out and is pushed across the water by wind and currents.

2.9.2 Evaporation: -The process of turning from liquid into vapour. Oil evaporates very slowly. Oil doesn't mix with water, and most oils are less dense than water.

2.9.3 Photo-oxidation

This process occurring due changes to chemical and physical properties of spilled oil and sets in because of exposure to sunlight and is limited to the surface of oil, resulting in a thin, crusty" skin" on slicks and tar balls. The "skinning" of oil, limits evaporation because the lighter oil components can no longer diffuse through the surface of the slick. Photo-oxidation may increase the ease of emulsification and is considered a long-term weathering process taking weeks to months.

2.9.4 Dispersion: -The action or process of distributing things (oil) over a wide area.

2.9.5 Emulsification: -An emulsion is a mixture of two or more liquids that are normally immiscible

2.9.6 Dissolution: -Water soluble compounds in an oil may dissolve into the surrounding water. ... Most crude oils and all fuel oils contain relatively small proportions of these compounds making dissolution one of the less significant processes.

2.9.7 Oxidation: -Oxidation occurs when oil contacts the water and oxygen combine with the oil to produce water-soluble compounds. This process affects oil slicks mostly around their edges.

2.9.8 Sedimentation: - The process of settling or being deposited as a sediment.

2.9.9 Biodegradation: -Biodegradation is the process by which organic substances are

decomposed by micro-organisms into simpler substances such as carbon dioxide, water and ammonia. The processes of spreading, evaporation, dispersion, emulsification and dissolution are most

important during the early stages of a spill whilst oxidation, sedimentation and

Biodegradation are long-term processes, which determine the ultimate fate of oil.

Emulsification

Mousse begins to form when 19% of the oil has evaporated

Wind and wave conditions

Wind speed – 10 knots from 245 degrees

Wave height – computed from wind speed, unlimited fetch (default)

Water properties

Prepared By Sadhav Shipping Ltd.

Temperature – 30 degree C Salinity 32ppt Sediment load – 500g/ m3 (muddy river) Current – 3.0 knots towards 80 degree

ANNEXURE-11 (Refer Para-2.1.3, Page-23)

CALCULATION OF SPILL QUANTITY AS PER SLICK CHARACTERISTICS

The quantity of oil spilled can be calculated in terms of total rapture and also for pin hole leaks using software taking into account the diameter of hole and flow rate. The formula for total rapture calculation is:

Volume of Spill = 2 Pie X Radius of Pipeline X Length of Pipeline X Flow Volume

SPILL AREA AND OIL VOLUME		Average Slick Length Average Slick Width		2.5 0.6	Km Km	TOTAL SPILL AREA	1,500,000 1.50	
OIL TYPE	APPEARANCE	THICKNESS (mm)	LOADING m ³ / Km ²	COVER %		AREA Km²	VOLUME m ³	
Sheen	Silvery	0.0001	0.1	40%	0.60		0.060	1
Sheen	Rainbow	0.0003	0.3	30%		0.45	0.135	1
Slick	Yellow/Brown	0.01	10	20%	10	0.30	3.000	
Crude/Fuel Oil	Black/Brown	0.1	100	10%	-	0.15	15.000	
Mousse Brown Ora	Brown Orange	1.0	1000	0%		0.00	0.000	Ĩ
		×		100%	370 335	1.50	, //	
			9 P.		TOTAL OIL VOLUME	18,195	٦	
						18.20	1	

ANNEXURE-12 (Refer Para 1.1.5, Page-70)

POINT SYMBOLS FOR BIOLOGICAL RESOURCES

ESI HUMAN USE RESOURCE SYMBOLS

Annexure-13 (Refer Para-3.5.1, Page-33)

PORT- VESSEL POLLUTION EMERGENCY INTERPHASE

ACTION	RESPONSIBILITY
IMMEDIATE ACTION	
Sounding Emergency Alarm	Person noticing spill
Initiating Vessel Pollution Response Plan	Duty officer
INITIAL RESPONSE	
Suspend cargo ops	Ch. Eng./ Duty officer
	Master / Duty officer/Ch.
Information to Terminal/Port Control / Master	Engg.
Call crew to Pollution Response Positions	Master/ Duty officer
SECONDARY RESPONSE	
Location of source of spill	
Assess & consider -	Chief officer
Fire risk & manning of fire positions	Master
Stopping of air intake	Chief Engineer
Transfer of bunker to empty or slack tank,	
shore /barge	Master/ Ch. Engineer
Prepare detailed report of spill and actions	Master/ Ch. Officer
Inform agent, owners and PI club	Master/ Ch. officer
FURTHER RESPONSE	
	Master – Port
Call in external assistance to locate spill (if below waterline)	
Consider stability of vessel	Master/ Ch. officer
Follow directions of response authority	Master

Annexure-14

(Refer Para-5.2, Page-38)

Annexure-15 (Refer Para-2.5.3 &8.6, page26&57)

NET ENVIRONMENTAL BENEFIT ANALYSIS (NEBA)

Detailed Report of NEBA carried out by National Institute of Oceanography is enclosed

Sensitive areas in an around DPA KANDLA AND OOT VADINAR

PORTS OF NAYARA Energy, IOCL, NAYARA and Reliance

TRANSHIPMENT FACILITIES AT Jetty A & B at OOT Vadinar

SPM The sensitive areas likely to be threatened in case of oil spill are as follows. Marine National Park Mangrove area Salt pans Forest area NAYARA refinery intake Mangroves Area

MOVEMENT OF OIL:

Spreading and advection are the two major processes that transport oil on water. For small spills (<100 barrels), the spreading process is complete within the first hour of the release, whereas for bigger spills the spreading process could continue for larger durations of time.

Winds, currents, and large-scale turbulence (mixing) are advection mechanisms that transport oil to large distances. For calculation purposes, the oil movement is estimated as the vector sum of the wind drift (using 3% of the wind speed) and 100% of the surface current.

Spreading:

The spreading process occurs quickly and for most spills, mostly within the first hour. In open waters, winds, currents, and turbulence act on and move the oil.

Spreading occurs faster for lighter and for less viscous oils in warm water temperatures and for warm oils. The slick does not spread uniformly but will often have a thick part surrounded by a larger, but thinner sheen. About 90% of the oil is found in 10% of the slick area. A spill is likely to keep spreading until a thickness of about 0.1 mm is reached. At this stage breaking up of slick into windrows is an important source of further spreading.

Vulnerable Areas in case of a spillage

Spill Volume (tones)	SW monsoon	NE monsoon	Post monsoon
700 crudes	-	Marine National Park, NAYARA & IOCL Transshipment Facility at OOT Vadinar Jetty A &B, Mangroves area, Salt Pans, NAYARA Intake.	-
25000 crudes	-	Marine National Park, NAYARA & IOCL Transshipment Facility at OOT Vadinar Jetty A &B, Mangroves area, Salt Pans, NAYARA Intake.	-
700 furnaces	-	NAYARA & IOCL Transshipment Facility at OOT Vadinar Jetty A & B, NAYARA Intake.	-
10000 furnaces	-	NAYARA & IOCL Transshipment Facility at OOT Vadinar Jetty A & B, NAYARA Intake.	-
2200 m ³ /h for 15 min	-	NAYARA & IOCL Transshipment Facility at OOT Vadinar Jetty A & B, NAYARA Intake.	-

PAST COMPARATIVE STUDY

SW Monsoon Season (Jun-October)

In the initial period of this season, the surface currents and winds are transition from Northeast to East based on the wind direction. The magnitude of the residual currents is greater than 1 knot. The slick moves transition from Northeast to East direction based on the wind forcing. The effect of wind forcing is significantly higher than surface current drift. The spills at Jetty A& Jetty B would head towards the sea. The behavior of slick movement is more or less similar in various scenarios irrespective of quantities.

NE monsoon (November-February)

In the initial period of this season, the surface currents and winds are towards South west. The magnitude of the residual currents is greater than 1 knot. The slick moves towards South west direction based on the wind and currents forcing. The effect of wind forcing is significantly higher than surface current drift. The spills at landing jetty, Jetty A & B would reach the coast within 10 minutes. The behavior of slick movement is more or less similar in various scenarios irrespective of quantities of oil spilled. The extent of landing of oil differs depending on the source quantities. Nearly 20% of oil volume has been lost due to evaporation and dissolution and remaining will reach the coast.

Post Monsoon Season (November-December)

In the initial period of this season, the surface currents and winds are towards Northeast direction. The magnitude of the residual currents greater than 1 knot. The slick moves towards Northeast direction based on the wind forcing. The effect of wind forcing is significantly higher than surface current drift. The spills at JettyA& Jetty B would reach to shore within 10 minutes. The behavior of slick movement is more or less similar in various scenarios irrespective of quantities of oil spilled.

SHORE LANDING AND SPILL IMPACT AREAS

The quantity of the spill reaching to the coast and affected areas for various seasons for various hydrological and meteorological conditions and predicted BY use of Hyrodyn-OILSOFT software is as follows.

SW monsoon

During this period, no Oil slicks will affect the coast at least for 6-12 hours. No likely areas will be impacted during these seasons for spills of various quantities.

NE monsoon

During this period Oil slicks of approximately 70% spilled at sea reach the coast within an hours after the spill. The likely areas impacted during these seasons for spills of less than 700 Ton are DPA KANDLA AND OOT VADINAR Landing JETTY, NAYARA Intake & adjoin area of jetty. For spills of higher magnitude, the impact zone may extend at NAYARA Intake, Salt Pans& mangrove areas along the coast.

Post monsoon

During this period spilled oil at Jetty A and Jetty B would not reach the coast.

In summary the likely areas affected by the oil spills from oil berths operations at jetties during various seasons are given below:

Spill Analysis: Percentage of oil spill volume reaching the coast

Spill Volume	SW Monsoon	NE Monsoon	Post Monsoon
700 t crude	-	-	70-80
25000 t crude	-	-	75-85
700 t furnace	-	-	85-90
10000 t furnace	-	-	85-90
2200m ³ /h for 15 min	-	-	90-95

Extent of oil on the coast (meters)

Spill Volume	SW Monsoon	NE Monsoon	Post Monsoon
700 t crude		-	500
25000 t crude		-	1000
700 t furnace	200	-	1200
10000 t furnace	300	-	1500
2200 m ³ /h for 15 min	350	-	2000

SHORE LENGTH AND AREA OF VADINAR

Vadinar Port is covering the **Total area of (12923.9 Sq.Km)** have been notified by the state Govt. to Conserve Biodiversity of the Wetlands.

KPT marine facilities are located at Vadinar near Narara Bet (Lat 22 °26.9', Long69°40.18' E) & in the Pathfinder Inlet, a Natural Creek of the Gulf of Kachchh (Hereinafter referred to as Gulf). The KPT service jetty used for securing the floating crafts, Operational for more than three decades, is located south of the VOTL Terminal. The Pathfinder Inlety is well sheltered from monsoon wags and thereby permits uninterrupted navigation for ships approaching the berths except during cyclones which rarely strike the Gujrat coast.

The Southern Shore of the Gulf in Jamnagar district with abundance of coral reefs and mangroves is demarcated as Marine National Park Sanctuaries. The Inter tidal Zones of Dwarka, Kalyanpur, Khambhalia, Lalpur, Jamnagar and Jodia Talukas along with 42 Islands in the district have been included in the marine protected area. An area of457.92 KM ² stretching from Okha to jodiya comes under Marine National Park and Sanctuary. This area includes 148.92 Km² of small nd big islands and 309 Km² intertidal zone the coast. Area of the MNP is 162.89 Km² Whereas the remaining protected areas have the status of Marine Sanctuary.

The MNP&S includes three categories of areas (noticed on 1-1-1983 and 9-11-1983), i.e. (i) 11.82 sq.km Reserve Forests, (ii) 347.90 sq.km unclassified forests notified under sec.4 of IFA 1927, and (iii) 98.20 sq.km territorial waters of india.162.89 sq.km area of MNP is distributed amongst 37 islands and coasts whereas the remaining 295.03. Km area of the sanctuary covers 5 islands and intertidal zone from Navlakhi to Okha. Areas Mentioned under National Park, sanctuary, Reserve Forests and Unclassified Forests are scattered and mostly having no proper specific boundary .398.40 sq.km overlapping area is notified under Port Act before 1980 for maritime activities.

A National Park and four sanctuaries viz. MNP, Jamnagar (162. 9Sq.Km Marine sanctuary (295 sq.km), Khijadia Bird sanctuary (6.1 Sq.km), Wild Ass sanctuary in the Little Rann (4953.7 Sq.km), and Kachchh desert wild life sanctuary (7506.2 Sq.km),

Annexure-16
(Refer Para-9.5

, Page-60)

INCIDENT LOG

INCIDENENT INFORMATION
Incident Title (Name of Vessel)
Incident Number (Sq number/ dd /mm/ yyyy)
1. DETAILS:
Time of recording (24 hr. format) Day Date Date
Person / Organization reporting incident
Name Contact number
2. INCIDENT:
Name of VESSEL
Position (if not alongside) Latitude Longitude Longitude
Sounding
Incident details
Time Date (Of incident, 24 hrs format) Date
Cause of spill
Type of oil
Estimated quantity of spill
Details of damage to vessel / installation
3. COMMENTS:
1. Recorded by:
Name
Time

Note: FOUR COPIES OF INFORMATION ARE TO BE RECORDED. RETAINING ONE FOR OFFICE RECORD, THREE COPIES ARE TO BE CIRCULATED ONE EACH TO -

- CHIEF INCIDENT CONTROLER
- OSC / RESPONDER/ INCIDENT CONTROLER
- VESSEL MASTER

ANNEXURE-17 (Refer Para-9.5, Page-60)

PERSONAL LOG (ALL MEMBSERS OF SPILL RESPONSE ORGANISATION)

Incident Title ------ (as per)

______ Date ------

Name ------Designation (as per C P) ------

Time of Rx / Forwarding Info Activity requested by/ demanded of other Member/s

Observations on day's operations: -

Note – Copy of Personal Log is to be handed over to COC daily or as earliest as possible on completion of a schedule.

ANNEXURE-18 (Refer Para -5, Page-77)

CONTACT DETAILS OF LOCAL ADMINISTRATION – OOT Vadinar

Sr. No.	DESCRIPTION	STD CODE	TELEPHONE	NO.
INO.			OFFICE	Mobile
1	Head DPA OOT VADINAR (COM)	0288	2573001	9819999227
2	Head HSEF, Refinery	02833	662405	9909908685
3	Coast Guard Station, Vadinar	0288	256560	
4	CG PRT (NW), Vadinar	02833	256601	
5	DPA Control Tower, Vadinar	0288	2573009	9825212359
6	Municipal Fire Station, Jamnagar	0288	2672208	9909011502
7	Marine Police, Station, Vadinar.	0288	256541	
8	District Collector, Devbhumi Dwarka, Khambhalia	02833	232805 232102	
9	GPCB, Gandhinagar	079	23237311	
10	Deendayal Port AUTHORITY	0288	2573005	
11	Gujarat Maritime Board (GMB)	0288	2712516	
12	Ministry Of Environment, Gujarat	079	23251062	
13	Principle Chief Conservator Of Forest, Gandhinagar	079	23253903 23254123	
14	Oil Industry Safety Directorate (OISD), New Delhi	011	2593800	

CONTACT DETAILS OF LOCAL ADMINISTRATION – DPA Kandla

Sr. No.	DESCRIPTION	STD CODE	TELEPHONE N	10.
			OFFICE	Mobile
1	Head DPA KANDLA (DC)	02836	233585	9603123449
2	Head HSEF, Refinery	02833	662405	9909908685
3	Coast Guard Station, MUNDRA	02838	271403	
4	CG PRT (NW), KANDLA	02833	256601	
5	DPA Control Tower, KANDLA	02836	270194	9825227246
6	Fire Station, Kandla	02836	270176	9825227041
7	Marine Police, Station, KANDLA.	02836	270527	
8	District Collector, Kutch	02832	2832 250650	
9	GPCB, Gandhinagar	079	23237311	
10	Deendayal Port Authority	02836	233585	
11	Gujarat Maritime Board (GMB)	0288	2712516	
12	Ministry Of Environment, Gujarat	079	23251062	
13	Principle Chief Conservator Of Forest, Gandhinagar	079	23253903 23254123	
14	Oil Industry Safety Directorate (OISD),New Delhi	011	2593800	

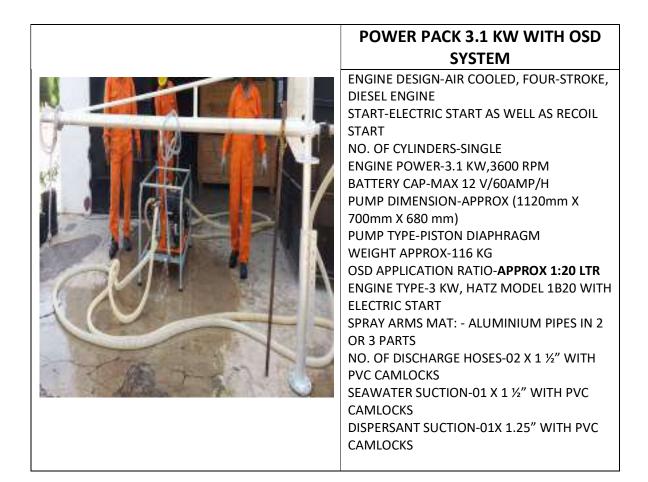
ANNEXURE-19 (Refer Para-3, Page -74)

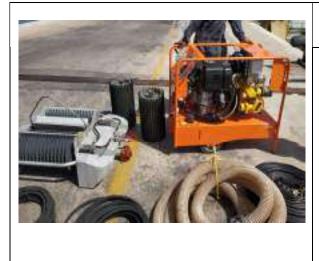
Pollution response equipment specification and details

	POWER PACK 42 KW
A CONTRACTOR OF A CONTRACTOR O	COMPANY- DESMI
1	MAKE-HATZ, TYPE-3M 41L
1.0	DIMENTIONS-L-73", W-40", H-50"
	WEIGHT-APPROX 750 KG (EMPTY TANK),
	-APPROX 900KG (WITH FULL TANK)
and a second sec	POWER INPUT-AIR COOLED,4 STROKE, DIESEL ENGINE,
	ENGINE POWER-42 KW,2800 RPM
	AIR FILTER-DRY TYPE,
	STARTING -ELECTRIC START
	BATTERY-12 V 140 AH
	ALTERNATER-14 V,42A (1500 RPM)
	AUTOMATIC STOP-IN CASE OF BROKEN V BELT, IN CASE OF TOO LOW LUBE
	OIL PRESSURE MAX, CONT. PRESSURE-210 BAR (3000 PSI)
	FLOW RANGE-0-160 L/MIN
	TERMINATOR / WEIR SKIMMER
	MADE-DESMI(DENMARK)
	MADE-DESMI(DENMARK) DIMENSIONS-L-82.7", W-91.7", H-36.6"
	,
	DIMENSIONS-L-82.7", W-91.7", H-36.6"
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS)
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI)
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER,
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL OTHER PARTS-SS AND SEAWATER RESISTANT
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL OTHER PARTS-SS AND SEAWATER RESISTANT ALUMINIUM
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL OTHER PARTS-SS AND SEAWATER RESISTANT ALUMINIUM COATING (PUMP)-PRIMER /COMPANY PAINT
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL OTHER PARTS-SS AND SEAWATER RESISTANT ALUMINIUM COATING (PUMP)-PRIMER /COMPANY PAINT MAX RECOVERY RATE - WITH DOP 200 DUAL PUMP
	DIMENSIONS-L-82.7", W-91.7", H-36.6" DRAFT-27.6" WEIGHT DRY-WITH DOP 200DUAL PUMP-160 KG (EXCL. THURSTERS)-183 KG (INCL. THURSTERS) MAX. PRESSURE-WITH DOP200DUAL MOTOR13 BAR (188 PSI) THRUSTERS-OPTIONALS FLOATS, HOPPER, AND FLOATING COLLAR-OIL RESISTANT POLYETHYLENE PLASTIC BELLOWS-OIL RESISTANT NEOPRENE RUBBER, FLOAT POIPES –STAINLESS STEEL OTHER PARTS-SS AND SEAWATER RESISTANT ALUMINIUM COATING (PUMP)-PRIMER /COMPANY PAINT

POWER PACK 15 KW

POWERPACK FOR – BOOM WITH REEL WINDER ENGINE TYPE-15 KW,3000 RPM PRESSURE -210 BAR GROSS WEIGHT – APPROX 250-500 KG FUEL TANK – 5 LTR.


	POWER PACK 05	5 кw wit	H RO VACMIN	II TANK
Statement Timeset	MACHINE NAME-HATZ 1	330 DIESEL	ENGINE	
CARE TO A CONTRACT	ENGINE TYPE-AIR COOLED FOUR STROKE DIESEL ENGINE			
	START-ELECTRIC AS WELL	AS RECOIL	START	
(Comment of	PUMP DIMENSION-APPR	OX (L -1050	MM X W-700 MM	1 X H-740
-This	MM)			
	NO. OF CYLINDERS-SINGL	E		
The Partie Party	VOLUME-APPROX 0.51 N	13		
	WEIGHT-APPROX 123 KG			
	VACCUM CAPACITY-0.89 BAR @1500 RPM			
	BATTERY CAP-MIN-12 V-36/60 AH			
	FUEL TANK CAP-05 LTRS			
	TANK STORAGE CAPACITY-			
	RO VACMINI TANK DIMENSION-			
1		HOPPER	VACUUM HEAD	ASSEMBLED
	APPROX (LxWxH mm)	590X780	950X720X550	950X720X109
	VOLUME APPROX(M3)	0.21	0.34	0.67
	WEIGHT APPROX (KG)	21	22	43



PD75 SPATE PUMP

ENGINE TYPE-YANMAR CAPACITY-31.8M3/H (7000 GAL/H) MAX RPM - 1500 MAX. PRESSURE-3 BAR WEIGHT - 92 KG TOTAL HEAD-40 M (130FT) DELIVERY HEAD-30.5M (100 FT) SELF PRIMING LIFT-8.8M H2O, (29 FT H2O) SUCTION LIFT-9.1 M (30 FT) SOLIDS SIZE-6MM (0.25 INCH)

POWER PACK 7.5 KW & DBD SKIMMER

SKIMMER TYPE-DISC/BRUSH DIMENTION-L-0.93 MTR, W-1.32 MTR, H-0.66 MTR DRY WEIGHT-95 KG DRAFT-0.14 MTR DRIVE UNIT-2XOMM 50 (50CC) SPEED-0-60 RPM DISC SIZE-02 SETS OF 15 PCS (295MMX3MM) BRUSH SIZE-02 SETS OF 300MM HYDRAULIC FLOW-0-3 L/M HYRAULIC PRESSURE-140 BAR (MAX) OUTLET-RECOVERED OIL-3" CAMLOCK

	RO BOOM WITH REEL
	BOOM TYPE-2000 SPEED SWEEP
	BOOM WIDTH-2 MTR
A TER PORT	CHAMBER SECTION PITCH-4.90 MTR
	BUOYANCY CHAMBER LENGTH-4.50 MTR
	FREEBOARD-0.59 MTR
	DRAUGHT-1.10 MTR
	BALLAST CHAIN-13MM
	SECTION CONNECTOR MADE-ASTM
	VOLUME OF BUOYANCY CHAMBER-923 LTRS
	WEIGHT /MTR ENCL.CHAIN-15 KG
N. S. W. P. T	EFFICIENT IN WAVES UPTO-4 MTR
	STABLE IN CURRENT UPTO-3 KNOT
	ACCESSERIES-TOW BAR, SHACKLE, BRIDLE, TOW ROPE,
- And Manager Parameter	BUOY, VALVE COVER.
	BOOM MOUNTED-ON THE SHAFT A REEL WITH END
	FLANGED.
	BOOM REEL ROTATION BY-GEARBOX WITH HYDRAULIC
	MOTOR.

	CURRENT BUSTER BOOM WITH REEL
	BOOM TYPE-1500 SPEED SWEEP
	NETS/SCREENS-SCREENS ARE MADE FROM PU-COATED
	KEVLAR TAAPES
	SCREENS BUOYANCY BY-FOAM FILLED PU GLOBES
· · · · · · · · · · · · · · · · · · ·	BOOM WIDTH-1.50 MTR
关 多、非能	CHAMBER SECTION PITCH-3.30 MTR
	BUOYANCY CHAMBER LENGTH-03 MTR
	FREEBOARD-0.52 MTR
A CONTRACTOR OF THE PARTY OF TH	DRAUGHT-0.72 MTR
	BALLAST CHAIN-13MM
	SECTION CONNECTOR MADE-ASTM
	VOLUME OF BUOYANCY CHAMBER-657 LTRS
	WEIGHT /MTR ENCL.CHAIN-12 KG
	EFFICIENT IN WAVES UPTO-3.5 MTR
	STABLE IN CURRENT UPTO-3 KNOT
	ACCESSORIES-TOW BAR, SHACKLE, BRIDLE, TOW ROPE,
	BUOY, VALVE COVER.
	BOOM MOUNTED-ON THE SHAFT A REEL WITH END
	FLANGED.
	BOOM REEL ROTATION BY-GEARBOX WITH HYDRAULIC
	MOTOR.
and the second s	RO TANK 10 TON
STREET, STREET	MATERIALS-MADE OF SYNTHETIC, OIL AND WEATHER
	RESITANT RUBBER AND HAVE FOUR INNER PLIES OF
	POLYESTER/POLYAMIDE REINFORCEMENT FABRIC
	EMBEDDED IN NEOPRENE RUBBER.
	COLOUR-BLACK
	CAPACITY-10 TON
	FIELD SIZE-9.4X2.1X0.8MTRS
	HOSE CONNECTION-2X3 INCH(BSP)
	TANK WEIGHT-230 KG
	PILLOW-65 KG
The second se	NUMBER OF FLOATS-2 FLOATS (ONE EACH SIDE)

TROIL TANK

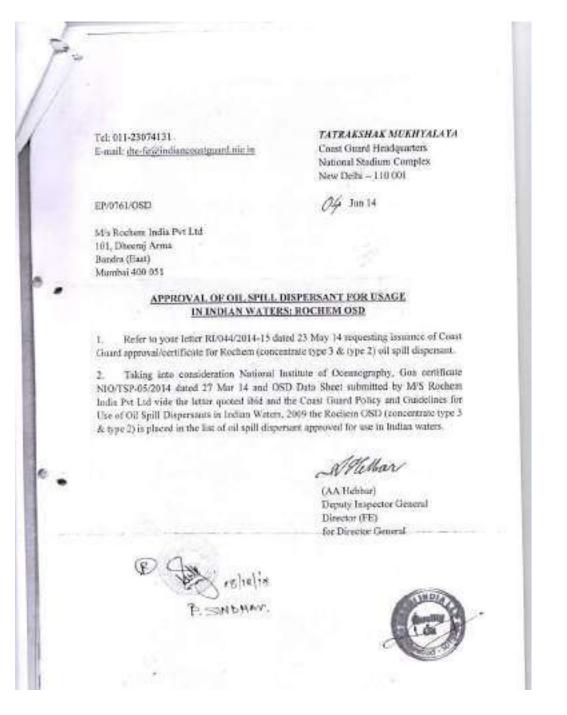
MATERIALS-1000 GRAM PU/PVC ALLOY. RODS-GLASS FIBRE. PIPES AND CONNECTORS-PLASTIC STORAGEPACKED-1300X450X250 CAPACITY-2 TON HEIGHT ERECTED-900 MM

OIL SPILL DISPERSENT


TYPE-II/III MANUFACTURE- FOAMTECH ANTIFIRE COMPANY MFG.DT. – 08/2023 EXP.DT. – 08/2033 QTY. – 3000 liters.

ABSORBENTS PADS

NAME – ABSORBENT PADS SIZE-40X50 MM QTY-2000 NOS.



BACKPACK SPRAY

NAME – BACKPACK SPRAYER CAPACITY- 16 LTRS. QTY-5 NOS.

ANNEXURE – 20 (Refer page – 32)

/	_			(BIDIA) PVT. LTO.
	Final 1	'est Report	1	
		Product Name: OIL SPILL D	ISPERSANT TYPE II	Tested on : 28/06/17
	CT WALL	0. : 193/17-18		Manufactured on: 28/06/17
		PARAMETERS	SPECIFIED VALUE	OBSERVED VALUE
	SR.NO.	PARAMETERS	2	
e,	L	COLOUR	COLOURLESS	COLOURLESS
	-		LIQUID	LIQUID
	2	CONSISTANCY SPECIFIC GRAVITY	APPROX 1.0	1.0
	3.	p H	6.0 - 8.0	6.63
	Note:	Master Instruments used durin *A) Hydrometer (0,700-1.0) *B) Electronic pH Meter		(Internet in the second
9	Prod	act Cleared for packing and dis	Signature of QA Representative : Date : 28/06/17	

ANNEXURE - 21 (Refer Page- 77)

DETAILS OF VESSELS USED FOR OIL SPILL RESPONSE

TUG- Lotus Star

SI	Particulars	Technical Specification	
01	Gross Tonnage	493 T	
02	Net Tonnage	147 T	
03	Bollard Pull (Steady/Sustained & Maximum)	More than 60 T	
04	Year of Built	2016	
05	LO.A	30.28 Meters	
06	Breadth	2.41 M	
07	Depth	5.30 M	
08	Draft	4 Meters	
09	Main Propulsion Engine	NIIGATA 6L28HX2X1654 Kw	
10	Propulsion & Steering	ZP31 B(ZELLER)	
11	Flag/Nationality	Indian	
12	Auxiliaries	Cummins QSB7,2X164Kw	
13	Speed	12 Knots	
14	Fuel Capacity	225 M3	
15	Fresh water capacity	91 M3	
16	Towing Arrangement	1) Towing Winch-	
		Maker-Jebsen & Jebsen, Brake	
		Capacity-150 Tons, Double Drum	
		Type, Pull rate at 10	
		T x 0-10 Mtrs/Min	
		2) Towing Hook- Maker-Jebsen &	
		Jebsen, Brake Capacity-60 Tons	
17	Communication	MF/HF Trans receiver with DSC & Telex	
		VHF, Hand Held VHF Radio	
18	NAvgigation Equipment	Marine Radar, AIS, Echo Sounder, Search	
		Light, GPS, Navigates)	
19	Details of External Fire Fighting Equipment with	2400 Cu Mtr/Hart 125 Mtr Head	
	discharge capacity and throw distance of monitors		
20	Manning(As per requirement of statutory	As safe manning regulation issued by	
	Authority)	MMD, India	
21	Fuel Consumption	380.67 Lit/Hour/engine	
	Main Engine (At 100% MCR)		
	Main Engine (At 90% MCR)	342.20 Lit/Hour/engine	
	Main Engine (At 75% MCR)	287.60 Lit/Hour/engine	
	Main Engine (At 40% MCR)	159.53 Lit/Hour/engine	
	DG Set (At 100% MCR)	46 Lit/hour	

TUG- OCEAN EMPIRE

Sr No.	Particulars	Technical Specification
01	Flag	Indian
02	Port of Registry	Kochi
03	IMO No.	9658862
04	Official No.	41000638
05	MMSI NO	4056
06	CALL SING	AVGWU
07	GT	468
08	NT	140
09	LOA	31.50 M
10	LBP	28.8 M
11	BREADTH MLD	11.0 M
12	DEPTH MLD	6.1 M
13	DWT	287
14	CLASS	ABS/IRS
15	PROPULSION POWER	2 X 1654 KW@724 RPM (DERATED) (NIIGATA 6L28HX)
16	AZIMUTH THRUSTER	NIIGATA ZP-4 SRP
17	SPEED	12.0 KTS
18	BOLLARD PULL	60.25 @100 MCR
19	YEAR BUILT	AUG 2012

DUMB BARGE-ANURADHA

Sr No	Particulars	Technical Specification
01	Flag	Indian
02	Length overall	23.1 m
03	Port of Registry	Kandla
04	Breadth (MLD)	6.0 m
05	Depth (MLD)	2.9 m
06	Draft	1.5 m
07	Frame Spacing	500 mm
08	Generator	02 Nos,25 KVA,415 VAC,3 PH
09	OIL SPILLAGE	RO-BOOM WITH REEL – 02 NOS.
	RESPONSE SYSTEMS	CURRENT BUSTER BOOM WITH REEL – 01 NOS.
		DBD SKIMMER-01 SET
		WEIR SKIMMER -01 SET
		POWERPACK 42 KW-01 NOS.
		POWERPACK 7.5 KW-01 NOS.
		POWERPACK 15 KW-02 NOS
		OSD SPRAY PUMP & ACCESSORIES-01 SET

TUG- VIHAAN

Sr	Particulars	Technical Specification
No		
1	FLAG	INDIA
2	IMO NO.	9691383
3	MMSIO NO.	419001130
4	LOA	31.5 M
5	LBP	26.8 M
6	GT/NT	470/141
7	DEAD WEIGHT	284.606 Mt.
8	LIGHT SHIP	621.4 Mt.
9	DRAFT	SUMMER:5.313 M, FREEBOARD: 1.107 M
		TROPICAL:5.409 M, FREEBOARD: 1.011 M
10	DECK LINE	400 MM BELOW MAIN STEEL DECK
11	HEIGHT KEEL TO TOP OF MAST	24.81 M
12	MAIN ENGINES	NIIGETA 6L26HLX-2X1838KW AT 750 RPM
		FP (2520MM)PROPELLER 2700MM DIA 4 BLADES-
		CAST NI-AL-BRONCE
13	BOLLARD PULL	70.72 MT
14	TOWING WIRE AFT	52MMX1000M
15	TOWING WIRE FOR D	52MMX220M
16	TUGGER WINCH	200MX22MM WIRE –SWL 10 MT
17	DECK CRANE	PALFINGER 1200-SWL 600KG AT 12.2M
18	RESCUE BOAT	4500MMX2000MMX850MMX1325KG-6 PERSON
19	D.O CAPACITY	235.3CuM (100%)
20	FW CAPACITY	53.1CuM (100%)
21	BALLAST CAPACITY	61 CuM (100%)
22	ANCHOR	500KG
23	ANCHOR CABLE	5 SHACKLES (PORT),6 SHACKELS(STBD)

ANNEXURE - 22

(Refer Page34, Para3.7)

LIST OF APPROVED RECYCLERS

SL.NO	NAME	ADDRESS
01	M/s ALICID ORGANIC INDUSTRIES	OFFICE NO. 35, FIRST FLOOR,
	LIMITED	GRAIN MERCHANT ASSOCIATION
		BUILDING, PLOT NO. 297, WARD
		12/B, GANDHIDHAM-370201
02	M/s UNITED SHIPPING COMPANY	OIL & GRAIN MERCHANT
		ASSOCIATION BUILDING, OFFICE:
		NO.46, FIRST FLOOR, WARD 12-B
		GHANDHIDHAM, KUTCH 370201
03	M/s ALTAS ORGANICS PVT.LTD.	204/206 ELLISBRIDGE SHOPPING
		CENTER, OPP.TOWN HALL
		ASHRAM ROAD, AHMADABAD-
		380006
04	M/s SHANA OIL PROCESS	NEW GOOD LUCK MARKET, Nr
		AKSHA MASJID, CHANDOLA LAKE,
		NAROL ROAD, AHMADABAD-
		3800028
05	M/s PRIYANSI CORPORATION	H/O. MARURI PETROLEUM, SHOP
		NO.2, NH-8B, SHAPAR(VERAVGAL)
06	M/s. FINE REFINERS PVT. LTD.	PLOT NO.40, GIDC, CHITRA,
		VARTEJ, BHAVGNAGAR,
		BHAVGANAGAR-364060
07	M/s. KUTCH PETROCHEM PVT.LTD.	OFFICE: PLOT NO: 121, SECTOR
		9/C, BEHIND ASHOK LEYLAND,
		POST BOX NO.166, GANDHIDHAM
		and KUTCH 370201.

ANNEXURE-23

(Refer Page-77)

LIST OF OSR PERSONNEL – DPA OOT VADINAR

SI	NAME	DESIG.	OSR QUAL.
01	Shri A. Ramasamy	Chief Operations Manager	Level-III
02	Shri Narendra Naik	ME Gr-I	Level-III
03	Shri Palash Jadafva	AE(D/T)	Level-II
04	Shri Devang Kanani	JE Gr-I (M)	Level-I
05	Shri Vaikuntah Rao	Casab	Level-I
06	Comdt. Retd. B. H Kumbhare	Sr. Manager	Level-III
07	Vysakh K K	Manager	Level-II
08	Debi Prasad Dash	Manager	Level-II
09	Debasis Sethi	Manager	Level-II
11	Keelu Vinodkumar	Manager	Level-II
12	Ashrit Mishra	Manager	Level-II
14	Rohit Girase	Responder	Level-I
15	Debendra Mohanta	Responder	Level-I
16	Bhola Singh	Responder	Level-I
17	Rajeev N.R.	Responder	Level-I
18	Jitendra Singh	Responder	Level-I
19	Shankar Singh	Responder	Level-I
20	Pintu Kumar	Responder	Level-I
21	Pawan Baryekar	Responder	Level-I
23	Anil Kumar	Responder	Level-I
28	Sunil Kumar	Responder	Level-I

ANNEXURE-24

LIST OF OSR PERSONNEL – DPA KANDLA

SI	NAME	DESIG.	OSR QUAL.
1	Capt. Pradeep Mohanty	Deputy Conservator	Level -III
2	Capt. Lalji ram Meena	Harbour Master	Level -III
4	Capt Shishir Pathak	Sr. Pilot	Level -III
3	Nitin Keniya	Flotilla Superdt.	Level-II
4	Vanka Krishna Rao	Serang-C	Level-II
5	Pawan Sontakke	Manager	Level-II
6	Deewansinh Jadeja	Ast. Flotilla Supervisor	Level-I
7	B. Mohan Rao	Serang-c	Level-I
8	Ghanshyam Jatav	Ast. Flotilla Supervisor	Level-I
9	Pawan Bharati	Responder	Level-I
10	Gajendra Behera	Responder	Level-I
11	Saroj Kumar	Responder	Level-I
12	Papun Behera	Responder	Level-I
13	Dilson John	OSR Manager	Level-I
14	Manoj Kumar	Responder	Level-I
15	lshwar Giri Goswami	Serang-c	Level-I
16	Kishan D. Sodham	Lascar	Level-I
17	Harshad Danicha	Lascar	Level-I
18	Hitesh K. Thacker	Master 1st Class	Level-I
19	Jitendra Ninjar	Ast. Flotilla Supervisor	Level-I

20	Jaydipsinh Gohil	Berthing Supervisor	Level-I
21	Bharat Parmar	AFS	Level-I
22	Kishor Goswami	Master 1 st Class	Level-I
23	D.S. Gujar	Station Officer	Level-I
24	K.G. Khalsa	Station Officer	Level-I
25	G. Nethaji	Station Officer	Level-I
26	M. R. Vadavia	POCD	Level-I
27	Sahdev Mondal	Station Officer	Level-I
28	Kartik Raval	Responder	Level-I

ANNEXURE-25

MOU BETWEEN DPA VADINAR, IOCL & VOTL

The MOU between DPA Vadinar, IOCL & VOTL (Placed as an Annexure-25, Page -139). Fulfills the total requirement of OSR Personnel as per NOS-DCP circular no.03/2018. (EP/0720/circular dated 19 Dec 18).

The matter has been discussed with Local Coast Guard Authorities & it is intimated that the matter is been taken up with CGHQ to Lower the risk category of DPA port.

Prepared By Sadhav Shipping Ltd.

MUTUAL - AID SCHEME

(FOR OIL SPILL RESPONSE AND CONTROL)

MEMBER ORGANISATIONS

- Deendayal Port Trust, a Major Port having its registered office at Administrative building. Tagore Road, Gandhidham, Gujarat-370201 and Offshore oil Terminal at Vadinar, Gujarat.
- M/s Indian Oil Corporation Ltd., a company registered under Companies Act, 1956 having its Registered Office at Indian Oil Bhawan, G-9 Ali Yavar Jung Marg, Bandra (East) Mumbai – 400 051 and crude oil tank farm station at Vadinar, Distt: Jamnagar – 361010 (Gujarat)
- M/s.Vadinar Oil Terminal Ltd. (Subsidiary of M/s.Nayara Energy Limited) a company registered under Companies Act, 1956 having its Registered Office at Nayara Refinery Site, 39 KM stone, Okha Highway(SH-25), Khambhalia -361305

Member Organizations shall hereinafter individually referred to as "Member" and collectively as "Members"

The above members are operating in the Gulf of Kutch at Vadinar within Deendayal Port Trust Limit. All the operators have facilities for combating oil spill and are individually having oil spill response equipment. In case of oil spill; one member can take the help of another member. In order to act on the aforesaid arrangement, we the members have formulated the following Mutual Aid Scheme for this purpose.

We the Members of MUTUAL - AID SCHEME hereby agree to abide by the terms and conditions mentioned below:

- Among the Members, whenever an emergency call is received from any calling Member about the occurrence of oil spill within Vadinar Port Limit, the helping member shall immediately send the oil spill control equipment and the response team as per the request received. The call from the calling member is to be made to the Nodal officer or Control Room of the helping Member. The list of oil spill equipment which can be spared and/or used by the Members during such an emergency is annexed to this Mutual Aid Scheme as Annexure No. 1.
- Subject to the requirement of the calling Member, any additional assistance will be reviewed by helping Member and efforts, as far as possible, will be made to send such necessary additional assistance viz., oil spill equipment, boats/vessels, medical aid, firefighting equipment etc. at the earliest, along with additional man power subject to their availability.

Page 1 of 7

Scanned with CamScanner

Prepared By Sadhav Shipping Ltd.

- Helping member shall mobilize the committed resources as per this Mutual Aid Scheme within a period of one hour or less for the mobilization at oil spill site.
- The entire emergency crew coming from outside for rendering their assistance will work under the On Scene Commander ("OSC"). The OSC will be appointed by the calling Member.
- 5. Members having Oil Spill Control Equipment will maintain them in working condition for any such emergency. The use of equipment will be provided free of charge except for any damage to the equipments during such emergency which will be paid for and/or replaced by the calling Member unless such damage is caused due to the negligence of the helping Member and/or its representative(s). The consumables used (Details mentioned in Annexure – 2) will be charged to the calling Member.
- 6. Calling Member representatives shall use appropriate safety equipment and safety gear and shall respond with due diligence for mitigation and containment of incident and safety of personnel and equipments including but not limited to the equipment/property of calling Member during the course of the emergency. During emergency any damage caused to calling Member property/personnel from the helping Member actions, shall not be compensated by helping Member, if such actions were taken in good faith and after proper due diligence.
- 7. In case of any accident in the course of rendering assistance to the calling Member, the calling Member shall handle such situations according to its own policies. In case of any injury to any representative of the helping Member, the first-aid treatment will be given by calling member free of cost if required by helping Member.
- Detailed log of movement of vessel's mobilization and uses of equipment/consumables and oil spill related information shall be maintained by all the Members. In case of any modification to the list of equipment/consumables the same shall be intimated to the other Members within seven (7) days of such change.
- Coordination Meeting & Mock drill will be carried out involving all mutual aid agencies, at least once in a year and will be coordinated by Indian Coast Guard.
- The Members are free to seek assistance from any of the partner/organization as per their requirement in case of any major exigency.
- The actual charges for repair of equipment rendered unusable to be paid by the calling member.
- 12. The charges for damage to equipment rendered unusable and consumables are to be submitted within a period of 30 days and to be settled not later than 3 months from the date of such submission.

CS Scanned with CamScanner

Prepared By Sadhav Shipping Ltd. Page 2 of 7

13. The Mutual Aid Scheme is valid for a term of five (5) years from the date of its execution.

List of Annexure:

Annexure - 1: List of Oil Spill Response Equipment maintained by each organization.

Annexure - 2: Detail of Charges of oil spill response consumables & equipment.

Annexure - 3: List of officer's contact detail from each organization.

Signed as token of acceptance of above terms & conditions:

Name :	R K GURAV	
Sign :	lawal_	मुख्य प्रचालन प्रबंधक
Designation :	C-0-M-	दीनवयाल पोर्ट ट्रस्ट
Organisation :	D.A.T.	अपतट तेल टर्मिनल बाडीगार - 361010

Name : Chinmay G Sign : 4/Dib	hesk — जिम्मय गोव CHINNOY GHOSH
Designation : C CAM	Chief Ground Alth
Organisation : <u>TOCL</u>	र्शियम आस्पा कार्यात्मना लि INDIAN COL CORPORATION संगत के दायान, वाहत, तब रेपूर्व क संगर, प्रदेश आसाम (Pressention)
Name : Cobt Alc	KUMAT.

Name Sign	Atre rumar.	Starma
Designatik Organisat	1 11000 1 1 1 1 1	a Energy Ltd.
Sign in pi Name Sign	(Dy, condt. Rahul Sinha	Designation : <u>Executive offices</u> Organization : <u>ICGS Vadinar</u> Page's or 7
	ned with Scanner	

TD

Prepared By Sadhav Shipping Ltd. ÷

ANNEXURE-1 OII Pollution Inventory Level- as on 23.12.2019 (Consolidated Level and Individual level)

Sr	Description of resources	DPT,Vadinar	Nayara Energy (VOTL)	IOCL,Vadinar	Total of DPT, IOCL & Nayara
1	Inflatable Booms with accessories	2000 mtrs, with 8 power packs	1150 mtrs with 4 power packs	1200 mbrs with 4 power packs	4350 m with 16 power packs
2	Skimmers(20 tph)	- 4	4	4	12
3	OSD Applicator with Spray arms type along with 02 nozzles systems and 02 hand lancers	D Applicator with Spray arms 6 2 3 along with 02 nozzles		11	
4	Oil Spill chemical dispersant	10000 liters	10000 liters	11000liters	31000 liters
5	Flex Barge (10 Tons)	4	4	4	12
6	Speed Sweep System	2 nos.	NI	NE	2 nos.
7	Sorbent Booms (no)	300	200	100	600
8	Sorbent Pads	2000	7000	1500	10500
9	Mini Vaccum Pumps with 5 Nil apacity of 25m3		1	6	
10	Portable Oil Temporary Storage Facility (10m3)	5	Nil	4	9
11	Work Boats (no)	2	2	2	6
12	Tugs (no)	4	1	1	6
13	Man power	and the second	ears 1	100	in the second
	IMO LEVEL -I	10	33	7	50
	IMO LEVEL -II	4	5	5	14
-	OTHER / Equipment handlers	15	15	15	45

28/12/19

Page 4 of 7

Scanned with CamSconner

22

Prepared By Sadhav Shipping Ltd.

ANNEXURE 2

Detail of Charges of oil Spill Response Consumables & Equipment.

A. CONSUMABLE CHARGES :

(Charges will be as per actual rates at the time or to be replenished by the calling organization)

5, No.	Item Description
1.	Oil Spill Dispersant /Bioremediation
2	Absorbent pads
3,	Absorbent pillows
4.	Absorbent boom
5,	Fuel of Workboats/Tugs consumed during response period

stuly 28 2.19 Page 5 of 7 Scanned with 15 CamScanner

ANNEXURE - 3

Deendayal Port Trus	t , OOT Vadin	ar	
Primary Contact	; Mr. R.K.Gu Mobile	rav, Chief Operations Manager :+919819999227	
	Land Line	: 02833-257301	
	E-mail	: com@deendavalport.gov.in	
Secondary Contact		dra Nayak, Marine Engineer Gr-I	
	Mobile	:+919979126681	
	Land Line	:02833-257333	
	E-mail	: megr1.oot@deendayalport.gov.in	
Control Room Conta	ct: Signal Stat Mobile	ion, Vadinar ; +919825212359	
	Moone	1+717023212337	
- Al an ang ang ang ang ang ang ang ang ang			
Indian Oil Corporati	on, vadinar		
Primary Contact	: Mr. Chinm Mobile	oy Ghosh, CGM :+919437479025	
	Land Line	: 02833-256527	
	E-mail	: ghoshchinmoy@indianoiLin	
Secondary Contact	· Mr. Anii N	feghani, DGM	
accondary commer	Mobile	:+919212035510	
	Land Line	: 02833-256984	
	E-mail	: asilm@indianoll.in	
Control Room Cont	act: IOCL Con	trol Room	
	Land Line	: 02833-256536	
	E-mail	: controlroomvadinar@indianoil.in	
		Nor	Ola
		ADob _	28-12-19
		40205	28.12
		e.e. (Page 6 of 7
			2008/99/2019/PEL

Prepared By Sadhav Shipping Ltd.

2

M/s Nayara Energ	M/s Nayara Energy Limited. (Vadinar Oll Terminal Ltd.)			
Primary Contact	: Capt. Alok	: Capt. Alok Kumar, Head- VOTL		
	Mobile : +91	Mobile : +919909908611		
	Land Line	: 02833-661385		
	Fax	02833-661366		
	E-mail	; alok.kumar@nayaraenergy.com		
Secondary Conta	ct : Mr. Sachir	: Mr. Sachin Shah, JGM & Lead HSEF		
	Mobile	:+919879105470		
	Land Line	: 02833-661376		
	Fax	: 02833-661366		
	E-mail	: sachin.shah@nayaraenergy.com		
Control Room Cor	tact: Marine Ter	minal Control Room (Shift Incharge)		
	Mobile	: +919979868460		
	Land Line	: 02833-661386		
	Fax	: 02833-661366		
	E-mail	: simo@nayaraenergy.com		

201-10 pikalant 28-12-19

Page 7 of 7

100

Annexure 26

SENSITIVITY MAPPING, RISK ASSESSMENT STUDIES FOR MARINE OIL SPILL FOR JETTIES, CREEKS AND SPMS

The Gulf abounds in marine wealth and is considered as one of the biologically richest marine habitats along the west coast of India. It is endowed with a great diversity of natural ecosystems, of which the major systems are salt pans, intertidal zones, marine algae (seaweeds), sea grass and sand dunes, mangroves, coral reefs, creeks, and Open Ocean. The Risk Assessment Studies for Marine Oil Spill for Jetties and SPMs and sensitive mapping of (Gulf of Kutch) has been carried out by NAYARA Energy Limited, Vadinar through, 60/4, Environ Towers,4th Floor, Hosur Main Road, Electronic City, Bangalore – 560 100. Recently in February 2024 is placed as an **Annexure -26** as the NAYARA Energy Ltd. Operations are within the area of jurisdiction of Kandla and Vadinar port in Gulf of Kutch. <u>sanstivity mapping GOK.pdf</u> (to open "ctrl + click").

SUBMISSION

- It is of paramount importance to concentrate on preventing spills.
- Response to spills should seek to minimize the severity of the environmental damage.
- The response should always seek to complement and make use of natural forces to the fullest extent practicable.
- Some damage caused by specific response options may be justified if the response has been chosen for the greatest environmental and socioeconomic benefit overall.
- Offshore and near shore dispersant spraying can in some cases lead to an outcome of least environmental harm.

ANNEXURE G

Disaster Management Plan

DISASTER MANAGEMENT PLAN (DMP)

By

September - 2024

Disaster Management Plan

This is to state that at the request of Deendayal Port Authority (DPA), the undersigned surveyors have undertaken visit to Kandla Port to carry out a Risk Assessment and preparation of Disaster Management Plan. The scope of the analysis and the work undertaken are given in the attached report.

ISSUED BY:

Indian Register of Shipping

Prepared by

Somesh Gupta

Sudarshan Daga

Reviewed by

Dipak Sonawane

Approved by

A. Samanta

REPORT REVISION RECORD

Revision No.	Revision Details	Date
00	Draft report issued for review and comment to DPA.	02-07-2024
01	Final report issued to DPA.	02-08-2024
02	Final report issued to DPA.	26-09-2024

Disclaimer

The tasks of preparation of Disaster Management Plan have been executed by IRS as a consulting service at the request of Deendayal Port Authority. Conclusions and recommendations resulting from the consulting services have been formed in good faith and on the basis of the best information available from sources believed by IRS to be reliable.

IRS provides No warranty, express or implied, as for the completeness or correctness of the analysis and report preparation work. While IRS have made every attempt to ensure that the analysis, conclusions or recommendations contained in the report are from reliable sources using reliable methodologies; IRS is not responsible for any errors or omissions, or for the results obtained from the use of the deductions or reports.

The services rendered by IRS are without warranty of any kind, express or implied, including, but not limited to warranties of performance, merchantability and fitness for a particular or intended purpose.

The client(s) understand(s) and agree that IRS and its employees shall bear no liability arising out of or in connection with the results, recommendations or omissions. In no event will IRS, its related partnerships or personnel or agents or employees thereof be liable to or anyone else for any decision made or action taken in reliance on the services provided by IRS including any consequential, special or similar damages, even if advised of the possibility of such damages.

It is concluded that any usage/implementation/interpretation of the recommendation is at the client's risk. In particular, the recommendations should not be construed as certified, legal or otherwise.

INTRODUCTION OF INDIAN REGISTER OF SHIPPING (IRS)

IRS is a classification society established for the promotion of safety of life and protection of property at sea & promotion of knowledge base. It is therefore engaged in the Management of Safety & Reliability through Development of Rules and Regulations, Surveys, Audits, Certification and Training. It is a member of the 'International Association of Classification Societies' (IACS) which is a consultative body to International Maritime Organisation, a subsidiary body of the 'United Nations Organisation'.

Indian Register of Shipping (IRS) is a public limited company incorporated under section 25 of the Indian companies Act 1956 (Section 8 Indian companies Act 2013), without any shareholders. Therefore, it has no beneficiary owners and no profit distribution. The Company charges fees for the services provided and these fees are its source of income. This is used for self-support, self-perpetuation and growth through continual improvement in its service quality, service coverage, research and development. All these activities are directed towards the enhancement of safety, reliability, quality and protection of the environment.

IRS is a recognized R&D organization by the Department of Scientific and Industrial Research (DSIR), Ministry of Science & Technology, 'Govt. of India' for its research related to the maritime industry.

In NOS-DCP, IRS has been identified as one of the technical specialists (support agency) to provide advice relating to ship safety, structural integrity and stability of marine casualties and to depute representatives to attend to a casualty and salvage at the SMCU when established.

A strong team of highly qualified and experienced experts in various disciplines of engineering and marine sciences/technology is engaged in IRS to offer prompt technical solutions to marine and other industry.

	CONTENTS	Pg. No					
ABBREVIATIONS							
1.0 EXECUTIVE SUMMARY							
2.0	NEDODUCTION	9					
2.0	INTRODUCTION						
2.1	RATIONALE - KEY LEGISLATION MEASURES	9					
2.2	OBJECTIVE AND SCOPE OF PLAN	10					
3.0	PROFILE OF THE PORT	11					
3.1	PROFILE	11					
3.2	LOCATION OF THE PORT	11					
4.0	RISK ASSESSMENT	14					
4.1	DISASTER RISKS AND VULNERABILITIES	14					
4.2	VULNERABILITY & THREAT MATRIX	15					
4.3	LEVEL OF DISASTERS	15					
	1	Į					
5.0	ROLES AND RESPONSIBILITIES	16					
5.1	HUMAN RESOURCE PLANNING	16					
5.2	COORDINATION – HORIZONTAL AND VERTICAL LINKAGES	34					
6.0	PREPAREDENESS MEASURES	35					
6.1	EMERGENCY OPERATION CENTRE	35					
6.2	CAPACITY DEVELOPMENT	35					
6.3	TRAINING	36					
6.4	DRILLS AND EXERCISES	36					
6.5	COMMUNICATION	36					
6.6	TEMPORARY SHELTER	36					
6.7	TRANSPORTATION	37					
6.8	GENERATOR SETS	37					
6.9	DECONTAMINATION	37					
6.10	MEDICAL FACILITIES	37					
6.11	RESOURCE MANAGEMENT	37					
6.12	LOGISTICS/SERVICE DELIVERY MECHANISM	37					
7.0	RESPONSE STRATEGIES	38					
7.1	EARLY WARNING/ALERT SYSTEM	38					
7.2	ACTIVATION OF RESPONSE PLAN	43					
	IRCLASS – Indian Register of Shippin	ng 5					

RESTRICTED.

Disaster Management Plan

7.3	HAZAR	D SPECIFIC RESPONSE PLAN	46				
8.0	DISAST	ER RISK REDUCTION AND MITIGATION	137				
8.1		AZARD-WISE RESPONSIBILITY MATRICES FOR ISASTER RISK MITIGATION					
8.2	MAINST	TREAMING DISASTER RISK REDUCTION	169				
8.3	DISAST PRACTI	ER RISK GOVERNANCE PROGRAMMES AND CES	170				
8.4	CLIMAT	TE CHANGE RISK MANAGEMENT AND DRR	170				
8.5	BUDGE	TING AND FINANCIAL ARRANGEMENTS	171				
9.0	RECOV	ERY AND BUSINESS CONTINUITY	172				
9.1	RESPON	ISIBILITY FOR TERMINATING THE RESPONSE	172				
9.2	CONDITION FOR TERMINATION						
9.3	STAND-DOWN PROCEDURES						
9.4	DAMAGE, LOSS AND NEED ASSESSMENT						
9.5	RECOVERY PLANNING						
9.6	RE-OPENING OF BERTHS TO VESSELS						
9.7	ENSURING BUSINESS CONTINUITY						
10.0	RESOU	RCE INVERNTORY	180				
11.0	PLAN M	IAINTENANCE	187				
11.1	DEVELO AND RE	DPMENT, APPROVAL, IMPLEMENTATION, REVIEW	187				
ANI	NEX A	CHECKLIST	188				
ANNEX B EMERGENCY CONTACT NUMBERS							

ABBREVIATIONS

AERB	Atomic Energy Regulatory Board				
BARC	Bhabha Atomic Research Centre				
CBRN	Chemical, Biological, Radiological and Nuclear				
	Central Coordinating Authority				
CEC	Chief Emergency Controller				
СЕС	Chief Medical Officer				
CIC	Chief Incident Controller				
CISF	Central Industry Security Force				
CISI	Crisis Management Group				
CWC	Cyclone Warning Centers				
DCA					
DCA	District Coordinating Authority				
	District Contingency Committee				
DDMA	District Disaster Management Authority				
DMP	Disaster Management Plan				
DPA	Deendayal Port Authority				
EAP	Emergency Action Plan				
EOC	Emergency Operation Centre				
ERDMP	Emergency Response Disaster Management Plan				
GEB	Gujarat Electricity Board				
GWSSB	Gujarat Water Supply and Sewerage Board				
IDRN	Indian Disaster Resource Network				
INCOIS	Indian National Centre for Ocean Information Services				
IMD	India Meteorological Department				
IMO	International Maritime Organization				
IAP	Incident Action Plan				
IRT	Incident Response Team				
MMD	Mercantile Marine Department				
MRCC	Maritime Rescue Coordination Centre				
MSDS	Materials Safety Data Sheet				
NDMA	National Disaster Management Authority				
NIDM	National Institute of Disaster Management				
NOSDCP	National Oil Spill Disaster Contingency Plan				
OH&S	Occupational Health and Safety				
OSRO	Oil Spill Response Organization				
PAS	Public Address System				
PESO	Petroleum and Explosives Safety Organisation				
PNGRB	Petroleum and Natural Gas Regulatory Board				
PRO	Public Relation Officer				
RMC	Regional Meteorological Centre				
AT 5					
SIC	Site Incident Controller				

IRCLASS – Indian Register of Shipping

1. EXECUTIVE SUMMARY

Kandla port situated in Gulf of Kutch is a major port handling multipurpose cargo and serves the northwestern region giving a major fillip to the economy due to its suitably sheltered location and connectivity to the North western India, it is administratively controlled by the Ministry of Ports, shipping and waterways, Government of India.

This plan outlines the process for the management of response to Natural and Operational (man-made) disasters that are the responsibility of the port and stakeholders within port. The plan has been prepared as per the Guidelines and template issued by National Disaster Management Authority (NDMA)-2024 and National Disaster Management Plan (NDMP)-2019.

Sea ports face unique challenges in terms of both security and safety and are vulnerable. It may be emphasized that preventing a crisis to develop into a serious disruption is a key element that would address the roles and the responsibility of port employee and workers in high-risk areas of the port.

Quick and rapid response in a emergency situation helps in risk reduction and averting a crisis. This plan provides guidance for quick response in case of an emergency and helps in realizing sustainable Disaster Risk Reduction for the Port. It serves to seek and address all identified hazards and their risk and vulnerability analysis, elements at risk and the level of impact if any. The plan provides clarity on the roles, delegation of authority and responsibility of the Crisis Management Group (CMG) and Incident Response Team (IRT) members in the organization

2. INTRODUCTION

2.1RATIONALE – KEY LEGISLATION MEASURES INVOLVING DISASTER MANAGEMENT

2.1.1 Disaster Management Act, 2005;

The Disaster Management Act, 2005 (DM Act, 2005) lays down institutional and coordination mechanisms for effective Disaster Management at the national, state, district and local levels.

The Disaster Management Act 2005, Section 36;

This section of the act lays down the primary responsibility of ministries in the GoI and departments with respect to institutional framework for prevention, mitigation, preparedness and capacity building of disasters, allocating sufficient funds and other resources to the National and State government agencies. Enactments and review of its policies, rules and regulations for prevention of disasters, mitigation or preparedness.

The Disaster Management Act 2005, Section 37;

This section of the act lay down the primary responsibility of ministries in the GoI and departments with respect to preparation of Disaster Management Plan, their review, updation and its approvals. Measures for financing the activities within the plan are also required to be spelled out in the plan.

2.1.2 Guidelines for Preparation of DMP for Ministries/Dept. issued by National Disaster Management Authority (NDMA), 2024

The guidelines provide a framework in accordance with National Disaster Management Plan - 2019 and provides direction to the port and its stakeholders for all phases of the disaster management cycle.

2.1.3 Prime Minister of India – Ten-Point Agenda for Disaster Risk Reduction

- 1. All development sectors must imbibe the principles of disaster risk management
- 2. Risk coverage must include all, starting from poor households to SMEs to multinational corporations to nation states
- 3. Women's leadership and greater involvement should be central to disaster risk management
- 4. Invest in risk mapping globally to improve global understanding of Nature and disaster risks
- 5. Leverage technology to enhance the efficiency of disaster risk management efforts
- 6. Develop a network of universities to work on disaster-related issues
- 7. Utilize the opportunities provided by social media and mobile technologies for disaster risk reduction
- 8. Build on local capacity and initiative to enhance disaster risk reduction
- 9. Make use of every opportunity to learn from disasters and, to achieve that, there must be studies on the lessons after every disaster
- 10. Bring about greater cohesion in international response to disasters.

2.1.4 Sendai International framework for Disaster Risk Reduction (SFDRR-2015-2030)

The post-2015 goals and agenda are set forth in the three landmark global agreements reached in2015 – the Sendai Framework for Disaster Risk Reduction (Sendai, Japan, March 2015), Sustainable Development Goals (UN General Assembly, New York, September 2015) and Climate Change Agreement (Conference of Parties, COP21, Paris, December 2015). The four priorities for action under the Sendai Framework are:

Figure 2.1: Sendai Framework

2.1.5 Safety initiatives to address Natural Disasters

NDMA guidelines on Disasters like Wind & Cyclone, Tsunami, Earthquake and Floods Management are relevant and these have been prepared to provide the directions to ministries, departments and state authorities for the preparation of their detailed Disaster Management Plans.

2.2 OBJECTIVE AND SCOPE OF THE PLAN

The objectives of the DMP are to:

- a. Contain and control the emergency incidents,
- b. Proactively safeguard the lives of the port employees, contractors, stakeholders, visitors and neighboring population,
- c. Mitigate the effect and minimize the damage to the environment,
- d. Limit damages of port assets,
- e. Ensure that the port responds according to the priorities set by the Chief Incident Controller (CIC) during response operation,
- f. Safely restore operations back to normal as quickly as possible after occurrence of any accident, to enable business to be resumed at the earliest,
- g. Initiate off-site emergency plan in case of necessity as and when required.

The scope covers –

- a. The existing preventive and mitigation measures;
- b. Identification of potential scenarios that are likely to occur considering risk profile of port;
- c. The preparedness to develop plans for actions when disaster or emergencies occur;
- d. The responses that mobilize the necessary emergency services including responders like fire service, police service, medical service including ambulance, government as well as non-governmental agencies;
- e. The initiation of off-site emergency plan, should the situation escalate to call for support of civic administrations (district and/or state) and their resources;
- f. The post disaster recovery with aim to restore the affected area to its original condition.

3. PROFILE OF THE PORT

3.1 **PROFILE**

Deendayal Port, a major port since 1955, is situated on the shores of the Kandla Creek The total length of Deendayal Port approach Channel is around 23 kms and minimum width 250 meters. The port is an all-weather port.

It is well connected by the network of rail and road and provides gate way for export and import of traffic from all North Indian States.

Pilotage is compulsory; and is available round the clock except for tankers (LPG and Ammonia vessels are handled during daylight hours only).

Dedicated anchorage areas for the calling vessels are at outer Tuna Buoy (OTB) and for barges it is located inside the Kandla creek.

Existing Facilities inside the port area are as follows:

- 1. Dry cargo on berths 1 to 10 and 13 to 16 (Iron Scrap, Steel, Food Grains, Ore, Timber Logs, Salt Extractions, etc.)
- 2. Container berth 11-12
- 3. Liquid cargo on oil jetties 1 to 7 (LPG, Ammonia, POL Products, Edible Oils, Other Chemicals, etc.)
- 4. IFFCO barge jetty
- 5. Floating Dry Dock Facility

3.2 LOCATION OF THE PORT

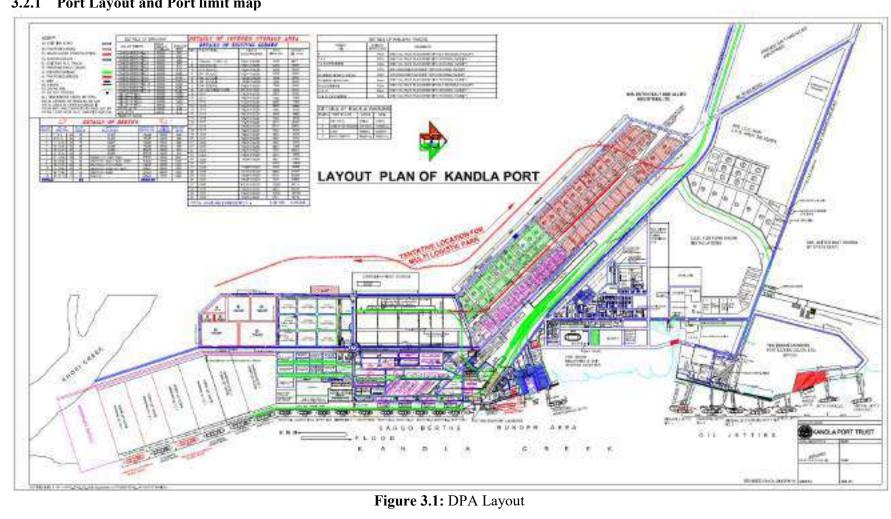
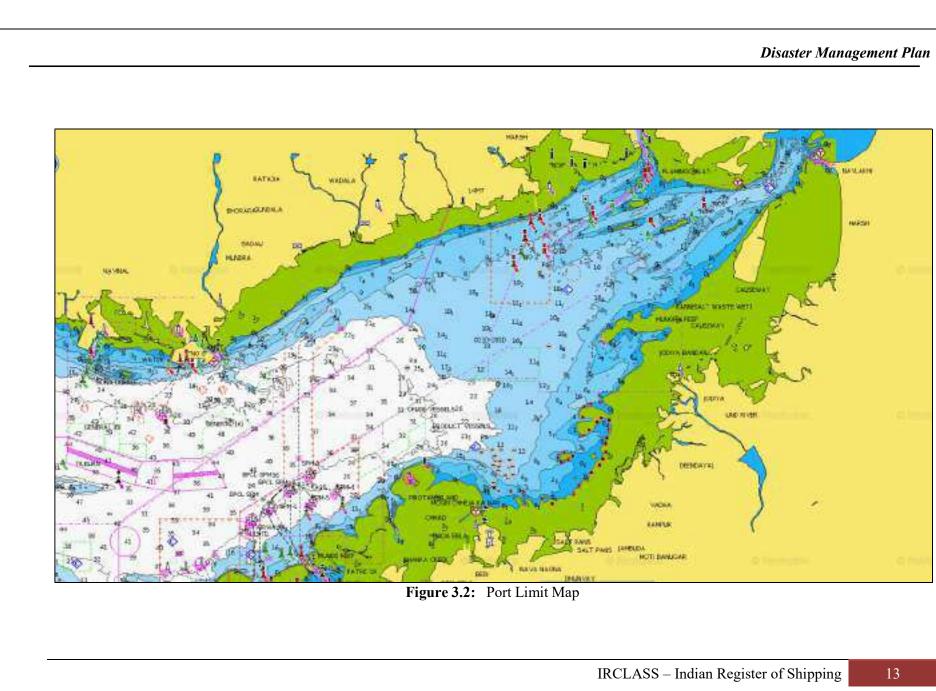

The port lies near the city of Gandhidham in Gujarat.

Table 3.1: Location of Port

Latitude	23° 3'47.33"N		
Longitude	70°11'50.30"E		



Disaster Management Plan

3.2.1 Port Layout and Port limit map

IRCLASS – Indian Register of Shipping

RESTRICTED.

4. RISK ASSESSMENT

4.1DISASTER RISKS AND VULNERABILITIES

4.1.1 Chemical Disaster (Fire/ Explosion/ Toxic gas/ liquid release)

These can be caused due to loss of containment of hazardous cargo such as LPG, Motor Spirit, Toluene, Butadiene, Naphtha, Acrylonitrile, Ammonia etc.

4.1.2 Fire Disaster- Class A (solid combustible) & E (electrical) - Fire incidents can occur in areas such as the administration building, control rooms, electrical substations, etc.

4.1.3 Navigational Disaster

Potential scenarios such as Collision, Grounding, Oil Spill, Fire on ships. These were identified on the basis of HAZID assessment and discussion with stakeholders.

4.1.4 Natural Disasters

- Wind and Cyclone: In accordance with national and regional hazard map available with BMTPC the Kutch district falls under very high damage risk zone (max. wind speed of 50 m/s).
- Flood: Due to its geographical situation, the Kutch district is not vulnerable to occurrence of Flood.
- Earthquake: Kutch district fall under High to Very High earthquake damage Risk zone (zone category IV & V).
- > Tsunami predictable with technological information.

4.1.5 Terrorism Disaster

These are situations that develop mostly without warning and need specialized handling.

4.2VULNERABILITY & THREAT MATRIX

An assessment of port vulnerable areas vis-a-vis threats due to disasters is prepared depicting low, moderate and high vulnerability categories.

<u>Threats</u> Vulnerable Areas ↓	Vessel Accidents: Collision/ Grounding/ Fire/ Explosion	Fire & Explosion: Manifold/ Pipeline/ Hose/any other fire	Toxic Gas Leakage: Pipeline/ Manifold/ hose	Pollution (Land/ Sea): Oil/ Chemical	Technical Failures: Power/ Transport / Communi -catio/ Infrastruc ture	War & Terrorism: Bomb Threat	Cyclone , Floods	Tsunami/ Earth Quake
		I	VESSEL MOV	EMENT				
Navigational Channel	xx	-	-	xx	xx	xx	XX	xx
Anchorage area (OTB and Inner anchorage)	XX	-	-	XX	XX	XX	xx	xx
General Cargo Jetty	x	x	-	x	xx	xx	XX	xxx
Oil Jetties	XX	XX	xx	xx	XX	xx	xx	xxx
Tug Jetties	x	-	-	x	-	x	XX	xx
		S	TORAGE-TR	ANSFER				
Stack yards (Coal, timber, Sulphur, container etc.)	-	x	-	-	-	x	xx	x
Godowns	-	X	-	-	-	X	XX	XX
			CARGO TRA	NSFER				
Pipelines and loading arms	-	XX	XX	XX	XX	XX	XX	XX
Cranes & Ship Loaders	X	x	-	-	x	x	XX	xx
			SERVIC	ES				
Security gates	-	x	x	-	x	xx	x	x
Electric Substations	-	XX	-	-	XX	х	x	XX
Dry Dock	-	x	x	-	x	xx	xx	xx
Port Fire station/ Signal Station	-	X	X	x	XX	x	x	xx
Port tugs, crafts, dredger, launchers	X	X	-	x	x	x	xxx	x
			ADMINISTR	ATION				
Buildings (Admin, hospital)	-	XX	-	-	X	X	XX	XX

Note: x=slightly vulnerable; xx=moderately vulnerable; xxx=highly vulnerable

4.3LEVEL OF DISASTERS

The different levels of disaster in order to facilitate the responses and assistance to ports are as follows

Level 0 – denotes normal times which will be utilized for close monitoring, documentation, prevention and preparatory activities. Training on search and rescue, drills, evaluation and inventory updating for response activities will be carried out during this time

Level 1 – specifies disaster that can be managed at Port level; however, the neighboring industries and district will remain in the state of readiness.

Level 2 – disaster situations are those which require assistance and active participation of the port, the neighboring industries and district/State.

Level 3 – disaster situation is in case of large-scale disaster where the state and district authorities have been overwhelmed and require assistance from the Central Government for rescue, relief, and other response and recovery measures. In most cases, the scale and intensity of the disaster as determined by the concerned technical agency like IMD, INCOIS etc. are sufficient for the declaration of Level 3 disaster.

IRCLASS – Indian Register of Shipping

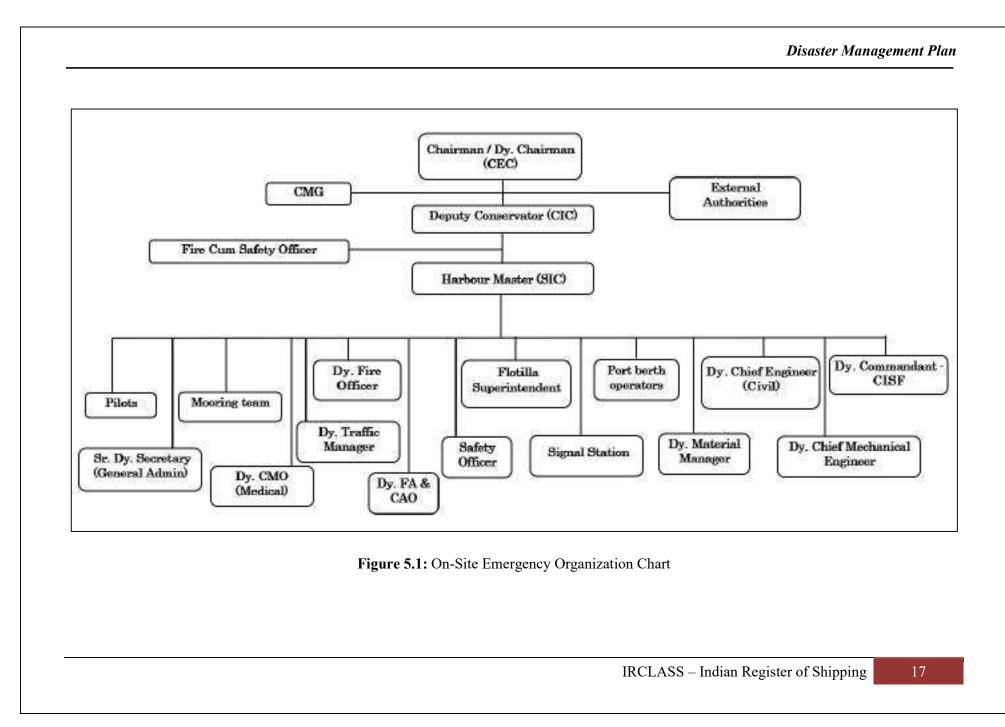
5. ROLES AND RESPONSIBILITIES

5.1 HUMAN RESOURCE PLANNING

Refer Figure 5.1 and 5.2 for Onsite and Offsite Emergency Organization chart respectively.

5.1.1 Crisis Management Group

The Crisis Management Group consists of all HOD's under the head of the Chairman/Dy. Chairman (CEC) which lays down the policies and decisions.


- 1. Chairman/Dy. Chairman;
- 2. Deputy Conservator;
- 3. Traffic Manager;
- 4. Chief Engineer (Civil);
- 5. Chief Mechanical Engineer;
- 6. Fire Cum Safety Officer;
- 7. Sr. Commandant-CISF;
- 8. Chief Medical Officer;
- 9. Chief Vigilance officer;
- 10. Secretary (General Administration);
- 11. Chief Law Officer;
- 12. Financial Advisor and Chief Account Officer;
- 13. Sr. Dy. Materials Manager;
- 14. Environment Cell (External);
- 15. Public Relation officer;
- 16. Port Berth Operator/Terminal Managers.

5.1.2 Action Group (Incident Response Team)

The action group carries out the decisions made by CMG. It shall be formed at the time of crisis with Harbour Master (SIC) as the head.

- 1. Harbour Master;
- 2. Signal Station Superintendent;
- 3. Dy. Fire Officer;
- 4. Dy. Traffic Manager;
- 5. Pilots;
- 6. Safety Officer;
- 7. Dy. Chief Mechanical Engineer;
- 8. Dy. Chief Engineer (Civil);
- 9. Sr. Dy. Secretary (General Administration);
- 10. Flotilla Superintendent;
- 11. Mooring Team;
- 12. Dy. CMO (Medical);
- 13. Dy. Commandant -CISF;
- 14. Dy. Financial Advisor and Chief Account Officer;
- 15. Dy. Material Manager;
- 16. Oil Spill Response Organization (OSRO);
- 17. Port Berth Operators.

RESTRICTED.

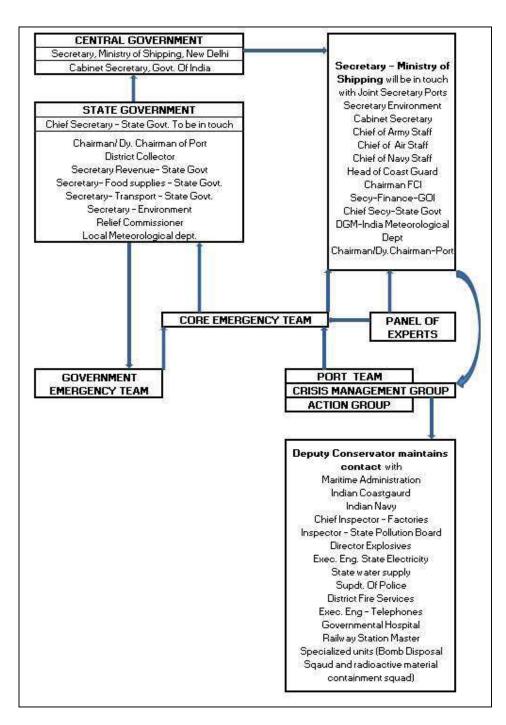


Figure 5.2: Off-Site Emergency Organization Chart – Level 2 and 3

5.1.3 Koles of	Terminal/Berth Operators and Port A	Authority
Role	Terminal/Berth Operators	Port Authority
Prevention	 Prepare, revise, test and exercise own facility EAP/ERDMP, Train own staff, Conduct and participate emergency drills and exercises. 	 Prepare DMP, Conduct emergency exercises, Guideline to encourage all Port Facility Operators to have Emergency Management Plans.
During Response	Undertake following: •First Aid, •Advise staff, •Contain (if possible), •Evacuation (as appropriate), •Partial or Full Shutdown (as appropriate), •Security. When external emergency services arrive: •Provide specialist advise/liaison, •Media Advise as required, •Advise Port, Security, and Harbour Master and neighbouring facilities as required.	 Monitor Make Strategic decisions regarding: Shipping movements Threats to Port facility operators and effects on their business operations Advice and assist to affected Port facility Operators on matters where qualified to do so. Escalate response level by obtaining assistance from Local Crisis Groups.
Recovery and reconstruction	•Establish business continuity of terminal.	 Assist Port facility operators &/or shipping to resume operations. Establish business continuity of terminal.

5.1.3 Roles of Terminal/Berth Operators and Port Authority

 Table 5.1: Roles Terminal/Berth Operators and Port Authority

5.1.4 Roles a	nd R	esponsibility of key personnel				
	СН	IEF EMERGENCY CONTROLLER (CEC) CHAIRMAN/DEPUTY CHAIRMAN				
Phase		Action				
	1	Obtain details of incident and of any mitigative actions taken from CIC.				
		Communicate with and coordinate with				
Mobilization /Activation		a. Local, District, State and National Authorities				
Activation	2	b. Crisis Management Group (CMG)				
		c. Chief Incident Controller (CIC)				
		d. D.G. Shipping				
Establishing	3	Nominate alternate person if any functionary is not available.				
Control	4	Establish radio or telephone contact with CIC and CMG.				
		Advice and provide support to CIC on				
	5 5	a. Propriety of response level				
		b. Location of EOC				
Planning		c. Additional Human Resource, materials, equipment and information.				
		d. Authorizes the release of required funds for the necessary arrangements for evacuation, transportation, food & supplies.				
	6	Advice CIC on activation of DMP.				
Ongoing	7	Activate Off Site Plan, if necessary.				
Response	8	To issue Media briefings when required.				
	9	Terminating response advice given to CIC if conditions are met.				
Response	10	Receive incident reports from CIC/ nominated alternate person.				
Termination	11	Advise on further course of action in consultation with CIC/ nominated alternate person.				

		HIEF INCIDENT CONTROLLER (CIC) DEPUTY CONSERVATOR				
Phase		Action				
	1	Obtain details of incident and of any mitigative actions taken.				
	2	Start recording of events in the Personal Log.				
	3	Activate DMP and/or OSCP.				
		Communicate and coordinate with				
		a. Chairman/Dy. Chairman -CEC				
Mobilization		b. IRT and CMG				
/ Activation		c. Salvage Association				
	4	d. CISF-Security and Marine Police				
		e. Local Authorities and Neighboring industries, District, State and National Authorities				
		f. Respective Terminal Managers/Operators				
		g. Relevant external agencies for Natural Disasters.				
	5	Assess the level of incident, nature, location, severity, casualties and resource requirement.				
Establishing	6	Proceed to the EOC and conduct briefing meeting.				
Control	7	Authorize any immediate action required by on site staff and contract agencies.				
	8	Establish contact with CIC and CMG.				
	9	Determine resources at risk and the level of disaster.				
Evaluation	10	Evaluate the assessment of the incident, in consultation with the SIC.				
	11	Arrange for monitoring of the event/incident.				
Planning	12	Convene planning meeting.				
Tianning	13	Instruct Material Manager to make a list of required ne Personnel, equipment, transport etc. Authorize acquisition.				
	14	Implement response actions as per DMP and OSCP.				
	15	Continue to monitor incident.				
• •	16	Monitor the response by scheduling and undertaking regularies briefings/debriefings of IRT.				
Ongoing Response	17	Amend the SOP and Action Plan as required.				
Response	18	Ensure that IRT is supplied with necessary personal needs su as tugs, walkie-talkies, PPE, food etc.				
	19	Monitor casualties and vessel traffic movements.				
	20	Terminate response if conditions are met.				
	21	Advise the SIC and inform CEC.				
Response	22	Ensure that all IRT members, combat and support agencies ar informed of termination of response.				
Termination	23	Monitor to ensure safe and complete demobilization.				
	24	Debrief CMG.				
	25	Ensure that all records are collated and stored.				

IRCLASS – Indian Register of Shipping

			INCIDENT CONTROLLER (SIC) HARBOUR MASTER				
Phase			Action				
	1	Obtain details of incident and of any mitigative actions taken.					
	2	Start recording of events in the Personal Log.					
	3	Initiate	e				
	3	a. DMP, OSCP as required					
		Communicate and coordinate with					
Mobilization		a.	CIC				
/Activation		b.	IRT				
	4	c .	CMG				
	4	d.	Master of the vessel				
		e.	Terminal, Berth Managers and Operators				
		f.	Functional Heads of the Port				
		g.	OSRO				
	5		s the level of incident, nature, location, severity, casualties and ce requirement.				
Establishing	6	Conduct initial briefing.					
Control	7	Authorize any immediate action required by on site staff and contract agencies.					
	8	Establish radio or telephone contact with CIC and CMG.					
		Arrang	ge for				
		a.	Deployment of Pollution and Fire- extinguishing response equipment.				
Dlanning	9	b.	Multi-Purpose Vessels				
Planning		с.	Tugs, etc.				
		d.	Ensure evacuation of personnel to assembly areas.				
	10	Assist Material Manager to compile a list of needs: Personne equipment, transport etc.					
	11	Implement response actions as per OSCP and DMP.					
	12	Continue to monitor incident.					
Ongoing	13	Monitor the response as per CIC schedule and undertake regular briefings/debriefings of IRT.					
Response	14	Coord	inate Search and Rescue operations.				
	15	If necessary, call for additional resources.					
	16	Arrange relief for IRT members & Monitor OH&S performance.					
	17	Monitor waste volumes, if any.					
	18	Termi	nate response if conditions are met on permission of CIC.				
Response Termination	19	Ensure that all IRT members, Contract Agencies and CIC are informed of termination of response.					
	20	Monit	or to ensure safe and complete demobilization.				
	21	Ensure that all records are collated and stored.					

		SENIOR PILOT			
Phase		Action			
Mobilization / Activation	1	Upon callout, report to CIC/SIC.			
	2	Start recording of events in the Personal Log.			
Activation	3	Attend Initial Briefing.			
		Assist and coordinate with SIC, Signal Station Superintendent and Chief hydrographer to obtain and collate available data:			
Assessment	4	a. Weather.			
		b. Tides, currents.			
		c. Latest update on action taken.			
Planning	5	Determine field response equipment/ labor/ transport requirements and provide to CIC.			
	6	Direct and coordinate marine response activities.			
	7	Prepare all tugs/crafts for mobilization at the earliest. Coordinate with Flotilla Superintendent.			
	8	Coordinate with dredging superintendent.			
		Ensure that field response teams receive required			
		a. Information i.e. Briefings/Inductions/Weather.			
Ongoing	9	b. Personal protective equipment (PPE).			
Ongoing Response	9	c. Essential supplies (e.g. food, first aid etc.).			
		d. Weather conditions.			
		e. Monitoring of response activities.			
	10	Coordinate dispersant operations when permitted.			
	11	Seek for necessary means for aerial observation, containment and recover actions and vessel dispersant spraying operations.			
	12	Inform in-charge of pollution response cell (OSRO) of anticipated wast quantity and type.			
	13	Advise for termination of response operation.			
Response	14	Ensure safe return of response personnel.			
Termination	15	Ensure that all equipment is cleaned and returned to stores.			
	16	Attend debriefing.			
	17	Ensure that all records are collated and stored.			

		SAFETY OFFICER		
Phase		Action		
	1	Start recording of events in the Personal Log.		
		Communicate and coordinate with		
		a. CIC		
		b. SIC		
Mobilization / Activation	2	c. Fire cum Safety Officer		
Activation		d. Ship owners / Agents / C & F agents / stevedores.		
		e. Terminal and Berth/Jetty Managers		
		f. Environmental cell		
		g. Waste/ Sludge disposal agencies		
	3	Establish radio or telephone contact with CIC and SIC.		
Establishing	4	Furnish information to the SIC with regards to the safety.		
Control	5	Inform GPCB and other environmental agencies about the incident fo getting necessary guidance.		
	6	Coordinate and consolidate list of dangerous goods including tanker a port.		
Initial Action	7	To collect necessary evidence required for detailed investigation of any accidents.		
	8	Coordinate with the salvage association and waste/sludge disposal agencies.		
Ongoing Response	9	Assist in the safe evacuation of the personnel.		
D	10	Terminate response if conditions are met on permission of CIC/SIC.		
Response Termination	11	Submit detailed report regarding the accidents to CIC/SIC.		
1 ci mination	12	Ensure that all records are collated and stored.		

		CHIEF MECHANICAL ENGINEER (CME)		
Phase		Action		
	1	Start recording of events in the Personal Log.		
		Communicate and coordinate with		
		a. CIC		
		b. SIC		
Mobilization		c. Port Electrical, Workshop divisions		
/ Activation	2	d. Maintenance Department		
		e. Engineering Department (Electrical and Civil)		
		f. Fire cum Safety Officer		
		g. Material Management Department		
		h. State Electricity Board		
Establishing	3	Depute engineers on-site.		
Control	4	Establish radio or telephone contact with CIC and SIC.		
	5	Implements elaborate plans for providing continuity of emergency supplies and services such as, electric power, emergency lighting, communication system, dry docks, vehicles, floating crafts etc.		
	6	Keep alert on duty for any electrical isolation of equipment during an emergency.		
Initial Action	7	Suggests optimal strategies for conducting emergency isolation operations of damaged equipment, the emergency transfer of materials and all other process related emergency operations		
	8	Maintain sufficient stock of required equipment/materials.		
	9	Coordinate with CIC, SIC and CISF.		
	10	Ensure water supply to the hydrants.		
	11	Provide necessary advice and supports.		
Ongoing Response	12	Arrange for Bulldozers, mobile cranes, forklifts or any othe specialized equipment.		
	13	Mobilize cargo handling equipment.		
Response	14	Terminate response if conditions are met on permission of CIC/SIC.		
Termination	15	Ensure that all records are collated and stored.		

		CHIEF ENGINEER (CE) – (Civil)		
Phase		Action		
	1	Start recording of events in the Personal Log.		
		Communicate and coordinate with		
		a. CIC		
Mobilization		b. SIC		
/ Activation	2	c. Engineering Department (Electrical and Civil)		
		d. Workshop Division		
		e. Material Management Department		
		f. Maintenance department		
		g. Fire cum Safety Officer		
Establishing Control	3	Establish radio or telephone contact with CIC and SIC. Depute engineers on-site.		
	4	Arrange sandbags, Diesel pumps, sufficient quantities of bleaching powder etc., for the event of Cyclone/flood. Plans/strategy, as contemplated, to be forwarded to higher levels.		
	5	Will look after fenders, sea wall, roofs etc.		
Initial	6	Identify local contractors and keep them as standby to meet emergency requirements such as manpower, equipment etc.		
Action	7	Render and Monitor assistance for extricating trapped personnel by cutting structures etc.		
	8	To ensure that adequate clean water is available in the reservoirs.		
	9	Instruct the contractors to carry out urgency civil works if required.		
	10	Coordinate with CIC, SIC and CISF.		
	11	Provide necessary advice and support.		
Ongoing Response	12	In case of fire and especially if the fire involves toxic/flamma materials, contain the runoff fire water and other water from damaged units.		
	13	Cooperate with IRT to conduct the actual cleanup work during an after the emergency including clearing of debris.		
	14	Terminate response if conditions are met on permission of CIC/SIC.		
Response Termination	15	Undertake strengthening of shoreline, buildings and other civil works in case of damage.		
	16	Ensure that all records are collated and stored.		

		TRAFFIC MANAGER		
Phase		Action		
	1	Start recording of events in the Personal Log.		
		Communicate and coordinate with		
Mobilization /		a. CIC		
Activation	2	b. SIC		
		c. Terminal and Berth Managers		
		d. Safety officer		
Establishing	3	Prepares vessels to vacate from berth.		
Control	4	Establish radio or telephone contact with CIC and SIC.		
	5	Prepare consolidated list of dangerous goods including tankers in port and provide details to SIC.		
Initial Action	6	Arranges to protect cargo in vicinity from damage.		
	7	Arranges to segregate and shift cargo in sheds.		
	8	Provide necessary advice and supports.		
Response	9	Terminate response if conditions are met on permission of CIC/SIC.		
Termination	10	Ensure that all records are collated and stored.		

		FI	RE CUM SAFETY OFFICER		
Phase		Action			
	1	Obtain	Obtain details of spill/fire and of any mitigative actions taken.		
	2	Start recording of events in the Personal Log.			
		Comm	unicate and coordinate with		
Mobilization /		a.	SIC		
Activation	3	b.	CIC		
		c.	Signal Station and Fire Station		
		d.	Terminal and Berth Managers		
	4	Activa	te Fire Station.		
Establishing	5	Lead Fire Fighting Team			
Control	6	Establish radio or telephone contact with SIC			
	7	Annou	Announce Fire Incident Point on PAS.		
	8	Be updated about wind direction.			
		Arrang	ge for		
		a.	• Fire Extinguishers		
Initial Actions	0		• Maintain sufficient water pressure in fire hydrant system.		
	9	b.	Safety Equipment		
		c.	Rescue of injured persons to medical centers		
		d.	In consultation with SIC evacuate workers to assembly areas.		
	10	Assist SIC to compile a list of needs: personnel, equipment, transporetc.			
Response Actions	11	Implement response actions as per OSCP and DMP as per SIC/CIC instructions.			

IRCLASS – Indian Register of Shipping

Disaster Management Plan

	12	If necessary, call for additional resources
D	13	Terminate response if conditions are met on consultation with SIC.
Response Termination	14	Ensure safe return of response personnel.
1 ci mination	15	Ensure that all records are collated and stored.

	SIGNAL STATION				
Phase		Action			
		Communicate with			
		a CIC			
		b SIC			
Mobilization /	1	c Kandla VTMS, Tuna Tekra and Vadinar			
Activation	1	d Master of the vessel			
		e Pilots			
		f Meteorological department			
		g Marine Police			
	2	Gather detailed information about the incident.			
Initial Action	3	On receipt of instructions from SIC, notify the Master of the Vessel, craft, security boat			
Ongoing Response	4	Coordinate with SIC and provide necessary information.			
Response	5	Terminate response on instructions of CIC/SIC			
Termination	6	Ensure that all records are collated and stored.			

	SR. DEPUTY MATERIAL MANAGER				
Phase		Action			
		Communicate with			
Mobilization /	1	a CIC/SIC			
Activation	1	b Engineering Department			
		c Workshops Division			
	2	Arrange for material and equipment			
Initial Action	3	Ensure stock of emergency equipment such as diesel, petrol and such other oils, fire-fighting items such as foam, damage control stores such as cement and other stores required to keep plants, machinery road vehicles and water-craft running.			
4		One officer to liaise with suppliers of all items mentioned above, so that they can be procured as and when required.			
Response	5	Terminate response if conditions are met on permission of CIC/SIC.			
Termination	6	Ensure that all records are collated and stored.			

Sr. COMMANDANT - CISF (SECURITY)				
Phase		Action		
	1	Obtain details of incident and of any mitigative actions taken.		
	2	Start recording of pertinent facts and figures in the Personal Log.		
Mabilization /		Communicate and coordinate with		
Mobilization / Activation		a. CIC		
	3	b. SIC		
		c. Kutch Police Authorities and other relevant authorities		
		d. State Relief and Rehabilitation department		
T (11 1	4	Authorize any immediate action required by on site staff.		
Establishing Control	5	Establish a special task force for the rescue operation.		
Control	6	Establish radio and telephone contact with CIC and SIC		
Initial Action	7	Obtain necessary instructions from SIC.		
	8	Keep extra vigilance on the location or sites which are likely to be affected by cyclone for e.g. electrical substation, store, workshop, cargo berth, dry dock, administration building etc.		
	9	Control entry of unauthorized persons.		
Ongoing Response	10	Facilitate entry of authorized persons, agencies.		
	11	Facilitate entry of emergency vehicles such as ambulance etc.		
	12	Assist in Search and Rescue operation.		
	13	Ensures that residents within port area are notified about disaster and instructions to evacuate if necessary.		
D	14	Carry out a reconnaissance of the evacuated area before declaring the same as evacuated.		
Response Termination	15	Terminate response if conditions are met on permission of CIC or SIC.		
	16	Ensure that all records are collated and stored.		

	CHIEF MEDICAL OFFICER				
Phase		Action			
	1	Start recording of events in the Personal Log.			
		Communicate and coordinate with			
		a. CIC			
Mobilization /		b. SIC			
Activation	2	c. Nearby Hospitals, Medical department of Gov. of Gujarat and Health care professionals.			
		d. Port Signal Station			
		e. CISF			
	3	Activate Hospital Emergency Action Plan and depute doctors on-site to give first aid to the injured.			
	4	Establish radio or telephone contact with CIC and SIC and understand the emergency situation.			
Establishing Control	5	Advise CIC/SIC on industrial hygiene and make sure that the frontline personnel are not exposed to unacceptable levels of toxic substances.			
	6	Inform hospitals of the situation in case of a toxic release and apprise them of the antidotes necessary for the treatment			
	7	Coordinate with ICLO. Along with the District Administration and health care professionals, ICLO will facilitate infection control programme in the event of a natural disaster.			
T •/• 1 A /•	8	Maintain sufficient stock of medicines, antidotes, oxygen, stretchers etc., and arrange for ambulance.			
Initial Action	9	Suggest and provide an antidote in the event of toxic release			
	10	Coordinate with nearby hospitals, doctors and ambulance.			
Ongoing Response	11	Provide necessary advice and supports for appropriate treatment of the injured persons.			
Response	12	Terminate response if conditions are met on permission of CIC/SIC.			
Termination	13	Ensure that all records are collated and stored.			

	TERMINAL/BERTH MANAGER					
Phase		Action				
	1	Start recording of events in the Personal Log.				
		Communicate and coordinate with				
Mobilization /		a. CIC				
Activation	2	b. SIC				
		c. Ship owners / Agents / C & F agents / stevedores.				
		d. Neighboring Terminal Managers				
Establishing	3	Prepares vessels to vacate from berth.				
Control	4	Establish radio or telephone contact with CIC and SIC.				
	5	Prepare consolidated list of dangerous goods including tankers in port.				
Initial Action	6	Arranges to protect cargo in vicinity from damage.				
	7	Arranges to segregate and shift cargo in sheds.				
0	8	Coordinate with ship owners/agents/C&F agents/stevedores.				
Ongoing Response	9	Provide necessary advice and supports with manpower and equipment including fire-fighting aids.				
Response	10	Terminate response if conditions are met on permission of CIC/SIC.				
Termination	11	Ensure that all records are collated and stored.				

Phase		Action
Mobilization	1	Communicate and coordinate with
		a. CEC
		b. CIC
/ Activation		c. Administration Department
		d. FA&CAO
		e. Legal Department
	2	Will remain In-Charge of the Admin. department.
Initial Action	3	In the event of evacuation, assist Management Group to co-ordinat with State Transport Authority and the Police authority for evacuation. Arrange for food and water and accommodation.
	4	Liaise with Municipal Corporation and the Civil Defenc Organisation for arrangements for shelters for the evacuated persons food for them and later for their rehabilitation.
	5	Keep in close liaison with the evacuating authority and collect all details regarding the evacuated people. This will be necessary to settle claims, if any, at a later date.
	6	Mobilise all vehicles for the transportation needs of the Managemen Team, the Action Team and support services.
	7	Keep the Legal Advisor of the Port informed of the situation at al times and obtain his advice for legalising all the port's actions.
	8	Draw lists of Port Personnel affected and involved in an incident, and keep their families informed correctly through Information Centre.

	9	Make proper arrangements for the Port's personnel engaged in combating an emergency for their food and rest.
Response Termination	10	Liaises with media under guidelines provided by the CEC.

CHIEF LAW OFFICER				
Phase		Action		
Mobilization	1	Communicate and coordinate with		
		a. CEC		
/ Activation		b. CIC		
Initial Action	2	Gather information		
Ongoing Response	3	To assist in issuing notice under Major Port Trust Act, Indian Ports Act, Major Port Prevention and Control of Pollution Rules etc. to the defaulters.		
Response Termination	4	Arrange for settlement of related claims		
	5	Liaises with media under guidelines provided by the CEC.		

FINANCIAL ADVISOR & CHIEF ACCOUNT OFFICER				
Phase		Action		
Mobilization / Activation	1	Communicate and coordinate with a. CEC b. CIC/SIC		
Initial Action	2	Gather information		
Ongoing Response	3	Process agreements and/or arrange payments to all departments for their requirements such as leasing/ immediate procuring of equipment.		
	4	Take appropriate action for hiring of specialist services, food, and shelter and transport arrangements, as the situation demands.		
	5	Depute a senior officer to each department involved in combating action, to look after its needs.		
	6	Monitor the expenditure, and services rendered by outside agencies to the Port and vice versa, to avoid disputes later and to facilitate smooth working of mutual aid.		
	7	Depute senior officer of this department assisted by an officer from the General Administration Department, Engineering, Marine Department to document all events, damages and claims.		
Response Termination	8	Liaises with media under guidelines provided by the CEC.		

Disaster Management Plan

PUBLIC RELATIONS OFFICER				
Phase		Action		
Mobilization / Activation	1	Communicate and coordinate with a. CEC b. CIC		
Initial Action	2	Set up an Information Centre.		
Ongoing Response	3	Liaise between the EOC and outside agencies participating in the emergency.		
	4	Provide information to the Police regarding developments as authorised.		
Response Termination	5	Liaises with media under guidelines provided by the CEC.		

5.2 COORDINATION - HORIZONTAL AND VERTICAL LINKAGES

Coordination with the following external agencies would be required and the Emergency Operation Centre (EOC) will function as the focal point of coordination.

- Gujarat State Disaster Management Authority (GSDMA),
- District Disaster Management Authority (DDMA) Kutch,
- District Level Committee on Natural Calamity (DLCNC) Kutch,
- Gujarat Disaster Rapid Action Force (GDRAF),
- State and National Crisis Group,
- Indian Coast Guards, Indian Navy,
- DG Shipping, MMD,
- GPCB, PESO, AERB,
- Gujarat Water Supply and Sewerage Board (GWSSB);
- DD, AIR for media briefing,
- Gujarat Electricity Board (GEB), Gujarat State Electricity Corporation Limited (GSECL),
- Gujarat State Road Transport Corporation (GSRTC),
- IMD, Meteorological Centre Ahmedabad,
- Co-ordinate with the NGOs and aid agencies,
- P & I Club and their local correspondent,
- Salvage association,
- Public Health Organization.

5.2.1 State and District Level Coordination Mechanism

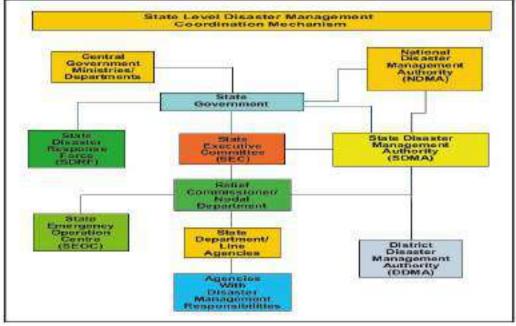


Figure 5.4: State -level disaster management - basic institutional framework

5.2.2 District Level

The DDMA is headed by the District Collector or Deputy Commissioner as the case may be, with the elected representative of the local authority as the Co-Chairperson.

6. PREPAREDNESS MEASURES

6.1 EMERGENCY OPERATION CENTRE

The EOC will be located in the E-Drishti Command and Control Centre or as directed by the CEC/CIC.

6.2 CAPACITY DEVELOPMENT

The capacity development covers all aspects of disaster management. The broad thematic areas for capacity development are summarized in **Table** 6.1.

	Capacity Development Themes		
Key Aspect	Thematic Areas		
Prevention or mitigation for disaster risk reduction	 Hazards, Risk, and Vulnerability Assessment Preparing DM plans, regular updation and mock drills, Institutional arrangements, policies, legal support, and regulatory framework, Safety awareness and training, Mainstreaming of DRR into development plans and programs, Training and skill development, Documenting lessons from previous disasters and ensuring their wide dissemination, Developing appropriate risk transfer instruments by collaborating with insurance companies and financial institutions, Integrate DRR into business models and practices, Preparedness and response plans at all levels, Disaster resilience by maintaining list of nearby hospitals and health care centers, Business resilience of productive assets by strengthening the supply chains and service providers, ensuring continuity of services. 		
Effective preparedness and response	 Emergency response capabilities – EOCs, infrastructure, equipment upgrades and adoption of best available technologies Effective coordination with external agencies and relevant stakeholders, Adoption and adaptation of emerging global good practices, Early warnings, maps/ satellite data/ effective dissemination of information, Table-top exercises, simulations, and mock drills to improve operational readiness of the plans, Strengthening of the Fire and Emergency Service through revamping and modernization, Transportation systems and network, Power and fuel supply management, 		
Recovery and Build Back Better	 Port infrastructure damage assessment mechanism and award of reconstruction projects, contracting including revised specifications for resilient infrastructure, Studies on past disasters and recovery to draw useful lessons. 		

Table 6.1: St	ummary of Broad	Capacity Develo	pment Themes
---------------	-----------------	-----------------	--------------

6.3 TRAINING

Regular trainings are provided to all personnel who have a role in planning and operational response to an emergency. A well-coordinated programme of training exercises includes activities of varying degrees of interaction and complexity.

6.4 DRILLS & EXERCISES

Emergency drills and integrated exercises have the following objectives:

- 1. To ensure that the emergency organization personnel are familiar with their duties and responsibilities,
- 2. Provide hands-on experience with the procedures to be implemented during emergency,
- 3. To test the adequacy of the effectiveness, timing, and content of the plan and implementing procedures.

The frequency of the drills are depends on the severity of the hazard. However, drills should be conducted at least once a year.

6.5 COMMUNICATION

Communication technology is an integral part of disaster management. It plays an important role in all the four distinct phases of disaster management namely mitigation, preparedness, response and recovery.

The following table provides information on the communication equipment available with the services and authorities.

Services & Authorities	Communication Network Element		
CMG and IRT	Special fire alarm and normal communication system- VHF-TELEPHONE-WALKIE TALKIE- MOBILE-SATCOM		
Fire-fighting craft and Rescue launches, tugs and other harbour craft	UHF/VHF Radio telephones-Mobile		
Ships at Berth	Normal UHF/VHF Radio telephone link used in cargo operations. Terminal/Berth Operator representative at tanker berth to also have own radio-SATCOM		
District Collector or State Secretary	UHF/VHF Radio telephone, public telephone-hot line for emergency level 2 & 3-SATCOM		
Civil authorities Including fire services, Police and medical services	UHF/VHF radio, telephone or public telephone system. SATCOM		
Jt. Secretary-Ministry of Ports, Shipping and Waterways, New Delhi	Public telephone-hot line for emergency level 2 & 3 SATCOM		

Table 6.2: Communication Network within the Port

6.6 TEMPORARY SHELTER

In the event of an impending disaster the affected population would have to be transported to intermediate temporary shelter.

Help of the voluntary organizations i.e. NGO may be taken for the rescue and relief operation.

IRCLASS – Indian Register of Shipping 36

6.7 TRANSPORTATION

All port vehicles (owned or hired) will be used during emergency.

6.8 GENERATOR SETS

Wherever generator sets are required, the engineering department will be contacted, who will immediately hire/procure.

6.9 DECONTAMINATION

Decontamination is employed to remove hazardous materials from people and equipment. The various types are as below:

- *Clinical decontamination* treatment by health professionals of patients affected by or contaminated with hazardous materials;
- *Personnel decontamination*, meaning the decontamination of uninjured exposed persons;
- *Equipment decontamination* is the procedure used to clean the specialist equipment/protective suits which personnel use in dealing with hazardous material incidents.

6.10 MEDICAL FACILITIES

Depending on the nature of the emergency, it may be necessary to alert medical facilities.

6.10.1 FIRST AID CENTER

First Aid treatments provided at the port and the Port ambulance placed at every First Aid center and hired vehicles, can be used for taking the person to the medical center.

6.11 RESOURCE MANAGEMENT

Resources available with the port for the preparedness program can be found in **Chapter 10 and Annex B.**

The various equipment and systems should always be maintained, inspected and tested periodically.

6.12 LOGISTICS/SERVICE DELIVERY MECHANISM

The required/necessary equipment and assistance during various types of emergencies can be requested from the Local Industry crisis groups, District crisis groups, neighboring industries. Additional resources available for disaster relief with the various departments in the Kutch District can be found from IDRN (https://idrn.nidm.gov.in/).

7. RESPONSE STRATEGIES

7.1 EARLY WARNING/ ALERT SYSTEM

7.1.1 Receiving and managing alerts

Information of the occurrence of incidents in and around the port area may come from a variety of sources. On receipt of information designated personnel must carry out investigation to confirm the incident and gather as many details and as quickly as possible:

- Prepare an incident report.
- Immediately forward the report to and inform the Deputy Conservator/Harbour Master.

7.1.2 Activation of Emergency Operation Centre (EOC) and initial resource coordination (Refer Procedure-A)

7.1.3 Resource mobilization

The CIC/SIC will ensure mobilization of sufficient equipment and personnel resources required to manage the response.

7.1.4 Direction, control and coordination –amongst IRT

The overall responsibility of the Emergency management lies with the CIC. **Table 7.1:** Procedure for Establishing EOC

PRC)CE	DURE-A	ESTABLISHING THE EMERGENCY OPERATION CENTRE (EC	DC)
Task	x		Action	Status
1.0	Ob	tain and/or as	ssign EOC equipment.	
	Communications			
1.1	a	Telephone	lines. (1 Hot line linking Dy. Commissioner of the district)	
1.1	b	Fax lines.		
	c	Radio freq	uency (as required).	
	Information Display.		play.	
	a	Set of form	ns (minimum of 5 sets).	
		Regional M	Iaps and Charts:	
1.2	b	i Nautic	cal charts.	
		ii Topog	raphic maps	
	c	Overhead p	projector (in nominated briefing room).	
	d	Whiteboard	ds.	
1.3	Copy(s) of the port Risk Assessment, DMP and OSCP.			
1.4	Computer and Printer.			
1.5	Stationary: Markers, Pens, Pencils and A4 white paper.			
1.6	Tables and chairs			
1.7	Order and obtain any items needed (1.1-1.6)			
1.8	Advise reception to direct incoming calls to the EOC.			

7.1.5 Competent Agencies

The competent agencies are responsible for keeping track of developments in respect of specific hazards assigned to them and inform the designated authorities/agencies at National, State and District levels about the impending disasters.

Table 7.2:	Competent	agencies	for	issuing	warnings

Disaster	Agencies
Earthquake	IMD/Ministry of Earth Sciences
Flood	Central Water Commission
Cyclone	IMD,
	Regional Specialized Meteorological Centre (RSMC)
Tsunami and Storm Surge	INCOIS

7.1.6 Communication Flowchart

Communication flowcharts between the key agencies and key personnel of the CMG/IRT for various hazards are as follows

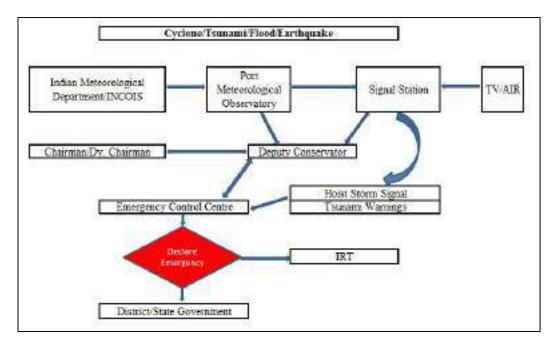


Figure 7.1: Cyclone /Tsunami/Flood/Earthquake

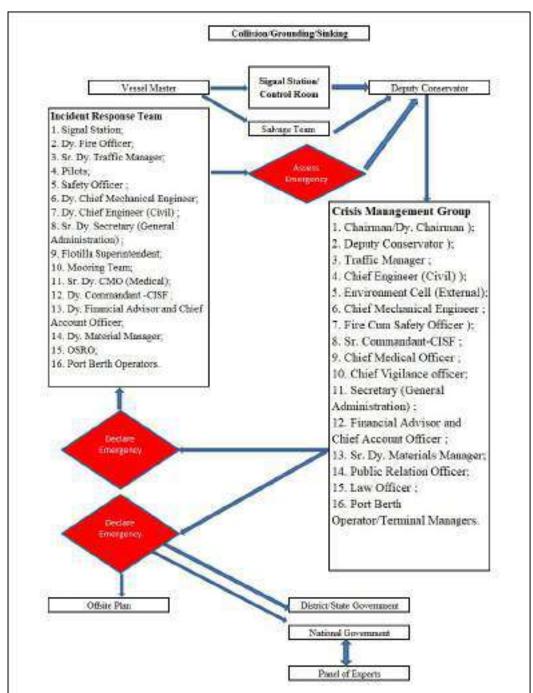


Figure 7.2: Collision/Grounding/Sinking

Disaster Management Plan

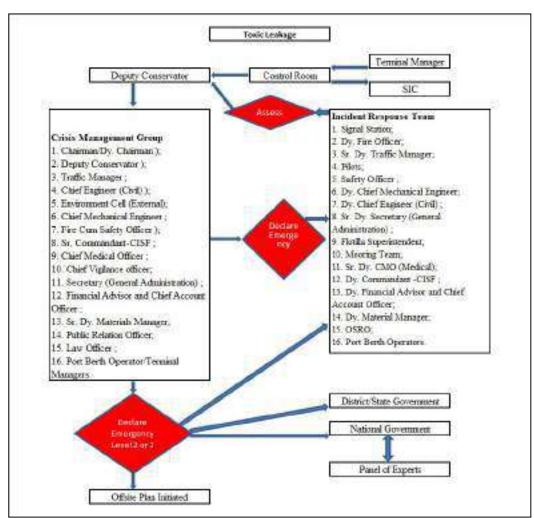
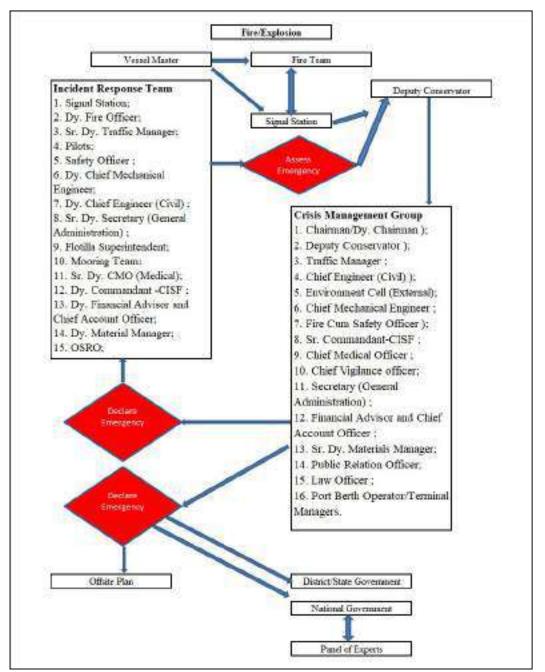



Figure 7.3: Toxic

Note: For Level of disaster refer paragraph 4.3.

Figure 7.4: Fire/Explosion *Note:* For level of disaster refer paragraph 4.3.

7.2 ACTIVATION OF RESPONSE PLAN

7.2.1 Action implementation plan

The observer, noticing an unusual occurrence like a fire / gas release / collapse of structure etc., should immediately notify the Port / Jetty Control Room with available means of communication and contact the concerned officer of the area. He should:

- 1. Raise alarm
- 2. Call Port / Jetty Control room and pass on following information:
 - Introduce himself
 - State briefly the type of emergency
 - Give the location of the incident.
- 3. Proceed to a safe place. However, he would return to the location of the incident and place himself in a safe area and standby to give assistance if he is part of the action group.
- 4. After receiving information from the observer, the signal station would notify all the key personnel of the Port.
- 5. All concerned personnel would move to their respective positions and will begin actions as documented in the action plan.

7.2.2 Site Control Procedure

Table 7.3: Site Control Procedure

		SITE CONTROL PROCEDURE	
includ	es the	should be established for every site where access is to EOC, sites of shoreline cleanup, waste storage, resp site containing hazards or hazardous materials.	
Task		Action	Status
	Identify perimeter of the "Hot" (secure or prohibited) zone. This may be:		
1	i	Area around the incident (e.g., Fire and Explosion).	
1	ii	Jetty/berth area	
	iii	Oiled shoreline. (Note: This zone should contain all hazards and sensitive areas where access should be restricted).	
2	Iden	tify the "Hot" zone perimeter by cordoning.	
3	Identify the "Warm" (exclusion, controlled or support) zone. (Note: This is a non-contaminated/ non- hazardous zone). For e.g.: Shelter, canteen, car parking, etc.		
4	Identify the "Warm" zone perimeter by cordoning.		
E	Establish any required "Hot" zone perimeter facilities. For e.g. (i) and (ii):		
5	i	Decontamination facility.	
	ii Temporary waste storage.		
6	Esta	blish "Warm" zone perimeter facilities.	
7	Establish support facilities within Warm zone as required.		

Note 1 Entry to a Hot Zone should be restricted to:

- Personnel involved in the on-site work.
- Personnel equipped with appropriate protective gear.
- Personnel who have undergone correct training and induction.

Note 2 The Warm Zone surrounds the Hot Zone and is the zone and is generally:

- The area from which personnel and equipment are deployed.
- The perimeter where site control is exercised i.e. the entry points to the Hot Zone.
- Restricted to those people who operate in the Hot Zone and those who support them.

Note 3 The Cold Zone is all public or otherwise unrestricted areas, i.e. those areas outside of the controlled site.

7.2.3 Mechanism for access control and isolation of the Danger area

- 1. All gates and berths/jetties should be guarded,
- 2. Unauthorized person should not be allowed to the restricted area,
- 3. Authorized person will be entering the zone with all the necessary PPEs,
- 4. The area should be cordoned off during operation,
- 5. Proper signage board and warning should be displayed at the place of the operation,
- 6. Fire-fighting facilities and other required resources should be available till the operation is terminated,
- 7. The restricted areas should be under surveillance at all times.

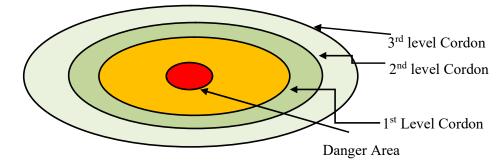


Figure 7.5: Isolation of Danger Area

Danger/Hazardous area

●1st Level Cordon off

• 2nd Level Cordon off

- Site Control point
- Ambulance
- Casualty Clearing point
- 3rd Level Cordon off
 - Traffic Control

Note: Positions will depend on the wind directions

7.2.4 Search and rescue operation

Search and Rescue shall start as soon as the public warning signal has been issued and should be carried out as per the instructions of CIC/SIC.

7.2.5 Evacuation

On blast of siren, the workers will assemble at the respective assembly points to be transported to the refuge centers.

7.2.5.1 Evacuation Routes and Assembly Points

In case of a general emergency one of the first duties of the CIC is to alert outside authorities and advise them about the actions that should be taken to protect the public, if any.

The evacuation route could be by two ways

- a. Land;
- b. Sea/creek

1. The vehicle-carrying casualty should be given priority in traffic movement.

2. While assessing the evacuation route, constant communication link should be maintained with the EOC as well as with the individual assembly point station from where the evacuation is to be undertaken.

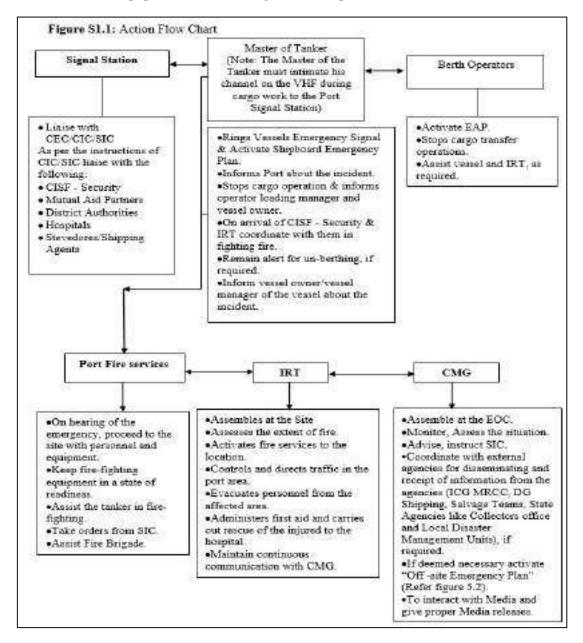
The evacuation route is as follows

Sr. no.	Disaster	Evacuation routes	
1.	Natural Calamities	Assemble near assembly points to proceed to the Relief Centers or to other shelters (Coordinated by CISF-Security)	
2.	Fire at Oil Jetties	Assemble near assembly points to proceed out from Gate as directed (Coordinated by Port Fire dept. & CISF-Security)	
3.	Toxic gas Release	The route decision will be determined depending upon the wind direction at the time of the incident. It will be in the up-wind direction of the outflow source direction. (Coordinated by Port Fire dept. and CISF- Security)	
4.	Fire at General Cargo berths, Container terminal	Assemble at the Assembly points near to berth (Coordinated by Port Fire dept. & CISF-Security)	
5.	Fire at Office buildings	Assemble at the Assembly points near the buildings (Coordinated by CISF-Security & Port Fire dept.)	

Table 7.4: Evacuation Routes

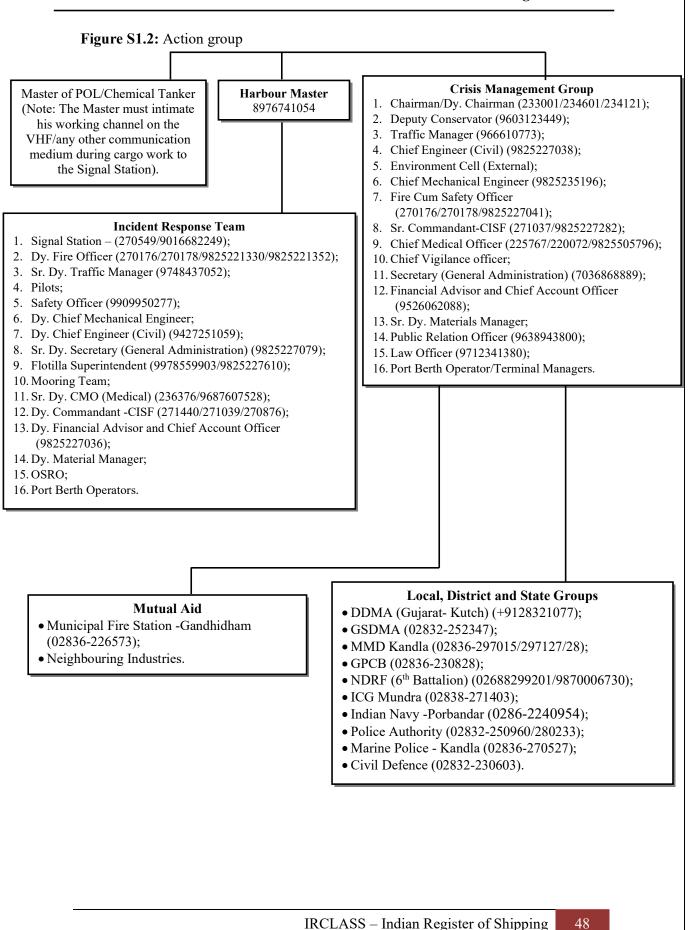
7.3 HAZARD SPECIFIC RESPONSE PLAN

Following potential accidental scenarios have been identified in accordance with the risk assessment for the port. The action flowchart and action plan for each scenario has been prepared in accordance with the Incident Response System (IRS-NDMA).


SR. NO.	SCENARIOS	PAGE NO.
	DISASTER DURING CARGO STORAGE /TRANSFER	
1.	Fire due to rupture/leakage of POL/Chemical from pipeline/hose at oil jetty (oil jetties 1-7) – on vessel or ashore	47
2.	Fire /Explosion due to LPG leakage at Oil Jetty 1 - on vessel or ashore	54
3.	Toxic product (e.g. ammonia) leak from pipeline/hose at jetty during operation (oil jetties 2-5) – on Vessel or Ashore	61
4.	Corrosive Acid - Leakage (e.g. Sulphuric acid, phosphoric acid) at oil jetty-5 during operation – on Vessel or Ashore	68
5.	Fire /leakage due to Crane Accidents (Container drop/crane fall) at container berth – secondary event.	74
6.	Fire on vessel (non-tankers) at berth	79
7.	Fire in Coal Stackyard	85
	NAVIGATIONAL DISASTERS	
8.	Vessel Grounding/Collision within port limit	89
	DISASTER IN SERVICE AND ADMINISTRATION FACILITIES	
9.	Fire in Office buildings, Hospital, Electrical substations, Fire stations, Dry docks, Godowns	94
	HUMAN RELATED DISASTERS	
10.	War and Terrorism	99
11.	Bomb Threat	104
	NATURAL DISASTERS	
12.	Natural Disaster (Cyclone)	109
13.	Natural Disaster (Flood due to high tide and/or heavy rains)	117
14.	Natural Disaster (Tsunami)	125
15.	Natural Disaster (Earthquake)	132

IRCLASS – Indian Register of Shipping

S1: Scenario 1


Part A

- 1. Fire due to rupture/leakage of POL/Chemical from pipeline/hose at oil jetty (oil jetties 1-7) on vessel or ashore
- **2. Precautions:** MSDS, SOP of operator and berthing and un-berthing procedure, Periodic inspection and maintenance of hoses and pipelines.
- **3. Impact Zone:** Oil Jetty and surrounding area. Consequence analysis indicates that the Naphtha leak from pipeline would cover approx. 345 meters for Jet Fire scenario (Refer Risk assessment report).
- **4. Resources required:** Organizational setup enumerated in Figure S1.2 and material and equipment resources as given in Chapter 10.

RESTRICTED.

Disaster Management Plan

Part B: Action Plan

The vessel upon berthing, berth operator will follow standard procedures. However, in a less likely scenario a leak from the pipeline system may occur at the jetty or from the jetty along the route to the terminal (within the port area) leading to self-detection by vessel personnel or by the terminal/operator automatic alarm system. Further in a more unlikely situation due to a possible ignition the leakage might catch fire. The following action will be required:

1. The Master of the Vessel (Alternate: Chief Officer)

Response Action

- a. Should raise vessels emergency alarm and activate vessel board emergency action plan.
- b. Stop POL/Chemical transfer operation (as per SOP).
- c. Berth operator, Vessel in the vicinity and Port should be informed of any incident on the vessel without delay.
- d. Personnel to remain stand-by to disconnect hoses.
- e. Shall be responsible for fighting the fire with vessels own resources as well as with the available support from IRT.
- f. Also, to remain prepared to un-berth the vessel to the safe area.
- g. The siren should be continued till the vessel is taken to a safe location as per CIC instructions.

2. The berth operator tasked with POL/Chemical cargo operations at the Jetty should

	Response Action
a.	Activate EAP and inform Port.
b.	Shut off isolation valve on POL/Chemical pipeline at the berth (action as per SOP).
c.	Area should be cordoned off.
d.	Pour foam/dry chemical powder on POL/Chemical spillage to reduce rate of vaporization.
e.	Assist IRT and provide all necessary equipment.
f.	He will direct operation staff.

Coordinate with the vessel in-charge/C&F agents/stevedores.

3. Deputy Conservator (Alternate: Harbour Master)

a.	Assess the level of disaster and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to
	determine the most necessary course of action.

Response Action

- c. Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary.
- d. Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
- e. Decide on clearing of vessels in close proximity to the incident location and evacuating the people.
- f. Assess the condition of site and of potential affected area and take decision on evacuation in consultation with SIC.
- g. Be in constant touch with District and Local Administration for rescue and relief operation.
- h. Terminate the response and debrief before allowing normal operation.

4. The Signal Station

Response	Action
-----------------	--------

- a. Gather information related to the weather conditions and accordingly convey the message to CIC/SIC and Fire cum Safety Officer.
- b. Liaise with Master of the Vessel/Pilot.
- c. Listening watch to be maintained on VHF channel-08/10/16.
- d. Notify to CIC, SIC and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.
- f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/ Master of the Vessel.

5. The Fire cum Safety Officer should

Response Action

a. Ensure raising of Alarm (siren)

b. Shall take orders from the SIC.

c. Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support to the Master of the vessel/berth operator for fire-fighting.

d. Assist CISF in evacuation of workers to the assembly points.

e. Inform SIC for arrangement of any additional equipment as required.

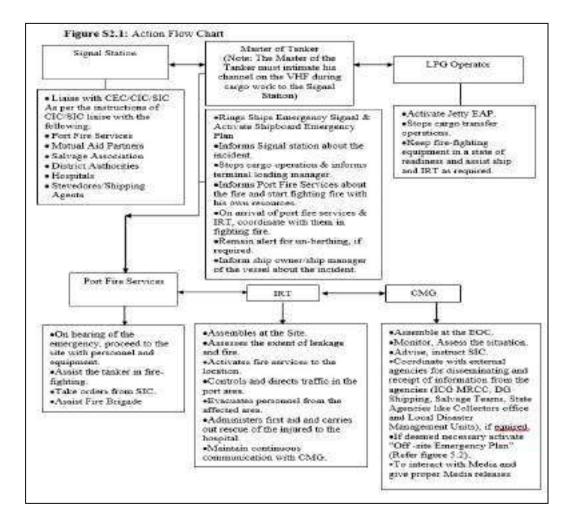
Disaster Management Plan

Designated Officer	Role	Duties
		During Emergency shall proceed to the scene & communicate & collect all information from the Master of the Tanker and berth operator.
		Conduct initial briefing and report the situation to the CIC and assist in assessing the incident.
		Alert vessels within the vicinity.
Harbour Master	Site Incident	Assess the condition of site and of potentia affected area and take decision on evacuation in consultation with CIC.
(Alternate: Pilot)	Controller	Extend all necessary help to the Master of the vessel to fight the fire.
		Instruct the fire-fighting team to keep the wate tenders in a state of readiness & activate i required.
		Instruct flotilla superintendent/ pilots to keep tugs ready for fire-fighting.
		Coordinate with all functional heads to tak actions.
	Signal Station	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC /SIC.
Pilot		Responsible for organizing tugs, mooring boat and pilots for combating the fire and rescue.
(Alternate: Pilot)	Coordinator	Hire additional crafts as necessary.
	and Pilotage	Shall be ready for taking the vessel out of bert and be ready for providing any assistance of site.
		Maintain Log of events.
Berth operator (Alternate: Officer)	Cargo Work	Shall be responsible of shutting down of carge operation & coordinating with Port and rendering necessary assistance to the SIC by providing additional fire-fighting & emergency equipment as required.
	Fire, Search and Rescue Coordinator	Shall take orders from Fire cum Safet Officer/SIC.
Dy. Fire Officer		Use water sprays and portable nozzles t maintain curtain.
(Alternate: Officer)		Ensures availability of the fire tenders and fire fighting tugs.
		In case of fire onboard assist Master in fightin fire as per Masters Instructions.

		Ensure all the ignition sources in the vicinity ar extinguished if fire has not occurred.
		If the fire is under control and extinguished give all clear signal.
	Security and Evacuation	Shall take orders from the Sr. Commandant – CISF /SIC.
		Cordon off the area.
		Controls & Directs gate security and traffic in the area.
Dy. Commandant- CISF (Alternate: Commandant- CISF)		Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
Commandant- CISF)		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
		Responsible the head count of the personnel.
		Shall take orders from Traffic Manager/SIC.
Dy. Traffic Manager (Alternate:	Cargo Storage, Shed and Labour Coordinator	Submits consolidated list of dangerous goods i port.
Officer)		Coordinates with vessel owners/ agents/C & agents/stevedores and with labour officer to arrange and ensure evacuation.
	Safety Coordinator	Shall take orders from SIC/CIC.
Safety Officer (Alternate: Officer)		Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
Officer)		Assist in evacuation of the personnel to the assembly point or as directed by SIC.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Shall be responsible to carry out urgent civ works as required.
Executive Engineer (Alternate: Executive	M & E Coordinator	Shall be responsible for uninterrupted electrical supply to vital equipment and utility at the berth.
Engineer)		Shall remain alert on duty for any electrical isolation of equipment during emergency.
Dy. CMO	First Aid and Medical Coordinator	In coordination with CMO, shall be responsible to organize and dispatch first aid team with ambulance as required.
(Alternate: Medical Officer)		Make arrangements for transportation an treatment of injured persons.
		Check updated list of Blood group of employees is available.

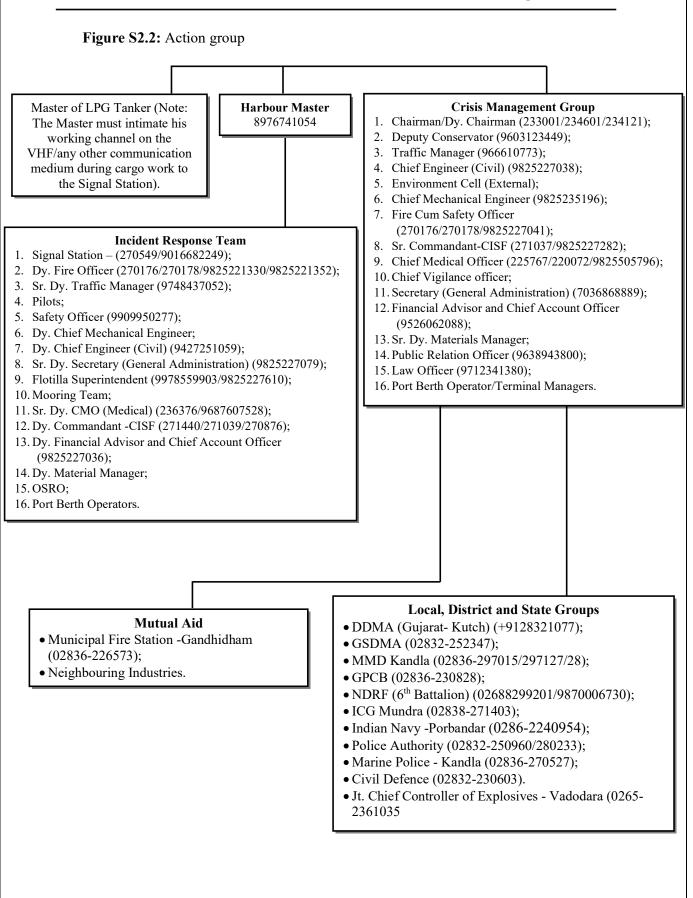
Disaster Management Plan

		Shall coordinate with the local hospitals.
Environment Cell and OSRO	Pollution Control	Ensure clean- up work conducted by terminal personnel after spill containment.
(Alternate: Officer)	Coordinator	Coordinate with SIC and GPCB and agencies.
	e	Act as per the instruction of SIC/CIC.
Mooring Master (Alternate:		Assess the level of crisis, nature, location, severity, casualties and resource equipment.
		Authorize any immediate action required by on site staff and contract agencies.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the same during emergency as per the order of SIC/CIC.


S2: Scenario 2

Part A:

- 1. Fire /Explosion due to LPG leakage at Oil Jetty 1 on vessel or ashore
- **2. Precautions:** MSDS, SOP of LPG terminal and berthing and un-berthing procedures of port.


Leaks from LPG pump glands, pipes flanges or pipeline ruptures or from vent emissions due to cargo tank over-pressure or relief valve failure will initially produce vapour. This vapour will not ignite immediately but, if the vapour production is large, there is a hazard of the resultant cold and dense vapour cloud of LPG spreading to a source of ignition before it is diluted below the lower explosive limit. Therefore, in case of release of large quantity of flammable vapour cloud, immediate effort should be directed to eliminate such source of ignition. In such an event, eliminate all sources of ignitions i.e. open flames, welding, cutting, operation etc. in the entire port area.

- **3.** Impact Zone: Refer Risk Assessment report. Consequence analysis indicates that the LPG (Propane/Butane) leak from pipeline would cover approx. 700 meters for Vapor cloud explosion (VCE) scenario.
- 4. **Resources required:** Organizational setup enumerated in Figure S2.2 and major material and equipment resources as given in Chapter 10.

RESTRICTED.

Disaster Management Plan

IRCLASS – Indian Register of Shipping

Part B: Action Plan

The vessel upon berthing at the LPG berth will follow standard procedures. However, in a less likely scenario, a leak from the pipeline system may occur at the jetty leading to self-detection by vessel personnel or by the terminal automatic alarm and detection system. Further in a more unlikely situation, due to a possible ignition the leakage might catch fire and lead to an explosion. The following actions will be required

1. The Master of the Ship (Alternate: Chief Officer)

	Response Action			
a.	Should raise ships emergency alarm and activate shipboard emergency action plan.			
b.	b. Stop LPG transfer operation (as per SOP of the ship).			
c.	Terminal, Vessel in the vicinity and Port should be informed of any incident on the ship without delay.			
d.	Personnel to remain stand by to disconnect metal arms.			
e.	Shall be responsible for fighting the fire with ships own resources as well as with the available support from IRT.			
f.	Also, to remain prepared to un-berth the ship to the safe area (high sea).			
g.	The siren should be continued till the ship is taken to a safe location as per CIC			

instructions.

2. The berth operator should

Response Action
Activate Jetty EAP (prepared by the terminal) and inform port.
Shut off isolation valve on LPG pipeline at the berth (action as per SOP of the terminal).
Area should be cordoned off.
Pour Dry Chemical Powder.
Assist IRT and provide all necessary equipment.
He will direct operation staff. Coordinate with the ship in-charge/C&F agents/stevedores.

3. Deputy Conservator (Alternate: Harbour Master) should

	Response Action
a.	Assess the level of disaster and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the CMG.
e.	Assess the condition of site and of potential affected area and take decision on evacuation in consultation with SIC.
f.	Decide on clearing of vessels in close proximity to the incident location and evacuating the people.
g.	Coordinate with external agencies/authorities within port area such as Indian Navy
	IRCLASS – Indian Register of Shipping 56

IRCLASS – Indian Register of Shipping

and ICG, if any.

- h. Be in constant touch with District and Local Administration for rescue and relief operation.
- i. Terminate the response and debrief before allowing normal operation.

4. Signal Station

Response Action

- a. Gather information related to the weather conditions. Monitor the wind directions and accordingly convey the message to CIC/SIC and Fire cum Safety Officer.
- b. Liaise with Master of the Vessel/Pilot.
- c. Listening watch to be maintained on VHF.
- d. Notify to CIC, SIC and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.
- f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/ Master of the Vessel.

5. The Fire cum Safety Officer should

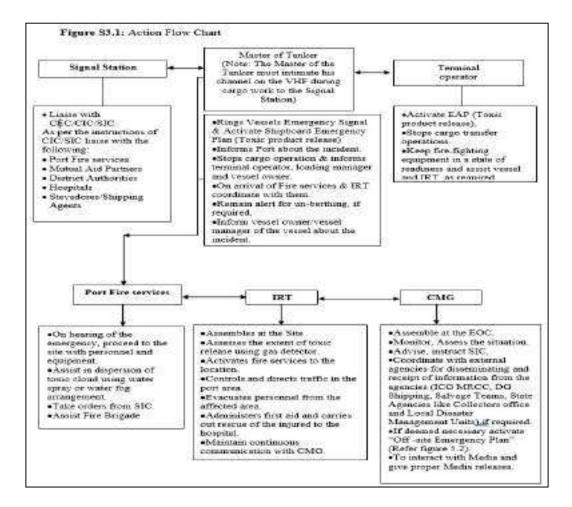
Response Action a. Ensure raising of Alarm (siren) b. Shall take orders from the SIC. c. Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support to the Master of the vessel/berth operator for fire-fighting. d. Assist CISF in evacuation of workers to the assembly points. e. Inform SIC for arrangement of any additional equipment as required.

Designated Officer	Role	Duties
	Site Incident Controller	During Emergency shall proceed to the scene & communicate & collect all information from the Master of the Tanker and Terminal Manager.
		Conduct initial Briefing and report the situation to the CIC/CMG and assist CIC in assessing the incident.
		Initiate DMP.
		Alert vessels within the vicinity.
Harbour Master (Alternate: Pilot)		Assess the condition of site and of potentia affected area and take decision on evacuation in consultation with CIC.
(Antennate. 1 not)		Extend all necessary help to the Master of the vessel to fight the fire.
		Instruct the Fire cum Safety Officer to keep the fixed fire-fighting installation ready and instruc Flotilla superintendent to keep fire-fighting tugs in a state of readiness & activate if required.
		Instruct Flotilla superintendent to keep tug ready for un-berthing of vessel.
		Coordinate with all functional heads to take actions.
	Signal Station Coordinator and Pilotage	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC /SIC.
Pilot		Responsible for organizing tugs, mooring boats and pilots for combating the fire and rescue.
(Alternate: Pilot)		Hire additional crafts as necessary.
		Shall be ready for taking the vessel out of berth and be ready for providing any assistance of site.
		Maintain Log of events.
		Shut down of cargo operation
Terminal Manager (Alternate: Assistant	Cargo Work	Coordinate with port and render necessary assistance to the SIC by providing additiona fire-fighting & emergency response equipmen as required.
Terminal Manager)		Direct operation staff.
		Coordinate with the ship in-charge/C&F agents/stevedores.
Dy. Fire Officer (Alternate: Officer)	Fire, Search and Rescue	Shall take orders from Fire cum Safety Officer/SIC.

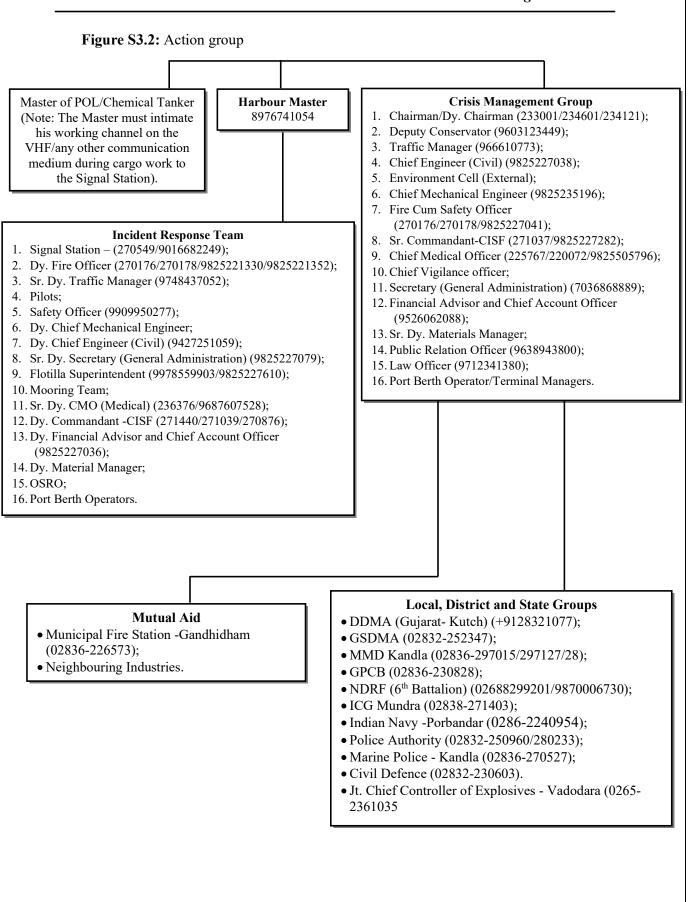
IRCLASS – Indian Register of Shipping

	Coordinator	Use water sprays and portable nozzles to maintain curtain.
		Ensures availability of the fire tenders and fire- fighting tugs.
		In case of fire onboard assist Master in fighting fire as per Masters Instructions.
		Ensure all the ignition sources in the vicinity are extinguished if fire has not occurred.
		If the fire is under control and extinguished give all clear signal.
		Shall take orders from SIC/CIC.
Safety Officer (Alternate: Officer)	Safety Coordinator	Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
(Antennate: Officer)	Coordinator	Assist in evacuation of the personnel to the assembly point or as directed by SIC.
		Shall take orders from the Sr. Commandant – CISF /SIC.
		Cordon off the area.
	Security and Evacuation	Controls & Directs gate security and traffic in the area.
Dy. Commandant- CISF (Alternate: Alternate Commandant- CISF)		Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
Commandant- CISP)		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
		Responsible the head count of the personnel.
	Cargo Storage, Shed and Labour Coordinator	Shall take orders from Traffic Manager/SIC.
Dy. Traffic Manager (Alternate: Officer)		Submits consolidated list of dangerous goods in port.
(Alternate: Officer)		Coordinates with vessel owners/ agents/C & F agents/stevedores and with labour officer to arrange and ensure evacuation.
Executive Engineer (Alternate: Executive	M & E Coordinator	Shall be responsible for uninterrupted electrical supply to vital equipment and utility at the berth.
Engineers)		Shall remain alert on duty for any electrical isolation of equipment during emergency.
Executive Engineer		Carry out urgent civil works as required.
(Alternate: Executive Engineers)	Civil Coordinator	Liaise with SIC.

IRCLASS – Indian Register of Shipping


Dy. CMO (Alternate: Medical Officer)	First Aid and Medical Coordinator	In coordination with CMO, shall be responsible to organize and dispatch first aid team with ambulance as required.
		Make arrangements for transportation and treatment of injured persons.
		Check updated list of Blood group of employees is available.
		Shall coordinate with the local hospitals.
		Act as per the instruction of SIC/CIC.
Mooring Master (Alternate: Officer)	Mooring Coordinator	Assess the level of crisis, nature, location, severity, casualties and resource equipment.
	Coordinator	Authorize any immediate action required by on site staff and contract agencies.
Material Manager	Material	Maintain sufficient inventory and provide the
(Alternate: Officer)	procurement	same during emergency as per the order of
	Coordinator	SIC/CIC.

S3: Scenario 3


Part A:

- 1. Toxic product (e.g. ammonia) leak from pipeline/hose at jetty during operation (oil jetties 2-5) on Vessel or Ashore
- 2. **Precautions:** MSDS, SOP, berthing and un-berthing procedures and Periodic inspection and maintenance of hoses and pipelines. Stay upwind and wear positive pressure breathing apparatus and full protective clothing, as necessary.
- **3. Impact Zone:** Consequence analysis indicates that the Ammonia leak from transfer pipeline would cover 2165 meters for toxic dispersion with IDLH level of 300 ppm. (Refer Risk Assessment report)
- **4. Resources required:** Organizational setup enumerated in Figure S3.2 and major material and equipment resources as given in Chapter 10.

RESTRICTED.

Disaster Management Plan

IRCLASS – Indian Register of Shipping

Part B: Action Plan

The vessel upon berthing, operator will follow standard procedures. However, in a less likely scenario a leak from the pipeline system may occur at the jetty or from the jetty along the route to the terminal (within port area) leading to self-detection by personnel or by the terminal/operator automatic alarm system. The following action will be required

Spill handling: Evacuate and restrict person's not wearing PPE from area of spill or leak until cleanup is complete. Remove all ignition sources. Stop the flow of gas if it can be done safely. Stay upwind; keep out of low areas. Wear positive pressure breathing apparatus and full protective clothing.

1. The Master of the Vessel (Alternate: Chief Officer)

	Response Action
a.	Should raise vessels emergency alarm and activate vessel board emergency action
	plan.

- b. Stop cargo transfer operation (as per SOP).
- c. Terminal operator, Vessel in the vicinity and Port should be informed of any incident on the vessel without delay.
- d. Personnel to remain stand by to disconnect hoses.
- e. Shall be responsible to arrest the leak and for fighting the fire with vessels own resources as well as with the available support from IRT.
- f. Also, to remain prepared to un-berth the vessel to the safe area.
- g. The siren should be continued till the vessel is taken to a safe location as per CIC instructions.

2. The terminal operator tasked with cargo operations at the wharf should

Take personal precautions, protective equipment and follow emergency procedures. Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapors accumulating to form explosive concentrations. Vapors can accumulate in low areas. Environmental precautions: Prevent further leakage or spillage if safe to do so.

Contain spillage, and then collect with an electrically protected vacuum cleaner (vehicle mounted in some cases) or by wet-brushing and place in container for disposal.

Response Action			
a.	Activate EAP and inform Port.		
b.	Shut off isolation valve on pipeline at the jetty (action as per SOP).		
c.	Area should be cordoned off.		
d. Assist IRT and provide all necessary equipment.			
e.	He will direct operation staff.		
	Coordinate with the vessel in-charge/C&F agents/stevedores.		

3. Deputy Conservator (Alternate: Harbour Master)

Response Action

- a. Assess the level of disaster and activate the DMP.
- b. Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
- c. Give necessary instructions to SIC/ Mooring team and Signal Station & arrange for external aid as necessary.
- d. Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
- e. Consult with Chairman / Dy. Chairman and decide on clearing of vessels in close proximity to the incident location or to sail the tanker to the safe area and evacuating the people from the likely affected zone.

f. Take decision on evacuation in consultation with SIC.

- g. Be in constant touch with District and Local Administration for rescue and relief operation.
- h. Terminate the response and debrief before allowing normal operation.

4. The Signal Station

Response Action a. Gather information related to the weather conditions. Monitor the wind directions and convey the message to Master of the vessel, CIC/SIC and Fire cum Safety Officer. b. Liaise with Master of the Vessel/Pilot. c. Listening watch to be maintained on VHF channel-08/10/16. d. Notify the CIC, SIC and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received. e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC. f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/

Master of the Vessel.

5. The Fire-fighting Personnel should

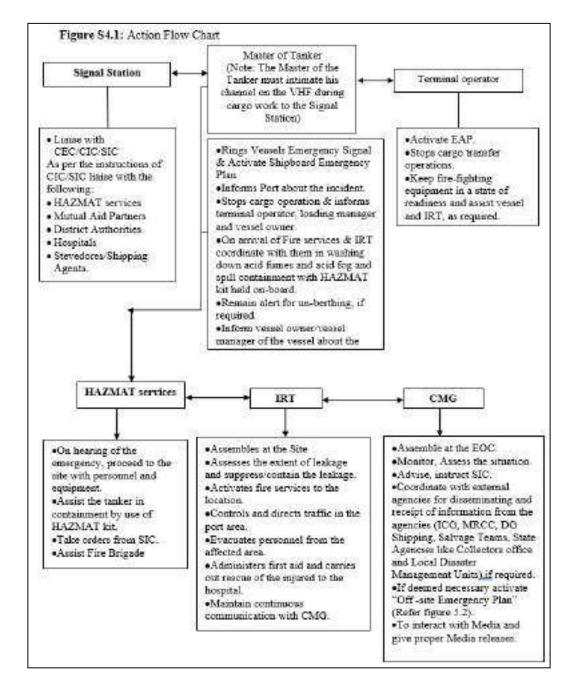
Response Action

- a. Ensure raising of Alarm (siren).
- b. Shall take orders from the SIC.
- c. Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support to the Master of the vessel/berth operator for fire-fighting.
- d. Assist CISF in evacuation of workers to the assembly points.
- e. Inform SIC for arrangement of any additional equipment as required.
- f. In case of leakage/fire onboard assist Master in arresting the leak/diluting the vapour/ fighting fire as per Masters Instructions.
- g. Announce in mobile van with PA system in the effecting zones to evacuate the zone. Ensure complete evacuation and report to the EOC.
- h. If the situation is under control, give all clear signals.

IRCLASS – Indian Register of Shipping

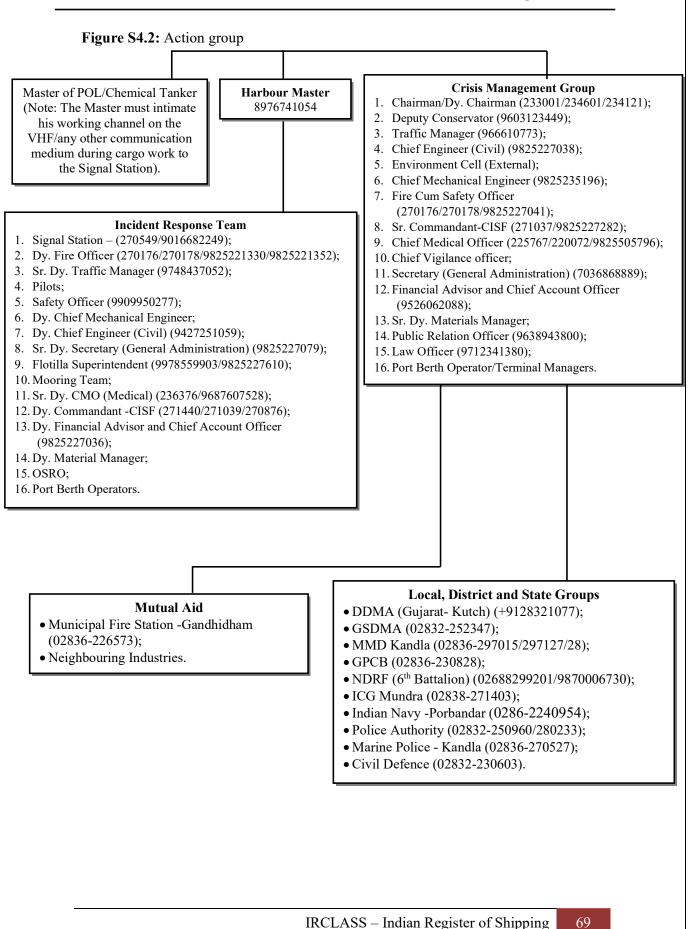
Designated Officer	Role	Duties
		During Emergency shall proceed to the scene & communicate & collect all information from the Master of the Tanker and termina operator.
		Conduct initial briefing.
	Site Incident Controller	Report the situation to the CIC and assist in assessing the incident.
		Alert vessels within the vicinity.
Harbour Master (Alternate: Pilot)		Shall assess and decide on the evacuation of the personnel considering the direction of wind and dispersion and will instruct CISF-Security and Safety Officer to carry out the evacuation in a safe manner.
		He will extend all necessary help to the Master of the vessel to fight the fire, if any.
		Instruct the Fire cum Safety Officer to keep the fire-fighting installation and tenders in a state of readiness & activate if required to figh fire or for disperse the vapour cloud.
		Instruct flotilla superintendent/ pilots to keep tugs ready for fire-fighting.
		Coordinate with all functional heads to take actions.
		Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC /SIC.
Pilot (Alternate: Pilot)	Signal Station Coordinator and Pilotage	Responsible for organizing tugs, mooring boats and pilots for combating the fire and rescue.
(Alternate. 1 not)		Hire additional crafts as necessary.
		Shall be ready for taking the vessel out of berth and be ready for providing any assistance on site.
		Maintain Log of events.
Terminal Operator (Alternate: Officer)	Cargo Work	Shall be responsible of shutting down of carge operation & coordinating with Port and rendering necessary assistance to the SIC by providing additional emergency equipment a required.
Dy. Fire Officer (Alternate: Officer)	Fire, Search and Rescue Coordinator	Shall take orders from Fire cum Safety Officer/SIC.

		Use water sprays and portable nozzles to maintain curtain and dilution.
		Open the valves of the monitors and direct the jet on the seat of fire, in case of fire.
		In case of leakage/fire onboard assist Master in arresting the leak/diluting the vapour/ fighting fire as per Masters Instructions.
		Make use of portable DCP, CO2, Foam extinguisher (alcohol-resistant foam) from upwind position.
		Announce in mobile van with PA system in the effecting zones to evacuate the zone.
		Assist CISF-Security in evacuation of workers to the assembly point.
		Inform SIC for arrangement of any additional equipment as required.
	Security and Evacuation	Shall take orders from the Sr. Commandant – CISF /SIC.
		Cordon off the area.
Dy. Commandant- CISF (Alternate: Commandant- CISF)		Controls & directs gate security and traffic in the area.
		Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
		Responsible for the head count of the personnel.
	Cargo Storage, Shed and Labour Coordinator	Shall take orders from Traffic Manager/SIC.
Dy. Traffic Manager (Alternate: Officer)		Coordinates with vessel owners/ agents/C & F agents/stevedores and with labour officer to arrange and ensure evacuation.
		Submits consolidated list of dangerous goods in port.
Safety Officer and (Alternate: Officer)	Safety Coordinator	Inform GPCB and other environmental agencies and take necessary guidance. Coordinate with Environment cell.
		Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
		Assist in evacuation of the personnel to the assembly point or as directed by SIC.


Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Shall be responsible to carry out urgent civil works as required.
Executive Engineer (Alternate: Executive Engineer)	M & E Coordinator	Shall be responsible for uninterrupted electrical supply to vital equipment and utility at the berth.
		Shall remain alert on duty for any electrical isolation of equipment during emergency.
Dy. CMO (Alternate: Medical Officer)	First Aid and Medical Coordinator	In coordination with CMO, shall be responsible to organize and dispatch first aid team with ambulance as required.
		Make arrangements for transportation and treatment of injured persons.
		Check updated list of Blood group of employees is available.
		Shall coordinate with the local hospitals.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the same during emergency as per the order of SIC/CIC.
Mooring Master (Alternate: Officer)	Mooring Coordinator	Act as per the instruction of SIC/CIC.
		Assess the level of crisis, nature, location, severity, casualties and resource equipment.
		Authorize any immediate action required by on site staff and contract agencies.

S4: Scenario 4

Part A


- 1. Corrosive Acid Leakage (e.g. Sulphuric acid, phosphoric acid) at oil jetty-5 during operation on Vessel or Ashore
- 2. Precautions: MSDS, HAZMAT kit, SOP of terminal/operator and berthing and un-berthing procedures, periodic inspection and maintenance of hoses and pipelines, PPE and Eye wash station.
- 3. Impact Zone: Oil jetty 5.
- **4. Resources required:** Organizational setup enumerated in Figure S4.2 and major material and equipment resources as given in Chapter 10.

IRCLASS – Indian Register of Shipping

RESTRICTED.

Disaster Management Plan

Part B: Action Plan

The vessel upon berthing, berth operator will follow standard procedures. However, in a less likely scenario a leak from the pipeline system may occur leading to detection by vessel personnel or by the terminal/operator alarm system. The following action will be required.

1. The Master of the Vessel (Alternate: Chief Officer)

	Response Action
a.	Should raise vessels emergency alarm and activate vessel board emergency action plan.
b.	Stop transfer operation (as per SOP).
c.	Terminal operator, Vessel in the vicinity and Port should be informed of any incident on the vessel without delay.
d.	Personnel to remain stand by to disconnect hoses;
e.	Shall be responsible to arrest the leak with vessels own resources as well as with the available support from IRT.

f. Also, to remain prepared to un-berth the vessel to the safe area (high sea).

g. The siren should be continued till the vessel is taken to a safe location as per CIC instructions.

2. Terminal operator persons tasked with cargo operations at the jetty should

Response Action

- a. Activate EAP and inform Port.
- b. Shut off isolation valve on pipeline at the berth (action as per SOP of the terminal).
- c. Area should be cordoned off.
- d. Assist IRT and provide all necessary equipment.
- e. Responsible for diluting and neutralizing the acids and disposal of the neutralized liquids.
- f. He will direct operation staff. Coordinate with the vessel in-charge/C&F agents/stevedores.

3. Deputy Conservator (Alternate: Harbour Master)

	Response Action
a.	Assess the level of disaster and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC/ Asst. Mooring Master and Port and arrange for external aid as necessary.
d.	Review the situation and accordingly inform the Chairman/ Dy. Chairman.
e.	Decide on clearing of vessels in close proximity to the incident location and evacuating the people.
f.	Assess the condition of site and take decision on evacuation in consultation with SIC.
g.	Be in constant touch with District and Local Administration for rescue and relief

operation.

h. Terminate the response and debrief before allowing normal operation.

4. The Signal Station

Response Action

- a. Gather information related to the vessel type, cargo quantity and position.
- b. Gather information related to the weather conditions and accordingly convey the message to Master of the vessel, SIC and Fire cum Safety Officer.

c. Liaise with Master of the Vessel/Pilot.

d. Listening watch to be maintained on VHF channel-08/10/16.

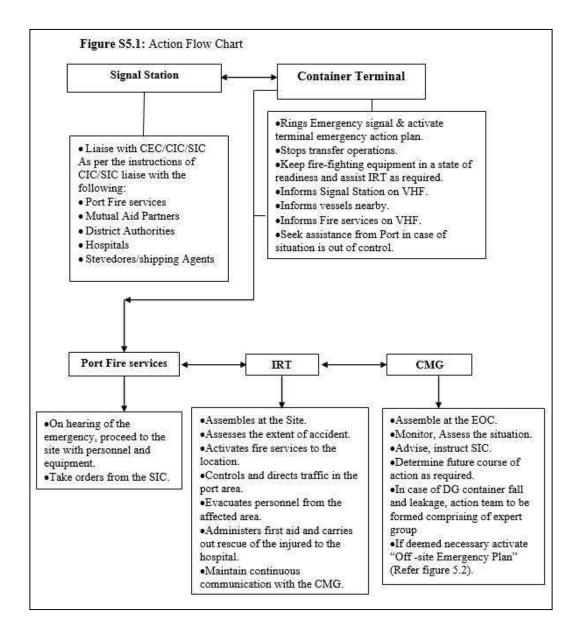
- e. Notify to CIC, SIC and the vessels moving into, through and inside the port. Keep CIC/SIC/ Asst. Mooring Master informed of all the messages received by telephone, VHF sets or by messenger.
- f. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.

5. The Fire cum Safety Officer should

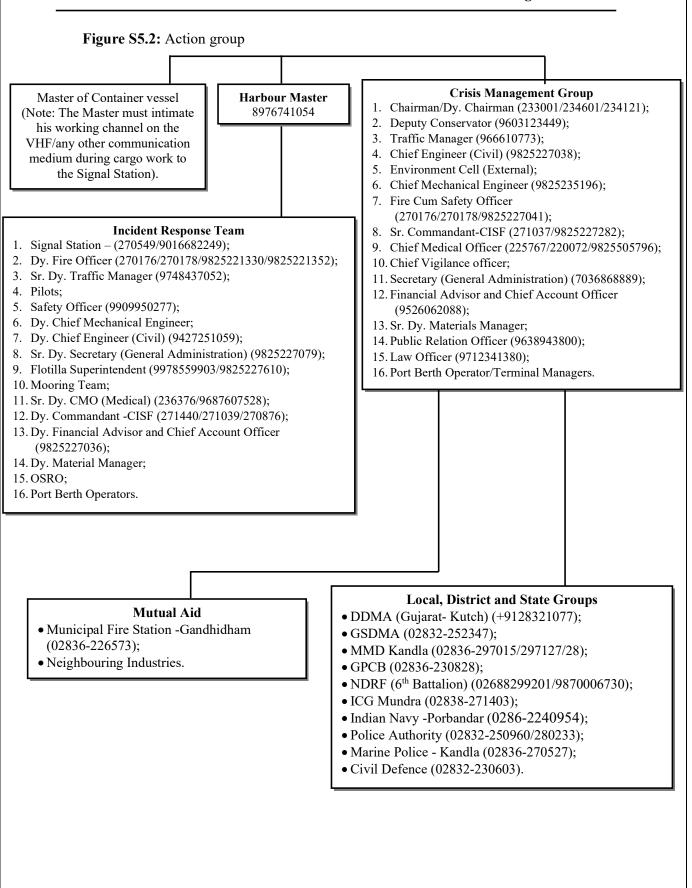
	Response Action
a.	Ensure raising of Alarm (siren)
b.	Shall take orders from the SIC.
c.	Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support to the Master of the vessel/berth operator for firefighting.
d.	Assist CISF in evacuation of workers to the assembly points.

e. Inform SIC for arrangement of any additional equipment as required.

Designated Officer	Role	Duties	
		During Emergency shall proceed to the scene & communicate & collect all information from the Master of the Tanker and terminal operator.	
		Conduct initial briefing and report the situation to the CIC and assist in assessing the incident.	
		Assess the condition of site and of potential affected	
Harbour Master	Site Incident Controller	area and take decision on evacuation in consultation with CIC.	
(Alternate: Pilot)		Alert vessels within the vicinity.	
		Extend all necessary help to the Master of the vessel.	
		Instruct the fire-fighting team to keep the water tenders in a state of readiness & activate if required.	
		Instruct flotilla superintendent/ pilots to keep tugs ready for fire-fighting.	
		Coordinate with all functional heads to take actions.	
	Signal Station	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC /SIC.	
Pilot		Responsible for organizing tugs, mooring boats and pilots for combating the fire and rescue.	
(Alternate: Pilot)	Coordinator	Hire additional crafts as necessary.	
	and Pilotage	Shall be ready for taking the vessel out of berth and be ready for providing any assistance on site.	
		Maintain Log of events.	
Terminal Operator (Alternate: Officer) Cargo Work		Shall be responsible of shutting down of cargo operation & coordinating with Port and rendering necessary assistance to the SIC by providing additional fire-fighting & emergency equipment as required.	
	Fire, Search and Rescue Coordinator/ HAZMAT Coordinator	Shall take orders from Fire cum Safety Officer/SIC.	
Dy. Fire Officer		Ensures availability of the fire tenders and fire-fighting tugs.	
(Alternate: Officer)		Assist CISF-Security in evacuation of workers to the assembly points.	
		Inform SIC for arrangement of any additional equipment as required.	
Dy. Commandant- CISF	- Security and Evacuation	Shall take orders from the Sr. Commandant – CISF /SIC.	
(Alternate:		Cordon off the area.	
Commandant- CISF)		Controls & Directs gate security and traffic in the area.	



		Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
		Responsible the head count of the personnel.
Dy. Traffic	Cargo Storage, Shed and Labour Coordinator	Shall take orders from Traffic Manager/SIC.
		Submits consolidated list of dangerous goods in port.
Manager (Alternate: Officer)		Coordinates with vessel owners/ agents/C & lagents/stevedores and with labour officer to arrange and ensure evacuation.
Safety Officer (Alternate: Officer)	Safety Coordinator	Shall mobilize and dispatch vehicles containing HAZMAT kit to the site of emergency.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Shall be responsible to carry out urgent civil works a required.
Executive Engineer	M & E Coordinator	Shall be responsible for uninterrupted electrical supply to vital equipment and utility at the jetty.
(Alternate: Executive Engineer)		Shall remain alert on duty for any electrical isolation o equipment during emergency.
	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
		Setup casualty receiving center and arrange for first aid
Dy. CMO (Alternate:		Make arrangements for transportation (ambulance) and treatment of injured persons.
Medical Officer)		Check updated list of Blood group of employees i available.
		Shall coordinate with the local hospitals.
Mooring Master		Act as per the instruction of SIC/CIC.
(Alternate: Officer)	Mooring Coordinator	Assess the level of crisis, nature, location, severity casualties and resource equipment.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the sam during emergency as per the order of SIC/CIC.
Environment Cell and OSRO	Pollution Control	Ensure clean- up work conducted by terminal personne after spill containment.
(Alternate: Officer)	Coordinator	Coordinate with SIC and GPCB and agencies.


S5: Scenario 5

Part A

- 1. Fire /leakage due to Crane Accidents (Container drop/crane fall) at container berth/yard secondary event.
- **2. Precautions:** Trained personnel for operation of crane, SOP of the container terminal, HAZMAT training and MSDS.
- 3. Impact Zone: Incident location and surrounding area.
- 4. **Resources required:** Organizational setup enumerated in Figure S5.2 and major material and equipment resources as given in Chapter 10.

Disaster Management Plan

Disaster Management Plan

Part B: Action Plan

1. The crane operator

a. Should raise the emergency alarm and inform Terminal operator and Port.

2. The terminal person at the berth should

	-
	Response Action
a.	Activate EAP and inform Port and ask for assistance, if required.
b.	Area should be cordoned off.
c.	Stop transfer operations at the berth.
d.	Manage Truck movements.
e.	Assist IRT and Master of the Vessel and provide all necessary equipment.
f.	He will direct operation staff.
g.	Interview operator and witnesses.
1	

h. Contact expert agency in case of DG container fire/explosion.

3. Deputy Conservator (Alternate: Harbour Master)

	Response Action			
a.	. Will be stationed at the EOC to review & assess possible developments to determine the most necessary course of action.			
b.	b. He will give necessary instructions to SIC & arrange for external aid as necessary.			
c.	Provide assistance to the Terminal.			

4. The Signal Station

Response Action

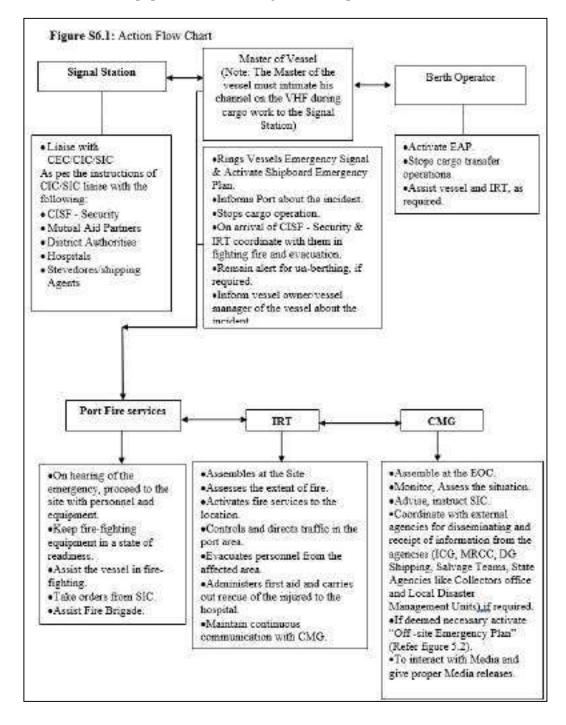
- a. Gather information regarding the incident and accordingly convey the message to CIC/SIC and Fire cum Safety Officer.
- b. Liaise with terminal operator and Master of the vessels/pilot.
- c. Listening watch to be maintained on VHF channel-08/10/16.
- d. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.

5. The Fire cum Safety Officer should

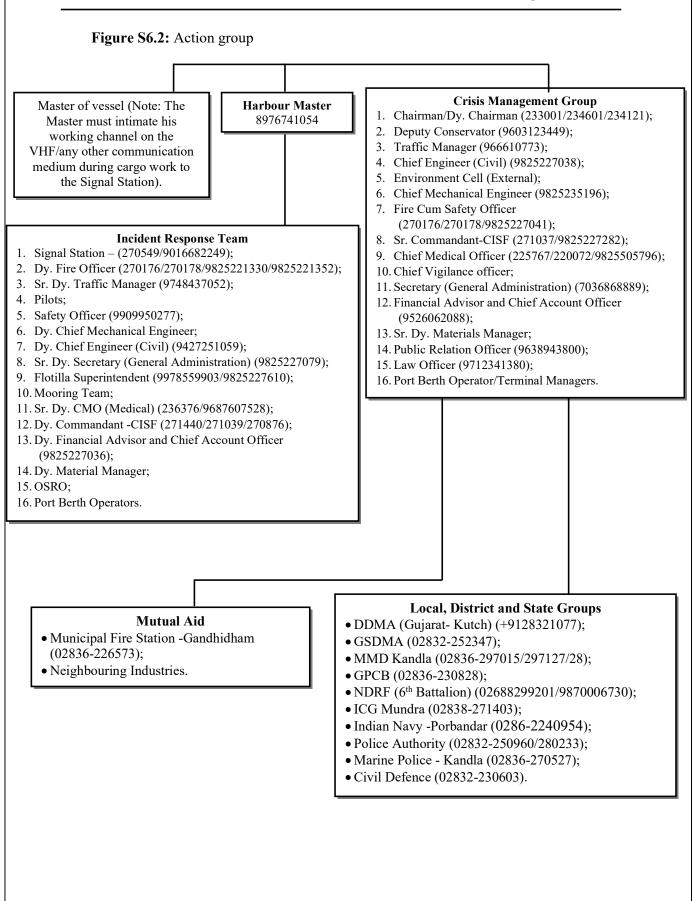
	Response Action			
a.	Shall take orders from the SIC.			
b.	Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support.			
c.	c. Assist CISF and terminal in evacuation of workers to the assembly points.			
d.	Inform SIC for arrangement of any additional equipment as required.			

Designated Officer	Role	Duties
Harbour	Site Incident Controller	During Emergency shall proceed to the scene & communicate & collect all information from the crane operator/terminal manager and coordinate actions.
Master (Alternate:		Assess and report the situation to the CIC/CMG (i required).
Pilot)		Alert vessels/trucks within the vicinity.
		Instruct the fire-fighting team to keep the fire-fighting installation in a state of readiness & activate is required.
Safety Officer (Alternate:	Safety Coordinator	Investigate the incident and provide necessary guidance.
Officer)	Coordinator	Assist in Rescue.
	Signal Station Coordinator	Shall monitor the communication on VHF/any othe communication medium & convey and relay messages on the advice from CIC/SIC.
Pilot (Alternate:		Shall prepare vessels to vacate from berth (i required).
Pilot)	and Pilotage	Responsible for organizing tugs for rescue.
		Hire additional crafts as necessary.
		Maintain Log of events.
Dry Fine	Fire, Search and Rescue Coordinator	Shall take orders from the Fire cum Safety Officer/SIC.
Dy. Fire Officer (Alternate: Officer)		Mobilize fire tenders, men & fire- fighting equipmen to the scene & extend all necessary support in case o fire.
onneer)		Assist the terminal operator and CISF-Security in evacuation.
Dy.		Controls & directs traffic in the area.
Commandant- CISF (Alternate: Commandant- CISF)	Security and Evacuation	Shall supervise evacuation of personnel from the scene at the time of emergency.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Assist terminal, if required on emergency basis.

IRCLASS – Indian Register of Shipping


Executive Engineer (Alternate: Executive Engineer)	M & E Coordinator	Assist terminal, if required on emergency basis.
Dy. CMO (Alternate: Medical Pilot)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
Dy. Traffic Manager	Cargo Storage, Shed	Shall mobilize and dispatch enough vehicles to the site of emergency.
(Alternate: Officer)	and Labour Coordinator	Coordinates with SIC and Terminal.

S6: Scenario 6


Part A:

- 1. Fire on vessel (non-tankers) at berth
- 2. Precautions: Vessel fire-fighting system, Port fire station, SOP of the berth operator.
- **3. Impact Zone:** Incident location and vicinity of the vessel involved.
- 4. **Resources required:** Organizational setup enumerated in Figure S6.2 and major material and equipment resources as given in Chapter 10.

IRCLASS – Indian Register of Shipping

Disaster Management Plan

IRCLASS – Indian Register of Shipping

Part B: Action Plan

The vessel upon berthing, terminal/berth operator will follow standard procedures. However, in a less likely scenario a fire may occur on the vessel during transfer operation. The following action will be required:

1. The Master of the Vessel (Alternate: Chief Officer)

	Response Action
a.	Should raise vessels emergency alarm and activate vessel board emergency action plan.
b.	Stop transfer operation (as per SOP).
c.	Terminal/Berth operator, Vessel in the vicinity and Port should be informed of any

- c. Terminal/Berth operator, Vessel in the vicinity and Port should be informed of any incident on the vessel without delay.
- d. Shall be responsible for fighting the fire with vessels own resources as well as with the available support from IRT.
- e. Also, to remain prepared to un-berth the vessel to the safe area.
- f. The siren should be continued till the vessel is taken to a safe location as per CIC instructions.

2. The berth operator tasked with cargo operations should

Response Action

- a. Activate EAP and inform Port.
- b. Area should be cordoned off.
- c. Assist IRT and provide all necessary equipment.
- d. He will direct operation staff.
 Coordinate with the vessel in-charge/C&F agents/stevedores.

3. Deputy Conservator (Alternate: Harbour Master)

Response Action

- a. Assess the level of disaster and activate the DMP.
- b. Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
- c. Give necessary instructions to SIC and Port & arrange for external aid as necessary.
- d. Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
- e. Assess the condition of site and of potential affected area and take decision on evacuation in consultation with SIC.
- f. Be in constant touch with District and Local Administration for rescue and relief operation.
- g. Terminate the response and debrief before allowing normal operation.

4. The Signal Station

Response	Action
----------	--------

- a. Gather information related to the weather conditions and accordingly convey the message to CIC/SIC and Fire cum Safety Officer.
- b. Liaise with Master of the Vessel/Pilot.
- c. Listening watch to be maintained on VHF channel-08/10/16.
- d. Notify to CIC, SIC and the vessels moving into, through and inside the dock. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.
- f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/ Master of the Vessel.

5. The Fire cum Safety Officer should

Response Action

- a. Ensure raising of Alarm (siren)
- b. Shall take orders from the SIC.
- c. Lead the fire-fighting team and mobilize fire tenders, men & fire-fighting equipment to the scene & extend all necessary support to the Master of the vessel/berth operator for firefighting.
- d. Ensures availability of the fire tenders and fire-fighting tugs.

e. In case of fire onboard assist Master in fighting fire as per Masters Instructions.

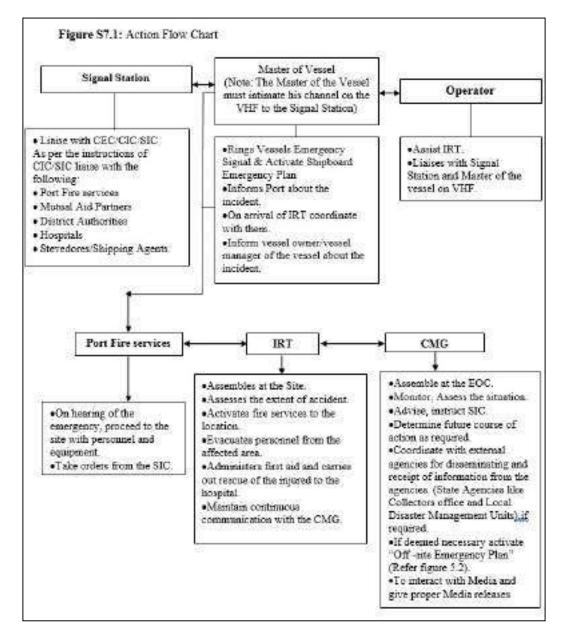
f. If the fire is under control and extinguished, give all clear signal.

g. Inform SIC for arrangement of any additional equipment as required.

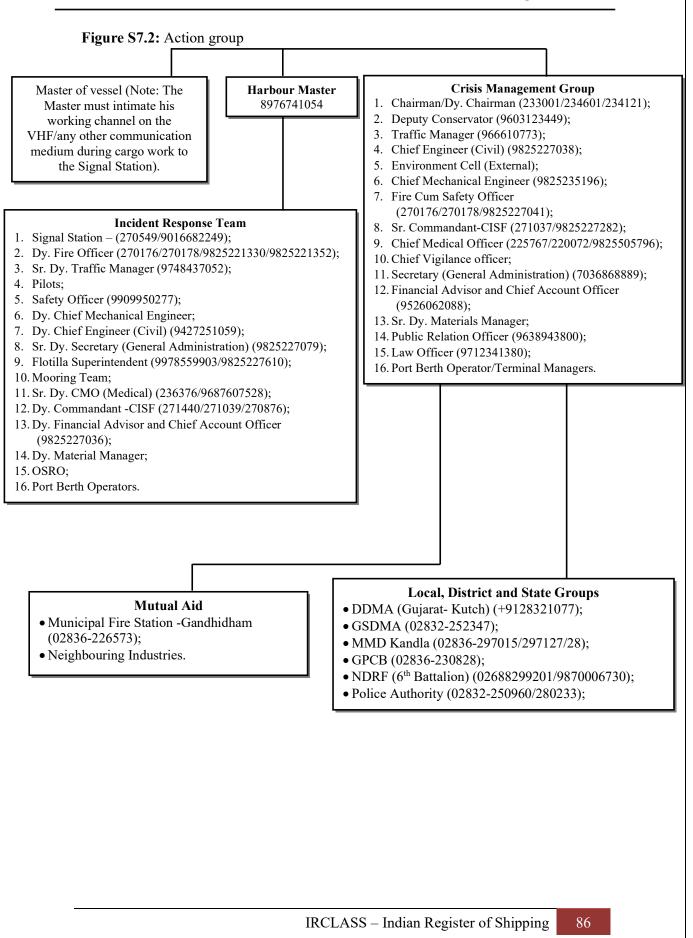
Disaster Management Plan

Designated Officer	Role	Duties
		During Emergency shall proceed to the scene & communicate & collect information from the Master of the vessel and berth operator.
		Conduct initial briefing and report the situation to the CIC and assist in assessing the incident.
		Alert vessels within the vicinity.
Harbour Master (Alternate:	Site Incident	Assess the condition of site and of potential affected area and take decision on evacuation in consultation with CIC.
Pilot)	Controller	Extend all necessary help to the Master of the vessel to fight the fire.
		Instruct the fire-fighting team to keep the water tenders in a state of readiness and activate if required.
		Instruct flotilla superintendent/ pilots to keep tugs ready for fire-fighting.
		Coordinate with all functional heads to take actions.
	Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC /SIC.
Pilot (Alternate:		Responsible for organizing tugs, mooring boats and pilots for combating the fire and rescue.
Pilot)		Hire additional crafts as necessary.
		Shall be ready for taking the vessel out of berth and be ready for providing any assistance on site.
		Maintain Log of events.
Terminal/ Berth operator (Alternate: Officer)	Cargo Work	Shall be responsible of shutting down of cargo operation & coordinating with Port and rendering necessary assistance to the SIC by providing additional fire-fighting and emergency equipment as required.
	Fire, Search and Rescue Coordinator	Shall take orders from Fire cum Safety Officer/SIC.
Dy. Fire		Ensures availability of the fire tenders and fire-fighting tugs.
Officer (Alternate:		In case of fire onboard assist Master in fighting fire as per Masters Instructions.
Officer)		Assist CISF in evacuation of workers to the assembly points.
		Inform SIC for arrangement of any additional equipment as required.
Dy.	Security	Shall take orders from the Sr. Commandant –CISF /SIC.
Commandant-	and	Cordon off the area.
CISF	Evacuation	Controls & Directs gate security and traffic in the area.

IRCLASS – Indian Register of Shipping


(Alternate: Commandant-		Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
CISF)		Control the entry of unauthorized persons and vehicles.
		Liaise with the Police authorities.
		Responsible for the head count of the personnel.
Dy. Traffic	Cargo	Shall take orders from Traffic Manager/SIC and assist Shift Incharge.
Manager (Alternate:	Storage, Shed and	Submits consolidated list of dangerous goods in port.
Officer)	Labour Coordinator	Coordinates with ship owners/ agents/C & F agents/stevedores and with labour officer to arrange and ensure evacuation.
		Inform GPCB and other environmental agencies and take necessary guidance. Coordinate with Environment cell.
Safety Officer (Alternate: Officer)	Safety Coordinator	Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
onicery		Assist in evacuation of the personnel to the assembly point or as directed by SIC.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Shall be responsible to carry out urgent civil works as required.
Executive Engineer	M & E	Shall be responsible for uninterrupted electrical supply to vital equipment and utilities berth.
(Alternate: Executive Engineer)	Coordinator	Shall remain alert on duty for any electrical isolation of equipment during emergency.
Dy. CMO	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
(Alternate: Medical		Make arrangements for transportation and treatment of injured persons.
Officer)		Check updated list of Blood group of employees is available.
		Shall coordinate with the local hospitals.
Environment Cell and	Pollution	Ensure clean- up work conducted by terminal personnel after spill containment.
OSRO (Alternate: Officer)	Control Coordinator	Coordinate with SIC and GPCB and other agencies.
Mooring	aster Mooring emate: Coordinator	Act as per the instruction of SIC/CIC.
Master (Alternate:		Assess the level of crisis, nature, location, severity, casualties and resource equipment.
Officer)		Authorize any immediate action required by on site staff and contract agencies.

IRCLASS – Indian Register of Shipping


S7: Scenario 7

Part A:

- 1. Fire in Coal Stackyard
- 2. Precautions: Water tenders, Sprinkler system.
- 3. Impact Zone: Incident Location and vicinity of the area involved.
- 4. **Resources required:** Organizational setup enumerated in Figure S7.2 and major material and equipment resources as given in Chapter 10.

Disaster Management Plan

Part B: Action Plan

1. Signal Station should

Response Action

a. Gather information related to the coal stack yard fire and time of incident.

b. Notify to CIC, SIC and the nearby vessels through general alert.

c. Gather information about the wind speed and directions and notify CIC/SIC.

2. Deputy Conservator (Alternate: Harbour Master)

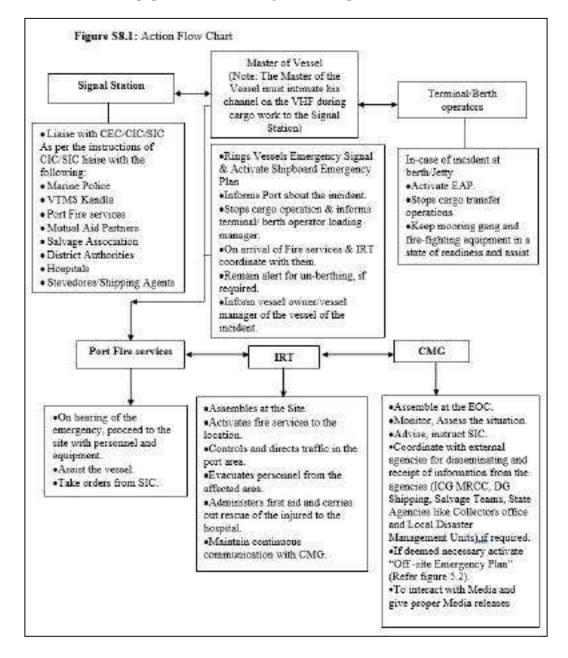
	Response Action
a.	Assess the level of disaster and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC and Port & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
e.	Decide on clearing of vessels in close proximity to the incident location.
f.	Be in constant touch with District and Local Administration for rescue and relief operation.

g. Terminate the response and debrief before allowing normal operation.

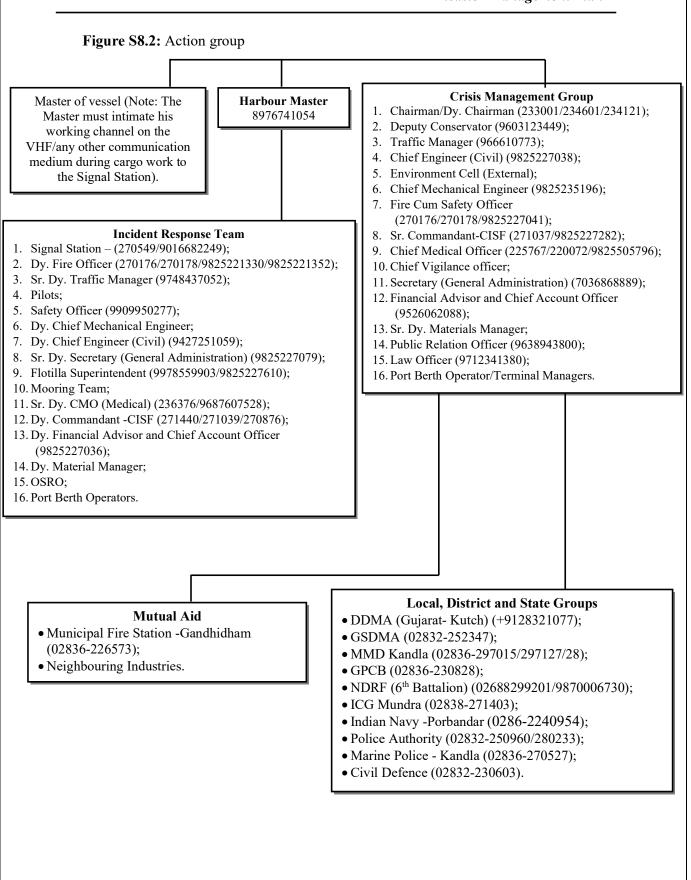
3. Duties of IRT

Designated Officer	Role	Duties
	Site Incident Controller	During Emergency shall proceed to the scene & communicate & collect all information from the coal operator.
Harbour Master		Assess and report the situation to the CIC/CMG (if required).
(Alternate:		Alert vessels within the vicinity.
Pilot)		Extend all necessary help to the operator.
		Instruct Pilot to keep tugs ready.
		He will coordinate with all functional heads to take actions.
Safety Officer	Safety Coordinator	Ensure safety of all the personnel.
(Alternate: Officer)		Assist SIC and CISF and maintain Log of events.
	Fire, Search and Rescue Coordinator	Shall take orders from Fire cum Safety Officer/SIC.
Dy. Fire Officer (Alternate:		Mobilize fire tenders, men & firefighting equipment to the scene & extend all necessary support.
Officer)		Assist the coal stack yard operator and CISF-Security in evacuation, if required.

IRCLASS – Indian Register of Shipping


Pilot (Alternate:	Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC/SIC. Shall prepare vessels to vacate from berth (if required).
Pilot)	and Pilotage	Responsible for organizing tugs and Pilots.
	and I notage	Assist SIC and maintain Log of events.
Coal Stack yard Operator (Alternate: Officer)	Fire, Search and Rescue Coordinator	Provide assistance to port and vessel.
Dy.		Shall take orders from the Sr. Commandant–CISF /SIC. Cordon off the area and take head count of the
Commandant-	~	personnel
CISF (Alternate: Commandant- CISF)	Security and Evacuation	Controls & Directs gate security and traffic in the area. Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
		Control the entry of unauthorized persons and vehicles.
		Liaise with the Police authorities.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Liaise with SIC.
Executive Engineer (Alternate: Executive Engineer)	M & E Coordinator	Arrange for specialized equipment if required as per the instruction of the SIC and requirement of operator.
Dy. CMO (Alternate: Officer)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
Dy. Traffic	Cargo	Coordinates with Coal Stack yard Operator.
Manager (Alternate: Officer)	Storage, Shed and Labour Coordinator	Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the same during emergency as per the order of SIC/CIC.
Mooring Master (Alternate: Officer)	Mooring Coordinator	Act as per the instruction of SIC/CIC.Assess the level of crisis, nature, location, severity, casualties and resource equipment.

IRCLASS – Indian Register of Shipping


S8: Scenario 8

Part A

- 1. Vessel Grounding/Collision within port limit.
- **2. Precautions:** Navigational Aid, Designated Pilots, Continuous monitoring and communication with the Signal Station and Pilot.
- 3. Impact Zone: Navigational and creek channel, Anchorage area.
- 4. **Resources required:** Organizational setup enumerated in Figure S8.2 and major material and equipment resources as given in Chapter 10.

Disaster Management Plan

IRCLASS – Indian Register of Shipping

Part B: Action Plan

1. The Master of the Vessels (Alternate: Chief Officers)

Response Action

- a. Should raise vessels emergency alarm and activate vessel board emergency action plan including evacuation of the personnel.
- b. Vessel in the vicinity, Terminal/berth operator and Port should be informed of any incident without delay.
- c. Shut down transfer operation (if at berth).
- d. Take appropriate damage control measures in case of flooding including leak stoppage and pumping out, vessel list correction etc.
- e. Estimate the extent of under water damage, sounding of tanks and actions for the refloating of the vessel.
- f. Shall be responsible for fighting the fire (in case of fire) with vessels own resources as well as with the available support from IRT.

2. The Signal Station

Response Action

- a. Liaise with Master of the Vessel/Pilot and gather the information about the type of vessels involved in the incident, cargo and location of the incident and convey the message to CIC/SIC and VTS Kandla.
- b. Gather information related to the weather conditions. Monitor the wind directions and accordingly convey the message to CIC/SIC and Fire cum Safety Officer.
- c. Listening watch to be maintained on VHF channel-08/10/16.
- d. Notify to CIC, SIC, VTS Kandla and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CIC/SIC.
- f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/ Master of the Vessel.

3. Deputy Conservator (Alternate: Harbour Master)

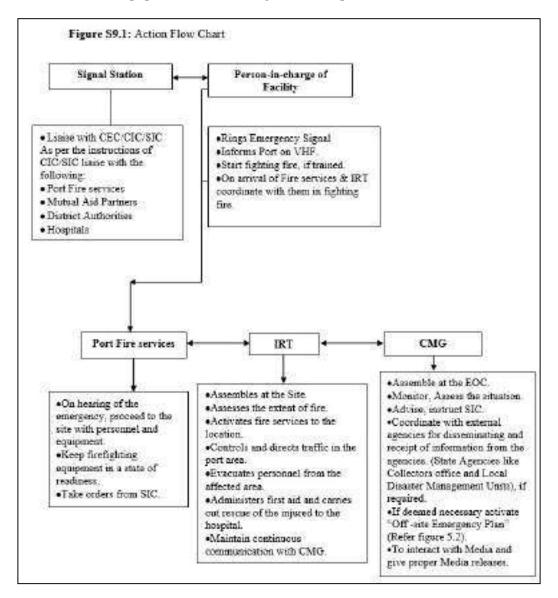
	Response Action		
a.	Assess the level of disaster and activate the DMP and OSCP.		
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.		
c.	Give necessary instructions to SIC and Port & arrange for external aid as necessary.		
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.		
e.	. Decide on clearing of vessels in close proximity to the incident location.		
f.	Be in constant touch with District and Local Administration for rescue and relief operation.		
g.	Terminate the response and debrief before allowing normal operation.		

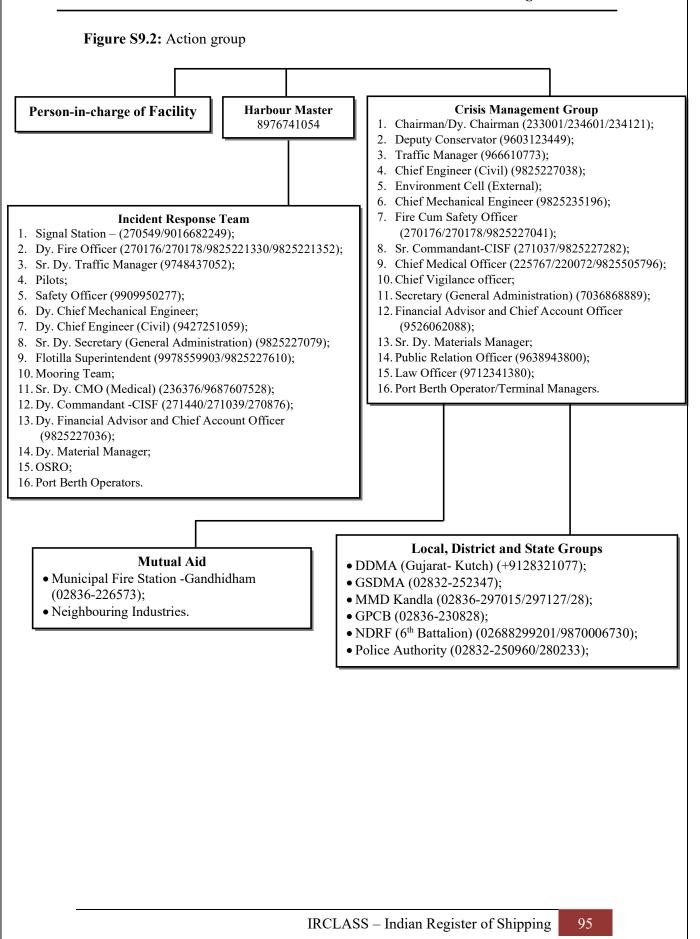
IRCLASS – Indian Register of Shipping

Disaster Management Plan

Designated Officer	Role	Duties
		During emergency, he shall proceed to the affected location (if vessel is in creek/jetty area) & communicate & collect all necessary information's from the Master of the vessel.
		Report the situation to the CIC/CMG.
		In case of fire on board the vessel after collision of contact, he will extend all necessary help to the Master of the vessel.
		Instruct flotilla superintendent/ pilots to keep tugs ready for firefighting.
		Alert other vessels within the vicinity.
		Ascertain oil pollution- leak source, if any.
Harbour Master	Site Incident	Obtain information regarding stability and hul stress of the vessel.
(Alternate: Pilot)	Site Incident Controller	If vessels have blocked or a possibility of blocking the channel, in co-ordination with the Master, the vessel shall be taken to berth / anchorage.
		In case of grounding, make arrangements throug Harbour Master/Pilots to proceed to the spot and to take soundings, plot them in a chart and to ascertain the location of grounding damage on the hull.
		Depending on the way the vessel is grounded and the available high tide on the day, all advanc preparations should be made to commence th towing operation at least two hours before the high water or as advised by CIC/SIC.
		Inform MoEF and GPCB approved parties for saf disposal and providing reception facilities for Oil/Sludge. Also, inform Salvage association.
	Signal Station Coordinator	Shall be ready for taking the instructions from CIC/SIC and evacuate/move/shift the vessel from the area.
Pilot		If possible, accompany SIC to inspect the vessel.
(Alternate: Pilot)		Plot exact location of the incident in coordinatio with the hydrographic surveyor.
		Responsible for organizing tugs for rescue. Instruct pilots.
		Hire additional crafts as necessary.
Environment cell and OSRO	Marine Pollution	Supervise and direct personnel to follow th instructions given by SIC/CIC.

IRCLASS – Indian Register of Shipping


Disaster Management Plan


(Alternate: Officer)	Control Coordinator	OSRO shall use the OSR in case of oil spill in coordination with the environment cell and ICG.
		Coordinate with the party involved in disposal of the Oil/sludge in a safe manner.
		Maintain records of the claims.
Dy. Fire Officer	Fire, Search	Shall take orders from the Fire cum Safety Officer/SIC.
(Alternate: Officer)	and Rescue Coordinator	Mobilize fire tenders, men & firefighting equipment to the scene & extend all necessary support to the master of the vessel for firefighting.
		Shall take orders from the Sr. Commandant – CISF /SIC.
		Cordon off the area and take head count of the personnel
Dy. Commandant-	Convertes and	Controls & directs gate security and traffic in the area.
CISF (Alternate: Commandant- CISF)	Security and Evacuation	Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
Dy. CMO	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
(Alternate: Officer)		Make arrangements for transportation and treatment of injured persons.
		Shall coordinate with the local hospitals.
Executive Engineer	Civil Coordinator	Instruct the contractors to carry out urgent civil works as required.
(Alternate: Executive Engineer)		Hire the barges for collecting the spilled oil and coordinate with the parties involved in the safe disposal of the oil/sludge.
Dy. Traffic Manager (Alternate: Officer)	Cargo Storage, Shed and Labour Coordinator	Coordinates with vessel owners/agents/stevedores.
Mooring		Act as per the instruction of SIC/CIC.
Master (Alternate: Officer)	Mooring Coordinator	Assess the level of crisis, nature, location, severity, casualties and resource equipment.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the same during emergency as per the order of SIC/CIC.
		IRCLASS – Indian Register of Shipping 93

S9: Scenario 9

Part A

- 1. Fire in Office buildings, Hospital, Electrical substations, Fire stations, Dry docks, Godowns
- 2. **Precautions:** Periodic Maintenance and Inspection, Protected/covered Electrical installations, protection from flood (equipment raising from ground level), Fire-fighting systems, trained personnel to combat fire, No-smoking zone, House Keeping.
- 3. Impact Zone: Incident location and immediate surroundings.
- 4. **Resources required:** Organizational setup enumerated in Figure S9.2 and major material and equipment resources as given in Chapter 10.

Part B: Action Plan

1. The Person-in-charge of Facility

Response Action

- a. Should raise emergency alarm.
- b. Fire cum Safety officer/Signal Station should be informed of any incident without delay.
- c. Shall be responsible for fighting the fire with resources available as well as with the available support from IRT.

2. Signal Station should

Response Action

- a. Gather information related to the time of incident.
- b. Notify to CIC, SIC and the Fire cum Safety officer.
- c. Gather information about the wind and notify CIC/SIC and Fire cum Safety officer.

3. Deputy Conservator (Alternate: Harbour Master)

	Response Action
a.	Assess the level of disaster and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC, Fire cum Safety officer and Signal Station & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
e.	Decide on clearing of vehicles in close proximity to the incident location.
f.	Be in constant touch with District and Local Administration for rescue and relief operation.

g. Terminate the response and debrief before allowing normal operation.

4. The Fire cum Safety Officer

	Response Action
a.	Collect the information from Signal Station/ Person-in-charge of Facility and SIC.
b.	Lead the fire-fighting team and provide assistance person-in-charge of facility in fighting fire as per SIC/CME Instructions.
c .	He will mobilize personnel & fire-fighting equipment to the scene & extend all necessary support in case of fire, if required.
d.	Provide assistance in evacuation of the personnel as directed by SIC.
e.	Inform SIC for arrangement of any additional equipment as required.

Disaster Management Plan

Designated Officer	Role	Duties
		During Emergency shall proceed to the scene & communicate & collect all information from the person-in-charge/Fire cum Safety Officer.
		Report the situation to the CIC/CMG and assist in assessing the incident.
Harbour		Assess the condition of site and of potentia affected area and take decision on evacuation in consultation with CIC.
Master	Site Incident	Alert vehicles within the vicinity.
(Alternate: Pilot)	Controller	Extend all necessary support to the Fire Team to fight the fire.
		Instruct the Fire Team to keep the fire-fighting installation.
		Instruct flotilla superintendent/ pilots to keep tug ready for fire-fighting.
		Coordinate with all functional heads to tak actions.
Executive	M & E Coordinator	Assist SIC or lead the IRT in coordination with SIC.
Engineer (Alternate:		Coordinate with Electricity board.
Executive Engineer)		Shall be responsible for Electrical connection and disconnections to vital equipment and systems and provide alternate supply if required.
	Safety Coordinator	Shall take orders for SIC.
Safety Officer		Ensure safely rescue of personnel and labors.
(Alternate: Officer)		Ensure cleanup work during and after the emergency as quick as possible.
Pilot	Signal Station	Shall take orders from the SIC.
(Alternate: Pilot)	Coordinator and Pilotage	Maintain Log of events.
Dr. El	Fire, Search and Rescue Coordinator	Shall take orders from the Fire cum Safet Officer/SIC.
Dy. Fire Officer (Alternate: Officer)		Direct the fire-fighting team and mobilize fir tenders, men & fire-fighting equipment to th scene for fire-fighting.
() () () () () () () () () () () () () (Assist in safely rescuing of the personnel, it trapped.

IRCLASS – Indian Register of Shipping

		Inform SIC and Fire cum Safety officer for the arrangement of any additional equipment as required.
		If the fire is under control and extinguished, give all clear signal.
		Shall take orders from the Sr. Commandant – CISF/SIC.
		Cordon off the area and take head count of the personnel.
Dy. Commandant-		Controls & Directs gate security and traffic in the area.
CISF (Alternate: Commandant- CISF)	Security and Evacuation	Shall facilitate evacuation, transport, first aid and rescue of personnel from the scene at the time of emergency.
		Control the entry of unauthorized persons and vehicles.
		Check for entry of emergency vehicles.
		Liaise with the Police authorities.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Liaise with SIC.
Dy. CMO	First Aid and Medical Coordinator	In coordination with CMO, shall be responsible to organize and dispatch first aid team with ambulance as required.
(Alternate: Officer)		Make arrangements for transportation and treatment of injured persons.
		Shall coordinate with the local hospitals.
Dy. Traffic	Cargo	Shall prepare vehicles in the vicinity to vacate.
Manager (Alternate:	Storage, Shed and Labour Coordinator	Shall mobilize and dispatch sufficient number of vehicles to the site of emergency.
Officer)		Coordinates with vessel owners/agents/stevedores.
Material Manager (Alternate: Officer)	Material procurement Coordinator	Maintain sufficient inventory and provide the same during emergency as per the order of SIC/CIC.

S10: Scenario 10

Part A:

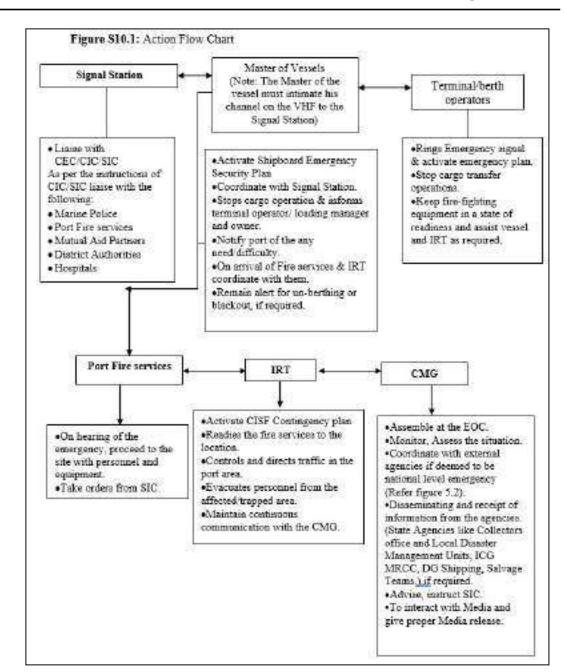
- 1. War and Terrorism.
- 2. **Precautions:** Protection of the port facilities receiving seagoing vessels from terrorist attacks is as per the provision of the "The International Vessel and Port Facility Security Code (ISPS Code)".

Security of the port is being provided by CISF.

The measures for port security include "installation of signal station, CCTVs, Biometric Access Control System, patrolling of port areas by vehicles, creation of deterrence by creating proper perimeter wall, illuminating port area, cancelling access to ports and vessels, conducting physical verification etc."

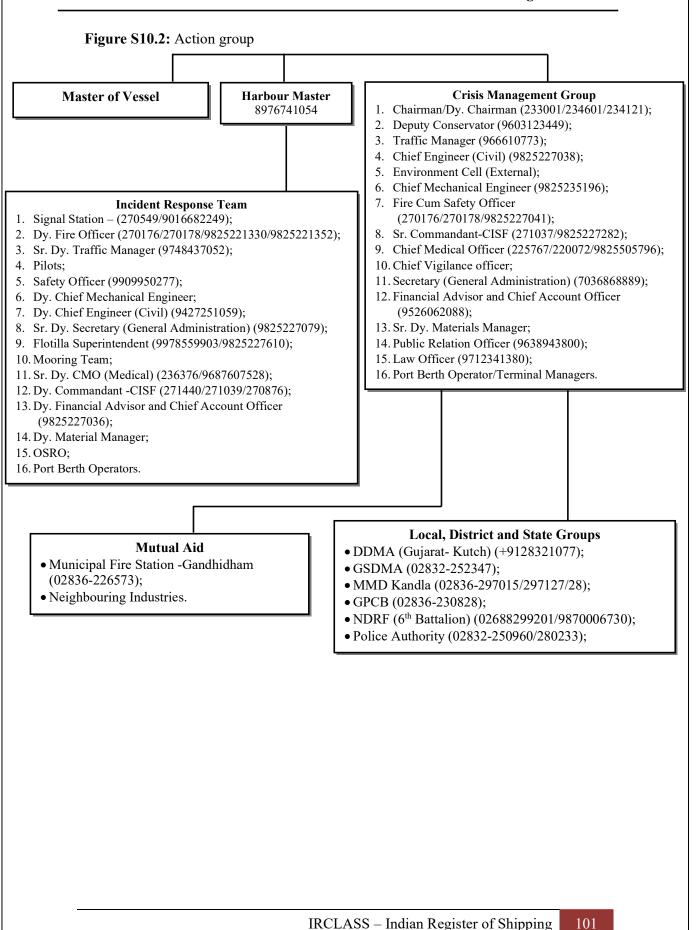
- 3. Impact Zone: Entire port.
- 4. **Resources required:** Intelligence inputs from agencies and organizational setup enumerated in Figure S10.2 and major material and equipment resources as given in Chapter 10.

Part B: Action Plan


When war like situation is developed or during the declaration of war the priority is to be given to all important/critical areas to remain vigilant to prevent sabotage, to remain ready to combat emergency and to keep normal operation going.

B.1 Prior Emergency Situation (after warnings/inputs)

- Set up Crisis management centre and manned continuously.
- CMG to declare plan/guideline to be followed which could be based on CISF Contingency Plan/Government of India/Statutory bodies/Indian Navy/Air Force/Government of Gujarat etc. instructions.
- CMG to ensure utmost vigilance in identified area to ensure the adequate resources in terms of security personnel, experts in handling equipment, trained manpower, and flood lights, earth moving equipment, mobile cranes, and rescue crafts are available to guard all gates, roads etc. In case of any unidentified/unauthorized person is found, the person must be handed over to police.
- CMG to ensure that evacuation plan is prepared and backup systems such as power generator, communication equipment, and safety systems are working. CMG should also ensure that all required manpower such as electricians/technicians/laborer is available all time.
- > All terminal/berth operators and sensitive locations should be informed.
- > No movement of the vessels in the port vicinity will be allowed.


B.2 During Emergency

- > CMG to adopt relevant DMP to combat the emergency.
- In case of an enemy attack inform relevant authorities & internal security to defend installations till the external support arrives.
- When additional security (State ATF/army/BSF) arrives, situation is to be handled jointly.
- > CMG to ensure sufficient supply of food and water.
- All vessels inside the port and at the anchorage will observe blackout as per the instruction of CMG.

Disaster Management Plan

Part B: Action Plan

1. Sr. Commandant - CISF (Alternate: Dy. Commandant- CISF) should

Response Action

- a. Act as per the CISF Contingency plan.
- b. Controls & directs traffic in the area.
- c. Shall supervise evacuation of personnel from the scene at the time of emergency and shift to shelter stations.

2. Deputy Conservator (Alternate: Harbour Master)

Response Action a. Assess the situation and activate the DMP and CISF Contingency Plan. b. Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action in coordination with CISF-Security. c. Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary. d. Review the situation and accordingly inform to the Chairman/ Dy. Chairman. a. Be in constant touch with District and Local Administration for rescue and relief.

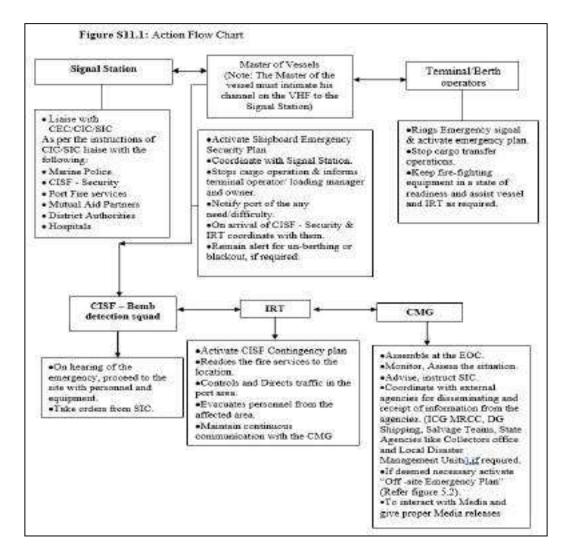
- e. Be in constant touch with District and Local Administration for rescue and relief operation.
- f. Terminate the response and debrief before allowing normal operation.

Designated Officer	Role	Duties
	Site Incident Controller	During Emergency shall communicate & collect all information.
		Report the situation to the CIC/ CMG.
Harbour Master (Alternate: Pilot)		Extend all necessary help to CISF (Security) as and when required.
		Ensure that there is blackout at the port and the vessels at the anchorage area as per the guidance and instruction of CMG/CIC/CISF.
Pilot (Alternate: Pilot)	Signal Station Coordinator	Shall be ready for taking the instructions from CIC/SIC and evacuate/move/shift the vessel from the area.
Master of the	In-Charge of operation on board vessel	Be ready to take the vessel out of the port as per the instructions of CIC/SIC.
vessel (Alternate: Chief Officer)		Coordinate with IRT leader and will be responsible for shutting down all cargo operation on board in coordination with terminal/operator In-Charge.
Terminal/ Berth Operators (Alternate: Officer)	Cargo Work	Shall be responsible of shutting down of cargo operation & coordinating with Port and render necessary assistance to the SIC by providing additional fire-fighting & emergency equipment

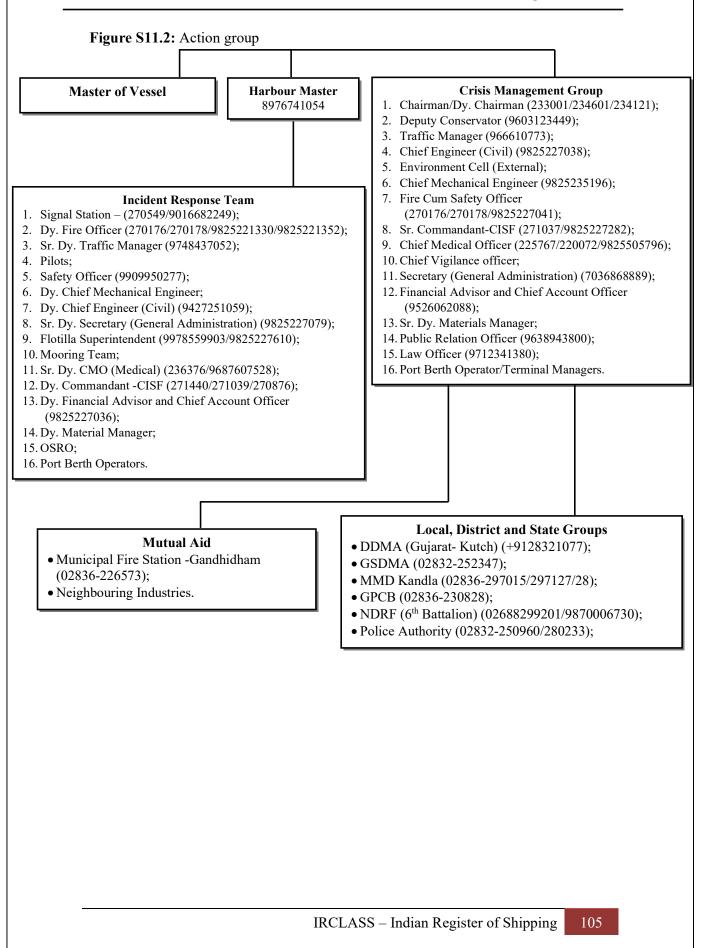
3. Duties of IRT

		as required.
		Arrange to protect cargo in vicinity from damage.
Safety Officer (Alternate: Officer)	Safety Coordinator	Ensure all employees (port and contract) within port shifted to safe locations.
-	Fire, Search and Rescue Coordinator	Shall take orders from the Fire cum Safety Officer/SIC.
Dy. Fire Officer (Alternate: Officer)		Keep the fire –fighting installation in a state of readiness and be in continuous liaise with SIC/CIC.
Officer)		Ensure all employees (port and contract) within port shifted to safe locations.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Assist SIC.
Executive Engineer	M & E	Arrange for specialized equipment if required as per the instruction of the SIC.
(Alternate: Executive Engineer)	M & E Coordinator	Take orders from CIC/SIC with regards to power supply and shutdown.
Dy. CMO (Alternate: Medical Officer)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required. Ensure the hospital is in a state of readiness.
Dy. Traffic	Cargo Storage, Shed and Labour	Submits consolidated list of dangerous goods in port area.
Manager (Alternate:		Coordinates with the truck contractors.
Officer)	Coordinator	Ensure sufficient numbers of vehicles are available.

S11: Scenario 11


Part A

- 1. Bomb Threat
- 2. **Precautions:** Protection of the port facilities receiving seagoing vessels from terrorist attacks is as per the provision of the "The International Vessel and Port Facility Security Code (ISPS Code)".


Security of the port is being provided by CISF.

The measures for port security include "installation of signal station, CCTVs, Biometric Access Control System, patrolling of port areas by vehicles, creation of deterrence by creating proper perimeter wall, illuminating port area, cancelling access to ports and vessels, conducting physical verification etc."

- 3. Impact Zone: Entire port.
- 4. **Resources required:** Organizational setup enumerated in Figure S11.2 and major material and equipment resources as given in Chapter 10.

Disaster Management Plan

Part B: Action Plan

1. The Observer

Response Action

a. Signal Station/CISF should be informed without delay.

2. Sr. Commandant - CISF (Alternate: Dy. Commandant- CISF) should

Response Action

- a. Gather the information as per CISF bomb threat checklist based on Intelligence inputs.
- b. Should Implement/activate CISF Contingency Plan and search operation as per the message received of the location.
- c. Identify the location and cordon off the area.
- d. Assist District Police and Bomb Squad as required.
- e. All terminal/operators should be informed.
- f. Relevant port area should be shut down and people inside the port should be taken to a safe location.

3. Deputy Conservator (Alternate: Harbour Master)

	Response Action
a.	Assess the situation and activate the DMP.
b.	Establish EOC and be stationed to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC, CISF and Signal Station & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
e.	Be in constant touch with District and Local Administration for rescue and relief

- operation.
 - f. Terminate the response and debrief before allowing normal operation.

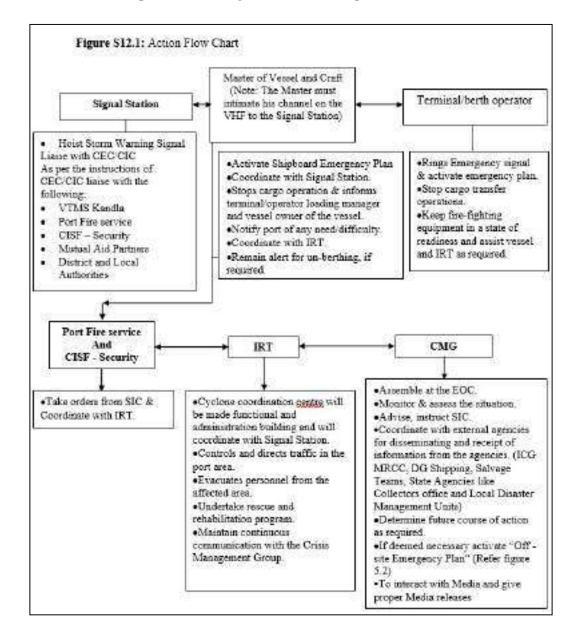
4. Duties of IRT		
Designated Officer	Role	Duties
	Site Incident Controller	During Emergency shall communicate & collect all information.
Harbour Master (Alternate:		Ensure that the identified location is cordoned off and the people are evacuated.
Pilot)		Report the situation to the CIC/ CMG.
,		Extend all necessary help to CISF as and when required.
Pilot (Alternate: Pilot)	Signal Station Coordinator and Pilotage	Shall be ready for taking the instructions from CIC/SIC and evacuate/move/shift the vessel from the area.
Safety Officer (Alternate: Officer)	Safety Coordinator	Ensure all employees (port and contract) within port shifted to safe locations.
Master of the vessel	In-Charge of operation on board vessel	Be ready to take the vessel out of the port as per the instructions of CIC/SIC.
(Alternate: Chief Officer)		Coordinate with IRT leader and will be responsible for shutting down all cargo operation on board in coordination with terminal/operator In-Charge.
Terminal/ Berth Operator	Cargo Work	Shall be responsible of shutting down of cargo operation & coordinating with Port and rendering necessary assistance to the SIC by providing additional equipment as required.
(Alternate: Officer)		Coordinate with the agencies for screening of their cargoes.
		Arrange to protect cargo in vicinity from damage.
Dy. Fire	Eine Ceant	Shall take orders from the SIC/Fire cum Safety Officer.
Officer (Alternate:	Fire, Search and Rescue Coordinator	Keep the fire –fighting installation in a state of readiness and be in continuous liaise with SIC/CIC.
Officer)		Ensure all employees (port and contract) within port shifted to safe locations.
Executive Engineer (Alternate: Executive Engineer)	Civil Coordinator	Assist SIC.
Executive Engineer	M & E	Arrange for specialized equipment if required as per the instruction of the SIC.
(Alternate: Executive Engineer)	Coordinator	Take orders from CIC/SIC with regards to power supply and shutdown.

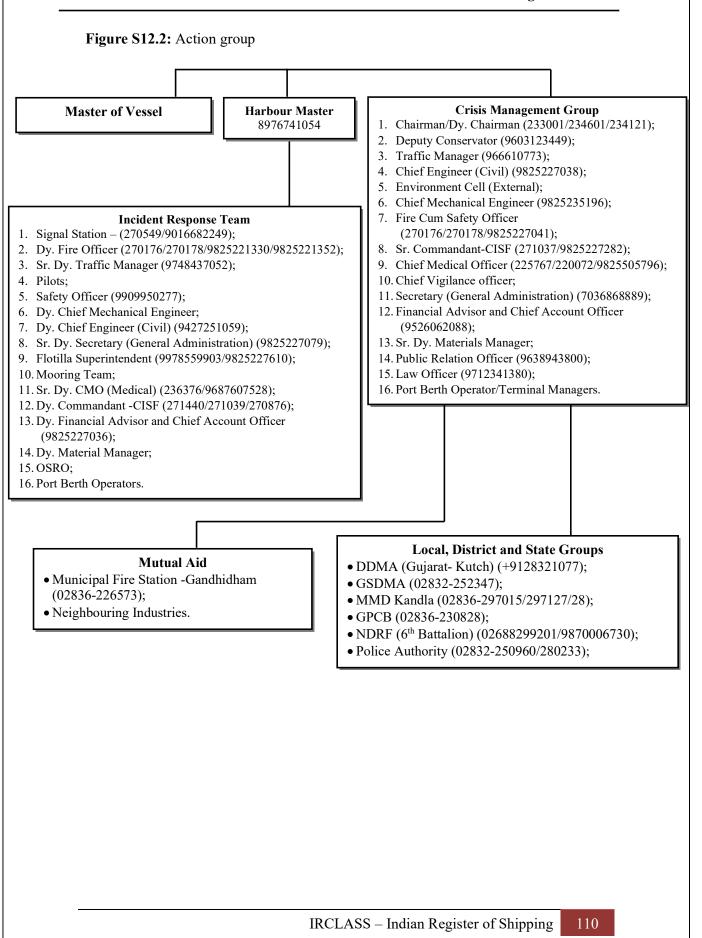
4. Duties of IRT

Dy. CMO (Alternate: Officer)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required. Ensure hospital is in a state of readiness.
Dy. Traffic	Dy. Traffic Cargo Manager Storage, Shed (Alternate: and Labour Officer) Coordinator	Submits consolidated list of dangerous goods in port area.
		Coordinates with the truck contractors.
Officer)		Ensure sufficient number of vehicles is available.
		Controls traffic in the Port area.

S12: Scenario 12

Part A:


1. Natural Disaster (Cyclone)


Note: The action plan will come into force as soon as the storm warning signal no.5 or higher is hoisted.

- **2. Precautions:** SOP for Cyclone, Continuous weather monitoring, Early warning system, Cyclone Shelters.
- 3. Impact Zone: Entire port.

Note: The Gujarat - Kutch districts fall under very high damage risk zone (max. wind speed of 50 m/s) as per the vulnerability hazard map of the region.

4. Resources required: Refer Figure S12.2 and Chapter 10 for resources.

Part B: Action Plan

1. Signal Station

	Response Action
a.	Gather information related to the vessel type and position in the port limit.
b.	Gather information related to the weather conditions by liaising with competent agencies for issuing warnings and other media. Monitor the weather map either through Internet or Television and record approximate position of the weather and information about its movement as given in the news.
c.	As per the instructions of SIC, sufficient number of staff will be detailed. The staff of Signal Station will remain on duty until they are relieved by next shift staff or till alternative arrangements are made or till the storm has passed and the Harbour Master releases them.
d.	Every two hourly barometer reading will be recorded after cyclone warning signal No. 3 is hoisted but the same will be made hourly if further upward signal is placed.
e.	Liaise with Master of the Vessel/Pilot.
f.	Ensure that telephones, one VHF and one walkie-talkie all are operational. Listening watch to be maintained on VHF channel-08/10/16.
g.	Notify CIC/SIC, HOD and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
h.	Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CEC/CIC.
i.	Inform the Harbour Master/Flotilla Superintendent of any buoys or crafts or any Port installation is seen adrift.
j.	Hoist signals or raise alarms, as per the warnings received by the competent agencies for issuing warnings.

2. Tidal observatory

Response Action

a. The Gauge Clerk will record the range of tide, time and heights of high and low water and will report to Chief hydrographer who in turn will apprise the CIC and the SIC of the actual and predicted tides.

3. The Master of the Vessel (Alternate: Chief Officer)

Response Action

- a. Should raise vessels emergency alarm and activate shipboard emergency action plan.
- b. Having raised the alarm, the Master will be responsible for taking all immediate steps to safeguard his vessel.
- c. The Master will provide the Port Authority with details of the vessel.
- d. Should follow the instruction of the CIC/SIC and be in continuous liaison with the CIC/SIC/Signal Station.
- e. Should be in a state of readiness to take the vessel out of the port.

4. The terminal/berth operator personnel should

Response Action

a. Activate EAP and inform Port.

- b. Shall be responsible of shutting down of cargo operation (as per SOP and/ contingency plan) & coordinate with Port and Master of the Vessel and rendering necessary assistance to the SIC and vessel by providing emergency equipment as required.
- c. Submit consolidated list of dangerous goods in port and Vessels in port. Make arrangements to protect cargo.
- d. Assist IRT and provide all necessary equipment.

e. He will direct operation staff.

Coordinate with the vessel in-charge/C&F agents/stevedores.

5. Deputy Conservator (Alternate: Harbour Master)

Response Action a. He will keep himself apprised of the weather developments. If the storm is observed on the radar screen, the Deputed officer will inform Chairman/ Dy. Chairman and cyclone station. b. He will be stationed in EOC to review & assess possible developments to determine the necessary course of action. c. Give instructions to SIC and Signal Station & arrange for external aid as necessary. d. Review the situation periodically and accordingly inform to the Chairman/ Dy. Chairman. e. Consult with Chairman / Dy. Chairman and decide on berthing of vessels as soon as the cyclone is confirmed to pass in close proximity to the Port. f. Plan movements of vessels such that the vessels are cleared in shortest possible time.

- g. Coordinate with external agencies/authorities such as Indian Navy and ICG.
- h. Be in constant touch with District and Local Administration for rescue and relief operation.
- i. Terminate the response and debrief before allowing normal operation.

6. Duties of IRT			
Designated Officer	Role	Duties	
	Site Incident Controller	During Emergency shall proceed to the Signal Station & communicate & collect all information.	
		Take over the charge and ensure the action plan is promulgated as per the instructions of CIC.	
		Inform vessels, Mooring team and Flotilla superintendent alongside berths to double up their moorings, provide shore gang assistance and ask Masters to keep their vessels ready to proceed to the sea at short notice as per the instruction of CIC.	
Harbour Master (Alternate: Pilot)		He will keep close liaison will IMD, Radar Station, Police Wireless Station, ICG and Vessels in Port in regard to the likely weather conditions in the near further.	
		Ensure Signal Station, hoists appropriate storm signal as per the situation.	
		Report the situation to the CIC & the CMG.	
		Keep rescue team ready with rubber boats, Life jackets etc.	
		Ensure that the hazardous cargoes are shifted out of the port or secured/stored in a safe manner.	
		Ensure that the operations are brought back to normal after the termination of the emergency procedure.	
	Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC/SIC.	
Pilot (Alternate:		Instruct Flotilla superintendent to secure tugs, crafts and workboats.	
Pilot)		Ensure securing of dock cranes and loose equipment/items.	
		He will maintain log of events.	
Safety Officer (Alternate:	Safety Coordinator	Ensure workers within perimeter of safety dangerous / chemical tank farms shifted to sheltered location.	
Officer)		All non-essential workers to move out of port area.	
D	Fire, Search and Rescue Coordinator	Shall take orders from the Fire cum Safety Officer/SIC.	
Dy. Fire Officer (Alternate:		Keep fire tenders and fire-fighting equipment in a state of readiness.	
Officer)		Ensure the FIFI tugs is properly manned and secured with double ropes and engines running in idling condition.	

6. Duties of IRT

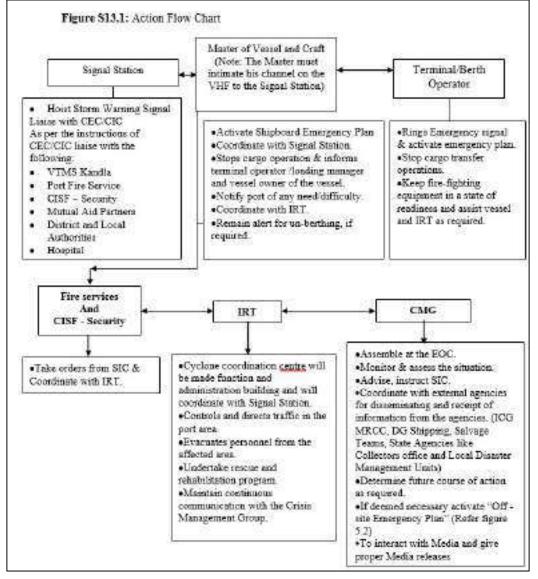
		Responsible for mobilizing fire tenders, men & fire- fighting equipment to the scene & extend all necessary support.
		Liaise with State Fire brigade for any assistance.
		Shall take orders from Sr. Commandant- CISF/SIC.
Dy.	Security and Evacuation	Shall be responsible for forming a cyclone task force and will lead the same.
Commandant-		Controls & directs traffic in the area.
CISF (Alternate: Commandant-		Shall supervise evacuation of personnel from the scene at the time of emergency and Responsible for rescue operation.
CISF)		Till normality is restored, arrangements will be made for thorough checks on all out-going vehicles to guard against pilferage.
Dy. Traffic	Cargo	Submits consolidated list of dangerous goods in port area.
Manager	Storage, Shed	Coordinate with the truck contractors.
(Alternate: Officer)	and Labour Coordinator	Ensure availability of vehicles and mobilize and dispatch sufficient number of vehicles to the site during emergency.
	Civil Coordinator	Shall ensure the standard procedure before the monsoon has been followed and complied with by all the divisions.
Executive		All types of cranes, forklifts, heavy earth moving equipment to be secured in a safe manner.
Engineer (Alternate: Executive		Keep enough number of cement bags ready as per SIC instructions.
Executive Engineer)		Pumphouse equipment and all generator sets shall be tried out and kept ready.
		Ensure all the drains and obstructions in the creeks/ culverts are cleaned for easy discharge of sludge water.
		Shall ensure the standard procedure before the monsoon has been followed and complied with by all the divisions.
Executive Engineer (Alternate:	M & E	Shall form and head Cyclone mitigation Team comprising of Electrical, Mechanical and Maintenance Engineers.
(Alternate: Executive Engineer)	Coordinator	Shall ensure that all the installations and equipment are secure. All division and workshops shall follow their standard procedures for securing the equipment and installations.
		Shall be responsible for alternate electrical supply to vital equipment and systems at the berth.

IRCLASS – Indian Register of Shipping

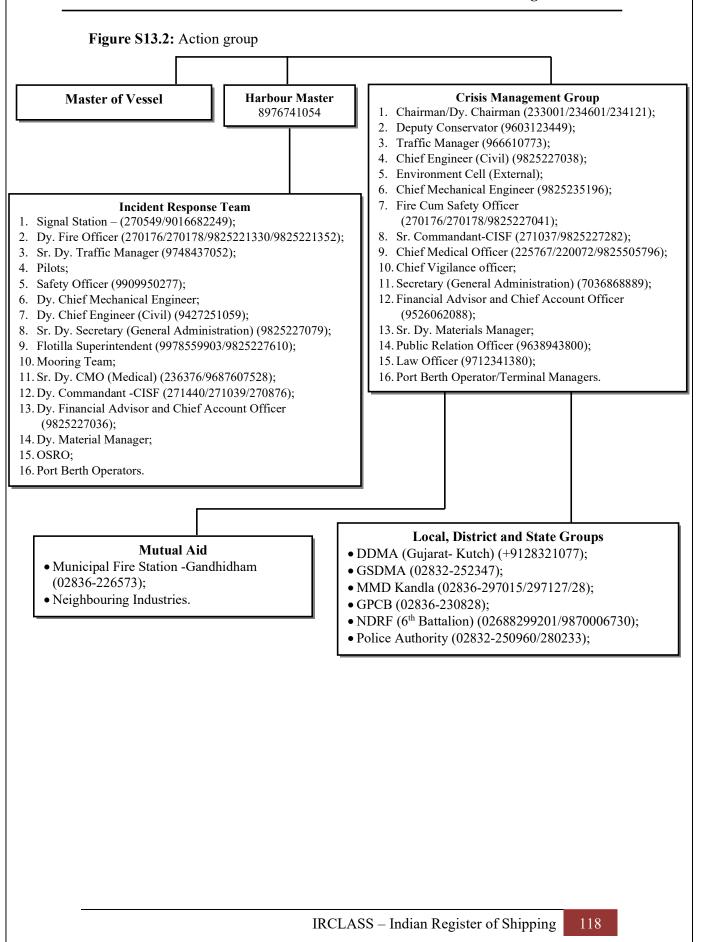
		All electrical sub stations will be manned round the clock or person should be readily available incase of any emergency requirement.
Dy. CMO (Alternate: Medical Officer)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
Executive Engineer (Alternate: Executive Engineer)	Hydrographic Survey	Assist SIC.
	In-Charge of Pilotage	Shall be ready on site for taking the vessel out of berth or will not bring the vessel to berth as per the instruction given by CIC/SIC.
		Inform the Masters of all vessels at the berths to double the moorings and to keep engine ready to proceed out to sea if situation warrants.
		Decision regarding moving vessels to the anchorage will be taken depending on the strength of the wind likely to be encountered and number of vessels in the Port.
Duty Pilot (Alternate:		Maintain a close liaison and co-ordination with the Operations In-charge.
Pilot)		Take all necessary steps for the safety of the Port crafts.
		Fender and extra lengths of ropes/wires will be kept ready so as to attend to any craft whose moorings may part.
		Inform the Signal Station/ Flotilla superintendent immediately in the event any craft is seen adrift or any other Port installation is seen in danger. Arrange an Emergency Maintenance team.
		Responsible for directing tugs for combating the fire and rescue.
Mooring		Act as per the instruction of SIC/CIC.
Master	Mooring Coordinator	Assess the level of crisis, nature, location, severity casualties and resource equipment.
(Alternate: Officer)		Authorize any immediate action required by on site staff and contract agencies.
Material Manager (Alternate: Officer)	Material Management	During cyclonic season sufficient stock of stores like corrugated iron sheets, J.Hooks, screw hinges, gunny bags, tarpaulins, ropes and wires for Port Crafts diesel oil, kerosene oil, hurricane lantern, kerosene lamps, torch lights with batteries and bulbs, electricat items etc. is kept.

IRCLASS – Indian Register of Shipping

	POST-CYCLONE DUTIES		
Sr. no.	Duty		
1.	All the Heads of the Departments are required to assess the damage and submit a detailed report indicating the estimate to the Chairman/Dy. Chairman. For this, a team may be formed comprising Officers of Executive Engineer and above in rank at departmental level and may associate one Officer from Finance Department. The preliminary report is to be submitted within 3 hours and detailed report within three days.		
2.	Hydrographic survey to be conducted to assess the channel condition and Shipping to resume as early as possible.		
3.	In case of any small craft sunk or grounded, the same to be removed to make the channel/ berth safe for navigation. SIC/CIC will detail a salvage party.		
4.	A team of Officers to be nominated by Secretary to supervise the rescue and relief operation and disposal of carcasses in co-ordination with the local and District Administration.		
5.	Mobile medical service, if required, to be provided by CMO. Preventive measures for epidemics to be taken.		
6.	All the operating systems need to be attended urgently and made operational as early as possible on war footing basis to resume operation.		
7.	Spot tendering procedure can be followed if required in emergency.		
8.	Water supply and electricity to be given priority. The Chief Engineer (Mechanical/Electrical/Civil) shall be authorized to extend all assistance for manpower, conveyance, equipment and materials etc. to electrical board, if required, for resuming power supply. The electrical cabling network to be checked area wise.		
9.	All the damaged temporary roofed warehouses are to be repaired.		
10.	The Material Manager will nominate a team of officers and staff for procurement and supply of essential materials for repair of various structures and equipment as reported.		
11.	To assess the progress of repair works, HOD meeting will be held daily till normalcy is restored.		
12.	Damage to furniture, building fixtures may be prepared.		


S13: Scenario 13

Part A:


1. Natural Disaster (Flood due to high tide and/or heavy rains)

Note: Instances of flooding increase due to storm/cyclonic conditions coupled with infrastructural challenges such as drainage systems, bulk handling and storage yards, internal roads and natural topography of the area. Instances of flooding can also occur as a result of heavy rainfall coupled with high tide. Similar organizational setup for managing this emergency on the lines of cyclone situation will be required.

- 2. Precautions: Pre-monsoon preparation, Continuous weather monitoring, Early warning system.
- 3. Impact Zone: Entire port.
- 4. Resources required: Refer Figure S13.2 and Chapter 10 for resources.

Disaster Management Plan

Part B: Action Plan

1. Signal Station

	Response Action
a.	Gather information related to the vessel type and position in the port limit.
b.	Gather information related to the weather conditions by liaising with competent agencies for issuing warnings and other media. Monitor the weather map either through Internet or Television and record approximate position of the weather and information about its movement as given in the news.
c.	Liaise with Master of the Vessel/Pilot.
d.	Ensure that telephones, one VHF and one walkie-talkie all are operational in the Port Signal Station. Listening watch to be maintained on VHF channel-08/10/16.
e.	Notify to CEC, CIC, HOD and the vessels moving into, through and inside the port. Keep CIC informed of all the messages received by telephone, VHF sets or by messenger.
f.	Notify the other Authorities (ICG, Navy) and stakeholders within Port as per instructions of CEC/CIC.
g.	Inform the Harbour Master/Flotilla Superintendent of any buoys or crafts or any Port installation is seen adrift.
h.	As per the instructions of SIC, sufficient number of staff will be detailed. The staff of Signal Station will remain on duty until they are relieved by the next shift staff or till alternative arrangements are made or till the storm has passed and the Harbour

Master release them.

2. Tidal observatory

Response Action

a. The Gauge Clerk will record the range of tide, time and heights of high and low water and will report to Chief Hydrographer who in turn will apprise the CIC and SIC of the actual and predicted tides.

3. The Master of the Vessel (Alternate: Chief Officer)

Response Action

- a. Should raise vessels emergency alarm and activate vessel board emergency action plan.
- b. Having raised the alarm, the Master will be responsible for taking all immediate steps to safeguard his vessel.
- c. The Master will provide the Port Authority with details of the vessel.
- d. Should follow the instruction of the CIC/SIC and be in continuous liaise with the CIC/SIC/Signal Station.
- e. Should be in a state of readiness to take the vessel out of the port.

4. The terminal/berth operator should

Response Action

a. Activate EAP and inform Port.

- b. Shall be responsible of shutting down of cargo operation (as per SOP and/ contingency plan) & coordinate with Port and Master of the Vessel and rendering necessary assistance to the SIC and vessel by providing emergency equipment as required.
- c. Submit consolidated list of dangerous goods in port and Vessels in port. Make arrangements to protect cargo.
- d. Assist IRT and provide all necessary equipment.
- e. He will direct operation staff.
 - Coordinate with the vessel in-charge/C&F agents/stevedores.

5. Deputy Conservator (Alternate: Harbour Master)

	Response Action
a.	He will apprise himself of weather the developments.
b.	He will be stationed at EOC to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
e.	Consult with Chairman / Dy. Chairman and decide on clearing of vessels as soon as the cyclone is confirmed to pass in close proximity to the Port.
f.	Plan movements of vessels such that the vessels are cleared in shortest possible time.
g.	Coordinate with external agencies/authorities such as Indian Navy and ICG.

- h. Be in constant touch with District and Local Administration for rescue and relief operation.
- i. Terminate the response and debrief before allowing normal operation.

Designated Officer	Role	Duties
	Site Incident Controller	During Emergency shall proceed to the Signal Station and communicate & collect all information.
		Take over the charge and ensure the action plan is promulgated as per the instructions of CIC.
		Inform vessels alongside berths to double up their moorings, provide shore gang assistance and ask Masters of vessels to keep their vessels ready to proceed to the safe area at short notice as per the instruction of CIC.
Harbour Master (Alternate: Pilot)		He will keep close liaison with IMD, CWC, Radar Station, Police Wireless Station, ICG, and Vessels in Port in regard to the likely weather conditions in the near further.
		Report the situation to the CIC & the CMG.
		Keep rescue team ready with rubber boats, Life jackets etc.
		Ensure that the hazardous cargoes are shifted out in a safe manner.
		Ensure that the operations are brought back to normal after the termination of the emergency procedure.
Pilot	Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC/SIC.
(Alternate: Pilot)		Instruct Flotilla Superintendent to secure tugs, crafts and workboats.
		He will maintain log of events.
Safety Officer (Alternate: Officer)	Safety Coordinator	Shall take orders from the SIC. Assist in evacuation of the personnel to the assembly point or as directed by SIC.
		Shall take orders from the SIC.
Dy. Fire	Fire, Search and Rescue Coordinator	Keep fire tenders and fire-fighting equipment in a state of readiness.
Officer (Alternate: Officer)		Responsible for mobilizing fire tenders, men & fire- fighting equipment to the scene & extend all necessary support, if required.
		Liaise with State Fire brigade for any assistance.
Dy. Commandant-	Security and	Shall take orders from Sr. Commandant- CISF/SIC.
CISF (Alternate:	Evacuation	Shall be responsible for forming a cyclone/flood task force and will lead the same.

6. Duties of IRT

Commandant-		Controls & directs traffic in the area.
CISF)		Shall supervise evacuation of personnel from the scene at the time of emergency.
		Till normality is restored, arrangement will be made for thorough checks on all out-going vehicles to guard against pilferage.
		Shall be responsible for rescue of the personnel.
Dy. Traffic	Cargo	Submits consolidated list of dangerous goods in por area.
Manager	Storage, Shed and Labour Coordinator	Coordinate with the truck contractors.
(Alternate: Officer)		Ensure availability of vehicles and mobilize and dispatch sufficient number of vehicles to the site during emergency.
	Civil Coordinator	Shall ensure the standard procedure before the monsoon has been followed and complied with by all the divisions.
		Keep enough number of cement bags ready as per SIC instructions.
Executive Engineer (Alternate:		Pump house equipment and all generator sets shall be tried out and kept ready.
Executive Engineer)		Ensure all the drains and obstructions in the creeks culverts are cleaned for easy discharge of sludg water. Also, make arrangements for additional dewatering pumps as required.
		As soon as the contingency plan is made operational all the water tanks should be filled up and standby arrangement for supply of water to be made.
		Shall ensure the standard procedure before the monsoon has been followed and complied with by all the divisions.
Executive		Shall form and head Cyclone/Flood mitigation Team comprising of Senior Electrical, Mechanical and Maintenance Engineers.
Engineer (Alternate: Executive	M & E Coordinator	Ensure that all division and workshops standard procedures has been followed and equipment and installations are secured in a safe manner.
Engineer)		Shall be responsible for alternate electrical supply to vital equipment and systems.
		All electrical sub stations will be manned round the clock or person should be readily available in case of any emergency requirement.
Dy. CMO (Alternate:	First Aid and Medical	Shall be responsible to organize and dispatch first aid team with ambulance as required.

IRCLASS – Indian Register of Shipping 122

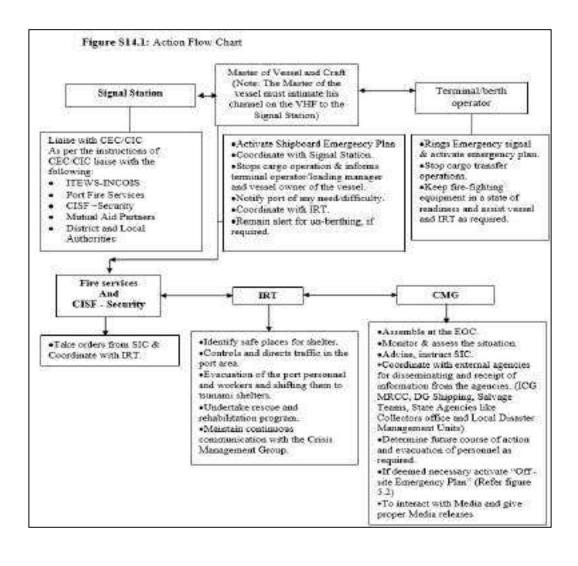
Medical Officer)	Coordinator	
Executive Engineer (Alternate: Executive Engineer)	Hydrographic Survey	Assist SIC.
	In-Charge of Pilotage	Shall be ready on site for taking the vessel out of berth or will not bring the vessel to berth as per the instruction given by CIC/SIC.
		Inform the Masters of all vessels at the berths to double the moorings and to keep engine ready to proceed out to sea if situation warrants.
		Decision regarding moving vessels to the anchorage will be taken depending on the strength of the wind likely to be encountered and number of vessels in the Port.
Duty Dilot		Take all necessary steps for the safety of the Port crafts.
Duty Pilot (Alternate: Pilot)		Ensure all other crafts are placed at safe place and properly secured excepting one pilot launch and one stand by launch used for inspection and emergency duties.
		Fender and extra lengths of ropes/wires will be kept ready so as to attend to any craft whose moorings may part.
		Inform the Signal Station immediately in the event any craft is seen adrift or any other Port installation is seen in danger. Arrange an Emergency Maintenance team.
		Responsible for directing tugs for combating the fire and rescue.
Material Manager (Alternate: Officer)	Material Management	During cyclonic season sufficient stock of stores like Corrugated iron sheets, J.Hooks, screw hinges, gunny bags, tarpaulins, ropes and wires for Port Crafts, diesel oil, kerosene oil, hurricane lantern, kerosene lamps, torch lights with batteries and bulbs, electrical items etc. is kept.
,		All the materials which are likely to get damaged in rain and flood are covered with tarpaulin.

	POST FLOOD DUTIES
Sr. no.	Duty
1.	All the HODs are required to assess the damage and submit a detailed report indicating the estimate to the Chairman. For this, a team may be formed comprising Officers of Executive Engineer and above in rank at departmental level and may associate one Officer from Finance Department. The preliminary report is to be submitted.
2.	Hydrographic survey to be conducted to assess the channel condition and Shipping to resume as early as possible.
3.	A team of Officers to be nominated by Secretary to supervise the rescue and relief operation and disposal of carcasses in co-ordination with the local and District Administration.
4.	Mobile medical service, if required, to be provided by CMO. Preventive measures for epidemics to be taken.
5.	All the operating systems to be attended urgently and made operational as early as possible on war footing basis to resume operation.
6.	Spot tendering procedure can be followed for repairs.
7.	Water supply and electricity to be given priority. The Chief Engineer (Mechanical/Electrical/Civil) shall be authorized to extend all assistance for manpower, conveyance, equipment and materials etc. to electrical board, if required, for resuming power supply. The electrical cabling network to be checked area wise.
8.	The Material Manager will nominate a team of Officers and staff for procurement and supply of essential materials for repair of various structures and equipment as reported.
9.	To assess the progress of repair works, HOD meeting will be held daily till normalcy is restored.
10.	Damage to furniture, building fixtures may be prepared.

Disaster Management Plan

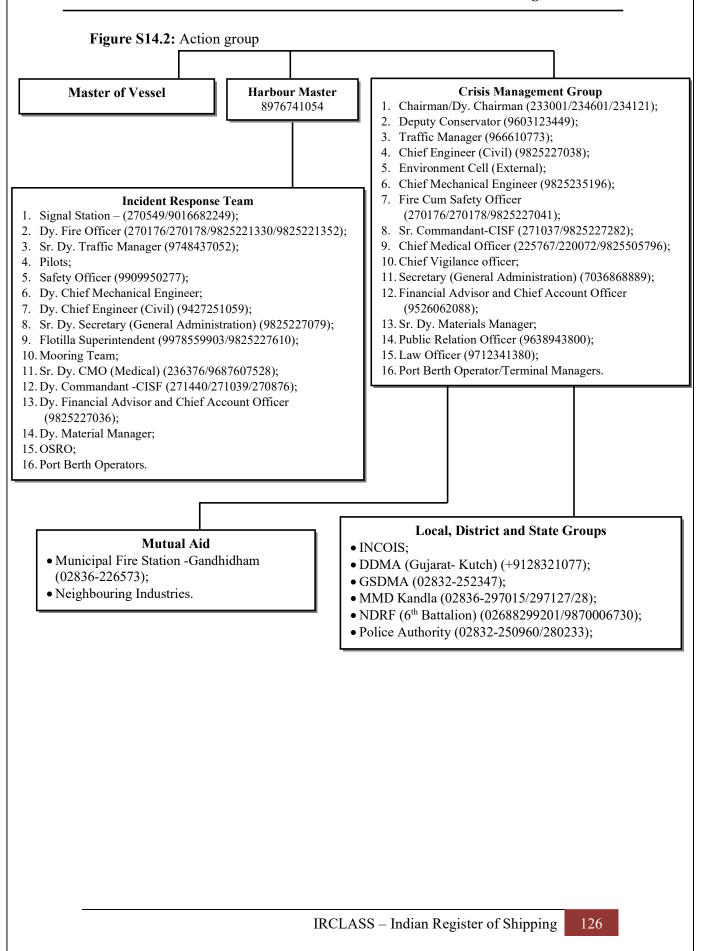
S14: Scenario 14

Part A:


- 1. Natural Disaster (Tsunami)
- 2. Precautions: Continuous weather monitoring, Early warning system, Tsunami Shelters.

Note: INCOIS and its monitoring centres will provide early warning by way of messages to the port about the occurrence of tsunami.

3. Impact Zone: Entire port.


Note: While in the past the Indonesian tsunami (2004) generated a small wave the damages in the event of a higher wave would be in proportion to the proximity to the earthquake zone and the resultant height of wave generation. Thus, the wave energy would impact the port and its constituents including marine and fixed assets in proportion to its severity. Actions at the National and State level for evacuation measures will be taken if the impact assessment is of a high magnitude. Thus, necessary coordination with District and State agencies will be required in case of "Red" and "Orange" alerts.

4. Resources required: Refer Figure S14.2 and Chapter 10 for resources.

IRCLASS – Indian Register of Shipping 125

Disaster Management Plan

Part B: Action Plan

1. Signal Station

	Response Action
a.	Gather information related to the vessel type and position in the port limit.
b.	Gather information related to the tsunami conditions by liaising with competent agencies for issuing warnings and other media. Monitor the conditions through Internet or Television and record approximate position of the tsunami and information about its movement as given in the news.
c.	Liaise with Master of the Vessel/Pilot.
d.	Ensure that telephones, one VHF and one walkie-talkie all are operational in the Port Signal Station. Listening watch to be maintained on VHF channel-08/10/16.
е.	Notify to CEC, CIC, HOD and the vessels moving into, through and inside the port. Keep CIC informed of all the messages received by telephone, VHF sets or by messenger.
f.	Notify the other Authorities and stakeholders within Port as per instructions of CEC/CIC.
g.	Inform the Harbour Master/Flotilla Superintendent of any buoys or crafts or any Port installation is seen adrift.
h.	Hoist signals or raise alarms, as per the warnings received by the competent agencies for issuing warnings.

2. Tidal observatory

Response Action

a. The Gauge Clerk will record the range of tide, time and heights of high and low water and will report to Chief Hydrographer who in turn will apprise the CIC and SIC of the actual and predicted tides.

3. The Master of the Vessel (Alternate: Chief Officer)

Response Action

- a. Should raise vessels emergency alarm and activate shipboard emergency action plan.
- b. Having raised the alarm, the Master will be responsible for taking all immediate steps to safeguard the vessel.
- c. The Master will provide the Port Authority with details of the vessel.
- d. Should follow the instruction of the CIC/SIC and be in continuous liaison with the CIC/SIC/Signal Station.
- e. Should be in a state of readiness to take the vessel out of the port.

4.	The terminal/berth	operator should
----	--------------------	-----------------

Response Action

- a. Activate EAP and inform Port and be in a state of readiness to move out all types of cargo, equipment and vehicles (mobile cranes) outside the port area.
- b. Shall be responsible of shutting down of cargo operation (as per SOP and/ contingency plan) & coordinate with Port and Master of the Vessel and rendering necessary assistance to the SIC and vessel by providing emergency equipment as required.
- c. Submit consolidated list of dangerous goods in port and Vessels in port. Make arrangements to protect cargo.
- d. Assist IRT and provide all necessary equipment.
- e. He will direct operation staff.
 - Coordinate with the vessel in-charge/C&F agents/stevedores.

Note: It is important to understand that movable objects and structures which may float as a result of high-water levels will tend to generate flotsam and move with the current during the flooding and ebb situation of tsunami. This normally results in floating debris in large swaths causing structural, environmental and living beings damages.

As a lifesaving measure multi-storey building higher than 45ft are considered as safe zones in coastal areas.

5. Deputy Conservator (Alternate: Harbour Master)

	Response Action
a.	Activate the DMP.
b.	He will be stationed at EOC to review & assess possible developments to determine the most necessary course of action.
c.	Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary.
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.
e.	Consult with Chairman / Dy. Chairman and decide on clearing of vessels as soon as the tsunami is confirmed.
f.	Plan movements of vessels such that the vessels are cleared in shortest possible time.
g.	Coordinate with external agencies/authorities such as Indian Navy and ICG.
h.	Be in constant touch with District and Local Administration for rescue and relief operation.
i.	Terminate the response and debrief before allowing normal operation.

Role e Incident ontroller	DutiesDuring Emergency shall proceed to the Signal Station and communicate & collect all information.Take over the charge and ensure the action plan is promulgated as per the instructions of CIC.Inform vessels alongside berths to double up their moorings, provide shore gang assistance and ask master's to keep their vessels ready to proceed to the sea at short notice as per the instruction of CIC.Keep close liaison with INCOIS, Radar Station, Police Wireless Station, ICG, and Vessels in Port.Ensure Signal Station, hoists appropriate signal.Report the situation to the CIC & the CMG.Keep rescue team ready with necessary equipment.				
	 and communicate & collect all information. Take over the charge and ensure the action plan is promulgated as per the instructions of CIC. Inform vessels alongside berths to double up their moorings, provide shore gang assistance and ask master's to keep their vessels ready to proceed to the sea at short notice as per the instruction of CIC. Keep close liaison with INCOIS, Radar Station, Police Wireless Station, ICG, and Vessels in Port. Ensure Signal Station, hoists appropriate signal. Report the situation to the CIC & the CMG. Keep rescue team ready with necessary equipment. 				
	 promulgated as per the instructions of CIC. Inform vessels alongside berths to double up their moorings, provide shore gang assistance and ask master's to keep their vessels ready to proceed to the sea at short notice as per the instruction of CIC. Keep close liaison with INCOIS, Radar Station, Police Wireless Station, ICG, and Vessels in Port. Ensure Signal Station, hoists appropriate signal. Report the situation to the CIC & the CMG. Keep rescue team ready with necessary equipment. 				
	 moorings, provide shore gang assistance and ask master's to keep their vessels ready to proceed to the sea at short notice as per the instruction of CIC. Keep close liaison with INCOIS, Radar Station, Police Wireless Station, ICG, and Vessels in Port. Ensure Signal Station, hoists appropriate signal. Report the situation to the CIC & the CMG. Keep rescue team ready with necessary equipment. 				
	Wireless Station, ICG, and Vessels in Port.Ensure Signal Station, hoists appropriate signal.Report the situation to the CIC & the CMG.Keep rescue team ready with necessary equipment.				
	Report the situation to the CIC & the CMG.Keep rescue team ready with necessary equipment.				
	Keep rescue team ready with necessary equipment.				
	Ensure that the hazardous cargoes are shifted out or secured/stored in a safe manner.				
	Ensure that the operations are brought back to normal after the termination of the emergency procedure.				
Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC/SIC.				
	Instruct Flotilla Superintendent to secure tugs, crafts and workboats.				
	He will maintain log of events.				
Safety ordinator	Shall take orders from the SIC. Assist in evacuation of the personnel to the assembly point or as directed by SIC.				
e Search	Shall take orders from the SIC.				
d Rescue ordinator	Liaise with State Fire brigade for any assistance.				
	Shall take orders from Sr. Commandant- CISF/SIC.				
	Shall be responsible for forming a task force and will lead the same.				
curity and	Controls & directs traffic in the area.				
Evacuation	Shall supervise evacuation of personnel from the port at the time of emergency and moving them to identified tsunami shelters.				
	Responsible for rescue operation.				
Cargo	Submits consolidated list of dangerous goods in por area.				
	Coordinate with the truck contractors.				
	ordinator e, Search d Rescue ordinator curity and acuation				

6. Duties of IRT

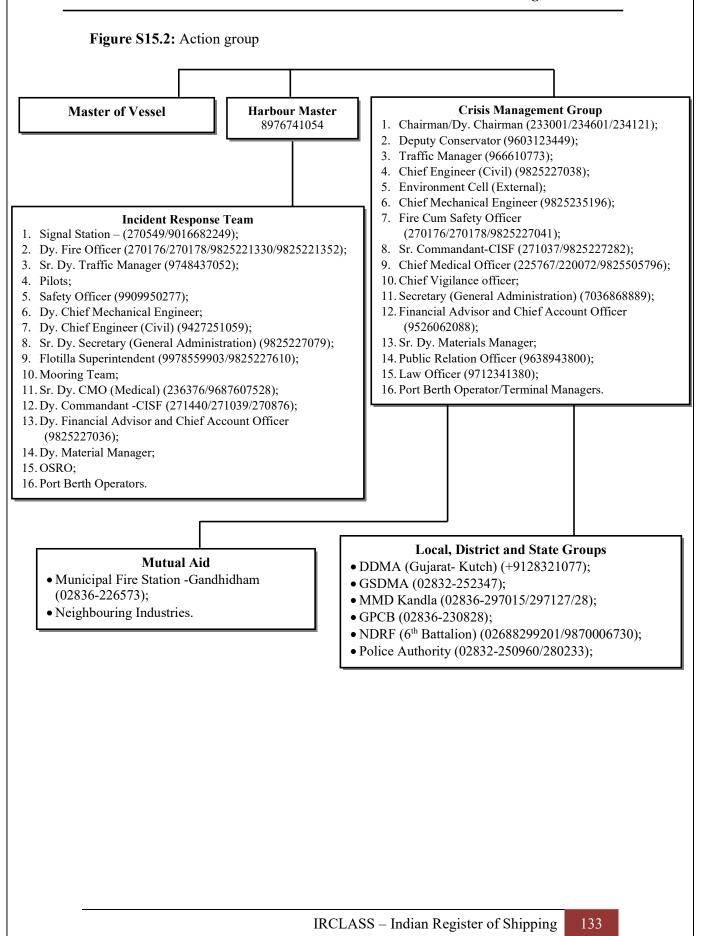
IRCLASS – Indian Register of Shipping 129

Officer)	Coordinator	Ensure availability of vehicles and mobilize and dispatch sufficient number of vehicles to the site during emergency.
		Ensure all the drains and obstructions in the creeks/ culverts are cleaned for easy discharge of sludge water.
		Shall ensure the standard procedure has been followed and complied with by all the divisions.
Executive		Shall form and head mitigation Team comprising of Electrical, Mechanical and Maintenance Engineers.
Engineer (Alternate:	M & E Coordinator	All types of cranes, forklifts, heavy earth moving equipment to be secured in a safe manner.
Executive Engineer)		Shall be responsible for alternate electrical supply to vital equipment and systems at the berth.
		All electrical sub stations will be manned round the clock or person should be readily available in case of any emergency requirement.
Dy. CMO (Alternate: Medical Officer)	First Aid and Medical Coordinator	Shall be responsible to organize and dispatch first aid team with ambulance as required.
Hydrographer (Alternate: Officer)	Hydrographic Survey	Assist SIC.
	In-Charge of Pilotage	Shall be ready on site for taking the vessel out of berth or will not bring the vessel to berth as per the instruction given by CIC/SIC.
		Inform the Masters of all vessels at the berths to double the moorings and to keep engine ready to proceed out to sea if situation warrants.
Duty Pilot		Decision regarding moving vessels to the anchorage will be taken depending on the strength of the tsunami likely to be encountered and number of vessels in the Port.
(Alternate: Pilot)		Take all necessary steps for the safety of the Port crafts.
		Ensure all other crafts are placed at safe place and properly secured excepting one pilot launch and one stand by launch used for inspection and emergency duties.
		Fender and extra lengths of ropes/wires to be kept ready so as to attend to any craft whose moorings may part.

		Ensure shifting of crafts at suitable places as directed by the SIC and will secure them suitably with additional moorings.				
		Extra fenders will be kept ready on board the Tug for use as required.				
Material Manager (Alternate: Officer)	Material Management	Ensure availability of sufficient stock of stores like Corrugated Iron sheets, J.Hooks, screw hinges, gunny bags, tarpaulins, ropes and wires for Port Crafts, diesel oil, kerosene oil, hurricane lantern, kerosene lamps, torch lights with batteries and bulbs, electrical items etc. is kept.				

POST TSUNAMI DUTIES				
Sr. no.	Duty			
1.	All the HODs are required to assess the damage and submit a detailed report indicating the estimate to the Chairman/Dy. Chairman. For this, a team may be formed comprising Officers of Executive Engineer and above in rank at departmental level and may associate one Officer from Finance Department. The preliminary report is to be submitted. The level of restoration and efforts required to clear the area of debris, carcasses and damaged equipment will depend on the level of disaster.			
2.	Hydrographic survey to be conducted to assess the channel condition and Shipping to resume as early as possible.			
3.	In case of any small craft sunk or grounded, the same to be removed to make the channel/ berth safe for navigation. SIC will detail a salvage party.			
4.	A team of Officers to be nominated by the Secretary to supervise the rescue and relief operation and disposal of carcasses in co-ordination with the local and District Administration.			
5.	Mobile medical service, if required, to be provided by CMO. Preventive measures for epidemics to be taken.			
6.	All the operating systems need to be attended urgently and made operational as early as possible on war footing basis to resume operation.			
7.	Spot tendering procedure can be followed for repairs.			
8.	Water supply and electricity to be given priority. The Chief Engineer (Mechanical/Electrical/Civil) shall be authorized to extend all assistance for manpower, conveyance, equipment and materials etc. to electrical board, if required for resuming power supply. The electrical cabling network to be checked area wise.			
9.	All the damaged temporary roofed warehouses are to be repaired.			
10.	Material Manager will nominate a team of Officers and staff for procurement and supply of essential materials for repair of various structures and equipment as reported.			
11.	To assess the progress of repair works, HOD meeting will be held daily till normalcy is restored.			
12.	Damage to furniture, building fixtures may be prepared.			

S15: Scenario 15


Part A:

1. Natural Disaster (Earthquake)

Note: As there are no warning signals for major earthquake the action plan will be for the aftermath of the emergency.

- 2. Precautions: Earthquake resilient buildings, equipment (cranes), pipeline infrastructure (as per relevant standards), Periodic inspection of old structures, pipelines and their support structures etc.
- **3.** Impact Zone: Entire port. *Note:* The Gujarat - Kutch district falls under Seismic zone category IV/V as per the vulnerability hazard map of the region.
- 4. Resources required: Refer Figure S15.2 and Chapter 10 for resources.

Part B: Action Plan

1. The Signal Station

Response Action

a. Gather information related to the vessel type and position in the port limit.

- b. Liaise with Master of the Vessel/Pilot.
- c. Ensure that telephones, one VHF and one walkie-talkie all are operational in the Port Signal Station. Listening watch to be maintained on VHF channel-08/10/16.
- d. Notify to CIC, SIC and the vessels moving into, through and inside the port. Keep CIC/SIC informed of all the messages received by telephone, VHF sets or by messenger.
- e. Notify the other Authorities and stakeholders within Port as per instructions of CIC/SIC.

2. The Master of the Vessel (Alternate: Chief Officer)

Response Action

- a. Should raise vessels emergency alarm and activate ship board emergency action plan.
- b. Having raised the alarm, the Master will be responsible for taking all immediate steps to safeguard his vessel.
- c. The Master will provide the Signal Station with details of the vessel.
- d. Should follow the instruction of the CIC/SIC and be in continuous liaise with the CIC/SIC/Signal Station.
- e. Should be in a state of readiness to take the vessel out of the port, if required.

3. The terminal/berth operator should

	Response Action				
a.	Activate EAP and inform Port.				
b.	Shall be responsible of shutting down of cargo operation (as per SOP and/ contingency plan) & coordinate with Port and Master of the Vessel and rendering necessary assistance to the SIC and vessel by providing emergency equipment as required.				
c.	Submit consolidated list of dangerous goods in port and Vessels in port. Make arrangements to protect cargo.				
d.	Assist IRT and provide all necessary equipment.				
e.	He will direct operation staff.				

Coordinate with the vessel in-charge/C&F agents/stevedores.

f. Notify the information to the owner of the vessel as per the instruction of CIC/SIC/ Master of the Vessel. Pass the information to various Port departments and other Port related organizations through telephones and VHF.

4.	Deputy Conservato	r (Alternate:	Harbour	Master)
----	--------------------------	---------------	---------	---------

	Response Action				
a.	Activate the DMP and OSCP (if any pollution).				
b.	He will be stationed in EOC to review & assess the damage and determine the most necessary course of action.				
c.	Give necessary instructions to SIC and Signal Station & arrange for external aid as necessary.				
d.	Review the situation and accordingly inform to the Chairman/ Dy. Chairman.				
e.	Consult with Chairman / Dy. Chairman and decide on clearing of vessels.				
f.	Be in constant touch with District and Local Administration				

f.	Be in constant	touch	with	District	and	Local	Administration
	for rescue and relief operation.						

Designated Officer	Role	Duties			
		Communicate & collect all information.			
Harbour Master (Alternate:	Site Incident Controller	Take charge of Signal Station and ensure the action plan is promulgated as per the instructions of CIC.			
Pilot)	Controller	Ensure that the operations are brought back to normal after the termination of the emergency procedure.			
Pilot (Alternate:	Signal Station Coordinator	Shall monitor the communication on VHF/any other communication medium & convey and relay messages on the advice from CIC/SIC.			
Pilot)		He will maintain log of events.			
Safety Officer (Alternate: Officer)	Safety Coordinator	All other workers to move out to safe (open) area. Assist in evacuation of the personnel to the assembly point or as directed by SIC.			
Dy Fire		Shall take orders from Fire cum Safety Officer/SIC.			
Dy. Fire Officer (Alternate: Officer)	Fire, Search and Rescue Coordinator	Responsible for mobilizing fire tenders, men & fire- fighting equipment to the scene & extend all necessary support after the earthquake.			
Officer)		Liaise with State Fire brigade for any assistance.			
		Controls & directs traffic in the area.			
Dy. Commandant- CISF	Security and Evacuation	Shall search and rescue operations of the personnel trapped under the debris. A special task force can be formed for the same. Shifting of the injured and causalities to hospital.			
(Alternate: Commandant- CISF)	Evacuation	Till normality is restored, arrangements will be made for thorough checks on all out-going vehicles to guard against pilferage.			
		Coordinate with the truck contractors.			

5. Duties of IRT

		Ensure availability of vehicles and mobilize and dispatch sufficient number of vehicles to the site during emergency.		
Executive Engineer	Civil	Assist SIC/CIC and CISF after an earthquake emergency.		
(Alternate: Executive Engineer)	Coordinator	Deploy engineers to direct or guide earth moving equipment and cranes to remove debris.		
Executive Engineer	M & E	Shall be responsible for Electrical supply to vital equipment and systems.		
(Alternate: Executive Engineer)	Coordinator	Ensure that all Sub Stations, Power Control rooms will be inspected and made operation.		
Dy. CMO (Alternate:	First Aid and Medical	Shall be responsible to organize and dispatch first aid team with ambulance as required.		
Officer)	Coordinator	Mobile medical service, if required, to be provided.		
Material Manager (Alternate: Officer)	Material Management	Ensure availability of sufficient stock of stores like Corrugated iron sheets, J.Hooks, screw hinges, gunny bags, tarpaulins, ropes and wires for Port Crafts, diesel oil, kerosene oil, hurricane lantern, kerosene lamps, torch lights with batteries and bulbs, electrical items etc. is kept.		
Officer)		Will nominate a team of officers and staff for procurement and supply of essential materials for repair of various structures and equipment as reported.		

	ADDITIONAL POST-EARTHQUAKE DUTIES
Sr. no.	Duty
1.	All the HODs are required to assess the damage and submit a detailed report indicating the estimate to the Chairman/Dy. Chairman. For this, a team may be formed comprising Officers of Executive Engineer and above in rank at departmental level and may associate one Officer from Finance Department. The preliminary report is to be submitted.
2.	A team of Officers to be nominated by Secretary to supervise the rescue and relief operation and disposal of carcasses in co-ordination with the local and District Administration.
3.	All the operating systems to be attended urgently and made operational as early as possible on war footing basis to resume operation.
4.	Spot tendering procedure can be followed for repairs.
5.	Water supply and electricity to be given priority. The Chief Engineer (Mechanical/Electrical/Civil) shall be authorized to extend all assistance for manpower, conveyance, equipment and materials etc. to electrical board, if required, for resuming power supply. The electrical cabling network to be checked area wise.
6.	To assess the progress of repair works, HOD meeting will be held daily till normalcy is restored.

IRCLASS – Indian Register of Shipping

8. DISASTER RISK REDUCTION AND MITIGATION

DMP incorporates the framework for Disaster Risk Reduction (DRR) under the six thematic areas for action as follows

- 1. Understanding Risk
- 2. Inter-Agency Coordination
- 3. Investing in DRR Structural Measures
- 4. Investing in DRR Non-Structural Measures
- 5. Capacity Development
- 6. Climate change risk management.

The Disaster Risk Reduction (DRR) requires responsibilities to be shared by different divisions/departments of port and stakeholders. The effectiveness of DRR will depend on coordination mechanisms with all stakeholders.

In accordance with the Sendai framework, the measures illustrated in para 8.1 provides a brief description of actions by the port and their relevant time frames for each thematic areas in the form of responsibility matrix.

The timeframes considered for these measures are as below:

Short Term	Two years
Medium Term	Two to five years
Long Term	Ending up to 2030

8.1 HAZARD-WISE RESPONSIBILITY MATRICES FOR DISASTER RISK MITIGATION

For the successful implementation of DM plans, it is necessary to identify various stakeholders within the port and clearly specify their roles and responsibilities. For each hazard/disaster, in the subsections that follow, themes for action are presented in a separate responsibility matrix for each of the five thematic areas for action. The port will play a pro-active role in disaster situations. In the domains of DM planning, preparedness, and capacity building, the port will constantly work to upgrade DM systems and practices. This section covers the matrices for the identified hazards relevant to port as listed below:

Disaster Management Plan

	Hazard	Chemical Disaster (Oil Jetti	es 1 -7, Container Te	erminal, Navigational Channel)						
1. 1	hematic area	Understanding Risk								
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term			
1	Information Systems and Research	Support and coordination	 DPA, Terminal/ Berth Operators. 	 Coordination with vessel for port entry Ship to Shore checklist, Berthing and Unberthing schedule Allotment of tugs, Deployment of Competent and experienced pilot, Provision and maintenance of safe navigational channel, Navigation support through Port Control Room, Inventory of oils/chemicals/IMDG cargo handled. 						
		Information on (operation and during emergency) dealing with HAZCHEM	 DPA, Terminal/ Berth Operators. 	 MSDS copy maintained, Hazardous Waste Management Plan. 						
		Chemical Accident Information Reporting System	 DPA, Terminal/ Berth Operators. 	Incidents records maintained with Signal Station, Fire Cum Safety officer and terminals	Centralized mechanism for data collection /incident database with DPA					

Disaster Management Plan

	Hazard	Chemical Disaster (Oil Jetti	es 1 -7, Container Te	erminal, Navigational Channel)			
1. 7	hematic area	Understanding Risk					
Sr. 10.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
2	Zoning/ Mapping	Industrial zones on basis of hazard potential and effective disaster management for worst case scenarios	 DPA, Terminal/ Berth Operators. 	 Navigational charts and passage plan, Hazardous area classification for oil jetties, Dedicated area for pipeline connections at the jetty and Y- junction. 	 PESO approval for oil jetties (in process), Safety instructions to be displayed and ensured for oil cargo handling, Updation of zoning carried out regularly after any addition or up- gradation of the facility. 		
		Carry out the mapping and related studies in collaboration with central agencies/ technical organizations	 DPA, Terminal / Berth Operators. 	 Port limit and Port layout maps, Hydrographic survey, Pipeline layout map, Firefighting system layout map, Mapped DG cargo storage and Hazardous bund area 	Updation of maps	Adhere to CRZ mapping	Land Use Plan
3	Monitoring	Monitoring compliance with safety norms for HAZCHEM	 DPA, Terminal / Berth Operators. 	 Compliance of Statutory norms, Standard Operating Procedure, 	• Installation of fire fighting system as per OISD 156		

IRCLASS – Indian Register of Shipping

Disaster Management Plan

	Hazard	Chemical Disaster (Oil Jetti	es 1 -7, Container Te	erminal, Navigational Channel)			
1. T	hematic area	Understanding Risk					
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
				CCTV surveillanceRecord keeping of MSDS	standard at oil jetties.		
		Disposal of hazardous waste	 DPA, Terminal / Berth Operators. 	 Recording and Monitoring of generation of hazardous waste, Disposal of waste through GPCB approved waste management parties. 			
4	Hazard Risk Vulnerability and Capacity Assessment (HRVCA)	Undertake and provide technical support to HRVCA as part of preparing and periodic revision of plans and risk assessment	 DPA, Terminal / Berth Operators. 	 Port DMP as per Disaster Management Act -2005, NDMA Guidelines 2018 and NDMP 2019, Risk Assessment, Port OSCP, Port CMP, Navigational Risk Assessment, Emergency Action Plan (EAP), Emergency Response Disaster Management Plan (ERDMP). 	Periodic update plans and related documents		
		Constitute/ strengthen the mechanism for consultation with experts and stakeholders	 DPA, Terminal / Berth Operators. 	 SOPs, Revamping of oil jetty product pipeline, Audits (Structural, Fire, 	• Execute plans for removal of abandoned pipelines at Oil		 Land Use Plan, Business Developmer

IRCLASS – Indian Register of Shipping

Disaster Management Plan

Hazar	rd	Chemical Disaster (Oil Jetties 1 -7, Container Terminal, Navigational Channel) Understanding Risk							
1. Themati	tic area								
Sr. the	Sub- ematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term		
				 Safety and Navigational, Electrical), Safety Committee Meetings, Mock Drills, Training and Awareness, Land use planning. 	Jetties. Implementation/ execution of the decision taken during the safety committee meetings in a time bound manner.		Plan, • Environment Management Plan.		

Disaster Management Plan

	Hazard	Chemical Disaster (Oil Je	etties 1 -7, Containe	er Terminal, Navigational Chann	el)		
2. T	hematic area	Inter- agency coordination	n				
Sr. 10.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Overall disaster governance	Providing coordination, technical inputs, and support, Periodical inspection from competent agencies.	• DPA, • Terminal / Berth Operators.	 EOC - E-Drishti Command and Control Centre, Coordination with DRR Cell (at Ministry level), Coordination with SDMA and DDMA, PNGRB, PESO, GPCB, OISD, MoEF, ICG, Navy, NDRF, Dock Safety, Electrical inspector. 	• Compliance to recommendation s.		
		Address/ identify gaps in equipment/ infrastructure and human resources with DM tasks	• DPA, • Terminal / Berth Operators.	 Developmental project reports, Safety Committee Meetings, Audits. 	Gap analysis / Periodic reviews in equipment/ infrastructure and human resources.		
2	Warnings, Information, data	Effective coordination and seamless communication among various stakeholders	 DPA, Vessel Master, CISF, Terminal Operators. 	 Signal Station, VHF/UHF, Satellite Phone, Mobile/Landline, PA system, Emergency Siren, Email. 			
		Dissemination of warnings and information	 DPA, Vessel Master, CISF, 	Dissemination of information to/from • Vessel Master,			

IRCLASS – Indian Register of Shipping

	Hazard	Chemical Disaster (Oil Je	etties 1 -7, Containe	er Terminal, Navigational Chann	el)		
2. T	hematic area	Inter- agency coordinatio	n				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
			 Terminal / Berth Operators, Local and District Authority. 	 CMG, MoPSW, DG shipping, DDMA/SDMA, IMD, ICG, MMD, PESO, GPCB, Navy, Marine Police, Local Authorities, 			
3	Response	Organizing and coordinating with Government agencies and stakeholders of the port	 DPA, Vessel Master, CISF, Terminal / Berth Operators. 	 Coordinating with CMG, Coordinating with Vessel Master, Coordinating with DG Shipping, NDMA, SDRF, DDMA, Local admin., ICG, IMD, MMD, PESO, GPCB, Navy, etc., Vessel restriction guideline. 	• Mutual aid agreement with relevant stakeholders.		

	Hazard	Chemical Disaster (Oil Jetti	es 1 -7, Container Te	erminal, Navigational Channel)			
3. Th	ematic area	Investing in DRR – Structur	al measures				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Evacuation and support facilities. Multiple routes for reliable access and	• Identification of hospitals and first aid	 DPA, CISF, Terminal / Berth Operators, Local Authorities. 	 Port Hospital, Tie up with nearby hospitals, First Aid centers, Ambulances. 		• Expansion of Hospital facilities	
	access and escape.	• Ensuring freshwater storage facilities for drinking purpose	• DPA	 Municipal water supply, Water tankers.			
	ion facilities	• Providing wide roads and multiple routes to allow quick access by first responders and to ensure escape pathways	• DPA	 Evacuation by Land facilities Entry-exit Gate available, Internal roads, Port and hired vehicles, Individual terminal vehicles, Coordination with Local administration, Land Use Planning Evacuation by sea route facilities Port owned/hired crafts 	 Vehicle Traffic management should be made available. Repair of access roads, Providing alternate evacuation/emerg ency gates 		
		• Establish decontamination facilities	• DPA	 Personnel decontamination Port Hospital, Tie up with nearby hospitals, First Aid Facilities, Eyewash and Safety 			

	Hazard	Chemical Disaster (Oil Jettie	es 1 -7, Container Te	erminal, Navigational Channel)			
3. Th	ematic area	Investing in DRR – Structur	al measures				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
				Showers.			
2	Disaster Response equipment	Ensuring and maintaining fire-fighting equipment (as per OISD and other relevant requirements)	 DPA, Terminal / Berth Operators. 	 Fire-fighting systems as per relevant standards, Port Fire Station, Fire Water storage facilities, FIFI Tugs. 	• Provision of Fire-fighting as per OISD-156 at Oil Jetties.		
		Ensuring and maintaining oil pollution response equipment (as per ICG requirements)	 DPA, Terminal / Berth Operators. 	Pollution response equipment of Port maintained by OSRO – Sadhav Shipping Ltd.	Provision of OSR equipment as per ICG requirement for Tier I facility.		

	Hazard	Chemical Disast	ter (Oil Jetties 1 -7, Conta	iner Terminal)			
4. Th	ematic area	Investing in DR	R – Non- Structural meas	ures			
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Laws Regulations, Techno Legal regimes Enforcement, compliance and Monitoring Institutional arrangements	Formulate/ strengthen the SOP for the compliance w.r.t. the statutory requirements ensuring greater safety in hazardous industries and reduce the likelihood of disasters	 DPA, Terminal / Berth Operators. 	 Periodical inspection and testing of Oil/chemical Pipelines, Periodical inspection and testing of Hoses and fire-fighting systems, Audits - Fire, Safety, Navigational Safety Audit, Risk Assessment, Safety committee meetings. 	Compliance of recommendatio ns.		
2	Risk Transfer	Insurance	 DPA, Terminal / Berth Operators. 	 Workmen Compensation Policy, Public Liability Insurance, Port Package Policy for entire set of risk to the port. 	Periodic Renewals of Policies.		

	Hazard	Chemical Disaster	r (Oil Jetties 1 -7, Conta	iner Terminal)			
5. Th	ematic area	Capacity Develop	ment				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Training	 Training and orientation programs on management (handling, storage and transfer) and disposal of HAZCHEM Incorporating disaster response, search and rescue in the training programs 	 DPA, Terminal / Berth Operators, CISF. 	 IMO level training (OSR) for the identified personnel, ISO and OHSAS training, Fire-fighting training, Safety Training, First Aid training, CBRN training, Hazard identification and management training, Annual training schedule. 			
2	Mock drills/ Exercises	• Planning and execution of emergency drills by all the stakeholders	 DPA, Terminal / Berth Operators, CISF, Other stakeholders. 	Mock drills,Annual drill schedule.	• Mock Drill should be conducted regularly with all the stakeholders		
		• Joint planning and execution of emergency drills	 DPA Terminal / Berth Operators, CISF, Other stakeholders. 	Organize and participation (involving all the stakeholders) mock-drills through various government agencies like ICG, CISF, NDRF, NSG, SDMA, Local authorities, etc.			

	Hazard	Chemical Disaster	r (Oil Jetties 1 -7, Conta	iner Terminal)			
5. Th	ematic area	Capacity Develop	ment				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
3	Documentati on	Ensure accurate documentation of all aspects of disaster events for creating good historical records for future research and Risk Management planning	 DPA, Terminal / Berth Operators, CISF. 	 Maintenance of the incident and near miss record. Accident/incident reporting, analysis, investigation and implementation of recommendations. 	Centralized mechanism for documentatio n		
4	Awareness	Promote culture of disaster risk prevention, mitigation, and better risk management	 DPA, Terminal / Berth Operators, CISF, Other stakeholders. 	 Quarterly Dock Safety committee meeting Safety Campaigns, Dock Safety week, Notification for Dangerous Goods as per relevant Regulation of Dock workers (Safety, Health and Welfare). Safety Inspection of port, Training center for safety and productivity re-engineering & container-based training center, Preparation and updation of Safety manual, Preparation of Ship bunkering guideline, 			

ŀ	Iazard	Chemical Disaster	(Oil Jetties 1 -7, Conta	ainer Terminal)			
5. Ther	natic area	Capacity Developm	nent				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
				 Circular for restriction of usage of mobile phones in oil jetty and promote safety culture, Safety Advisories to port users for preventing dangerous occurrence of incidents, Pocket booklet of traffic safety management. 			

	Hazard	Fire (Coal stackya	ard/ Office Buildings / Fi	ire station / Electrical Substation / Signal Sta	tion / Godown/ Hospital	/ Command and Con	ntrol Center)
1. Th	ematic area	Understanding Ri	sk				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Information Systems and Research	Support and coordination	• DPA	 Port Fire Stations, Support from terminals and neighboring industries, Nearby - fire station. 			
2	Zoning/ Mapping	Mapping of sites that pose fire risks	 DPA, Terminal / Berth Operators. 	 Fire system layout, Electrical system layout, Coal and sulphur stack yard identified as a fire risk zone. 	• Update layout plans.		
3	Monitoring	Monitoring compliance with safety norms	 DPA, Terminal / Berth Operators. 	 Firefighting and extinguishing system as per the requirements, CCTV surveillance, Manning/Patrolling of the areas. 	Periodic reviews about the efficacy.		
4	Hazard Risk Vulnerability and Capacity Assessment (HRVCA)	Undertake HRVCA as part of preparing and periodic revision of DM plans	 DPA, Terminal / Berth Operators. 	 Port DMP as per Disaster Management Act -2005, NDMA Guidelines and NDMP, Port CMP, Emergency Action Plan (EAP) 	Periodic updation of plans.		
		Constitute/ strengthen the mechanism for consultation	 DPA, Terminal / Berth Operators. 	 Mechanism for strengthening of the port disaster management through Periodical inspection and testing of response equipment, 	Compliance of recommendati ons		

RESTRICTED.

]	Hazard	Fire (Coal stackya	Fire (Coal stackyard/ Office Buildings / Fire station / Electrical Substation / Signal Station / Godown/ Hospital / Command and Control Center)								
1. The	matic area	Understanding Ris	Understanding Risk								
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term				
		with experts and stakeholders		 Fire Audit, Capacity analysis, Drills, Training and Awareness, Safety Committee meetings. 							

Hazar	·d	Fire (Coal stacky	ard/ Office Buildings / Fi	re station / Electrical Substation / Signal S	station / Godown/ Hospit	tal / Command and Contr	ol Center)
2. Th	ematic area	Inter- agency coo	rdination				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Overall disaster governance	Identify and address the gaps in existing capabilities, equipment, infrastructure, and human resources	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 EOC - E-Drishti Command and Control Centre, Periodic reviews and upgradation of the fire systems/equipment and manpower as per the relevant standards and best practices. 	• Mutual aid agreement for sharing of resources.	Install and upgrade systems as per periodic reviews	
		Establish fire stations	• DPA.	 Port Fire stations, Identified list of nearby Fire Stations. 			
		Implementation of DM plans	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Conducting fire and evacuation drills, Training and Awareness. 	• Implementation of the updated DMP.		
2	Warnings, Information, data	Effective coordination and seamless communication	 DPA, CISF, Terminal / Berth Operators, Hospital. 	Coordination and effective dissemination of warnings, information and data via • VHF, • Landline, • PA system, • Mobile Phones, • Emergency Siren, • Email.			

Hazar	·d	Fire (Coal stackya	ard/ Office Buildings / Fi	re station / Electrical Substation / Signal Sta	ation / Godown/ Hosp	ital / Command and Cor	ntrol Center)
2. Th	ematic area	Inter- agency coo	rdination				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
3	Response	Organizing and coordinating the immediate response Coordinate with Government agencies and stakeholders of the port	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Activation of DM Plan, Coordinating with Fire stations (Port & External), Coordination with SDMA and DDMA. 			

	Hazard	Fire (Coal stackya	ard/ Office Buildings / Fire	e station / Electrical Substation / Signal S	tation /Godown/ Hospita	l / Command and Co	ontrol Center)
3. Th	ematic area	Investing in DRR	- Structural measures				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Smoke, Heat, Fire detection and fire- fighting systems	Procurement and maintenance of fire Fighting systems as per relevant Standard and Rules	 DPA, Terminal / Berth Operators. 	• Periodical testing and maintenance of the Portable and fixed fire-fighting facility.	• Installation/ up-gradation of the fire- fighting system.		
2	Evacuation and support facilities. Multiple routes for reliable access and escape.	Identification of Assembly points	 DPA, CISF, Terminal / Berth Operators, Hospital. 	• Identified assembly points.	 Updation of assembly points and sign boards. Display of evacuation maps at suitable locations for buildings. 		
		Providing vehicles for safe transportation	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 List of Passenger vehicles of DPA (hired or tie up). Passenger vehicles of operators, Passenger vehicles of CISF. 	Periodical repair of Internal roads.		

	Hazard	Fire (Coal stackya	rd/ Office Buildings / Fir	e station / Electrical Substation / Signal Sta	ation /Godown/ Hosp	ital / Command and Co	ontrol Center)
3. Th	ematic area	Investing in DRR	 Structural measures 				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
3	First aid and Decontaminat ion facilities	 Establish First aid and decontaminat ion facilities Identification of hospital 	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Personnel first aid and decontamination First Aid Centre Port Hospital, Other identified hospitals as per Annex B. 			

	Hazard	Fire (Coal stackya	ard/ Office Buildings / Fir	e station / Electrical Substation / Signal S	Station /Godown/ Hospita	l / Command and Co	ontrol Center)
4. T	hematic area	Investing in DRR	- Non- Structural measur	es			
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Rules, laws, guidelines	Strict implementation and strengthening of fire safety rules	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Safety Committee Meeting, Environment, Health and Safety Policy, Safety budget, Work Permit System. 	• Fire-fighting and evacuation plan.		
2	Fire safety audit of structures and buildings	Carry out fire safety audit of buildings and critical infrastructure	 DPA, Terminal / Berth Operators. 	 Periodical Fire audit, Periodical Electrical audit. External Safety Audit by OISD and NSC, Compliance of Statutory requirements in coordination with Inspectorate of Dock Safety 	Compliance of recommendations.		
3	Risk Transfer	Insurance	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Workmen Compensation Policy, Public Liability Insurance, Port Package Policy for entire set of risk to the port. 	Periodical renewal of policies.		

	Hazard	Fire (Coal stackya	ard/ Office Buildings /	Fire station / Electrical Substation / Signal	Station /Godown/ Hospit	al / Command and Co	ontrol Center)
5. 1	hematic area	Capacity Develop	oment				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Training	Incorporating disaster response in the training programs	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Induction/Refresher Training, Fire-fighting training, First Aid training. 			
2	Mock drills/ Exercises	Planning and execution of emergency drills by all the stakeholders Joint planning and execution of emergency drills	 DPA, CISF, Terminal / Berth Operators, Hospital. 	• Fire and evacuation Mock drills.	Annual Drill schedule.		

5 7	Hazard Thematic area	Fire (Coal stackya Capacity Develop	-	Fire station / Electrical Substation / Signal	Station /Godown/ Hospita	l / Command and Co	ontrol Center)
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
3	Documentati on	Ensure accurate documentation of all aspects of disaster events for creating good historical records for future research and Risk Management planning	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Maintenance of the incident and near miss record, Accident/incident reporting, analysis, investigation and implementation of recommendations. 	•Centralized mechanism for the accident / incident and near miss record.		
4	Awareness	Promote culture of disaster risk prevention, mitigation, and better risk management	 DPA, CISF, Terminal / Berth Operators, Hospital. 	 Quarterly Dock Safety committee meeting Safety Campaigns, Dock Safety week, Notification for Dangerous Goods as per relevant Regulation of Dock workers (Safety, Health and Welfare). Safety Inspection of port, Training center for safety and productivity re-engineering & 	•Promote awareness by posting details of activities on social media platforms regarding important events.		

Hazard	Fire (Coal stackya	rd/ Office Buildings /]	Fire station / Electrical Substation / Signal Sta	ation /Godown/ Hos	pital / Command and Co	ontrol Center)
5. Thematic area	Capacity Develop	ment				
Sr. Sub- no. thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
			 container-based training center, Preparation and updation of Safety manual, Preparation of Ship bunkering guideline, Circular for restriction of usage of mobile phones in oil jetty and promote safety culture, Safety Advisories to port users for preventing dangerous occurrence of incidents, Pocket booklet of traffic safety management. 			

	Hazard	Natural Disaster (Wind and Cyclone, Flo	od, Earthquake, Tsunami)			
1.	Thematic area	Understanding Ri	sk				
Sr. 10.	Sub- thematic area	Plan components	Responsible section	Recurring /Regular measures	Short term	Medium term	Long term
1	Observation networks, Information systems, Research, Forecasting, Early warning	Enhancement of Observational Network Stations (ONS)	• DPA	 Wind and cyclone: Internet sources, IMD Bulletins, NAVAREA warnings. Flood: Tide/Bore tide gauging, Sea and creek water level monitoring, IMD bulletins, CWPRS/PWD bulletins, Hydrographic study. 			
		Establishment of at least one High Wind Speed Recorder and one surge recorder		• Wind speed recorder at Signal Station.	Surge Recorder.		
2	Zoning / Mapping	Identification of the vulnerable areas	Not applicable to port for zoning and mapping.	 Cyclone hazard map (Very High damage risk zone – maximum wind speed of 50 m/s). Flood: Due to its geographical situation, the Kutch district is not vulnerable to occurrence of Flood. Earthquake: Kutch district fall 	Maintenance and new construction of drainage system		

	Hazard	Natural Disaster (Wind and Cyclone, Floo	od, Earthquake, Tsunami)						
1. Thematic area		Understanding Risk								
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring /Regular measures	Short term	Medium term	Long term			
				under High to Very High earthquake damage Risk zone (zone category IV & V).						
				• Earthquake hazard map as given in BMTPC.	The requirements of BIS standard 1893- 2016 are to be complied with for seismic zone V as per BMTPC chart.					
				Tsunami hazard map as per Gujarat State Disaster Management Authority.						
3	Monitoring	System to monitor natural disaster	• DPA	 Wind and Cyclone, Flood monitoring via TV /Radio, IMD bulletins. Tsunami monitoring via Forecasting agencies, INCOIS. 						
4	Hazard Risk Vulnerability and Capacity	Undertake HRVCA as part of	 DPA, Terminal / Berth Operators 	• Port DMP as per Disaster Management Act -2005, NDMA Guidelines and NDMP,	Periodic update Plans					

	Hazard	Natural Disaster (Wind and Cyclone, Floo	d, Earthquake, Tsunami)			
1.	Thematic area	Understanding Ri	sk				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring /Regular measures	Short term	Medium term	Long term
	Assessment (HRVCA)	preparing and periodic revision of DM plans		 Emergency Action Plan (EAP), Port CMP, Emergency Response Disaster Management Plan. 			
		Constitute/ strengthen the mechanism for consultation with experts and stakeholders	 DPA, Terminal / Berth Operators 	 Mechanism for strengthening through Project development reports incorporating effective draining and anti-flooding measures, Hydrographic Survey. 			Land use planning

	Hazard	Natural Disaster (Wind and Cyclone, Floo	d, Earthquake, Tsunami)			
2.	Thematic area	Inter- agency coo	rdination				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Overall disaster governance	Providing coordination, technical inputs, and support.	 DPA, Terminal / Berth Operators. 	 EOC - E-Drishti Command and Control Centre, Coordination with IMD, CWPRS, PWD, INCOIS Coordination with DRR Cell (at Ministry level), DG Shipping, SDMA and DDMA, As per NDMA Guidelines for Cyclone, Flood and Earthquakes 			
2	Warnings, Information, data collection	Effective communication to ensure quick, clear, effective dissemination of warnings, information and data.	 DPA, Terminal / Berth Operators, Vessel Master, CISF. 	Effective communication via: • Signal Station, • VHF/UHF, • Landline/Mobile, • Satellite phones, • Email, • PA System. • Tide tables.			
3	Response	Coordinating with port stakeholders and Government agencies	 DPA, Terminal / Berth Operators, Vessel Master, CISF. 	 CMG group, Vessel Master, NDRF, SDRF, GPCB, Civil Defense, Local authorities, ICG and Navy. 			

	Hazard	Natural Disaster (Wind and Cyclone, Floo	d, Earthquake, Tsunami)			
3.	Thematic area	Investing in DRR	- Structural measures				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
1	Multi- Purpose Shelters	Identification of safe buildings and sites with basic facilities like drinking water, food, sanitation and first aid to serve as temporary shelters for people evacuated from localities at risk.	 DPA, Terminal / Berth Operators. 	 Identified nearby shelters such as schools, community halls, etc. Identified shelters for tugs and crafts (Refer Chapter 10) 			
2	Hospitals and First Aid Centres	• Identification hospitals and first aid	 DPA, Terminal / Berth Operators, Hospital. 	 Port Hospital, Tie up with nearby hospitals, First Aid centers. 			
3	Civil works	• Upgrade and maintenance of the existing systems/ facilities	 DPA, Terminal Operators/ Berth. 	 Periodic maintenance of drainage system, Availability of dewatering pump system. Refurbishment of old dry cargo berths, open plots, roads, drainages and warehouses. Seismically safe design and construction of jetties, trestles, 	 CSR activity like improving/ providing the drainage system Strengthening and seismic retrofitting as per recommendatio 		

	Hazard	Natural Disaster (Wind and Cyclone, Floc	d, Earthquake, Tsunami)			
3.	Thematic area	Investing in DRR	 Structural measures 				
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term
				pipeline trestles, office buildings and utilities.	ns of structural audits		
4	Strengthening and retrofitting of prioritized vulnerable and critical structures	• Ensure compliance with relevant building codes or hazard resistant construction	 DPA, Terminal /Berth Operators. 	Implementation in compliance with relevant building codes/ standards/ technical guidance. e.g. NDMA guidelines for Tsunami and Earthquake			
		Identification and repair/ retrofitting of houses and buildings as per the recommendatio ns of structural audit Detailed assessment of hazard to the structure and foundation and the benefits of strengthening	 DPA, Terminal /Berth Operators. 	 Periodic inspection of vulnerable/critical structures (electrical sub stations, warehouse, fire station, office buildings, marine structures, etc.). Repairs/ retrofitting done as and when required for tsunami resistance, Refurbishment of old dry cargo berths, open plots, roads, drainages and warehouses. 			

Hazard 4. Thematic area		Natural Disaster (Wind and Cyclone, Flood, Earthquake, Tsunami) Investing in DRR – Non- Structural measures							
1	Regulation and enforcement of relevant laws	Ensure compliance with coastal environment protection laws and regulations such as the CRZ	 DPA, Terminal / Berth Operators. 	 EIA / EMP recommendations regarding environment sustainability measures viz air quality, sewage and effluent. Implementing land-use regulation as per flood control norms. Implementation of GSCZR 			Land-use planning		
2	Operation and Maintenance of Drainage Systems	Budgetary Provision	• DPA	• Adequate budget to be provided to take care of the men, material, equipment and machinery for O&M of drainage systems.					
3	Non-structural shore stabilization measures and bio-shields	Establishment of bio-shields like mangroves, as natural defense	• DPA	Plantation of mangroves					
3	Risk Transfer	Insurance	 DPA, Terminal / Berth Operators. 	 Workmen Compensation Policy, Public Liability Insurance, Port Package Policy for entire set of risk to the port. 	Periodic Renewals of Policies				

Hazard 5. Thematic area		Natural Disaster (Wind and Cyclone, Flood, Earthquake, Tsunami)						
		Capacity Development						
Sr. no.	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term	
1	Training	Training and awareness regarding cyclone related emergencies and do's and don'ts	 DPA, Terminal / Berth Operators, Hospital. 	 Training and awareness as per NDMA guidelines Training by Civil Defense and other agencies 				
2	Mock drills/ Exercises	Joint planning and execution of emergency drills	 DPA, Terminal / Berth Operators, Hospital. 	• Participation in drills/exercises with the District and State Disaster Authorities.				

Hazard 6. Thematic area		Natural Disaster (Wind and Cyclone, Flood, Earthquake, Tsunami)						
		Climate change risk management						
Sr. No	Sub- thematic area	Plan components	Responsible section	Recurring / Regular measures	Short term	Medium term	Long term	
1	Climate change adaptation (CCA)	Sensitization and awareness creation	DPA, Terminal / Berth Operators.	 Port has taken an initiative related to environmental protection as part of Green Port Initiative from GoI. This includes Monitoring of the level of air, water and soil pollution regularly, Provision of curtain barrier for coal dust pollution, Installation of Dry fogging and sprinkler system (Dust suppression system). Prohibition of disposal of all kind of garbage in creek. Capital and Maintenance Dredging. 	 Use of renewable energy Use of Ship- shore power supply 	Use of battery power tugs	Setting of Hydrogen Hub	

8.2 MAINSTREAMING DISASTER RISK REDUCTION

The objective of mainstreaming is ensuring the ongoing and new development projects of the port leading to integration measures. The sub-thematic areas where such measures can lead to DRR are as follows:

- 1. Awareness and understanding of disaster risk;
- 2. Disaster governance;
- 3. Disaster risk transfer;
- 4. Institutional arrangements and capacity development;
- 5. Budget allocations for integrating DRR into development programs;
- 6. Project appraisals, scrutiny of development plans, effective and detailed land-use plans, from the point of view of expected hazards;
- 7. Setting targets and monitoring mechanisms.

In the context of above sub-thematic areas, the following measures may lead to mainstreaming DRR:

8.2.1 INVESTING IN DRR – STRUCTURAL MEASURES

The port is constructing marine and critical infrastructure (e.g., Jetty, Transfer pipeline and support structure, Drainage system, buildings, godowns etc.) as per relevant standards.

8.2.2 INVESTING IN DRR – NON-STRUCTURAL MEASURES

Port land area is being used for activities such as harbour area, industrial area, road network, water supply network, storm water drainage system and greenbelt/green cover.

Measures instituted includes Preparation and Implementation of the following:

- Port Policy, Rules and Regulations,
- Circulars,
- Notices,
- SOPs,
- Operational Manuals and Guidelines.

8.2.3 CAPACITY BUILDING

Port takes initiative by deputing various personnel to attend and undergo various trainings such as Disaster and Safety Management, Oil Spill Management, Fire & Safety, Dock Safety, First Aid etc.

Port undertakes consultative measures with expert agencies such as IITs, Govt. Departments, technical Universities and private institutions for advice in Land use planning, port development, projects implementation, environmental management and training of personnel. It will also conduct and participate in awareness programme through agencies such ICG, Civil Defence, NDRF, SDRF, GSDMA, DGFASLI, Security services etc.

8.3 DISASTER RISK GOVERNANCE PROGRAMMES AND PRACTICES

- **8.3.1** Environmental macro level-Coastal zone monitoring The macro level monitoring includes following aspects.
 - 1. Master planning of the port facilities with respect to the traffic forecast and identification of projects.
 - 2. Environmental impact analysis, land use planning and finalisation of the location of the projects.
 - 3. Finalisation of the Port's conceptual plan for future development.
 - 4. The port's plans for Integrated Management System (IMS), including ISO-14001 Environment Management System.
 - 5. Obtaining statutory permissions like Environmental Clearance, Consent to Establish/Operate from the MoEF & CC, PESO approval and State Pollution Control Board.

8.3.2 Micro Level Monitoring

The port undertakes various initiatives at the micro level which are as follows:

- Plantation of trees for a green belt.
- The level of air, water pollution to be monitored regularly and required steps to retain the pollution level within the permissible limit taken.
- Maintenance of Drainage system.
- Obtaining environmental clearances for projects and monitoring of the pollutants during the execution of the project as per the approved Environmental Management Plan (EMP).

In addition, the port maintains the CSR program and issues are highlighted periodically for implementation.

8.4 CLIMATE CHANGE RISK MANAGEMENT AND DRR

The SDG Goal 14 (Conserve and sustainably use the oceans, seas and marine resources for sustainable development) has set targets for significant reduction of marine pollution and aims to minimize.

In respect of aspects relating to climate change the following plan/procedures by port have been identified having bearing on disaster risk reduction and resilience:

- Plantation of trees for green belt and utilisation of non-conventional energy sources.
- The level of air, water and soil pollution to be monitored regularly and required steps to retain the pollution level within the permissible limit taken.
- Sea level rise Minimum height of landside construction above Mean Sea Level (MSL) will be adequately planned for developmental activities.
- Heavy rainfall (cloudburst) and flooding Land use planning and the detailed development thereafter will factor-in the requirements of natural slope, land topography, storm water drainage, height and width of culverts, natural drainage for ponds.
- High wind and cyclone Implementation of SOPs for preventing damage during an event.

8.5 BUDGETING AND FINANCIAL ARRANGEMENTS

8.5.1 DM Budget

The port will assign sufficient funds towards disaster management under following broad categories as follows:

DRR measures (Structural and Non-structural): i.

- ➢ Firefighting and Oil Spill Response Equipment;
- \succ Tugs;
- ➢ Navigational aids;
- Training of Personnel;
- ➢ Risk Transfer − Insurance;
- Civil works –Jetty-fenders-Repair and maintenance.

Restoration Measures: ii.

- Administrative building damage;
- ➢ Power Supply;
- \triangleright Damage to tugs;
- Damaged buoys- loss of buoys;
- Repair of damaged roads;
- Injury & infection-medical treatment;
- ➢ Flooding & stagnant water clean drains;
- Electrical & Mechanical works;
- Civil works –Jetty-fenders-Damage Repair.

8.5.2 Insurance of Port Assets

The Insurance cover for the port assets/properties should be as follows

- 1. Building, workshop and other structure inside port;
- 2. Navigational aids structures and equipment;
- 3. Fire-fighting aids;
- 4. Jetty;
- 5. Port Equipment;
- 6. Floating craft;
- 7. Electrical Installations.

9. RECOVERY AND BUSINESS CONTINUITY

9.1 RESPONSIBILITY FOR TERMINATING THE RESPONSE

The decision to terminate a response is taken by the CIC in consultation with the CEC.

9.2 CONDITIONS FOR TERMINATION

9.2.1 In the case of Natural Disasters Response action can also be terminated as per the information received from the "Competent early warnings agencies e.g., IMD" (Refer 7.1.5).

9.2.2 Fire Extinguishing operation should be terminated when:

- Fire has been completely extinguished,
- Area has been declared as "Risk or Hazardous or Smoke' free area.
- 9.2.3 Marine Response Operations in case of oil spill should be terminated when:
 - Oil has been recovered to the extent practicable; or
 - The surface oil slick has broken up; or
 - The oil slick has gone out to sea and is beyond the range of response options, and is unlikely to return; or
 - Oil has impacted shorelines and is no longer on the water.

In the last case marine response resources must remain on standby and equipment maintained at the ready until shoreline response operations have been completed.

9.2.4 Shoreline Response Operations should be terminated when:

- All accessible shorelines are clean to the extent practicable.
- Cleanup is having no further net beneficial effect or having a deleterious effect on the shoreline or associated plants or animals.

Shoreline cleanup operations may be terminated only upon the instruction of the GPCB/ICG.

9.2.5 Land Spill Response Operations should be terminated when:

- Area has been declared "Risk or Hazardous" free.
- Source of leakage is stopped and the condition of the area is safe for operation.

9.2.6 Human Induced Disasters response may be terminated when

- a. War and terrorism threats are evaluated by the security agencies and as such the response will be terminated gradually in stages as per the input received from them.
- b. Bomb threat related response will be terminated on case to case to basis as per instructions from district and state authorities.

9.3 STAND-DOWN PROCEDURES

9.3.1 Return of Equipment

Upon completion of the response, the SIC (or delegate) will:

- Arrange recovery of all equipment and unused materials.
- Ensure that all equipment is cleaned and returned to the owner.

9.3.2 Debrief

The SIC may hold a post-incident debriefing. Debriefing should address:

- Spill causes (if known) and future prevention methods.
- Speed of response activation.
- Effectiveness or suitability of strategies, tactics and equipment.
- Health and Safety issues (if any).
- Any other issues required to be communicated.
- Damage in terms of life, injury and loss of property should be assessed.

9.3.3 Incident Report

The CEC may request the preparation of an Incident Report.

9.3.4 Cost recovery

- 1. All records of costs must be collated for submission to the relevant insurer.
- 2. For expenses incurred assisting third parties, costs should be kept and submitted to relevant authority.

9.4DAMAGE, LOSS AND NEED ASSESSMENT

9.4.1 Initial Damage Assessments

Following any major disaster, rapid assessment of damage is important for restoring the facilities, resuming Port operations and cost recovery. In certain cases e.g. terrorism and security related, thorough site or damage assessment is not possible immediately after an event. Access to, and assessment of Port facilities and its contents may be delayed for a period of time. The delays may be due to possible loss of structural integrity, necessary forensic investigation, or the existence or potential existence of hazardous materials.

Immediately following a disaster and as soon as it is safe to do so, the designated team shall conduct a preliminary damage assessment.

9.4.2 Secondary Damage Assessments/Temporary Repairs

Once the affected site is approved for entry, a Damage Assessment Team will conduct a thorough assessment. This assessment will focus on those assets needed to facilitate a rapid recovery such as electric power, communications and transportation. The assessment should also identify any potential environmental issues that require immediate attention. Damage should be noted in enough detail to allow it to be communicated to begin developing action plans for recovery. Local utility companies need to be contacted at this time for anticipated schedules for restoration of critical utility services.

9.4.3 Assessment of Damage to Navigational Channel

Assessment of damage to the berthing and navigation portion area of the channel and Aids to Navigation is under the jurisdiction of the port. The Harbour Master will provide a status report of the condition of the channel to the Deputy Conservator.

9.4.4 Potential loss estimates analyzed include

- Physical damage to buildings, critical facilities and infrastructure.
- Economic loss, business interruptions, repair and reconstruction costs.
- The decision to rehabilitate or abandon port structures depends on the extent of damage, importance of the structure, and limits on its use. Aspects of an inspection may include:
 - > An underwater inspection by divers to check for possible demolition damage or deterioration of footings.
 - An inspection of the piling at low water from a boat to check for decay or damage. The stringers and deck are examined from below to determine the need for repair.
 - > Jetty will be inspected for damage.
 - > Assessment of buildings to ensure that damaged or repaired buildings are safe for occupancy.

9.5 RECOVERY PLANNING

9.5.1 Short-term recovery planning

Short-term recovery planning runs parallel to short term response and begins during and immediately after an incident.

9.5.2 Medium-term recovery planning

In the medium-term recovery planning, port will engage in contracting and setting up for large scale reconstruction and reconstitution operations. This may include financial planning, contracting, and the formation of joint venture agreements to assist in long-term business continuity.

The reconstruction activities may require an Environmental Impact Assessment. The lessons learned about the disaster impact and failures will be incorporated based on reviews of latest standards and global best practices to ensure a "Build Back Better" approach.

These steps will involve the following;

- a. Debris Removal,
- b. Emergency Protective Measures,
- c. Repair to Pre-Disaster Condition including improved resilience.

9.5.3 Long-term recovery planning

In the event that a part or the entire port becomes unusable or requires rebuilding, the long-term reconstruction considerations will be taken by stakeholders considering the financial planning, budgetary support and other resources.

9.6 RE-OPENING OF BERTHS TO VESSELS

In the event of damage to the port infrastructure during the disaster and subsequent recovery, steps will be taken by the management in consultation with MoPSW to open the port and navigational channel to resumption.

9.7 ENSURING BUSINESS CONTINUITY (General Guidelines)

9.7.1 OBJECTIVES

- Port resuming business operations as quickly and efficiently as possible.
- Preservation of cargo transport and supply chains.
- Developing partnerships between the public and private sector with a view to improve resiliency.
- Assessing and determining resources required to mitigate economic impacts of an incident on the port and its businesses.
- Determining how to create redundant and resilient power, water, sanitation, and data storage systems.

9.7.2 BUSINESS IMPACT ASSESSMENT

In the case of Level 2 and Level 3 disasters where serious disruptions in port business is possible due to collapse and damage to infrastructure and services in addition to human casualties, the process of recovery is conducted by undertaking a Business Impact Assessment (BIA). The following table lists the involvement of various authorities in case of major disasters.

SCENARIOS	LEVEL 2 & 3 – ACTION BY
Vessel- Collision/Grounding-Evacuation	IRT + CMG + Salvage efforts + Navy + ICG
Casualties	Port + District + State
Fire & Explosion on Vessel or Terminal	IRT + CMG + Terminal + District (Fire wing)
Fire in Office buildings, Hospital, Electrical substations, Pump houses and control rooms, Dry docks, Godowns, Coal stack yard	IRT + CMG + Port Fire team + District (Fire wing)
Oil or Chemical Spill	IRT +CMG + Master of vessel + OSRO + ICG + District/state assistance
Toxic Gas Leakage	IRT + CMG + Master of vessel + District/state assistance + outside agencies
Cyclone, Tsunami, Flood, Earthquake	IRT + CMG + Master of vessel + Terminal +National Disaster Management Group + CMG + District + State
Human related – Bomb threat, War and terrorism	CISF (Security) + CMG+ Terminal + National Disaster Management Group + District + State

Table 9.1: Involvement of Authorities for Level 2 and 3 type disasters

9.7.2.1 TOLERABLE RECOVERY TIME

The Port EOC will provide the initial response to a major disaster and stakeholders will have assigned unique functions on their respective parts for recovery and restoration efforts. Each stakeholder is expected to maintain their respective business recovery plan for use and activation. It has to be kept in mind that the business impact of the identified disasters will be in accordance the vulnerability profile of the port. Thus, a concept of "tolerable recovery time" for resuming business operations after an emergency is an important part of business continuity plan. The maximum tolerable recovery duration for some of the emergencies will be as follows:

- 1. 2 days for transport accident scenarios (rail and road);
- 2. 2 days hours for utility functional failures;
- 3. 4 days for collision, grounding and fire related disasters;
- 4. 2-4 days for disasters in service and administration facilities;
- 5. 21 days for Natural disasters;
- 6. 30 days for disasters during cargo storage or transfer.

The following table list the tolerable recovery times for the port for various identified scenarios as per HRVCA (Refer Risk assessment report).

Table 9.2: Time to Restore for identified scenarios

EVENT/SCENARIO SPECTRUM	TIME TO RESTORE FACILITIES				
DISASTER DURING CARGO STORAGE/TRANSFER					
Fire due to rupture/leakage of POL/Chemical from pipeline/hose at oil jetty (oil jetties 1-7) – on vessel or ashore	2-30 days				
Fire /Explosion due to LPG leakage at Oil Jetty 1 – on vessel or ashore	2-30 days				
Toxic product (e.g. ammonia) leak from pipeline/hose at jetty during operation (oil jetties 2-5) – on Vessel or Ashore	2-7 days				
Corrosive Acid - Leakage (e.g. Sulphuric acid, phosphoric acid) at oil jetty-5 during operation – on Vessel or Ashore	2-4 days				
Fire /leakage due to Crane Accidents (Container drop/crane fall) at container berth – secondary event.	2-7 days				
Fire on vessel (non-tankers) at berth	2-4 days				
Fire in Coal Stackyard	2 days				
NAVIGATIONAL DISASTERS					
Collision of small craft with Tanker/Container/BC/Dredger/Barge	4-96 hours				
Collision between two vessels	4-96 hours				
Collision of Vessel with dredger	4-96 hours				
Dragging anchor at Anchorage area	4-96 hours				
Grounding- Tanker/Container/BC- Pilot onboard	4-96 hours				
Grounding- Tanker/Container/BC- Pilot not onboard	4-96 hours				
Tanker /Container/BC vessel tug assisted berthing - Contact with Berth/Jetty/Shore installations	12-96 hours				

IRCLASS – Indian Register of Shipping | 176

Contact with channel marking buoys	12-96 hours				
Fire on vessel in the navigational channel	12-96 hours				
Fire on vessel at the anchorage					
Fire on vessel at the Berth/Jetty					
DISASTER IN SERVICE AND ADMINISTRATION FACILITIES					
Fire in Office buildings, Hospital, Electrical substations, Fire stations, Dry docks, Godowns, Coal stack yard	12 hours – 96 hours				
NATURAL DISASTER					
Cyclone/ Floods/ Tsunami/ Earthquake	7-21days				
UTILITY FUNCTION FAILURE					
Electrical sub station	12-96 hours				
Pump house	12-48 hours				

9.7.3 PLANNING CONSIDERATIONS FOR BUSINESS CONTINUITY

In actual practice, deviations may occur due to reasons beyond control and same can be recorded so as to gain from experiences and work towards a "Build Back Better" approach. The recovery planning outlined for short, medium- and long-term measures will therefore need to be objective enough to meet these timelines. The lessons learned from earthquake damage to Kandla Port during Bhuj earthquake 2001 reveals damage to jetties, piles and RCC structures such as godowns, the signal control tower and office building. In such an eventuality occurring at port steps to restore the functioning of the affected cargo berths and control stations will need extensive repair and rehabilitation measures.

In case of major incident or following a natural disaster resulting in stoppage of port operations, a BIA will be undertaken. Priority areas will be identified for short term recovery amounting to approx. 30 % capacity of cargo handling, medium term recovery amounting to approx. 70 % capacity of cargo handling and long-term recovery for 100 % capacity cargo handling.

Port will consider short-, medium-, and long-term priorities to better organize and improve recoverv

- Local priorities would be taken into account when determining where to focus recovery efforts.
- Assess the port functions, both internally and externally, to determine which manpower, materials, procedures and equipment are necessary to keep the port operating.
- Create a contact list for existing critical business contractors and others that the port can use in an emergency.

9.7.4 SHORT-TERM RECOVERY PLANNING

9.7.4.1 Damage Assessment and Prioritization of Restoration Work

Tasks during initial damage assessment will include the following.

- Assessment of Engineering Assets
- Assessment of Current Condition of Facilities
- Assessment of Utility Infrastructure

9.7.4.2 Actions that assist in damage assessment will include the following.

- Documentation of Replacement Costs
- As-Built Building Plans, Specifications and Other Facility Records
- Determining, positioning, and planning for assistance to obtain Critical Recovery Resources

9.7.4.3 Scope of inspection may include the following:

- Assessment of facilities by civil engineers to ensure compliance with local building and architectural codes and to ensure that damaged or repaired buildings are safe for occupancy.
- An underwater inspection by divers to check for possible demolition damage or deterioration of footings.
- An inspection of the piling at low water from a boat to check for damage. The stringers and deck are examined from below to determine the need for repair.
- Berths/jetties, or seawalls are inspected for damage.

9.7.5 MEDIUM-TERM RECOVERY PLANNING

In medium-term recovery planning, the port will engage in contracting and setting up for reconstruction and resumption of operations at the affected site. This may include financial planning, contracting and the formation of mutual aid agreements to assist in business continuity.

9.7.5.1 Mutual Assistance

The port may include the recovery operations plans, provisions for the pooling of recovery and business resources (heavy lift equipment, for example), and pre-positioning where needed.

Port may require to develop an alternate operational logistics support plan for cargo diversion in an incident at the port. It may also explore the agreements with Railways regarding goods movement in the event of an incident.

In case of damage to road infrastructure, port may also consider examining alternative transportation routes to and from the port and also within the port itself.

9.7.5.2 Medium-term reconstruction projects include:

- Expedient repair of existing structures.
- Repair of unloading facilities e.g. quay cranes, pipelines etc.

9.7.5.3 Marketing and Communications

Post-incident, port may consider publishing press releases and advertisements to demonstrate to the public that the port is open for business and still functional.

9.7.6 LONG-TERM RECOVERY PLANNING

This may include assessment and short- and medium-term measures as discussed earlier to provide temporary relief and alternate sites for cargo handling. For full recovery steps including as listed below will be required.

- Determining the financial impact of the emergency on the port and the budget needed for recovery, including insurance reimbursement and non-reimbursement issues, and central govt. assistance;
- Building relationships with emergency management and first responders based on unmet coordination needs;

- Initiating public relations activities to rebuild confidence in the transition period on the part of customer and the community in its entirety;
- Administering a comprehensive cargo movement recovery policy; •
- Provide support for Construction & Maintenance, repair, alteration and reconstruction of ٠ port facilities and infrastructure;
- Laying out of plans and specifications and other contract documents necessary for the ٠ construction of new facilities and for any modifications to existing port facilities by engineering department;
- Repair of extensive damage to port buildings and properties and its maintenance; •
- Assessment of environmental impacts of reconstruction projects and determining mitigation • measures as appropriate by Environment department.

10. RESOURCE INVENTORY

10.1 Fire - fighting equipment details of OJ-1:

There are three nos. sea water fire pumps as follows.

- 1. Diesel driven fire pump Capacity 500 m³/hr., Head 156 m.
- 2. Electrical driven fire pump Capacity 500 m³/hr., Head 156 m
- 3. Electrical driven flushing pump Capacity 500 m³/hr., Head 156 m.
- 4. There are 2 nos. foam tanks of capacity 250 liters each provided with fixed firefighting monitor.

10.2 Fire - fighting equipment details of OJ-2:

This jetty is provided with the following firefighting infrastructure.

- 1. Diesel driven fire pumps 2 nos. capacity 820 m³/hr., Head 105 m;
- 2. Electrical driven jockey pump 2 nos. Capacity 30 m³/hr., Head 105 m;
- Two Foam pump (One Electrical & One Diesel driven) Capacity 22 m³/hr., Head 150m (both);
- 4. One Foam storage tank inside pump house Capacity 14 m³;
- 5. Six No water curtains of capacity 180 m³/hr;
- 6. There are two water cum foam tower monitors of capacity, 3000 LPM at 7 kg/cm².

10.3 Fire - fighting equipment details of OJ-3:

This jetty has the following facilities.

- 1. Two Foam pump (One Electrical & One diesel driven) capacity 250 LPM, Head 150 m (Both);
- 2. One foam storage tank of capacity 15 KL;
- 3. There are two Nos. Water curtain of capacity 3000 LPM each;
- 4. There are two water cum foam tower monitors of capacity, 3,000 LPM at 7 kg/cm².

10.4 Fire - fighting equipment details of OJ-4:

- 1. There are three nos. Sea Water Fire pumps as follows:
 - a. Diesel driven Fire Pump capacity 500 m³/hr., Head 156 m;
 - b. Electrical driven fire pump capacity $500 \text{ m}^3/\text{hr.}$, head 156 m;
 - c. Electrical driven Flushing pump capacity 500 m³/hr., Head 156 m;
- 2. Two Foam pump (One Electrical & One Diesel driven) Capacity 250 LPM, Head 150M(Both);
- 3. One Foam storage tank inside the pump house 15 KL capacity;
- 4. There are Two No water curtains, capacity 3000 LPM;
- 5. There are two water cum foam tower monitors of capacity 3000 LPM at 7 kg/cm².

Sr. no.	Name	Designation	Training details
1.	Aseem C	FcSO	Divisional officer course – NFSC, Nagpur
2.	DS Gurjar	Dy. FO	Divisional officer course – NFSC, Nagpur
3.	Edward Brady	STO	Sub officer course – NFSC, Nagpur
4.	G Nethaji	STO	Station officer & instruction course - NFSC, Nagpur
5.	GR Vaghela	STO	Sub officer course - NFSC, Nagpur
6.	HV Patel	STO	Sub officer course - NFSC, Nagpur
7.	KG Khalsa	STO	Sub officer course - NFSC, Nagpur
8.	MB Makwana	STO	Sub officer course - NFSC, Nagpur
9.	MR Vadaviya	STO	Sub officer course - NFSC, Nagpur
10.	NK Maheshwari	STO	Sub officer course - NFSC, Nagpur
11.	NM Jogi	STO	Sub officer course - NFSC, Nagpur
12.	NP Rajput	STO	Sub officer course - NFSC, Nagpur
13.	RS Maheshwari	STO	Sub officer course - NFSC, Nagpur
14.	S Mandal	STO	Station officer & instruction course - NFSC, Nagpur
15.	SK Saha	STO	Sub officer course - NFSC, Nagpur
16.	TR Pariyani	STO	Sub officer course - NFSC, Nagpur

10.5 Manpower resource – Fire Brigade section

10.6 Major Fire equipment and Appliances – Fire Brigade section

Sr. No.	Name of the Appliances	Quantity
1.	Safety Jeep (Bolero)	1 No.
2.	Water Tender Fire engine	04
3.	Foam Tender Fire engine	02
4.	Multipurpose Tender	01
5.	Dry Chemical Powder Tender	01
6.	Portable Fire Pump (Single Delivery)	06
7.	Trailer Fire Pump	04
8.	DCP Fire Extinguisher 50 kg 05	
9.	Two wheeled Trolley Trailer	01
10.	Sea water Fire pump Electrically Operated (Oil jetty)	04
11.	Sea water Fire pump Diesel Operated (Oil jetty)	04
12.	Sea water Fire pump Electrically Operated (Cargo jetty)	01
13.	Sea water Fire pump Diesel Operated (Cargo jetty)	03

IRCLASS – Indian Register of Shipping | 181

14.	Ground monitor	01
15.	Compressed Air B.A. Set	16
16.	RRL Delivery hose	500
17.	Gasometer	03
18.	Explosive meter	01
19.	Motorola VHF Base station set	03
20.	Walkie Talkie set	12
21.	Deep lift pump	01
22.	Sea water fire hydrants double headed – oil jetty	157
23.	Sea water fire hydrants – cargo jetty	750
24.	Air compressor for BA set cylinder	01
25.	Fire entry suit	04
26.	Ejector pump	01
27.	Multipurpose fireman axe	05
28.	Hose washing machine	01
29.	Foam compound AFFF	30000 ltrs
30.	Alcohol resistance (ARFFF)compound	10000 ltrs
31.	Air compressor (for vehicle)	01
32.	Car washer	01
33.	Multi gallobage hand held nozzle	10
34.	Multipurpose hand held nozzle	10
35.	Water mist & CAF fire extinguisher	07
36.	Life gear full body safety harness	12
37.	Life gear safety stretcher	01
38.	Chemical Protective suit	15
39.	Chemical & Gas protective suit	01
40.	Combustible gas alarm (pocket type)	10
41.	Gastight suit for LPG & Ammonia	10
42.	Fire proximity suit	08

Sr. No.	Fire engines	Nos.	Capacity
1.	Water Tender Fire engine	04	6000 ltrs. Water for each fire engine
2.	Foam tender fire engine	02	5000 ltrs. Water, 1000 ltrs. Foam compound & 2 nos. vessel * 75 kgs DCP for each fire engine
3.	Multipurpose tender	01	5000 ltrs. Water, 1000 ltrs. Foam compound, 2 nos. vessel * vessel 75 kgs DCP & 4 nos. CO2 cylinder – 22.5 kg. capacity each
4.	Dry chemical powder tender	01	2 nos. vessel * 1000 kg DCP each vessel

10.7 Fire Engines – Fire Brigade section

10.8 Protective Equipment

Sr. No.	Type of Equipment	ERC	OJ-1	OJ-2	OJ-3	OJ-4
1	Breathing apparatus (SCBA)	05	01	01	01	01
2	First Aid Box	02	01	01	01	01
3	Gas Tight Suit for LPG & Ammonia		03	01	01	01
4	Proximity Suit	04				
5	Chemical Suit	07	01	01	01	01
6	Fire Entry Suit	02	01			
7	Stretcher	02				
8	Full body safety harness	01				
9	Respirator	02	01	01	01	01

10.9 FIRE PROTECTION FACILITIES AT IFFCO JETTY, i.e. Jetty No.5

- 1. Two Fire pumps one electrical driven and one diesel engine driven having capacity of 273 $\rm m^3/hr$ installed.
- 2. Diesel Tank of 1000 ltr. provided for requirement of Diesel Driven Fire pump
- 3. One jockey pump of 15 m³/hr capacity installed to keep fire line pressurised
- 4. There are two foam monitors with 1000 ltr. foam tank and 2250 lpm capacity installed on the both ends of wharf area of the jetty.
- 5. Total 4 Nos. of double headed hydrants on main berth.
- 6. Jetty fire water network is connected with Plant fire water network which is pressurised all the time and four 273 m³/hr pumps are installed in the plant so they can be used in extreme emergency.
- 7. Fire Hydrant network is connected to Deendayal Port Authority's Jetty No. 4 Fire Pump House.
- 8. Two ammonia gas detectors are installed on Jetty having indication on local and in Ammonia Control Room.
- 9. DCP, CO₂ Fire Extinguishers and Fire Hoses are available at Jetty.

- 10. Safety Shower provided at Jetty.
- 11. Self-Contained Breathing Apparatus available during ammonia ship unloading.
- 12. Explosion proof lighting fixture provided.
- 13. Hand Gloves, Chemical Protective suit, Safety Goggles, Face Shield, life bouy, & life jacket are provided at Jetty.

10.10 Floating Crafts

Sr. No.	Type of Floating Crafts	Number	Name
1.	Tugs (Shipping)	02	Jyeshte
			Kritika
2.	Pilot Launches	03	Magh
			Rohini
			Swati
3.	Survey Launches	01	Nirikshak
4.	Mooring launches	04	Alok
			Atri
			Hasta
			Vishakha
5.	OSR Dumb barge	01	Karishma

*Note: During cyclone all the port crafts will be sheltered inside the Bunder area.

10.11 Pollution Response equipment

Sr. no.	Equipment	Make, Type, Model	Qty.	Ops	Non-Ops	Total
1.	Pressure Inflatable Boom. H-630mm, F-250mm, D- 360mm Containment Boom	ECO-AB630N	1200 mtr	1100 mtr	100 mtr	1100 mtr
2.	Boom Reel	ECO-BR2	06 nos	06 nos	0	06 nos
3.	Hydraulic Diesel Power unit 8 KW for Boom Reel.	ECO- PD10W/PUMP	06 nos	06 nos	0	06 nos
4.	Temporary storage/Tow Tank Capacity-10 Ton	ECO-MT10	05 nos	05 nos	0	05 nos
5.	Fast flow Belt skimmer 49m3/hr capacity with suitable pump & Power pack	ECO – OBWS	02 set	02	0	02

6.	Dispersant Spray System Capacity- 100 LPM,	ECO-DSS8-01 & DESMI-02	03 nos	03 nos	0	03 nos
7.	Permanent Boom. H-500mm, F- 230mm, D-270mm, Containment Boom	ECO-CB500U	1000 mtr	940 mtr	60 mtr	940 mtr
8.	DBD Skimmer 20 m3/hr capacity with Suitable pump & Power pack 7.5 KW	DESMI	01 set	01 set	0	01 set
9.	Air Blower for Inflating Boom	STITHL BR550	03 nos	03 nos	0	03 nos
10.	Mini Vaccume Pump set	DESMI	01 set	01 set	0	01 set
11.	Sorbent Pads	40 x 50 cm	1900 nos	1900 nos	0	1900 nos
12.	Oil Spill Dispersant (Nova 4G OSD NIO/CG Approved	Type III &II	5000 lits	-	-	5000 lits

10.12 IMO Level Trained Personnel

Sr. no.	IMO Level – I	IMO Level - II
1.	Gajendra Behera (Site In-charge)	Pawan Sontakke (Manager)
2.	Saroj Kumar Swain (Responder)	Tohid Shaikh (Manager)
3.	Pawan Bharti (Responder)	
4.	Kartik Kumar N R (Responder)	
5.	Manoj Kumar (Responder)	
6.	Abhishek Kumar (Responder)	

10.13 Port maintains following schedule for the contingency mock drills

and the second se			The Design of the local day of the local day is the local day of the local	
JANUART	Bunker OS Spill	Touroni	Tanker Free Alide Officery	Herber Only LLA & MA Trans
FEBRUARY	PPE Training	Fert Workers Equipment Training	Advertigentian Subday fire	Harbour Croft's USA & FEA Trease
MARCH	Anys pails Gas Look	Collision	Ris/Lalution Of Surd	Herbese Oath's USA & FFA Trade
APRIL	WINNER AND A PARTY	Read	Terror Covered Cargo Bantha	Harkow Gold & Lid & FFA Trans
MAY	Oil or Chemical Publishing	PPG Toxining	Los Ja Cargo Shad	Harbour Craff's CLA & FFA Trans
JUNE	Noteur Creft 7105 Training	Sinking Of The Versel	Fac at Coigo Shed	Harbear Oraft's USA & BLA Trans
JULY	Banker Cit Spill	Cydane	Tanker fire at the Differry	Harbour Craft's LSA & STA Treas
DUGUST	PPE Training	Fort Worker's Equipment Training	Braff againstics Off Berth	Harbour Creft's USE & FFA Trans
SEPTEMBER	Arrentetis Gar Leak	Terral Grounding In Port	Administration Publics fire	Harbour Craft's LSA & STA Frank
OCTOBER	Inthquake		Tive St General Carps Renths	Horbest Ontro LSA & MA Trends
HOVENBER	Dil si Chemical Pollation	PPE Training	Tamar Trans The Officery	Harbose Out VISA & FTA Trans
DECEMBER	Harbour Craft FMS Training	Plint's Part Specific Simulator Traving	Firs of Cargo Stad	Harbour Own's LSA & FFA Thesis

IRCLASS – Indian Register of Shipping | 185

10.14 Navigational Buoys and Leading lights

22 lighted navigational buoys with solar light, as per IALA system, are provided in the Kandla navigational channel.

Sathsaida Leading Lights lead through Sogal Channel; a second pair, leads across the inner bar to Kandla Creek

Outer Tuna Lighted Buoy (22°51'N., 70°07'E.), painted red, marks the entrance of the channel to Kandla.

Sr. no.	Equipment
1.	BSNL satellite phone
2.	VHF sets
3.	Telephones
4.	Walkie-talkie sets & mobile
5.	Charts
6.	Emergency lights and torches
7.	Portable PA/loud hailer set

10.15 Available Emergency Control Room equipment

10.16 Mutual Aid Agreement

All Port operators/agencies/institutions, where possible, will supply resources to support emergency response operations when requested by CEC/CIC/SIC or whole of Port Emergency Operation Centre as per the Mutual Aid Agreement.

10.17 Resource Inventory (IDRN)

India Disaster Resource Network is an online inventory designed as a decision-making tool for the Government administration and crisis managers to coordinate effective emergency response operations in the shortest possible time.

The Ministry of Home Affairs, Government of India has developed a web-based database of resource named India Disaster Resource Network (IDRN). This database contains information about equipment (such as boats, bulldozers, etc.), manpower (divers, swimmers, etc.) and critical supplies (oxygen cylinder, firefighting foams, etc.) required during the response.

Resources which are available with the various departments in the Gujarat - Kachchh are uploaded in IDRN.

Gujarat-Kachchh: https://idrn.nidm.gov.in/

11. PLAN MAINTENANCE

11.1 DEVELOPMENT, APPROVAL, IMPLEMENTATION, REVIEW AND REVISION

- This plan is developed in accordance with the guidelines issued by NDMA (2024), NDMP (2019) and NDMA guidelines and structured to suit the port organization. The implementation will be undertaken by the Deputy Conservator in association with stakeholders. It is understood that lessons learned from previous near disaster/disaster situations have been studied and cognizance of the after effect of these disasters have been considered. Understanding of risk and preventive measures has thus been analyzed and mitigation plan prepared. Prioritization of risks has been done as per risk assessment.
- Plan would be circulated to stakeholders.
- Regular Drills/exercises would be conducted to test the efficacy of the plan and check the level of preparedness.
- NDRF, SDRF and other agencies e.g., civil defense, local govt. departments suggestions would be integrated into the plan.
- Review and updating of the plan would be carried out annually as per Disaster Management Act, 2005.
- Consequent to any modification/expansion in the infrastructure, the Deputy Conservator is responsible for updating and maintaining the DMP.

ANNEX A CHECKLIST

A.1 Checklist for POL's & Chemicals

A.1.1 Vessel and Berthing details

1.	Name of the Tanker	
2.	Name of the Berth	
3.	Berthing Date & Time	
4.	Checking Date & Time	

A.1.2 Shift In-charge should check the following before berthing of the Tanker.

Sr. No	Check Points	Yes	No
1.	Fire Fighting System in Remote Mode		
2.	Functioning of Siren		
3.	No Hot Job is permitted within 100m radius		
4.	Compliance to "NO SMOKING" regulations		
5.	Concerned Staff wear PPE		
6.	MSDS is displayed for the product being handled		

Note: If any laps are found, immediately the same is to be brought to the notice of Fire Officer for necessary action.

A.1.3 Signature

Shift-in-charge	Loading / unloading Master	Fire cum Safety Officer

A.2 Checklist for LPG

A.2.1 Vessel and Berthing details

1.	Name of the Tanker	
2.	Name of the Berth	
3.	Berthing Date & Time	
4.	Checking Date & Time	

A.2.2 Shift In-charge should check the following before berthing of the LPG Tanker.

Sr. No	Check Points	Yes	No
1.	Monitor line should be pressurized with Jockey pumps		
2.	Monitor Motor driven pump in auto mode		
3.	Monitor Engine driven pump in auto mode		
4.	Hydrants, water curtains and ground monitor motor driven pump in remote mode		
5.	Hydrants, water curtains and ground monitor motor engine driven pump in remote mode		
6.	Gas detection system is in 'ON' position		
7.	Siren and Manual call points system is in 'ON' position		
8.	PA System is in 'ON' position		
9.	Keep adequate number of extinguishers at the unloading platform		
10.	MSDS should be displayed by Terminal		
11.	Wind Sock is erected		
12.	BA Sets and canisters are available		
13.	All the concerned staff including unloading master and hose fitters of concerned handing company should wear PPE		
14.	No Hot Job is permitted near the operational area		
15.	Compliance to 'NO SMOKING' regulations		
16.	Area must be continuously manned		
17.	Remote control room must be continuously manned		
18.	Generator should be in auto mode and electrical staff to be available at sub-station round the clock		
19.	Pump house to be manned round the clock by Mechanical staff		

Note: If any laps are found, immediately the same is to be brought to the notice of Fire Officer for necessary action.

A.2.3 Signature

Shift-in-charge	Loading /	On-duty Officer	Fire cum Safety
	Unloading Master	(LPG Berth)	Officer

IRCLASS – Indian Register of Shipping | 18

A.3 Checklist for Toxic Cargo

A.3.1 Ve	A.3.1 Vessel and Berthing details			
1.	Name of the Tanker			
2.	Name of the Berth			
3.	Berthing Date & Time			
4.	Checking Date & Time			

A.3.2 Shift In-charge should check the following before berthing of the Tanker.

Sr. No	Check Points	Yes	No
1.	Standby of Water tender and Trailor pump at manifold area is in readiness		
2.	Functioning of freshwater shower on the berth		
3.	Functioning of eye wash		
4.	Chemical suit is made available at the manifold area by the receiver of cargo		
5.	Functioning of Siren		
6.	Wind sack is erected		
7.	BA Sets are made available by Fire team		
8.	Concerned Staff wear PPE		
9.	MSDS for product displayed		

Note: If any laps are found, immediately the same is to be brought to the notice of Fire Officer for necessary action.

A.3.3 Signature

Shift-in-charge	Loading / unloading Master	Fire cum Safety Officer

A.4 Checklist for Sulphuric Acid / Phosphoric Acid

A.4.1 Vessel and Berthing details

1.	Name of the Tanker	
2.	Name of the Berth	
3.	Berthing Date & Time	
4.	Checking Date & Time	

A.4.2 Shift In-charge should check the following before berthing of the Cargo Tanker.

Sr. No	Check Points	Yes	No
1.	Fresh water Shower functioning on Berth		
2.	Eyewash Functioning		
3.	Neutralizing agent is readily available nearer to the manifold area		
4.	Unloading Staff wear PPE while handling above Chemicals		
5.	Chemical Suit is made available at the manifold area by the receiver of the cargo		
6.	30Mtrs area around the manifold barricaded		
7.	MSDS is displayed for the Chemical, that is being handled		

Note: If any laps are found, immediately the same is to be brought to the notice of Fire Officer for necessary action.

A.4.3 Signature

Shift-in-charge	Loading / unloading Master	Fire cum Safety Officer

Disaster Management Plan

A5. Grounding of a Vessel within Port Limit

A.5.1	Vessel and Incident details
1.	Name and Type of the Vessel
2.	Master of the Vessel
3.	Name of the Agent
4.	Incident Date & Time
5.	Vessel Length and Draft
6.	Pilot on Board, if any
7.	Location of the incident
8.	Current location of the vessel
9.	Port Launches Order (time)

A.5.2 Other details

1.	Time of Grounding	
2.	Cause of Grounding	
3.	Extent of Grounding	
4.	Weather Conditions	
5.	Direction of Vessels head	
6.	Movement of other vessels stopped	
7.	Pollution type (oil/chemical)	
8.	Location and Extent (impact on environment) of Pollution	
9.	Fire/Explosion	
10.	Evacuation of Passengers (if any)	
11.	Plans to refloat vessel	
12.	Additional actions taken by port	
13.	Divers required	
14.	Salvage company informed	
15.	Remarks	

A6. Sinking/Capsize of a Vessel within Port Limit

A0. 5	inking/Capsize of a vessel within Port Lim	lt –
A.6.1	Vessel and Incident details	
1.	Name and Type of the Vessel	
2.	Master of the Vessel	
3.	Name of the Agent	
4.	Incident Date & Time	
5.	Vessel Length and Draft	
6.	Pilot on Board, if any	
7.	Location of the incident	
8.	Current location of the vessel	
9.	Port Launches Order (time)	

A.6.2 Other details

1.	Time of Sinking/Capsize
2.	Cause of Sinking/Capsize
3.	Extent of Sinking/Capsize
4.	Weather Conditions
5.	Direction of Vessels head
6.	Movement of other vessels stopped
7.	Pollution type (oil/chemical)
8.	Location and Extent (impact on environment) of Pollution
9.	Fire/Explosion
10.	Evacuation of Passengers (if any)
11.	Plans to refloat vessel
12.	Additional actions taken by port
13.	Divers required
14.	Salvage company informed
15.	Remarks

A7. Collision between two Vessels within Port Limit

A.7.1 Vessels and Incident details

1.	Name and Type of the Vessels	Vessel 1: Vessel 2:
2.	Master of the Vessel	
3.	Name of the Agent	
4.	Incident Date & Time	
5.	Vessel Length and Draft	
6.	Pilot Onboard, if any	
7.	Location of the incident	
8.	Current location of the vessel	
9.	Port Launches Order (time)	

A.7.2 Other details

1.	Time of Collision
2.	Cause of Collision
3.	Extent of Collision (condition of vessels)
4.	Weather Conditions
5.	Direction of Vessels head
6.	Movement of other vessels stopped
7.	Pollution type (oil/chemical)
8.	Location and Extent (impact on environment) of Pollution
9.	Fire/Explosion
10.	Evacuation of Passengers (if any)
11.	Plans to move the vessel
12.	Additional actions taken by port
13.	Remarks

Disaster Management Plan

A8. Fire Onboard a vessel within Port Limit A 8.1 Vessels and Incident details

A.ð.1	vessels and incident details	
1.	Name and Type of the Vessels	
2.	Master of the Vessel	
3.	Name of the Agent	
4.	Incident Date & Time	
5.	Vessel Length and Draft	
6.	Pilot Onboard, if any	
7.	Location of the incident	
8.	Current location of the vessel	
9.	Number of Passengers Onboard	
10.	Fire Fighting facilities on vessel	
11.	Location of Fire	
12.	Substance burning	
13.	Details of dangerous goods on board, if	
	any	
14.	Port Launches Order (time)	

A.8.2 Other details

1.	Cause of Fire	
2.	Extent of Fire (condition of vessel)	
3.	Weather Conditions	
4.	Direction of Vessels head	
5.	Movement of other vessels stopped	
6.	Actions taken, by Master of vessel	
7.	Master consulted with the Port/Fire Officer	
8.	Evacuation of Passengers (if any)	
9.	Plans to move the vessel	
10.	Additional actions taken, by port	 Protection of Port property Precautions against re-ignition Security
11.	Remarks	

Disaster Management Plan

A9. Fire onboard a tanker within Port Limit

A.9.1	vessels and incident details	
1.	Name and Type of the Vessels	
2.	Master of the Vessel	
3.	Name of the Agent	
4.	Incident Date & Time	
5.	Vessel Length and Draft	
6.	Pilot Onboard, if any	
7.	Location of the incident	
8.	Current location of the vessel	
9.	Number of Passengers Onboard	
10.	Fire Fighting facilities on vessel	
11.	Location of Fire	
12.	Substance burning	
13.	Details of cargo on board	Туре
		Quantity
14.	Port Launches Order (time)	

A.9.2 Other details

1.	Cause of Fire	
2.	Extent of Fire/Explosion (condition of vessel) or Likelihood of Explosion	
3.	Weather Conditions	
4.	Cargo Operations ceased	
5.	Hoses/Metals arms disconnected	
6.	Movement of other vessels stopped or area cleared	
7.	Actions taken, by Master of vessel	
8.	Master consulted with the Port/Fire Officer	
9.	Evacuation of Passengers (if any)	
10.	Plans to move the vessel or other vessels	
11.	Additional actions taken, by port	 Protection of Port property Precautions against re-ignition Security
12.	Remarks	

PORT KEY PERSONNEL			
Sr.	Designation	Telephone Nos.	
no.			
1.	Chairman	02836-233001/234601	
2.	Dy. Chairman	02836-234121/236323	
3.	Deputy Conservator	9603123449	
4.	Harbour Master	8976741054	
5.	FA&CAO	9526062088	
6.	Traffic Manager	9666107773	
7.	Chief Engineer (Civil)	9825227038	
8.	Chief Mechanical Engineer	9825235196	
9.	Chief Medical Officer	9825505796	
10.	Deputy FA&CAO	9825227036	
11.	Dy. Chief Engineer (Civil)	9427251059	
12.	Sr. Dy Traffic Manager	9748437052	
13.	Sr. Dy. Chief Medical Officer	9687607528	
14.	Signal Station	270549/ 9016682249	

ANNEX B EMERGENCY CONTACT NUMBERS

	GENERAL ADMINISTRATION DEPARTMENT			
Sr.DesignationTelephone nos.no.		Telephone nos.		
1.	Secretary	7036868889		
2.	Sr. Deputy Secretary	9825227079		
3.	TP & PRO	9638943800		
4.	Law Officer	9712341380		

	CISF			
Sr.	Designation/Location	Telephone nos.		
no.		Office	Mobile	
1.	Commandant	271037	9825227282	
2.	PA to Sr. Comdnt.	271037	9951492174	
3.	Control Room	270140		
4.	North Gate	271440	-	
5.	West Gate – I	271039	-	
6.	West Gate II	270876	-	

IRCLASS – Indian Register of Shipping

RESTRICTED.

FIRE STATION			
Sr. no.	Designation	Telephone nos.	
1.	Main Station (Emergency Response Centre)	270176 / 270178	
2.	Cargo Jetty West Gate No. 1 (Tilak Fire Station)	9825221330	
3.	Cargo Jetty (Azad Fire) Nr. Berth No. 8	9825221352	
4.	Fire cum Safety Officer	270176 (O) / 227512/ 9825227041	

FLOTILLA SECTION			
Sr. no. Section Telephone nos.			
1.	Flotilla Section	9825227630	
2.	Flotilla Supdt.	9978559903/9825227610	

VADINAR CONTROL ROOM			
Sr. no. Designation Telephone nos.		Telephone nos.	
1.	Signal Station	02833-2573026/9825212359	

POLICE DEPERTMENT			
DESIGNATION	Telephone nos.	Address and Email	
SP Kutch (East)	02832-280233	SP Office, Near Court, DC-5, Gandhidham <u>sp-east-kut@gujarat.gov.in</u>	
SP Kutch (West)	02832-250960	SP Office, Near District court, Bhuj- 370001 <u>sp-kut@gujarat.gov.in</u>	

GUJARAT STATE DISASTER MANAGEMENT AUTHORITY (GSDMA)			
Address	Email id	Telephone nos.	
Block No.11, 5thFloor, Udyog Bhavan, Sector-11, Gandhinagar, Gujarat.	info@gsdma.org	079-23259283 State Control Room: 1070	
Kutch Office	mehul.nitb04@gmail.com	02832-252347	

Name Of Office	Telephone nos./Email
IMD, Ahmedabad	079-29705010, 9428909340
	m.mohanty@imd.gov.in
	met_mm@yahoo.co.in
INCOIS, Hyderabad	040-23886000
	webmaster@incois.gov.in,
	director@incois.gov.in
District Collector, Collector Office,	02832-250020
Jilla Seva Sadan, Bhuj-370001	<u>collector-kut@gujarat.gov.in</u>
District Emergency operation Centre	02832-250923/252347
	dismgmt-kut@gujarat.gov.in
Kandla Airport	02836 269 401
Indian Navy -Porbandar	0286-2240954
Indian Railways	139/182
GSRTC Inquiry	02836 - 220198/1800 233 666666
Water Supply	1916/ 079-23220859
Ambulance	102/108

MUNICIPAL FIRE STATIONS			
Station name Telephone nos.			
Fire Station Gandhidham Municipality	02836-226573		
Fire Station IFFCO Kandla	02836-270352		

NDRF – 6 TH BATTALION			
Designation Address		Telephone nos. & email id	
Commandant	6 th Bn NDRF, Jarod Camp, Teh-Wagodia, Vadodara, Pin - 391510		

EXPERTS		
Name of Body	Telephone nos.	
Nautical Advisor cum addl. DG (Nautical), DG Shipping	022-25752009/ 25752005 / 25752010	
MMD, Kandla	02836-297015/127/28 kandla-mmd@gov.in	
Indian Register of Shipping, Mumbai	022-30519400 / 25703611 ho@irclass.org	
Ministry of Environment, Forest and Climate Change (MoEF &CC), Admin, New Delhi	011-24695328	
The National Environmental Engineering & Research Institute (NEERI), Nagpur	0712-2249885-88 / 2249970-72	

IRCLASS – Indian Register of Shipping

Ministry of Petroleum & Natural Gas	011-23382426 / 23383100
National Institute of Ocean Technology (NIOT), Chennai	044-66783300 / 22460275 / 22460645
Jt. Chief Controller of Explosives, Vadodara (Gujarat)	0265-2225159/2361035 dyccebaroda@explosives.gov.in
GPCB – Regional office; Room No. 215-217 Administrative Office Building, Kandla Port Trust, Sector 8, Gandhidham, Kutch	02836- 230828 ro-gpcb-kute@gujarat.gov.in
Inspectorate Dock Safety, Kandla	02836 – 270249 <u>idskandla@dgfasli.nic.in</u> <u>sp@dgfasli.nic.in</u>
Office of Industrial Safety and Health, Kutch	02836-260020/262 <u>dd1-dish-adi@gujarat.gov.in</u> <u>dydish-kutch@gujarat.gov.in</u>
Civil Defence	02832-230603 dg-homegrd-ahd@gujarat.gov.in

STATE/DISTRICT EMERGENCY OPERATION CENTRE				
Sr. No.	EOCs / Control rooms	Telephone nos.		
1.	State Emergency Operation Centre	079 - 23251900 / 23251902 / 23251914 /1070		
2.	District Emergency operation Centre	02832-250923/252347 dismgmt-kut@gujarat.gov.in		

	MARINE POLICE NUMBERS				
Sr. No.	Marine Police Station	Designation of In-charge	Telephone nos.	Mobile	
1.	Okha	Police sub-inspector	02892-262396	9376200200	
2.	Vadinar	Police sub-inspector	02833-256541	9979899110	
3.	Bedi	Police sub-inspector	0288-2755293	9913653885	
4.	Mundra	Police sub-inspector	02838-224077	8000648100	
5.	Kutch	DSP	02836-250444		
6.	Kandla	Police sub-inspector	0283-6270527	9879252427 9979904919	
7.	Salaya	Police sub-inspector	0283-3285338	9426979493 9979904919	

	INDIAN COASTGUARD				
Sr. no.	Station	Telephone nos.			
1	Mundra	02838-271403			
2	Vadinar	02833-256560			
3	Okha	02892-263450			

HOSPITALS					
Sr. no.	Name	Telephone nos.			
1	Rambaugh Hospital, Gandhidham	02836-261626			
2	Railway Hospital, Gandhidham	02836-231874			
3	General Hospital, Bhuj Civil Surgeon, Bhuj	02832- 246417/18 02832-258071/ 258080			
4	Referal Hospital, Anjar	02836-232455			

	VEHICLE SUPLIERS					
Sr. no.	Name of travels	Telephone nos.				
1.	M/s. Rohit Enterprise / Rishabh Enterprise	228550/237538 237547 (O); 234140 (R) 9825225121				
2.	M/s. Jai Somnath Travels (GIM)	9825386739				

SALVAGE ASSOCIATIONS	Telephone nos.
Vishwakarma Marine Pvt. Ltd., Porbandar - 360575	0286-2242836
Sealord Diving & Salvage Pvt. Ltd., Navi Mumbai - 400706	022-27682825
http://www.marine-salvage.com/membership/#tabs-1-4	

	VERNMENTAL OF hh.nic.in/public-uti							
NGO Contact Email								
Arid Communities & Technologies	02832-645152	mail@act-india.org						
Arya Samaj Gandhidham Charitable Trust	02836-231223	aryagan@aryagan.org						
Kandla Seafarers Welfare Association	02836-224013	pwckandla@gmail.com						
SANKALP	02836-296109	sankalp.gandhidham@gmail.com						

		STEVEDORES AT THE PORT	
Sr. No.	Name	Address	Telephone Nos.
1.	M/s. A.V.Joshi & Co.	Plot No. 18, Sector-8, Maitry Bhavan, Nr. Post Office, Gandhidham –Kutch	231070/232227/231588
2.	M/s. Agarwal Handling Agencies	DBZ-N-47, Gandhidham – Kutch	220282/233187
3.	M/s. ACT Shipping P. Ltd.	Seva Sadan-II, Room No. 206/207, New Kandla	270111/270112/270015/22 9967/231734
4.	M/s. J.M. Baxi & Co.	Seva Sadan – II, Room No. 301 / 306, New Kandla	270630/270550/270448
5.	Rishi Shipping	Plot 50, Sector 1/A GIM	229830/229831
6.	Parekh Marine Agency	C-8, Shaktinagar GIM	229297/221158/ 230587
7.	Krishna Shipping and Allied Services	Transport Nagar, NH GIM	230501/223814/ 229085
8.	Velji P & Sons(P) Ltd	2 nd Floor, Deepak Compex, 315, 12/B GIM	231545/231546/ 225466
9.	Rishikiran Roadlines	Kiran House, Plot 8 Sector 8, GIM	231894/234108
10.	Seaways Shipping (P) Ltd	2 nd Floor, Plot 351 Ward 12/B, GIM	226183/237147
11.	Liladhar Pasoo Forwarders P.Ltd	Plot 4, Sector –1 KASEZ, GIM	252286/252297/252612
12.	Patel Shipping Agency	Patel Avenue, Floor 2, Plot 170, Sector 1/A GIM	224024

VTS (VTS GOK OFFICERS OF MASTER CONTROL CENTER (MCC) KANDLA			
Sr. No.	Designation	Mobile number		
1.	Deputy Director	7383576832		
2.	Deputy Director	9428863924		
3.	Asst. Executive Engineer	9016106566		
4.	Asst. Executive Engineer	9408553192		

	TANK FARM TERMINAL					
Sr. No.	Name of Terminal	Storage	Name of Person	Contact	Email ID.	
1	M/S N P Patel (l) Pvt Ltd.	Chemical/Edible	Kumaresan	9099075877	kumaresan@thekirangroup.com	
2	M/S Kesar Terminal and Infrastructure Ltd -	Chemical/Edible	Shekhar Pradhan	9974248587	shekharpradhan@kesarindia.com	
3	M/S Kesar Terminal and Infrastructure Ltd	Chemical	Nitin Bhoyar	9375349181	nitinbhoya@kesarindia.com	
4	M/S Chemical Resins Ltd I	Chemical	Ashish Kachoriya	9998954375	ashish.kachoriya@aegisvopak.com	
5	M/S Chemical Resins Ltd Il	Edible	Ashish Kachoriya	9998954375	ashish.kachoriya@aegisvopak.com	
6	M/S Chemical Resins Ltd Ill	Chemical	Paresh Choxi	7359074019	paresh.choxi@aegisvopak.com	
7	M/S Rishi Kiran Logistic Pvt Ltd	Chemical	Kumaresan	9099075877	kumaresan@thekirangroup.com	
8	M/.s Aegis Vopak Terminal Ltd- I	Chemical	Suresh Joshi	9974812277	suresh.joshi@aegisvopak.com	
9	M/.s Aegis Vopak Terminal Ltd-	Chemical	Paresh Choxi	7359074019	paresh.choxi@aegisvopak.com	
10	M/.s Aegis Vopak Terminal Ltd- Ill	Edible	Paresh Choxi	7359074019	paresh.choxi@aegisvopak.com	
11	M/.s Aegis Vopak Terminal Ltd- IV	Edible	Devender Musterya	7710954748	devender.musterya@aegisvopak.com	
12	M/S JRE Tank Terminal	Chemical	Mahesh N Shah	9898500289	maheshshah@imc.net.in	
13	M/S Indo Nipoon Chemical Company	Chemical	Amit Pathak	9879546836	kandla@indo-nippon.com	
14	M/S Ahir Salt & Allied Products Ltd.	Chemical/Edible	Dharamsi B Agariya	9925247904	agriyadb@neelkanth.co.in	
15	M/S Shreeji Liquid Storage Terminal	Chemical/Edible	Murali Krishna	9940666336	muralikrishna@shreeji-group.com	

RESTRICTED.

16	M/S Kutch Oil & Soap Industries	Edible	Asgarali Khoja	9825237214	kutchppl@rediffmail.com
17	M/S Sunshine Liquid Storage Terminal	Edible	Ramesh Chaturani	9825226026	sunshineliquidl@gmail.com
18	M/S Ambaji Import Ltd.	Edible	Sushil Rao	9081244117	gm@ambajimports.com
19	M/S Seabridge Terminals Pvt. Ltd.	Edible	Ambati K Rao	9909008876	arao@seabridge.co.in
20	M/S Gokul Agro Resources Ltd.	Edible	Mahendra G T	9825229260	mahendra.terminal@gokulagro.com
21	M/S Emperious Infra Logistics Pvt Ltd.	Edible	Hemant Rangwani	9426965566	hemant.rangwani@emperiusindia.cor
22	M/S Deepak Estate Agency	Edible	Narendrabhai Thakkar	9879611243	dipakterminall@gmail.com
23	M/S Parker Agrochem Exports	Edible	Vidhanbhai Acharya	9638138833	parkeragrochem@gmail.com
24	M/S Tejumalbhai & Co.	Edible	Ashok Chandan	9825225101	tejmalbhaico@yahoo.com
25	M/S Liberty Investments	Edible	Thomas C D	9099011340	thomas@libertyoilmills.com
26	M/S Agency and Cargo Care	Edible	Vaibhav Aggarwal	9699667152	operation@acclkandla.com
27	M/S Avean International	Edible	Bharat Rathod	9375310260	aipkdl@gmail.com
28	M/S IMC Dry Cargo Jetty - New Kandla	Petroleum	Mahesh N Shah	9898500289	maheshshah@imc.net.in
29	M/S IMC Ltd Gas Terminal	Petroleum	Mahesh N Shah	9898500289	maheshshah@imc.net.in
30	M/S IMC Ltd Near Shirva	Chemical	Mahesh N Shah	9898500289	maheshshah@imc.net.in
31	M/S IFFCO	Gas/Acid	A K Sharma	9099982004	aksharma@iffco.in
32	M/S Indian Oil Corporation Ltd Foreshore Terminal	Petroleum	R K Mishra	9913716108	mishrark@indianoil.in

RESTRICTED.

33	M/S Indian Oil Corporation Ltd Viramgam Kandla Pipeline	Petroleum	Rajesh kumar C	9047535311	rajeshkumar3@indianoil.in
34	M/S Indian Oil Corporation Ltd - LPG Import Plant	Gas	Bhaveshkumar Chauhan	7657888122	bkchauhan@indianoil.in
35	M/S Indian Oil Corporation Ltd - Main Terminal	Petroleum	S K Bandhe	7440937432	sbandhe@indianoil.in
36	M/S Hindustan Petroleum Corporation Ltd	Petroleum	Yasvendra Singh	9996620338	yasvendarsingh@hpcl.in
37	M/S Bharat Petroleum Corporation Ltd.	Petroleum	S Mandal	9874444332	mandals@bharatpetroleum.in
38	M/S J K Synthetics	Chemical	Kumaresan	9099075877	kumaresan@thekirangroup.com
39	M/S Bharat Food Company Ltd.	Edible	Nitin Patel	9315338532	nitin.pate1789@gmail.com

Sr. no.	Name of Party	Name of Craft
1.	POLESTAR MARITIME LTD	JASMINE STAR
		SUNFLOWER STAR
		COSMOS STAR
		MT BAHUDA
2.	EMERALD MARINE SYSTEMS	BURAQ V
		DEFENDER
		MT QASWA
3.	SHREE KRISHNA QUARRY PVT.LTD.	SONAL
		VIDHYALAXMI-1
4.	Adani Bunkerings Pvt. Limited	AEL II
5.	OCEAN SPARKLE LIMITED	MT OCEAN LANCER
		OCEAN PROGRESS
		MT OCEAN CHALLENGER
		DOLPHIN NO 30
6.	GAUTAM FREIGHT PVT.LTD	MV GAUTAM SHIVANK
		MT GAUTAM SHLOK
		MT GAUTAM JAYANI
		MT GAUTAM HANUMAN
		MT LUV KUSH
		MT GAUTAM VARUN
		MV GAUTAM REHANSH
		MV GAUTAM ATHARV
		MV GAUTAM ANANYA
		MV GAUTAM ADITI
		MV GAUTAM KRISHAV

		MV GAUTAM BHIMJI
		MV GAUTAM AARAY
		MV GAUTAM KAVYA
		PONTOON GAUTAM -I
		MV GAUTAM AROHI
7.	BAPU'S SHIPPING JAMNAGAR PVT.LTD	MT ADINATH-8
		MT VAILANKANNI
		MT SAGAR URMIKA
		DWARKESH
		MV SOMNATH
8.	INTEROCEAN NAVIGATION LIMITED	MT KCS-I
9.	WATERWAYS MARITIME GANDHIDHAM	MT KB-IV
		MT MUC LAXMI
10.	RISHI SHIPPING INDIA PVT.LTD	RISHI-XXI
		DUMB BARGE RISHI-XVII
		MAHARUDRA HANUMAN
		MV RISHI-IV
		MV RISHI-XXIX
		MV RISHI-II
		MV RISHI-XXIV
		MV RISHI-XXIII
		MV SRIJOY-1
		MT SAI VISTARA 2
		MT SHANIYA
		MV BARGE JAYRAM-III
		MT MARIGOLD
		MV BARGE JAYRAM-IV

IRCLASS – Indian Register of Shipping 207

		MV SAI GAURESH
		MV JAY ASHWINI
		MV AJIT
		MILIKA
11.	GENESIS SHIPPING SERVICE	MT GENESIS-III
12.	Rishi Mansukhani Port & Infrastructure P.Ltd.	MT RISHI-XXX
		MT RISHI-XIV
		MT KARMA-VIII
		MT RISHI -XXV
		MT BDS-SP-2
		MV RISHI-XII
13.	SILVER PORT SERVICES PVT.LTD.	MT SPS PHALGUNI
		MT SPS ROHINI
		SPS ASHWINI
		CHITRA
		SPS REVATI
14.	APEX OFFSHORE LLP	DULDUL
		MV SUCCESS GLORY
		MV MANALI -III
		MV MANALI -II
		MV MANALI -V
		MV RAMA
15.	OMEGA OFFSHORE	MV ZEENNE
		MT MARS
16.	MALARA SEA LOGISTICS	MV MALARA PRIDE

MAJOR HEAVY LIFT OPERATORS						
Name Of Party	Contact Person	Phone Number				
Swastik Heavy Lifters	Mr. Jigneshbhai	9825758151				
-	Mr. Aslambhai	9825228421				
Kutch Carrier Transport Co	Mr. C. R. Thackar	9825225591				
Agarwal Handling Agency	Mr. Rakesh Thackar	9426928728				
Active Cargo Movers	Mr. Narendra	9825220411				
Raghuvirsingh & Sons	Mr. Harcharan	9879104853				
Thacker Brothers	Mr. Kamleshbhai	9825296107				
Kiran Roadlines	Mr. Pankaj Gadvi	9879104552				
Regal Shipping	Mr. Ashok Dudi	9825326328				
Rathore Freight Carriers		220759/ 220380				

ANNEXURE H

Detail of CSR Activities

Sr.No	List of CSR Works for the Oct 2024 to Till March-2025 Name of work		Approved cost (Rs in Lakhs)	
1	Request for construction of relocatable of sports arena at Gandhidham Military Station,HQ 98 Artillery Brigade Military Station Gandhidham	₹	28.00	
2	Proposal for construction of Police Community Hall at Police Headquarters Shinay.Office of the Superintendent of Police, East – Kutch Gandhidham.	₹	100.00	
3	Proposal for providing AWG system at their check posts located in the Runn of Kutch,Commandant BSF Station Gandhidham	₹	82.70	
4	Proposal for providing 4000 pieces of Tripal/Tarpaulin,Matri Sena Charitable Trust	₹	32.00	
5	Proposal for Upgrading Satellite Eye Hospital at Bhuj.1.Request for financial support for the addition of cornea and retina outpatient departments (OPD), a spectacle dispensing unit, and a medicine counter as part of our OPD activities, & equipment purchase.	₹	35.08	
6	Proposal for financial assistance for purchase of C Arm and OT table to start Orthopedic at St. Joseph's Hospital Gandhidham,ST. Joseph's Hospital Trust, Gandhidham.	₹	28.78	
7	Proposed to establish a women empowerment center, through Ujjas Mahila Sangh,Gandhidham	₹	119.48	
8	CSR fund for extension of building of pre- primary unit of S.H.N. Academy School being managed by Indian Institute of Sindhology at Adipur	₹	71.55	
9	CSR Grant for 'Strengthening of School Ecosystem at Primary School Level in Kachchh District,Ladies Environment Action Foundation (LEAF), Gandhinagar	₹	50.00	
Total Amount		₹	547.59	