DEENDAYAL PORT AUTHORITY(Erstwhile: DEENDAYAL PORT TRUST)

www.deendayalport.gov.in

Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch).

Gujarat: 370 201. Fax: (02836) 220050 Ph.: (02836) 220038

Dated: 02/04/2025

EG/WK/4751/Part (3 remaining facilities-II) / 56

To,
Shri T. C. Patel,
Unit Head, Kachchh,
Gujarat Pollution Control Board,
Paryavaran Bhavan,
Sector 10A, Gandhinagar- 382 010.

- <u>Sub:</u>
 Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Authority (Erstwhile: Deendayal Port Trust) at Gandhidham, Kutch, Gujarat <u>Submission of compliance report of stipulated conditions mentioned in the CTE issued by the GPCB req.</u>
- Ref.: 1. Amendment to NOC/CTE issued by the GPCB (CTE 89537) vide no. PC/CCA-KUTCH-1231 (2)/GPCB ID 44000/429717 dated 4/12/2017 for inclusion of the following three projects in the CTE granted for seven projects vide CTE 74334 dated 22/12/2015 and CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025.
 - 2. DPT letter no. EG/WK/4751/Part (3 remaining facilities-II) dated 13/07/2021.
 - 3. DPT letter no. EG/WK/4751/Part (3 remaining facilities-II) dated 8/2/2022.
 - 4. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II)/134 dated 06/07/2022
 - 5. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II)/284 dated 18/04/2023
 - 6. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II)/284 dated 18/04/2023
 - 7. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II)/356 dated 12/09/2023
 - 8. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II) dated 13/03/2024
 - 9. DPA letter no. EG/WK/4751/Part (3 remaining facilities-II)/135 dated 17/09/2024

Sir,

It is requested to kindly refer above cited references for the said subject.

In this connection, it is relevant to mention here that, the GPCB vide above mentioned letter no. PC/CCA-KUTCH-1231 (2)/GPCB ID 44000/429717 dated 4/12/2017 has issued amendment to NOC/CTE (CTE-89537) for inclusion of 3 remaining integrated facilities (Container terminal Tuna Tekra, Railway Line (NH 8 A to tuna – 11 km) and Construction of Port Craft Jetty & SNA Section), proposed by DPA and validity up to 15/11/2022. Further, GPCB issued CTE validity extension (CTE-125870) vide Order dated 27/04/2023 with validity up to 15/11/2025.

It is also to submit here that, based on the CRZ Recommendation granted by the GCZMA dated 29/6/2016, the MoEF&CC, GoI had accorded EC & CRZ Clearance dated 18/2/2020 for remaining 3 integrated facilities as mentioned above. Accordingly, DPA had submitted compliance report vide aforementioned letter to the GPCB.

***********	Con	
***********	·COL	

Now, please find enclosed herewith compliance report of conditions stipulated in CTE Order (period up to September, 2024) along with necessary enclosures as **Annexure I**, for kind perusal & record please.

Further, as per the MoEF&CC, Notification S.O.5845 (E) dated 26.11.2018, stated that "In the said notification, in paragraph 10, in sub-paragraph (ii), for the words "hard and soft copies" the words "soft copy" shall be substituted". Accordingly, we are submitting herewith soft copy of the same through e-mail ID uh-gpcb-kute@gujarat.gov.in

This has the approval of the Chief Engineer, Deendayal Port Authority.

Yours faithfully,

Dy. Chief Engineer & EMC(I/c)
Deendayal Port Authority

Copy to: Regional Officer,

Encl.: As above

Gujarat Pollution Control Board,

Regional office,

East Kutch, Gandhidham-370201. Email Id ro-gpcb-kute@gujarat.gov.in

Annexure 1

COMPLIANCE REPORT (up to September 2024)

<u>Subject:</u> Compliance report of conditions stipulated in Consent to Establish (CTE/NOC) issued by GPCB for the project "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Authority (Erstwhile: Kandla Port Trust) at Gandhidham, Kutch, Gujarat ".

Ref.: Amendment to NOC/CTE issued by the GPCB (CTE – 89537) vide no. PC/CCA-KUTCH-1231 (2)/GPCB ID 44000/429717 dated 4/12/2017 for inclusion of the following three projects in the CTE granted for seven projects vide CTE – 74334 dated 22/12/2015. Further, DPA had obtained CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025.

Specific Condition	Compliance
Subject to the following Specific Condition	ons.
You shall not commence of any construction activities of project, till obtaining EC clearance from MoEF&CC, GoI.	The MoEF&CC, GoI accorded EC & CRZ Clearance for "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Trust (Erstwhile: Kandla Port Trust) at Gandhidham, Kutch, Gujarat" vide letter dated 18/2/2020.
You shall have to comply with the all conditions stipulated in ToR of MoEF in order of EC no. F. No. 10-9/2017-IA.III dated 6/6/2017.	Based on the ToR issued by the MoEF&CC, GoI dated 6/6/2017, the NABET accredited EIA Consultant had prepared EIA/EMP report as per ToR and accordingly, the MoEF&CC, GoI had accorded the EC & CRZ Clearance dated 18/2/2020.
You shall have to comply with the all conditions of CRZ vide order no. ENV-10-2015-248-E (T Cell), dated 29/6/2016.	The compliance report of the stipulated conditions in the CRZ Recommendation dated 29/6/2016 is attached herewith as Annexure A .
Conditions under Water Act 1974.	
There shall be no industrial effluent generation from the loading and unloading activities at Port and other ancillary operations.	N/A Project at Sr. No.1, i.e., Development of Container Terminal at Tuna off-Tekra on BOT Basis – Containerized cargo will be handled. Project at Sr. no. 2, i.e., Providing a Railway Line from NH 8A to Tuna Port. – For cargo movement in connection with the Dry Bulk Terminal at Tuna Tekra. Project at Sr. no.3, i.e. Construction of Port Craft Jetty & Shifting of SNA
	Subject to the following Specific Condition You shall not commence of any construction activities of project, till obtaining EC clearance from MoEF&CC, GoI. You shall have to comply with the all conditions stipulated in ToR of MoEF in order of EC no. F. No. 10-9/2017-IA.III dated 6/6/2017. You shall have to comply with the all conditions of CRZ vide order no. ENV-10-2015-248-E (T Cell), dated 29/6/2016. Conditions under Water Act 1974. There shall be no industrial effluent generation from the loading and unloading activities at Port and other ancillary

			Costian For neutring of Dout surfts
2.2	() = 1		Section – For parking of Port crafts.
3.2	(a) The total water consumption for shall not exceed 11 KL/day.		Agreed with the condition.
	(b) The quantity of Domestic waste water (sewage) shall not exceed 8 KL/Day		Agreed with the condition.
3.3	The quantity of sewage shall	conform to the	DPA has been appointing a NABL-
	following standards:		accredited laboratory for monitoring
	Parameters	GPCB Norms	environmental parameters, and
	PH	6.5 to 9	reports are being submitted from time
	BOD (5 days at 20 *C)	30 mg/L	to time to the GPCB, IRO, MoEF&CC, GoI, and Gandhinagar. Recently, DPA
	Suspended solid Fecal Coliform	100 mg/L 1000	appointed GEMI, Gandhinagar, to
	recar Comorni	1000	regularly monitor environmental
			parameters vide Work Order dated
			15/02/2023. The work is in progress,
			and the latest environmental
			monitoring report submitted by GEMI, Gandhinagar, is attached herewith as
			Annexure B.
			Fan Duaiset at Cu. No. 1 which is under
			For Project at Sr. No. 1 which is under construction, kindly refer compliance
			submitted by M/s HGCTKPL
			(concessionaire of the project) placed
			at Annexure C.
3.4	the above standards shall be utilized for		Agreed with the condition.
	the above standards shall be utilized for plantation/gardening within premises.		For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure B . For Project at Sr. No. 1 which is under construction, kindly refer compliance
			submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure C.
3.5	The unit shall install flow measuring category wise given in water cess act – 193 consumption of water.	e (category as	Point noted

4	Conditions Under Air Act 1981.				
4.1			Not applicable.		
	shall be no flue gas emission from storage handling activity and other ancillary operations.		The application		
4.2	The applicant shall provide portholes,		Not applicable		
		r, platform et			
	monit	toring the air	emission and shall be		
	open	for inspection t	o and for u	se of Boards	
		The chimney			
		us sources o			
		ned by number			
		these shall be		displayed to	
4.2		ate identification		C-II	DDA has been some station a NADI
4.3	The	concentration			DPA has been appointing a NABL-
		neters in the			accredited laboratory for monitoring
		ises of the ind limits specifie			environmental parameters, and
		nal Ambient			reports are being submitted from time
		lards issued		linistry of	to time to the GPCB, IRO, MoEF&CC,
		onment and	,	dated 16 th	GoI, and Gandhinagar. Recently, DPA
	Nove	mber, 2009.			appointed GEMI, Gandhinagar, to
					regularly monitor environmental
	Sr.	Pollutant	Time	Concent	parameters vide Work Order dated
	No		weighte	ration in	15/02/2023. The work is in progress,
	•		d	Ambient	and the latest environmental
			Average	air in	monitoring report submitted by GEMI,
				µg/M³	Gandhinagar, is attached herewith as
	1	Sulphur	Annual	50	
		Dioxide	24 Hours	80	Annexure B.
	2	(SO2)	Annual	40	For Project at Sr. No. 1 which is under
	2	Nitrogen Dioxide	24 Hours	80	construction, kindly refer compliance
		(NO ₂)	24 110015	80	submitted by M/s HGCTKPL
	3	Particulate	Annual	60	• •
		Matter (Size	24 Hours	100	(concessionaire of the project) placed
		less than 10	2		at Annexure C.
		μm) OR			
		PM ₁₀			
	4	Particulate	Annual	40	
		Matter (Size	24 Hours	60	
		less than			
		2.5 mm) OR			
		PM _{2.5}			
4.4	The	oncentration of	Noise in ar	mbient air	DPA has been appointing a NABL-
1.4	The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels:			accredited laboratory for monitoring	
				,	
			environmental parameters, and		
	Between 6 A.M. and 10 P.M.: 75 dB (A)		reports are being submitted from time		
	Between 10 P.M. and 6 A.M.: 70 dB (A)) dB (A)	to time to the GPCB, IRO, MoEF&CC,
1					GoI, and Gandhinagar. Recently, DPA

appointed GEMI, Gandhinagar, regularly monitor environmental parameters vide Work Order dated 15/02/2023. The work is in progress, latest and the environmental monitoring report submitted by GEMI, Gandhinagar, is attached herewith as Annexure B. For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s **HGCTKPL** (concessionaire of the project) placed at **Annexure C. Conditions Under Hazardous Waste** 5.1 The applicant shall provide temporary a) DPA appointed **GPCB** has storage facilities for each type of hazardous authorized vendors for the waste per hazardous management and recycling of as (management, handling & trans boundary hazardous waste as per the movement) Rule, 2008 as amended from Hazardous Waste Management time to time. Rule, 2008 and its subsequent amendments. Further, DPA has appointed GEMI, Gandhinagar for the work "Preparation of Plan for Management of Plastic Wastes, Solid Waste, including C&D waste, E-waste. Hazardous waste, including Biomedical and Non-Hazardous Waste in the Deendayal Port Authority" vide Work Order dated 24/01/2023. The work is completed and the final report is attached as **Annexure D**. b) For Project at Sr. No. 1 which is under construction, kindly refer by compliance submitted HGCTKPL (concessionaire of the project) placed at **Annexure C.** 5.2 The applicant shall be obtain membership of Not applicable common TSDF site for disposal Hazardous waste as categorized in Hazardous waste (Management, Handling & trans boundary Movement) Rules, 2008 as amended from time to time. **General Conditions** 6 6.1 Any change in personnel, equipment or Agreed with the condition. In case of

	modular conditions or modulared to the	any shanes in newspaper and accommon
	working conditions as mentioned in the consent form / order should immediately be intimated to this Board.	any change in personnel, equipment or working conditions as mentioned in the consent form/order, DPA will inform to the GPCB.
6.2	The waste generator shall be totally responsible for (i.e collection, storage, transportation and ultimate disposal) of the waste generated.	DPA has entered into a 'Selling Agency' agreement with M/s. MSTC (Govt. of India Entreprise), Vadodara on 04/01/2022 for disposal of scrap, surplus items, unserviceable equipment etc.
		Further, DPA has appointed GEMI, Gandhinagar for the work of "Preparation of Plan for Management of Plastic Wastes, Solid Waste, including C&D waste, E-waste, Hazardous waste, including Biomedical and Non-Hazardous Waste in the Deendayal Port Authority" vide Work Order dated 24/01/2023. The work is completed and final report is attached as Annexure D .
		For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure C.
6.3	Records of waste generation, its management and annual returns shall be submitted to Gujarat Pollution Control Board in Form – 4 by 31st January of every year.	DPA regularly submitted annual return Hazardous waste in Form IV to the Gujarat Pollution Control Board. The annual return for the year 2022-23 is submitted along with the earlier compliance report submitted on 12/09/2023.
6.4	In case of any accident of the same shall be submitted in form – 5 to Gujarat Pollution Control Board.	Agreed with the condition.
6.5	Applicant shall comply relevant provision of "Public liability insurance act – 91".	Not applicable
6.6	Unit shall take all concrete measures to show tangible result in waste generation reduction, voidance, reuse and recycle. Action taken in this regard shall be submitted within 03 months and also along with form 4.	The waste generated has been disposed of by selling out to registered recyclers/reprocessors. DPA regularly submitted the annual return of hazardous waste in Form IV to the GPCB. The annual return for the year 2023-24 is attached herewith as Annexure E.
		For Project at Sr. No. 1 which is under construction, kindly refer compliance

		submitted by M/s HGCTKPL (concessionaire of the project) placed
outside the main factory gate wi quantity and nature of hazardou being handled in the plant wastewater and air emission	Industry shall have to display on – line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emission and solid hazardous waste generated within the factory premises.	at Annexure C. Agreed with the Condition. The necessary display boards are already provided at the entry gates, showing the required details as mentioned in the condition. Further, DPA has already initiated the action for inviting the tenders for
		carrying out online ambient air quality monitoring system (24 X 7). However, no response received. Hence, now, DPA is exploring other possibilities for appointing agency for installation of CAAQMS system.
		For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure C.
6.8	Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 10 meters width is developed.	DPA entrusted work of green belt development in and around the Port area to the Forest Department, Gujarat, for Rs. 352 lakhs (Area 32 hectares). The work is completed.
		Further, DPA has appointed the Gujarat Institute of Desert Ecology (GUIDE) for "Green belt development in Deendayal Port Authority and its Surrounding Areas, Charcoal site' (Phase-I)" vide Work Order No.EG/WK/4757/Part [Greenbelt GUIDE, dated 31st May 2022. The final report submitted by GUIDE, Bhuj, has been submitted in the last compliance report.
		Further, DPA has accorded the work of "Green belt development in DPA and its surrounding area (Phase II) to Gujarat Institute of Desert Ecology (GUIDE), Bhuj, for the plantation of 10000 saplings of suitable species vide work order dated 23/06/2023. The work is completed and final report

		is attached as Annexure F .
		For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure C.
6.9	The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the water (prevention & control of pollution)	
	Cess Act-1977.	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure C.

Annexure -A

COMPLIANCE REPORT (up to September, 2024)

<u>Subject</u>: Compliance of conditions stipulated in CRZ recommendations issued by GCZMA for the proposal "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Authority (Erstwhile: Deendayal Port Trust) at Gandhidham, Kutch, Gujarat".

<u>CRZ Recommendations:</u> Letter No. ENV-10-2015-248-E (T - Cell) dated 29/6/2016 of Director (Environment) & Member Secretary, GCZMA, Forest & Environment Department, GoG.

Sr. No.	Conditions in CRZ Recommendation Letter	Compliance
	Specific Conditions	
1	The provisions of the CRZ notification of 2011 shall be strictly adhered to by the KPT. No activity in contradiction to the Provisions of the CRZ Notification shall be carried out by the KPT.	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A. The Projects at Sr. No. 2 & 3 of the EC & CRZ Clearance have already been completed.
2	All necessary permissions, under various laws/Rules/Notifications issued there under from different Government Departments/agencies shall be obtained by M/s KPT before commencing any enabling activities for proposed project.	DPA obtained CTE/NOC from the GPCB vide No. PC.CCA-KUTGH-1231(2) I GPCB ID 44000 dated 4/12/2017 (Copy of the same has been communicated with the last compliance report submitted). Further, DPA had obtained CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025 (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024). MoEF&CC, GoI accorded EC & CRZ Clearance for the subject proposal of DPA dated 18/2/2020.
3	The KPT shall have to ensure that there shall not be any damage to the existing mangrove area.	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A . The Projects at Sr. No. 2 & 3 of the EC & CRZ Clearance have already been completed. Further, DPA has already prepared a mangrove preservation plan for the entire Kandla area.
4	The KPT shall effectively implement the Mangrove Development, Protection & Management Plan for control of	DPA has undertaken Mangrove Plantation in an area of 1600 Hectares since the year 2005. The copy of the details has already

	indirect impact on mangrove habitat.	been communicated with the earlier compliance reports submitted.
		Further, the Study on the present Status, Conservation and Management Plan for Mangroves of Kandla Port region submitted by M/s GUIDE, Bhuj, had already been communicated to the GCZMA & to the MoEF&CC, GoI.
		In addition to the above, DPA appointed M/s GUIDE, Bhuj for "Regular Monitoring of Mangrove Plantation carried out by DPA" (period 15/9/2017 to 14/9/2018 vide work order dated 1/9/2017 and 24/5/2021 to 23/5/2022 vide work order dated 3/5/2021). The final report submitted by M/s GUIDE, Bhuj, for the years 2017 to 2018 and 2021 to 2022 has already been communicated with the six monthly compliance submitted.
		Further, vide work order dated 10/06/24 DPA appointed M/s GUIDE, Bhuj, for "Regular Monitoring of Mangrove Plantation carried out by DPA" (Period 10/06/2024 to 09/06/2025) (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024)
5	The KPT shall have to make a provision that mangrove areas get proper flushing water and free flow of water shall not be obstructed.	It is hereby assured that necessary provisions will be made so that mangrove areas get proper flushing water and free flow of water shall not be obstructed.
6	The KPT shall have to abide by whatever decision taken by the GCZMA for violation of CRZ Notification.	Point noted
7	No dredging, reclamation or any other project related activities shall be carried out in the CRZ area categorized as CRZ I (i) and it shall have to be ensured that the	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A.
	mangrove habitats and other ecologically important and	The Projects at Sr. No. 2 & 3 of the EC & CRZ Clearance have already been completed.
	significant areas, if any, in the region are not affected due to any of the project activity.	DPA had authorised the work to M/s GUIDE, Bhuj for continuous monitoring of Marine Ecology since the year 2017 and the final reports are being submitted from time to time to the Regional Office, MoEF&CC, GoI, Gandhinagar & to the MoEF&CC, GoI, New Delhi along with six monthly compliance reports submitted.

	1	
8	The KPT shall participate financially	The final report for the year 2023-24 has already been submitted along with compliance report submitted on 17/09/2024. In continuation to the same, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /72 dated 10/06/2024 for the period of 2024-27 (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024) Deendayal Port Authority had already
	in installing and operating the Vessel Traffic Management System in the Gulf of Kachchh and shall also take the lead in preparing and operational sing and regularly updating it after getting it vetted by the Indian Coast Guard.	contributed Rs. 41.25 crores for installing and operating the VTMS in the Gulf of Kachchh.
9	The KPT shall strictly ensure that no creeks or rivers are blocked due to any activity at Kandla.	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A. The Projects at Sr. No. 2 % 3 of the EC % CR7.
		The Projects at Sr. No. 2 & 3 of the EC & CRZ
10	10 Mangrove plantation in an area of 50 ha. Shall be carried out by the KPT within 2 years in time bound manner on Gujarat coastline either within or outside the Kandla port Trust area and six monthly compliance reports along with the	As per the directions of the GCZMA and MoEF&CC, GoI, till date, DPA has undertaken Mangrove Plantation in an area of 1600 Hectares since the year 2005, which includes 50 Hectares mangrove plantation as per stipulated condition.
	satellite images shall be submitted to the Ministry of Environment and Forest as well as to this Department without fail.	Further, DPA appointed M/s GUIDE, Bhuj for "Regular Monitoring of Mangrove Plantation carried out by DPA" (period 15/9/2017 to 14/9/2018 vide work order dated 1/9/2017 and 24/5/2021 to 23/5/2022 vide work order dated 3/5/2021). The final report submitted by M/s GUIDE, Bhuj, for the years 2017 to 2018 and 2021 to 2022 have already been submitted in the six monthly compliance communicated vide letter 06/07/2022.
		In continuation of the same, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /72 dated 10/06/2024 for further period of 2024 – 27 (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024)
11	No activities other than those permitted by the competent	For Project at Sr. No. 1 which is under construction, kindly refer compliance
<u> </u>		complained

	authority under the CRZ Notification shall be carried out in	submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A.
	the CRZ area.	The Projects at Sr. No. 2 & 3 of the EC & CRZ Clearance have already been completed.
		However, no activities other than those permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.
12	No ground water shall be tapped for any purpose during the proposed expansion modernization activities.	Water requirements will be met through procurement from GWSSB or private tankers. It is hereby assured that no groundwater shall be tapped.
13	All necessary permissions from different Government Departments / agencies shall be obtained by the KPT before commencing the expansion activities.	DPA has already obtained the necessary Environmental & CRZ Clearance for three project activities dated 18/2/2020. Further, Consent to Establish from GPCB had already been obtained from GPCB (CTE – 89537) vide no. PC/CCA-KUTCH-1231 (2)/GPCB ID 44000/429717 dated 4/12/2017. Further, DPA had obtained CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025 (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024).
14	No effluent or sewage shall be discharged into sea/creek or in the CRZ area and it shall be treated to conform to the norms prescribed by the GPCB and would be reused /recycled within the plant premises.	DPA already has a Sewage Treatment Plant capacity of 1.5 MLD. The treated wastewater is utilized for plantation/gardening purposes. Further, BOT Operator will provide necessary arrangements for a sewage treatment facility.
15	All the recommendations and suggestion given by the Mantec Consultants Pvt. Ltd. in their Comprehensive Environment Impact Assessment report for conservation / protection and betterment of environment shall be implemented strictly by the KPT.	DPA has installed Mist Canon at the Port area to minimize the dust. Further, to control dust pollution in other area, regular sprinkling through tankers on roads and other staking yards is being done. For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure B .

For ship waste management, DPA issued Grant of License/Permission to carry out the work of collection and disposal of "Hazardous Waste/Sludge/ Waste Oil" and "Dry Solid Waste (Non- Hazardous)" from Vessels calling at Deendayal Port" through DPA contractors. Further, it is to state that, all ships are required to follow DG Shipping circulars regarding the reception facilities at Swachch Sagar portal.

Further, DPA has appointed GEMI, Gandhinagar for the work of "Preparation of Plan for Management of Plastic Wastes, Solid Waste, including C&D waste, E-waste, Hazardous waste, including Biomedical and Non-Hazardous Waste in the Deendayal Port Authority" vide Work Order 24/01/2023. The work is completed. Final report submitted herewith is attached as Annexure C.

DPA assigned work to M/s GUIDE, Bhuj, for regular monitoring of Marine Ecology since the year 2017 (From 2017 – 2021), and final reports of the same are being submitted regularly to the Regional Office, MoEF&CC, GoI, Gandhinagar as well as to the MoEF&CC, GoI, New Delhi along with compliance reports submitted.

The final report for the year 2023-24 has already been submitted along with compliance report submitted on 17/09/2024.

In continuation to the same, DPA issued a work order to M/s GUIDE vide its letter no. EG/ WK/ 4751/ Part (Marine Ecology Monitoring) /72 dated 10/06/2024 for the period of 2024-27 (A copy of the same has already been submitted along with compliance report submitted on 17/09/2024)

As already informed, DPA entrusted work of green belt development in and around the Port area to the Forest Department, Gujarat at Rs. 352 lakhs (Area 32 hectares). The work is completed.

Further, DPA has appointed the Gujarat Institute of Desert Ecology (GUIDE) for "Green belt development in Deendayal Port Authority and its Surrounding Areas,

Charcoal site' (Phase-I)" vide Work Order No.EG/WK/4757/Part [Greenbelt GUIDE, dated 31st May 2022. The final report submitted by GUIDE, Bhuj have already been communicated with the earlier six monthly compliance reports submitted via letter dated 13/03/2024.

Further, DPA has accorded the work of "Green belt development in DPA and its surrounding area (Phase II) to Gujarat Institute of Desert Ecology (GUIDE), Bhuj for the plantation of 10000 saplings of suitable species vide work order dated 23/06/2023. The same is in process.

For dredged material management, DPA has been assigning work to M/s GUIDE, Bhuj for analysis of dredged material since the year 2017 and the reports are being submitted from time to time along with compliance reports submitted.

The final Report submitted by M/s GUIDE, Bhuj for the period 2022-2023 has already been submitted along with compliance report submitted on 17/09/2024.

Further, Dredged Material will be disposed of at designated location as identified by the CWPRS, Pune.

For energy conservation measures, DPA is already generating 20 MW of Wind energy. In addition to it, DPA has commissioned a 45 kWP Solar Plant at Gandhidham. Further, it is relevant to mention that, two out of four Nos. of Harbour Mobile Crane (HMC) made electric operated. Balance 02 Nos. shall be made electric operated by 2023-2024. Four Nos. of Deisel operated RTGs converted to e-RTGs. Retrofitting of hydrogen fuel cell in Tug Kalinga and Pilot Boat Niharika to be done as a pilot project under the guidance of MoPSW. Also, 14 Nos. of EV cars to be hired in this year and 03 Nos. EV Bus to be procured by the year 2023-24.

Further, for Oil Spill Management, DPA is already having Oil Spill Contingency Plan in place and Oil Response System as per the NOS-DCP guidelines.

The construction and operational activities shall be carried out in

For Project at Sr. No. 1 which is under construction, kindly refer compliance

	such a way that there is no negative impact on mangroves and other coastal /marine habitats. The	submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A.
	construction activities and dredging shall be carried out only	The Projects at Sr. No. 2 & 3 of the EC & CRZ Clearance have already been completed.
	under the constant supervision and guidelines of the Institute of National repute like NIOT.	Further, DPA has already prepared a mangrove preservation plan for the entire Kandla area.
17	The KPT shall contribute financially for any common study or project that may be proposed by this Department for environmental management / conservation / improvement for the Gulf of Kutch.	Point noted.
18	The construction debris and / or any other of waste shall not be disposed of into the sea, creek or the CRZ areas. The debris shall be removed from the construction site	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A.
	immediately after the construction is over.	However, the construction debris and/ or any other waste will not be disposed of into the sea and the debris will be removed from the construction site after construction is over.
		Further, it is relevant to mention here that, DPA had already issued general circular vide dated 3/9/2019 regarding Construction and Demolition Waste Management for strict implementation in DPA (Copy has already been communicated with the last compliance report submitted).
19	The construction camps shall be located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental	For Project at Sr. No. 1 which is under construction, kindly refer compliance submitted by M/s HGCTKPL (concessionaire of the project) placed at Annexure A. However, construction camps with necessary amenities will be located in the already
	conditions are not deteriorated by the construction labours.	nearby developed areas. Further, due care shall be taken so that the environmental conditions are not deteriorated by the construction labours.
20	The KPT shall regularly updates its Local Oil Spill Contingency and Disaster management Plan in accordance with the National Oil Spill and Disaster Contingency Plan and shall submit the same to the MoEF, GoI and this department after having it vetted through the Indian Coast Guard.	 Point noted. Deendayal Port already has an updated Disaster Management Plan (A copy of the Plan has already been submitted with the earlier compliances). Further, the Local Oil Spill Contingency Plan is already available with Deendayal Port Authority. DPA has also executed MOU with Oil Companies, i.e., IOCL, HPCL, BPCL etc., for combating the Oil Spill at Kandla

21	The KPT shall bear the cost of the	Agreed with the condition
	external agency that may be	Agreed with the condition
	appointed by this Department for	
	supervision/monitoring of	
	proposed activities and the	
	environmental impacts of the proposed activities.	
22	The KPT shall take up massive	DPA has planted about one lakhs trees in
	greenbelt development activities in	roadside dividers, colony areas at Kandla and
	and around Kandla and also within the KPT limits.	Gopalpuri, in the greenbelt area of Gandhidham & Adipur Township, Sewage
	the Ki i mines.	Treatment Plants at Gopalpuri & Kandla and
		extensive green belt development plans
		initiated at different locations in Township
		areas.
		DPA entrusted work of greenbelt
		development in and around the Port area to
		the Forest Department, Gujarat, at the cost of Rs. 352 lakhs (Area 32 hectares), and the
		work is completed.
		Further, DPA has appointed the Gujarat
		Institute of Desert Ecology (GUIDE) for
		"Green belt development in Deendayal Port Authority and its Surrounding Areas,
		Charcoal site' (Phase-I)" vide Work Order
		No.EG/WK/4757/Part [Greenbelt GUIDE,
		dated 31 st May 2022. The final report submitted by GUIDE, Bhuj has been
		submitted by GOIDE, Bridg has been submitted in the last compliance report.
		Further, DPA assigned work to GUIDE, Bhuj
		vide work order dated 23/06/2023 for "Green
		belt development in Deendayal Port Authority and its Surrounding Areas (Phase
		II) (10000 plants). The work is completed
		and final report is attached herewith as
22	The MDT about house to the	Annexure D.
23	The KPT shall have to contribute financially for talking up the socio-	For Project at Sr. No. 1 which is under construction, kindly refer compliance
	economic upliftment activities in	submitted by M/s HGCTKPL (concessionaire
	this region in construction with the Forest and Environment	of the project) placed at Annexure A.
	Department and the District	Already CSR works are being attended by
	Collector/District Development	DPA. The details of CSR activities
	Officer.	undertaken/to be undertaken by DPA are
24	A separate budget shall be	placed in Annexure E. The allocation made under the
24	earmarked for environmental	"Environmental Services & Clearance of
	management and socioeconomic	other related Expenditure" during BE 2024-
	activities and details there of shall	25 is Rs. 657 Lakhs.
	be furnished to this Department as well as the MoEF, GOI. The details	
	Wen as the more, dot. The details	

	with respect to the expenditure from this budget head shall also be	
	furnished.	
25	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	DPA is already having Environment Management cell. Further, DPA has also appointed expert agency for providing Environmental Experts from time to time. Recently, DPA appointed M/s Precitech Laboratories, Vapi for providing Environmental Experts vide work order dated 5/2/2021. In addition, it is relevant to submit here that, DPA has appointed Manager (Environment) on contractual basis for the period of 3 years and further extendable to 2 years (Copy of the details has already been communicated with the last compliance report submitted).
		Further, for monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure B .
26	An Environmental reports indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the KPT to this Department as well as to the MoEF&CC, GOI.	For monitoring of environmental parameters, DPA has been appointing NABL Accredited laboratory and reports are being submitted from time to time to the GPCB, IRO, MoEF&CC, GoI, Gandhinagar. Recently, DPA appointed GEMI, Gandhinagar for regular monitoring of environmental parameters vide Work Order dated 15/02/2023. The work is in progress and the latest environmental monitoring report submitted by GEMI, Gandhinagar is attached herewith as Annexure B . DPA has been submitting the environmental monitoring report along with the six-monthly
27	The KPT shall have to contribute financially to support the National Green Corps Scheme being implemented in Gujarat by the GEER Foundation, Gandhinagar, in construction with Forests and Environment Department.	compliance report to IRO, MoEF&CC, GoI. Point noted.

28	A six monthly reports on	DPA has been regularly submitting six
	·	monthly compliance reports of the stipulated
		conditions to GCZMA and the Regional Office,
	to be furnished by the KPT on	MoEF&CC, GoI.
	regular basis to this	
	department/MoEF, GOI.	
29	Any other condition that may be	Point noted.
	stipulated by this department from	
	time to time for environmental	
	protection/management purpose	
	shall also have to be complied with	
	by the KPT.	

Annexure -B

Environmental Monitoring Report (EMR)

prepared under

"Preparing and monitoring of environmental monitoring and management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years"

(Monitoring Period: June-July 2024)

Document Ref No.: GEMI/DPA/782(2)(3)/2024-25/121

Submitted to:

Deendayal Port Authority (DPA), Kandla

Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

GEMI Bhavan, 246-247, GIDC Electronic Estate, Sector-25, Gandhinagar-382025

"AN ISO 9001:2015, ISO 14001:2015 AND ISO 45001:2018 Certified Institute"

© Gujarat Environment Management Institute (GEMI)

All rights reserved. This "Environment Monitoring Report (June-July 2024)" is prepared as a part of the project "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years". No part of this report may be reproduced, distributed or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Director, Gujarat Environment Management Institute (GEMI).

Disclaimer:

Gujarat Environment Management Institute (GEMI) has taken all reasonable precautions in the preparation of this report. The data presented in this report have been collected as per the relevant Standard Operating Procedures, Protocols and Guidelines. GEMI believes that the information and facts presented in the report are accurate as on the date it was written. However, it is impossible to dismiss absolutely, the possibility of errors or omissions. GEMI therefore specifically disclaims any liability resulting from the use or application of the information contained in this report. The information is not intended to serve as legal advice related to the individual situation.

About this Document

Gujarat Environment Management Institute (GEMI) has been assigned with the work of "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority (DPA) at Kandla and Vadinar for a period of 3 years" by DPA, Kandla. Under the said project the report titled "Environment Monitoring Report (June-July 2024)" is prepared.

• Name of the Report: Environment Monitoring Report (June-July 2024)

• Date of Issue: 10/09/2024

• **Version:** 1.0

• **Report Ref.:** GEMI/DPA/782(2)(3)/2024-25/121

Table of Contents

CHAPT	TER 1: INTRODUCTION	1
1.1	Introduction	2
1.2	Green Ports Initiative	2
1.3	Importance of EMP	3
1.4	Objectives and scope of the Study	4
СНАРТ	TER 2: METHODOLOGY	6
2.1	Study Area	7
a.	Kandla	7
b.	Vadinar	7
2.2	Environmental Monitoring at Kandla and Vadinar	11
СНАРТ	TER 3: METEOROLOGY MONITORING	13
3.1	Meteorology Monitoring	14
3.2	Results and discussion	16
3.3	Data Interpretation and Conclusion	17
СНАРТ	TER 4: AMBIENT AIR QUALITY MONITORING	20
4.1	Ambient Air Quality	21
4.2	Result and Discussion	27
4.3	Data Interpretation and Conclusion	33
4.4	Remedial Measures:	35
СНАРТ	TER 5: DG STACK MONITORING	37
5.1	DG Stack Monitoring	38
5.2	Result and Discussion	41
5.3	Data Interpretation and Conclusion	41
СНАРТ	TER 6: NOISE MONITORING	42
6.1	Noise Monitoring	43
6.2	Result and Discussion	47
6.3	Data Interpretation and Conclusion	48
6.4	Remedial Measures	48
СНАРТ	TER 7: SOIL MONITORING	49
7.1	Soil Quality Monitoring:	50
7.2	Result and Discussion	54

7.3	Data Interpretation and Conclusion	54
СНАРТ	ER 8: DRINKING WATER MONITORING	57
8.1	Drinking Water Monitoring	58
8.2	Result and Discussion	63
8.3	Data Interpretation and Conclusion	65
8.4	Remedial Measures	67
СНАРТ	ER 9: SEWAGE TREATMENT PLANT MONITORING	68
9.1	Sewage Treatment Plant (STP) Monitoring:	69
9.2	Result and Discussion	75
9.3	Data Interpretation and Conclusion	77
9.4	Remedial Measures:	77
СНАРТ	ER 10: MARINE WATER QUALITY MONITORING	79
10.1	Marine Water	80
10.2	Result and Discussion	84
10.3	Data Interpretation and Conclusion	86
СНАРТ	ER 11: MARINE SEDIMENT QUALITY MONITORING	89
11.1	Marine Sediment Monitoring	90
11.2	Result and Discussion	94
11.3	Data Interpretation and Conclusion	94
СНАРТ	ER 12: MARINE ECOLOGY MONITORING	98
12.1	Marine Ecological Monitoring.	99
12.2	Result and Discussion	106
Annexu	re 1: Photographs of the Environmental Monitoring conducted at Kandl	a115
	re 2: Photographs of the Environmental Monitoring conducted at Vadin	
List of	f Tables	
Table 1:	Details of Automatic Weather Station	14
Table 2:	Automatic Weather Monitoring Station details	14
Table 3:	Meteorological data for Kandla and Vadinar	16
Table 4:	Details of Ambient Air monitoring locations	21
Table 5:	Parameters for Ambient Air Quality Monitoring	27
Table 6:	Summarized results of $PM_{10\text{,}}PM_{2.5\text{,}}SO_2\text{,}\ NO_x\text{,}\ VOC$ and CO for Ambient A	ir quality
mo	nitoring	27
Table 7:	Summarized results of Benzene for Ambient Air quality monitoring	33
Table 8:	Summarized results of Polycyclic Aromatic Hydrocarbons	33

Table 9: Summarized results of Non-methane VOC	33
Table 10: Details of DG Stack monitoring locations	38
Table 11: DG stack parameters	41
Table 12: DG monitoring data	41
Table 13: Details of noise monitoring locations	43
Table 14: Details of the Noise Monitoring	46
Table 15: Ambient Air Quality norms in respect of Noise	46
Table 16: The Results of Ambient Noise Quality	47
Table 17: Details of the Soil quality monitoring	50
Table 18: Soil parameters	51
Table 19: Soil Quality for the sampling period	54
Table 20: Details of Drinking Water Sampling Locations	58
Table 21: List of parameters for Drinking Water Quality monitoring	
Table 22: Summarized results of Drinking Water quality	63
Table 23: Details of the monitoring locations of STP	69
Table 24: Treated effluent Standards (as per CC&A of Kandla STP)	69
Table 25: Norms of treated effluent as per CC&A of Vadinar STP	72
Table 26: List of parameters monitored for STP's at Kandla and Vadinar	75
Table 27: Water Quality of inlet and outlet of STP of Kandla	76
Table 28: Water Quality of inlet and outlet of STP of Vadinar	76
Table 29: Details of the sampling locations for Marine water	80
Table 30: List of parameters monitored for Marine Water	83
Table 31: Results of Analysis of Marine Water Sample for the sampling period	85
Table 32: Details of the sampling locations for Marine Sediment	90
Table 33: List of parameters to be monitored for Sediments at Kandla and Vadinar	93
Table 34: Summarized result of Marine Sediment Quality	94
Table 35: Standard Guidelines applicable for heavy metals in sediments	96
Table 36: Comparison of Heavy metals with Standard value in Marine Sediment	96
Table 37: Details of the sampling locations for Marine Ecological	99
Table 38: List of parameters to be monitored for Marine Ecological Monitoring	102
Table 39: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivi	ty
(GPP), Pheophytin and Chlorophyll for Kandla and Vadinar	106
Table 40: Phytoplankton variations in abundance and diversity in sub surface sampling	
stations	109
Table 41: Species richness Index and Diversity Index in Phytoplankton	110
Table 42: Zooplankton variations in abundance and diversity in sub surface sampling	
stations	111
Table 43: Species richness Index and Diversity Index in Zooplankton	111
Table 44: Benthic Fauna variations in abundance and diversity in sub surface sampling	112
Table 45: Species richness Index and Diversity Index in Benthic Organisms	113

List of Maps

· · · · · · · · · · · · · · · · · · ·	
Map 1: Locations of Kandla and Vadinar	8
Map 2: Locations of Kandla Port	9
Map 3: Locations of Vadinar Port	10
Map 4: Locations for Ambient Air Monitoring at Kandla	24
Map 5: Locations for Ambient Air Monitoring at Vadinar	25
Map 6: Locations for DG Stack monitoring at Kandla	39
Map 7: Locations for DG Stack monitoring at Vadinar	40
Map 8: Locations for Noise Monitoring at Kandla	44
Map 9: Locations for Noise Monitoring at Vadinar	45
Map 10: Locations for Soil Quality Monitoring at Kandla	52
Map 11: Locations for Soil Quality Monitoring at Vadinar	53
Map 12: Locations for Drinking Water Monitoring at Kandla	59
Map 13: Locations for Drinking Water Monitoring at Vadinar	60
Map 14: Locations for STP Monitoring at Kandla	73
Map 15: Locations for STP Monitoring at Vadinar	74
Map 16: Locations for Marine Water Monitoring at Kandla	81
Map 17: Locations for Marine Water Monitoring at Vadinar	82
Map 18: Location of Marine Sediment Monitoring at Kandla	91
Map 19: Locations of Marine Sediment Monitoring at Vadinar	92
Map 20: Locations of Marine Ecological Monitoring at Kandla	100
Map 21: Locations of Marine Ecological Monitoring at Vadinar	101
List of Figures	
Figure 1: Methodology flow chart	12
Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Va	adinar15
Figure 3: Process flow diagram of STP at Kandla	70
Figure 4: Process flow diagram of STP at Gopalpuri	71
Figure 5: Process flowchart for the STP at Vadinar	72
List of Graphs	
Graph 1: Spatial trend in Ambient PM ₁₀ Concentration	32
Graph 2: Spatial trend in Ambient PM _{2.5} Concentration	31
Graph 3: Spatial trend in Ambient SOx Concentration	32
Graph 4: Spatial trend in Ambient NOx Concentration	31
Graph 5: Spatial trend in Ambient CO Concentration	32
Graph 6: Spatial trend in Ambient Total VOCs	32

List of Abbreviations

A	Acceptable Limits as per IS: 10500:2012
AAQ	Ambient Air Quality
AWS	Automatic Weather monitoring stations
BIS	Bureau of Indian Standards
BOD	Biochemical Oxygen Demand
BQL	Below Quantification Limit
CCA	Consolidated Consent & Authorization
CO	Carbon Monoxide
COD	Chemical Oxygen Demand
СРСВ	Central Pollution Control Board
DO	Dissolved Oxygen
DPA	Deendayal Port Authority
EC	Electrical Conductivity
EMMP	Environmental monitoring and Management Plan
EMP	Environment Management Plan
FPS	Fine Particulate Sampler
FY	Financial Year
GEMI	Gujarat Environment Management Institute
	Indian Farmers Fertiliser Cooperative Limited
IFFCO	1
IMD	India Meteorological Department
IOCL	Indian Oil Corporation Limited
LNG	Liquefied Natural Gas
MGO	Marine Gas Oil
MMTPA	Million Metric Tonnes Per Annum
MoEF	Ministry of Environment & Forests
MoEF&CC	Ministry of Environment, Forest and Climate Change
NAAQS	National Ambient Air Quality Standards
NO _x	Nitrogen oxides
NTU	Nephelometric Turbidity Unit
OOT	Off Shore Oil Terminal
OSR	Oil Spill Response
P	Permissible Limits as per IS: 10500:2012
PAH	Poly Aromatic Hydrocarbons
PM	Particulate Matter
PTFE	Polytetrafluoroethylene
RCC	Reinforced Concrete Cement
RDS	Respirable Dust Sampler
SAR	Sodium Adsorption Ratio
SBM	Single Bouy Mooring
SO _x	Sulfur oxides Sulfur oxides
STP	Sewage Treatment Plant
TC	Total Coliforms
TDS	Total Dissolved Solids
TOC	Total organic Carbon
TSS	Total Suspended Solids
VOC	Volatile Organic Compounds

CHAPTER 1: INTRODUCTION

1.1 Introduction

Kandla Port, also known as the Deendayal Port is a seaport in Kachchh District near the city of Gandhidham in Gujarat state in western India. Located on the Gulf of Kachchh, it is one of major ports on the western coast, and is located at 256 nautical miles southeast of the Port of Karachi in Pakistan and over 430 nautical miles north-northwest of the Port of Mumbai (Bombay). It is the largest port of India by volume of cargo handled. Deendayal Port's journey began in 1931 with the construction of RCC Jetty by Maharao Khengarji. Kandla was constructed in the 1950s as the chief seaport serving western India, after the independence of India. On 31st March 2016, Deendayal Port created history by handling 100 MMT cargo in a year and became the first Major Port to achieve this milestone. Deendayal Port Authority (DPA), India's busiest major port in recent years, is gearing up to add substantial cargo handling capacity with private sector participation. DPA has created new record by handling 137 MMTPA (at Kandla and Vadinar) during the financial year 2022-23. The DPA had commissioned the Off-shore Oil Terminal facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. Further, significant Quantum of infrastructural upgradation has been carried out & excellent maritime infrastructure has been created at Vadinar for the 32 MMTPA Essar Oil Refinery in Jamnagar District.

1.2 Green Ports Initiative

DPA is committed to sustainable development and adequate measures are being taken to maintain the Environmental well-being of the Port and its surrounding environs. Weighing in the environmental perspective for sustained growth, the Ministry of Shipping had started, Project Green Ports" which will help in making the Major Ports across India cleaner and greener. "Project Green Ports" will have two verticals - one is "Green Ports Initiatives" related to environmental issues and second is "Swachh Bharat Abhiyaan".

The Green Port Initiatives include twelve initiatives such as preparation and monitoring plan, acquiring equipment required for monitoring environmental pollution, acquiring dust suppression system, setting up of sewage/waste water treatment plants/ garbage disposal plant, setting up Green Cover area, projects for energy generation from renewable energy sources, completion of shortfalls of Oil Spill Response (OSR) facilities (Tier-I), prohibition of disposal of almost all kind of garbage at sea, improving the quality of harbour wastes etc.

DPA had also appointed GEMI as an Advisor for "Making Deendayal Port a Green Port-Intended Sustainable Development under the Green Port Initiatives. DPA has also signed MoU with Gujarat Forest Department in August 2019 for Green Belt Development in an area of 31.942 Ha of land owned by DPA. The plantation is being carried out by the Social Forestry division of Kachchh.

1.3 Importance of EMP

Port activities can cause deterioration of air and marine water quality in the surrounding areas due to multifarious activities. The pollution problems usually caused by port and harbour activities can be categorized as follows:

- 1. Air pollutant emissions due to ship emissions, loading and unloading activities, construction emission and emissions due to vehicular movement.
- 2. Coastal habitats may be destroyed and navigational channels silted due to causeway construction and land reclamation.
- 3. Deterioration of surface water quality may occur during both the construction and operation phases.
- 4. Harbour operations may produce sewage, bilge wastes, solid waste and leakage of harmful materials both from shore and ships.
- 5. Human and fish health may be affected by contamination of coastal water due to urban effluent discharge.
- 6. Oil pollution is one of the major environmental hazards resulting from port/harbour and shipping operations. This includes bilge oil released from commercial ships handling non-oil cargo as well as the more common threat from oil tankers.
- 7. Unregulated mariculture activities in the port and harbour areas may threaten navigation safety.

Hence, for the determination of levels of pollution, identification of pollution sources, control and disposal of waste from various point and non-point sources and for prediction of pollution levels for future, regular monitoring and assessment are required during the entire construction and operation phase of a major port. As per the Ministry of Environment, Forest and Climate Change (MoEF&CC), The Environmental Management Plan (EMP) is required to ensure sustainable development in the area surrounding the project. Hence, it needs to be an all encompasses plan consist of all mitigation measures for each item wise activity to be undertaken during the construction, operation and the entire life cycle to minimize adverse environmental impacts resulting from the activities of the project. for formulation, implementation and monitoring of environmental protection measures during and after commissioning of projects. The plan should indicate the details of various measures are taken and proposed to be taken for appropriate management of the environment of Deendayal Port Authority.

It identifies the principles, approach, procedures and methods that will be used to control and minimize the environmental and social impacts of operational activities associated with the port. An EMP is a required part of environmental impact assessment of a new port project but could also be evolved for existing ports. It is useful not only during the construction and operational phases of the new port but also for operation of existing ports to ensure the effectiveness of the mitigation measures implemented and to further provide guidance as to the most appropriate way of dealing with any unforeseen impacts.

It is extremely essential that port and harbour projects should have an Environmental Monitoring and Management Plan (EMMP), which incorporates monitoring of Ambient Air, Drinking Water, Noise, Soil, Marine (water, sediment, ecology) quality along with the collection of online meteorological data throughout the duration of the project.

To ensure the effective implementation of the EMP and weigh the efficiency of the mitigation measures, it is essential to undertake environmental monitoring both during construction and operation period. In view of the above, Gujarat Environment Management Institute (GEMI) has been awarded with the work "Preparing and Monitoring of Environmental Monitoring and Management Plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years" vide letter No. EG/WK/EMC/1023/2011/III/239 dated: 15/02/2023 by DPA.

This document presents the Environmental Monitoring Report (EMR) for Kandla and Vadinar for the environmental monitoring done during the period from 17th March-16th April 2024.

1.4 Objectives and scope of the Study

In line with the work order, the key objective of the study is to carry out the Environmental Monitoring and preparation the Management Plan for Kandla and Vadinar for a period of 3 years". Under the project, Environmental monitoring refers to systematic assessment of ambient air, water (drinking and surface), soil, sediment, noise and ecology in order to monitor the performance and implementation of a project in compliance with Environmental quality standards and/or applicable Statutory norms.

The scope of work includes not limited to following:

- 1. To review the locations/stations of Ambient Air, Ambient Noise, drinking water, and Marine Water, Soil and Sediments monitoring within the impacted region in-and-around DPA establishment, in view of the developmental projects.
- 2. To assess the Ambient Air quality, quality at 6 stations at Kandla and 2 at Vadinar in terms of gases and particulate matter.
- 3. To assess the DG stack emissions (gases and particulate matter).
- 4. To assess Drinking water quality at twenty locations (18 at Kandla and 2 at Vadinar) in terms of Physical, Chemical and Biological parameters viz., Color, Odor, turbidity, conductivity, pH, Total Dissolved Solids, chlorides, Hardness, total iron, sulfate, NH₄, PO₄, and bacterial count on a monthly basis.
- 5. To assess the Marine water quality in terms of aquatic Flora and Fauna and Sediment quality in terms of benthic flora and fauna.
- 6. To assess Marine Water Quality and sediment in term of physical and chemical parameter.
- 7. To assess the trends of water quality in terms of Marine ecology by comparing the data collected over a specified time period.
- 8. Weekly sample collection and analysis of inlet & Outlet points of the Sewage Treatment Plant (STP) to check the water quality being discharged by DPA as per the CC&A.
- 9. Carrying out monthly Noise monitoring; twice a day at the representative stations for a period of 24 hours.
- 10. Meteorological parameters are very important from air pollution point of view, hence precise and continuous data collection is of utmost importance. Meteorological data on wind speed, wind direction, temperature, relative humidity, solar radiation and

- rainfall shall be collected from one permanent station at DPA, Kandla and one permanent station at Vadinar.
- 11. To suggest mitigation measures, based on the findings of this study and also check compliance with Environmental quality standards, Green Port Initiatives, MIV 2030, and any applicable Statutory Compliance.
- 12. To recommend Environment Management Plans based on Monitoring programme and findings of the study.

CHAPTER 2: METHODOLOGY

2.1 Study Area

Under the study, the locations specified by Deendayal Port Authority for the areas of Kandla and Vadinar would be monitored. The details of the study area as follows:

a. Kandla

Deendayal Port (Erstwhile Kandla Port) is one of the twelve major ports in India and is located on the West Coast of India, in the Gulf of Kutch at 23001'N and 70013'E in Gujarat. The Major Port Authorities Act 2021 is the governing statute for Administration of Major Ports, under which, Deendayal Port Trust (DPT) has become Deendayal Port Authority (DPA). At Kandla, DPA has sixteen (16) cargo berths for handling various types of Dry Bulk Cargo viz, fertilizer, food grains, Coal, sulphur, etc.

• Climatic conditions of Kandla

Kandla has a semi-desert climate. Temperature varies from 25°C to 44°C during summer and 10°C to 25°C during winter. The average annual temperature is 24.8 °C. The average rainfall is 410 mm, most of which occurs during the monsoon from the months of June-to-September.

b. Vadinar

Vadinar is a small coastal town located in Devbhumi Dwarka district of the Gujarat state in India located at coordinates 22° 27′ 16.20″ N - 069° 40′ 30.01″. DPA had commissioned the Off Shore Oil Terminal (OOT) facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. The OOT of the DPA contributes in a large way to the total earnings of this port. Vadinar is now notable due to the presence of two refineries-one promoted by Reliance Industries and Essar Oil Ltd.


DPA also handled 43.30 MMT at Vadinar (which includes transhipment), the containerized cargo crossed 4.50 lakh TEU, grossing a total of 100 MMT overall. Major commodities handled by the Deendayal Port are Crude Oil, Petroleum product, Coal, Salt, Edible Oil, Fertilizer, etc.

• Climatic conditions of Vadinar

Vadinar has a hot semi-arid climate. The summer season lasts from March-to-May and is extremely hot, humid, but dry. The climatic conditions in Vadinar are quite similar to that recorded in its district head quarter i.e., Jamnagar. The annual mean temperature is 26.7 °C. Rainy season with extremely erratic monsoonal rainfall that averages around 630 millimetres. The winter season is from October-to-February remains hot during the day but has negligible rainfall, low humidity and cool nights.

The Kandla and Vadinar port have been depicted in the **Map 1** as follows:

Map 1: Locations of Kandla and Vadinar Port

Map 2: Locations of Kandla Port

Map 3: Locations of Vadinar Port

2.2 Environmental Monitoring at Kandla and Vadinar

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during project operation. With the knowledge of baseline conditions, the monitoring programme will serve as an indicator for identifying any deterioration in environmental conditions, thereby assist in recommending suitable mitigatory steps in time to safeguard the environment. Monitoring is as important as that of control of pollution since the efficiency of control measures can only be determined by a well-defined monitoring program. Environmental Monitoring is vital for monitoring the environmental status of the port for sustainable development. The list of main elements for which Environmental monitoring is to be carried out have been mentioned below:

- Meteorology
- Ambient Air
- DG Stack
- Noise
- Soil
- Drinking Water
- Sewage Treatment Plant
- Marine (Surface) water
- Marine Sediments
- Marine Ecology

GEMI has been entrusted by DPA to carry out the monitoring of the various aforementioned environmental aspects at the port, so as to verify effectiveness of prevailing Environment Management plan, if it confirms to the statutory and/or legal compliance; and identify any unexpected changes. Standard methods and procedures have been strictly adhered to in the course of this study. QA/QC procedures were strictly followed which covers all aspects of the study, and includes sample collection, handling, laboratory analyses, data coding, statistical analyses, interpretation and communication of results. The analysis was carried out in GEMI's NABL/MoEF accredited/recognized laboratory.

Methodology adopted for the study

Methodology is a strictly defined combination of practices, methods and processes to plan, develop and control a project along the continuous process of its implementation and successful completion. The aim of the project management methodology is to allow the control of whole process of management through effective decision-making and problem solving. The methodology adopted for the present study is shown in **Figure 1** as given below:

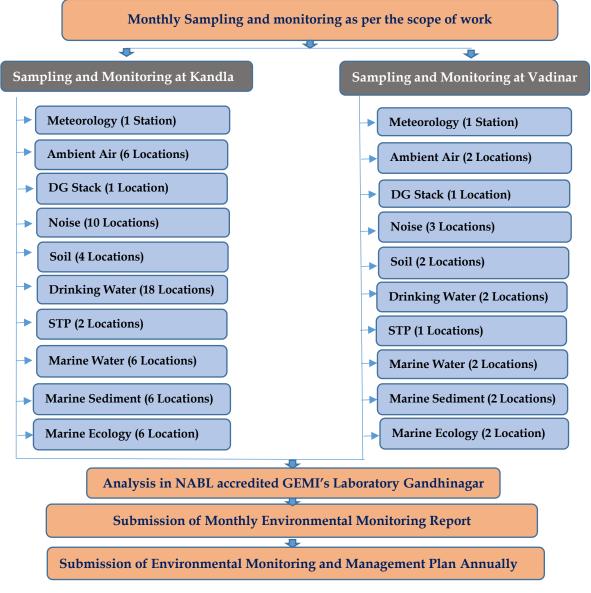


Figure 1: Methodology flow chart

The details of various sectors of Environment monitoring are described in subsequent chapters.

CHAPTER 3: METEOROLOGY MONITORING

3.1 Meteorology Monitoring

Meteorological conditions play a crucial role in dispersion of air pollutants as well as in environmental pollution studies particularly in pollutant transport irrespective of their entry into the environment. The wind speed and direction play a major role in dispersion of environment pollutants. In order to determine the prevailing micrometeorological conditions at the project site an Automatic Weather Monitoring Stations (AWS) of Envirotech make (Model: WM280) were installed at both the sites of Kandla and Vadinar at 10 m above the ground. The details of the AWS installed have been mentioned in **Table 1** as follows:

Table 1: Details of Automatic Weather Station

Sr. No.	Site	Location Code	Location Name	Latitude Longitude
1.	Kandla	AWS-1	Environment Laboratory (DPA)	23.00996N 70.22175E
2.	Vadinar	AWS-2	Canteen Area	22.39994N 69.716608E

Methodology

During the study, a continuous automatic weather monitoring station was installed at both the sites to record climatological parameters such as Wind speed, Wind Direction, Relative Humidity, Solar Radiation, Rainfall and Temperature to establish general meteorological regime of the study area. The methodology adopted for monitoring meteorological data shall be as per the standard norms laid down by Bureau of Indian Standards (BIS) and the India Meteorological Department (IMD). The details of Automatic Weather Monitoring Station have been mentioned in **Table 2**.

Table 2: Automatic Weather Monitoring Station details

Sr.	Details of Meteorological	Unit of	Instrument	Frequency
No.	Data	Measurement		
1.	Wind Direction	degree	Automatia	
2.	Wind Speed	Km/hr	Automatic Weather	
3.	Rainfall	mm/hr	Monitoring	Hourly
4.	Relative Humidity	% RH	Station	Average
5.	Temperature	°C	(Envirotech WM280)	
6.	Solar Radiation	W/m²	(111200)	

The Meteorological parameters were recorded at an interval of 1 hour in a day and the average value for all the Meteorological parameters were summarized for the sampling period of at both the observatory site.

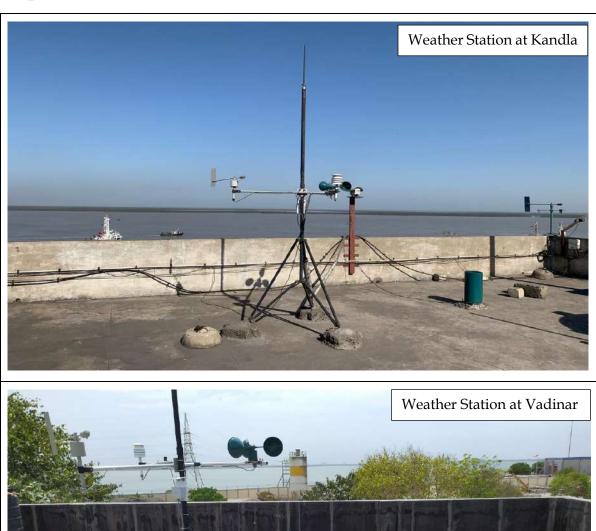


Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar

3.2 Results and discussion

The summary of hourly climatological observations recorded at Kandla and Vadinar during the monitoring period, with respect to significant parameters has been mentioned in Table 3 as follows:

	Table 3: Meteorological data for Kandla and Vadinar Details of Micro-meteorological data at Kandla Observatory											
Monitoring Period	Wind	l Speed (F	(m/h)	Ten	nperature	(°C)	Relati	ve humid	ity (%)	Solar Radiation	Wind Direction	Rainfall (mm)
Stat.	Mean	Max.	Min	Mean	Max	Min	Mean	Max	Min	(W/m²)	()	,
March- April, 2024	3.24	86	1.3	32.24	41.4	26.2	73.15	89.8	43.8	67.97	From West- South-West	3.96
				De	tails of M	licro-mete	eorologica	l data at \	Vadinar C	bservatory		
Monitoring Period	Wind	l Speed (F	(m/h)	Ten	nperature	(°C)	Relati	ve humid	ity (%)	Solar	Wind Direction	Rainfall
Stat.	Mean	Max.	Min	Mean	Max	Min	Mean	Max.	Min	Radiation (W/m²)	(°)	(mm)
											From South-	

3.3 Data Interpretation and Conclusion

Temperature

- a. **Kandla:** The ambient temperature for the monitoring period varies between the range of 26.2 41.4°C for Kandla, with average temperature of 32.24°C.
- b. **Vadinar:** The ambient temperature for the monitoring period varies between the range of 24.4 -36°C for Vadinar, with average temperature of 30.13°C.

• Relative Humidity

- a. **Kandla**: The Relative Humidity recorded between the range of 43.8 89.8%, with average Humidity of 73.15%.
- b. **Vadinar:** During the study period, the Relative Humidity varies between 55.3 91.5%, with average Humidity of 77.43%.

Rainfall

- a. Kandla: 3.96 rainfall was observed at Kandla.
- b. **Vadinar:** 0.43 rainfall was observed at Vadinar.

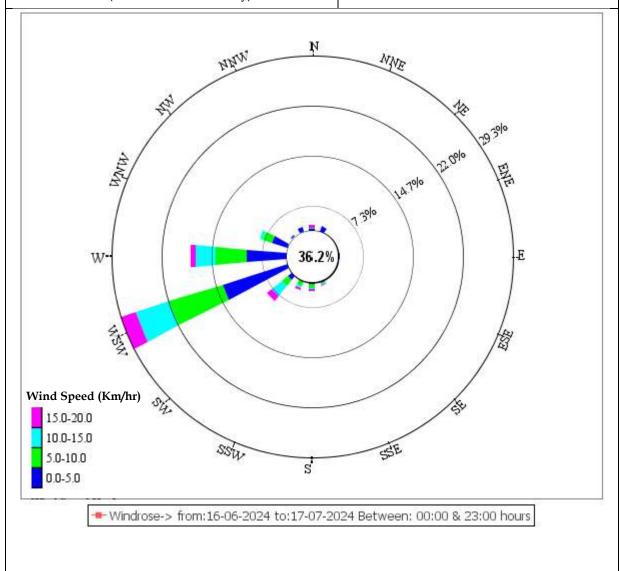
Wind Speed

Wind speed and Direction play a significant role in transporting the pollutants and thus decides the air quality.

- c. **Kandla:** Wind speed recorded ranges between 1.3 86, with average Wind Speed of 3.24 Km/hr.
- a. **Vadinar:** During the monitoring period, the Wind speed recorded ranges between 3.98 139.4, with average Wind Speed of 9.69 Km/hr.

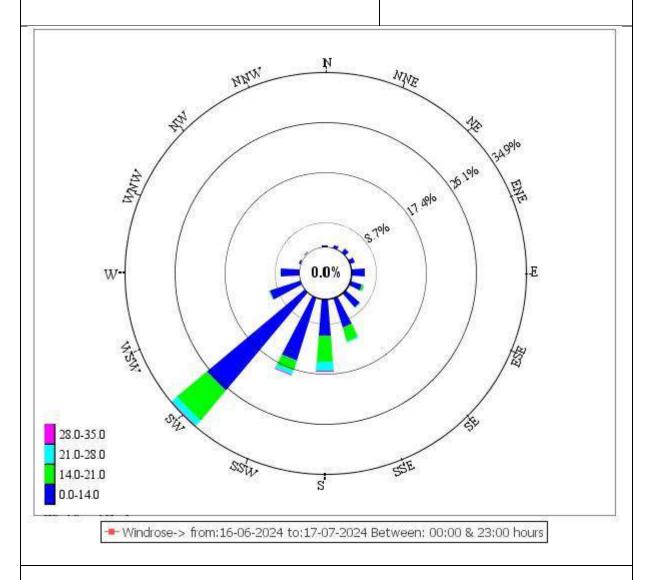
• Solar Radiation:

- a. **Kandla:** The average Solar Radiation for the monitoring period was recorded as 67.97 W/m².
- b. **Vadinar:** The average Solar Radiation was recorded as 71.63 W/m².


Wind rose diagram -

The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data.

This Wind Rose Diagram reveals that at Kandla and Vadinar, during the monitoring period, the prevailing winds predominantly blow from the West South West direction at Kandla, whereas, high speed winds were also observed to blow from West direction. At Vadinar, the winds were observed to blow from From South West direction.


Wind Rose Plot M/s Deendayal Port Authority Site: Kandla Port (Environment Laboratory) Display: Wind Direction Wind Speed (Km/hr)

Modeler: Envirotech Instruments Pvt. Ltd. Delhi.

Wind Rose Plot M/s Deendayal Port Authority Site: Vadinar Port (Canteen Area) Display: Wind Direction Wind Speed (Km/hr)

Modeler: Envirotech Instruments Pvt. Ltd. Delhi.

CHAPTER 4: AMBIENT AIR QUALITY MONITORING

4.1 Ambient Air Quality

It is necessary to monitor the ambient air quality of the study area, in order to determine the impact of the shipping activities and port operations on the ambient air quality. The prime objective of ambient air quality monitoring is to assess the present air quality and its conformity to National Ambient Air Quality Standards i.e. NAAQS, 2009. Ambient air quality has been monitored from 17th June to 16th July, 2024.

Methodology

The study area represents the area occupied by DPA and its associated Port area. The sources of air pollution in the region are mainly vehicular traffic, fuel burning, loading & unloading of dry cargo, fugitive emissions from storage area and dust arising from unpaved village roads. Considering the below factors, under the study, as per the scope specified by DPA eight locations wherein, 6 stations at Kandla and 2 at Vadinar have been finalized within the study area

- Meteorological conditions;
- > Topography of the study area;
- Direction of wind;
- ➤ Representation of the region for establishing current air quality status
- ➤ Representation with respect to likely impact areas.

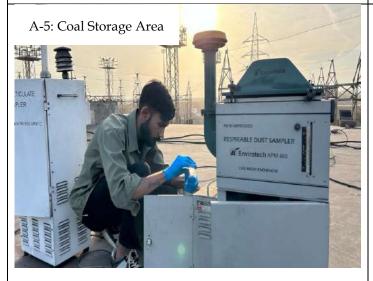
The description of various air quality stations monitored at Kandla and Vadinar have been specified in **Table 4**.

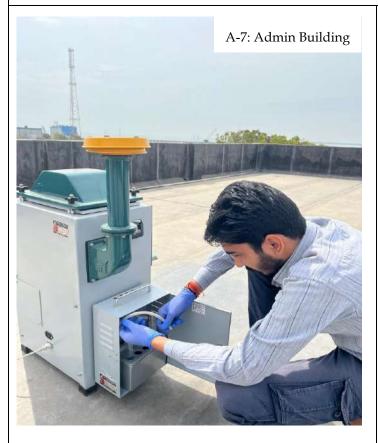
Location **Location Name** Latitude Longitude Significance No. Code 1. A-1 Oil Jetty No. 1 23.029361N 70.22003E Liquid containers and emission from ship 2. A-2 Oil Jetty No. 7 23.043538N 70.218617E 3. A-3 Kandla Port 23.019797N 70.213536E Vehicular activity and dust Colony emission Marine Bhavan 23.007653N 70.222197E Construction and vehicular 4. A-4 activity, road dust emission, A-5 23.000190N 70.219757E Coal Dust. Vehicular 5. Coal Storage Area activity 6. A-6 Gopalpuri 23.081506N 70.135258E Residential area, Hospital emission, vehicular activity 7. A-7 Admin Building 22.441806N 69.677056E Vehicular activity Vadinar A-8 Vadinar Colony 22.401939N 69.716306E Residential Area, burning waste, vehicular activity

Table 4: Details of Ambient Air monitoring locations

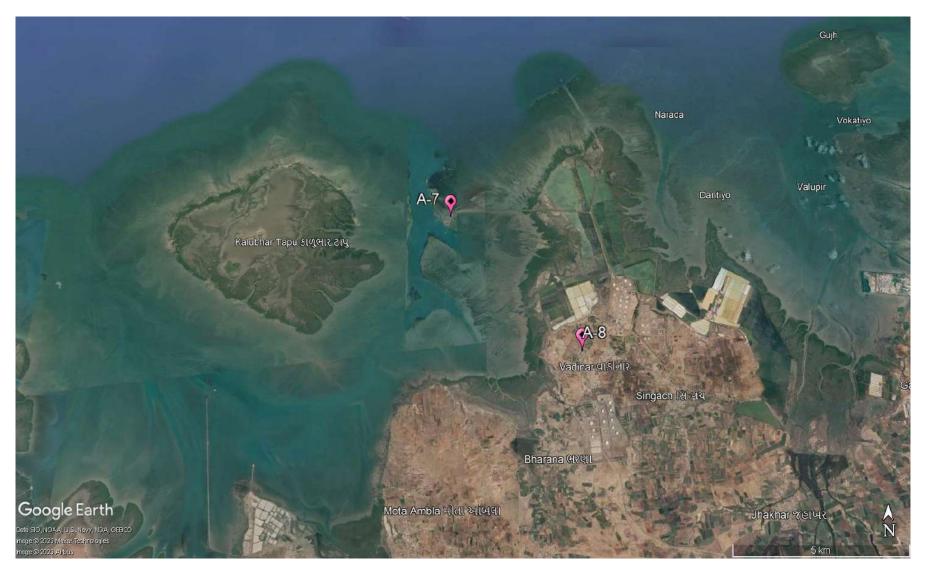
The monitoring locations at Kandla and Vadinar have been depicted in map in **Map 4 and** 5 respectively.

Ambient Air monitoring photos


Kandla



Vadinar



Map 4: Locations for Ambient Air Monitoring at Kandla

Map 5: Locations for Ambient Air Monitoring at Vadinar

Frequency

The sampling for Particulate matter i.e. PM_{10} and $PM_{2.5}$ and the gaseous components like SO_x , NO_x , CO as well as the Total VOCs were monitored twice in a week for a period of 24 hours a day. Whereas, the sampling for the components of PAH, Benzene and non-Methane VOCs was conducted on monthly basis.

Sampling and Analysis

The Sampling of the Ambient Air Quality parameters and analysis is conducted as per the CPCB guidelines of National Ambient Air Quality Monitoring. The sampling was performed at a height of 3.5 m (approximately) from the ground level. For the sampling of PM₁₀, calibrated 'Respirable Dust Samplers' were used, where Whatman GF/A microfiber filter paper of size 8''x 10'' were utilized, where the Gaseous attachment of the make Envirotech instrument was attached with Respirable Dust Sampler for the measurement of SO_x and NO_x. The Fine Particulate Sampler for collection of PM_{2.5} was utilized for the particulate matter of size <2.5 microns. A known volume of ambient air is passed through the cyclone to the initially pre-processed filter paper. The centrifugal force in cyclone acts on particulate matter to separate them into two parts and collected as following:

- Particles <10 μ size (Respirable): GF/A Filter Paper
- Particles <2.5 μ size (Respirable): Polytetrafluoroethylene (PTFE)

Sampling and analysis of ambient SO₂ was performed by adopting the 'Improved West and Gaeke Method'. The ambient air, drawn through the draft created by the RDS, is passed through an impinger, containing a known volume of absorbing solution of Sodium tetrachloromercurate, at a pre-determined measured flow rate of 1 liter/minute (L/min). Similarly, NO_x was performed by adopting the 'Jacob Hochheister Modified' (Na arsenite) method. The impinger contains known volume of absorbing solution of Sodium Arsenite and Sodium Hydroxide.

Data has been compiled for PM_{10} , $PM_{2.5}$, SO_x and NO_x samples of 24-hour carried out twice a week. In case of CO, one hourly sample were taken on selected monitoring days using the sensor-based CO Meter. For the parameters Benzene, Methane & Non-methane and Volatile Organic Carbons (VOCs), the Low Volume Sampler is used, where the charcoal tubes are used as sampling media. The sampling in the Low Volume Sampler (LVS) is carried out as per IS 5182 (Part 11): 2006 RA: 2017, where the ambient air flow rate is maintained at 200 cc/min, the volume of air that passes through the LVS during two hours monitoring is approx. 24 L.

The sampling of PAHs is carried out as per IS: 5182 (Part 12): 2004. Where, the EPM 2000 Filter papers are utilized in the Respirable Dust Sampler (RDS). For the parameters, Benzene, PAH & Non-methane VOC's, monthly monitoring is carried out. The details of the parameters with their frequency monitored are mentioned in **Table 5**:

Table 5: Parameters for Ambient Air Quality Monitoring

Sr.	Parameters	Units	Reference method	Instrument	Frequency
No. 1.	PM ₁₀	μg/m³	IS 5182 (Part 23): 2006	Respirable Dust Sampler (RDS) conforming to IS:5182 (Part-23): 2006	Twice in a week
2.	PM _{2.5}	μg/m³	IS:5182 (Part:24):2019	Fine Particulate Sampler (FPS) conforming to IS:5182 (Part-24): 2019	
3.	Sulphur Dioxide (SO _x)	μg/m³	IS 5182 (Part:2): 2001	Gaseous Attachment conforming to IS:5182 Part-2	
4.	Oxides of Nitrogen (NO _x)	μg/m³	IS:5182 (Part-6): 2006	Gaseous Attachment conforming to IS:5182 Part-6	
5.	Carbon Monoxide (CO)	mg/m³	GEMI/SOP/AAQM/11; Issue no 01, Date 17.01.2019: 2019	Sensor based Instrument	
6.	VOC	μg/m³	IS 5182 (Part 17): 2004	Low Flow Air Sampler	
8.	PAH	μg/m³	IS: 5182 (Part 12): 2004	Respirable Dust Sampler (RDS) conforming to IS:5182 (Part-12): 2004	Monthly
7.	Benzene	μg/m³	IS 5182 (Part 11): 2006 RA: 2017	Low Flow Air Sampler	
9.	Non-methane VOC	μg/m³	IS 5182 (Part 11): 2006	Low Volume Sampler	

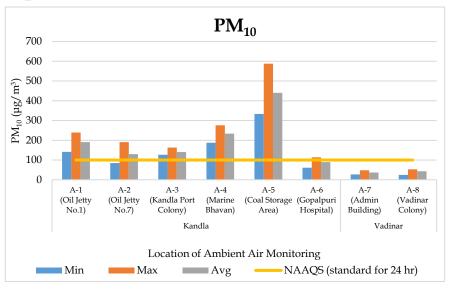
4.2 Result and Discussion

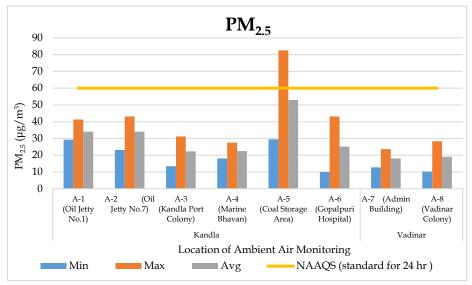
The summarized results of ambient air quality monitoring for the study period are presented in **Table-6 to 9** along with the graphical representation from **Graph 1 to Graph 6.** Various parameters monitored during the study have been presented by their maximum, minimum, average and Standard deviation.

Table 6: Summarized results of PM₁₀, PM_{2.5}, SO₂, NO_x, VOC and CO for Ambient Air quality monitoring

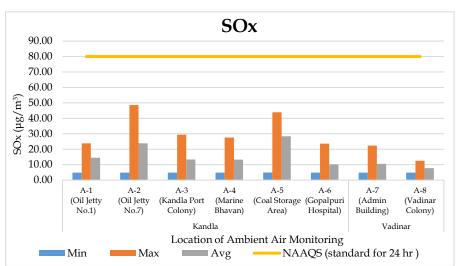
Station Code	Unit of Average Concentration		Average Pollutant Concentration					
& Name	Pollutants	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m³)	NO_X (µg/m³)	VOC (μg/m³)	CO (mg/m³)	
Ivallie	Duration		(24	hr)		(2 hr)	(1 hr)	
	NAAQS by CPCB Monitoring days	100	60	80	80	-	2	
	17/06/2024	225.63	39.64	18.34	12.68	0.11	0.80	
A-1:	19/06/2024	239.33	41.33	22.50	19.33	0.07	0.86	
Oil Jetty	24/06/2024	196.37	30.50	4.96	6.28	0.22	0.81	
No.1,	27/06/2024	208.63	34.6	16.64	9.29	0.14	0.74	

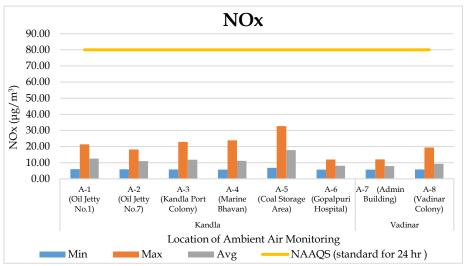
	That of Assessed						
Station Code	Unit of Average		Ave	rage Polluta	nt Concentra	ation	
Station Code	Concentration					T	I
&	Pollutants	PM_{10}	PM _{2.5}	SO_2	NO_X	VOC	CO
Name		(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)	(mg/m ³)
	Duration		(24	hr)		(2 hr)	(1 hr)
	NAAQS						
	by CPCB	100	60	80	80	-	2
	Monitoring						
	days	100.07	31.19	22.02	11 51	0.10	0.66
Kandla	2/7/2024	188.37 141.41	29.24	23.83 4.88	11.51 <6	0.18	0.66
	4/7/2024 8/7/2024	168.27	33.12	11.45	14.2	0.12	0.82
	10/7/2024	156.88	32.79	13.38	21.37	0.07	0.32
	Minimum	141.41	29.24	11.45	6.28	0.14	0.79
	Maximum	239.33	41.33	23.83	21.37	0.07	0.86
	Average	190.61	34.05	17.69	13.52	0.13	0.79
	Std. Deviation	33.85	4.32	4.90	5.34	0.05	0.06
	17/06/2024	182.61	43.13	36.12	18.21	0.08	0.81
	19/06/2024	191.11	40.62	48.62	10.74	0.03	0.79
	24/06/2024	110.57	36.00	4.92	5.93	0.11	0.78
	27/06/2024	146.32	34.38	30.40	16.77	0.16	0.74
	2/7/2024	119.29	38.64	22.56	8.38	0.09	0.77
A-2:	4/7/2024	84.43	23.11	4.89	5.96	0.12	0.75
Oil Jetty	8/7/2024	105.63	26.14	16.21	11.41	0.18	0.76
No.7,	10/7/2024	96.47	30.22	26.33	10.16	0.05	0.78
Kandla	Minimum	84.43	23.11	4.89	5.93	0.03	0.74
	Maximum	191.11	43.13	48.62	18.21	0.18	0.81
	Average	129.55	34.03	23.76	10.95	0.10	0.77
	Std. Deviation	39.74	7.05	15.08	4.54	0.05	0.02
	17/06/2024	146.07	13.39	4.87	5.78	0.20	0.87
	19/06/2024	129.49	14.12	4.96	5.84	0.13	0.86
	24/06/2024	134.77	28.61	29.38	12.34	0.19	0.84
	27/06/2024	163.17	31.16	21.16	9.46	0.12	0.82
A-3:	2/7/2024	141.42	27.42	10.27	19.7	0.16	0.85
Kandla	4/7/2024	150.52	24.32	4.79	5.94	0.11	0.82
Port	8/7/2024	126.63	18.38	16.83	12.75	0.27	0.83
Colony,	10/7/2024	131.31	21.15	14.77	22.87	0.32	0.86
Kandla	Minimum	126.63	13.39	4.79	5.78	0.11	0.82
	Maximum	163.17	31.16	29.38	22.87	0.32	0.87
	Average	140.42	22.32	13.38	11.84	0.19	0.84
	Std. Deviation	12.40	6.67 22.25	8.92	6.52 5.76	0.07	0.02
	17/06/2024	272.90		4.84	5.76	0.16	0.89
	19/06/2024 24/06/2024	253.03 275.72	18.10 22.69	493 4.89	5.72 5.83	0.21	0.86
A 1-	, ,			27.57			
A-4:	27/06/2024	264.42	27.55		12.25	0.09	0.88
Marine Bhavan,	2/7/2024	218.13	23.41	19.38	14.07	0.11	0.87
Kandla	4/7/2024	193.37	25.45	4.97	5.85	0.23	0.85
Kanala	8/7/2024	187.73	21.76	13.49	16.19	0.21	0.84
	10/7/2024	203.38	18.93	17.38	23.89	0.25	0.87
	Minimum	187.73	18.10	4.84	5.72	0.04	0.84
	Maximum	275.72	27.55	27.57	23.89	0.25	0.89


Station Code Concentration Pollutants PM ₁₀ PM ₂₃ SO ₂ NO _N (µg/m³) (µg/m³		Unit of Average			D 11 (
Name Duration (µg/m³) (µg/m³	Station Code	Concentration		ation				
Duration C24 hr C2 hr	&	Pollutants			_	,.		
NAAQS by CPCB 100 60 80 80 - 2	Name		(μg/m ³)	, ,	, , ,	(μg/m ³)	, , ,	
Average Aver				(24	hr)		(2 hr)	(1 hr)
Monitoring Average 233.59 22.52 13.22 11.20 0.16 0.86								
Average 233.59 22.52 13.22 11.20 0.16 0.86 Std. Deviation 36.88 3.11 8.84 6.68 0.08 0.02 17/06/2024 469.24 58.31 36.74 32.68 0.21 0.88 19/06/2024 522.30 68.62 43.86 10.44 0.14 0.92 24/06/2024 411.80 82.57 4.94 6.76 0.13 0.94 41.80 82.57 4.94 6.76 0.13 0.94 41.80 82.57 4.94 6.76 0.13 0.94 41.94		\ ,	100	60	80	80	-	2
Average		0						
Std. Deviation 36.88 3.11 8.84 6.68 0.08 0.02			222 EQ	22.52	12.00	11 20	0.16	0.86
17/06/2024								
A-5: Coal Storage Area, Kandla Minimum A-6: Gopalpuri Hospital, Kandla A-6: Gopalpuri Hospital, Kandla A-6: Gopalpuri Hospital, Kandla A-6: A-6: A-7: A-7: Admin Building, Vadinar A-8: Bu 27/2024 38.24 44/7/2024 522.30 588.16 522.30 522.30 588.67 53.67 31.45 31.45 31.887 31.48 82.57 4.94 6.76 6.092 0.007 0.91 333.28 29.42 4.94 6.76 0.007 0.88 43.00 333.28 29.42 4.94 6.76 0.007 0.88 Maximum 333.28 29.42 4.94 6.76 0.07 0.88 A-7: A-7: Admin Building, Vadinar A-7: Admin Building, Vadinar A-8: 61.906/2024 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 43.80 43.07 4.77 4.85 5.94 0.16 0.85 A-7: A-7: Admin Building, Vadinar A-8: 63.65 63.65 63.10 83.07 83.67 83.07 84.85 5.73 0.11 0.72 0.71 10.07 4.79 5.68 0.19 0.67 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.97 0.88 0.97 0.02 0.67 0.67 0.70 0.88 0.75 0.91 0.91 0.90 0.88 0.90								
A-5: Coal Storage Area, Kandla A-6: Coal Storage Area, Kandla A-6: Coal Storage Area, Kandla A-7: A-8: Coal Storage Area, Kandla 2/7/2024 383.47 29.42 18.66 12.80 0.07 0.91 0.92 0.92 0.94 0.92 0.94 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95								
A-5: Coal Storage Area, Kandla Minimum A-6: Gopalpuri Hospital, Kandla A-6: Gopalpuri Hospital, Kandla A-6: Gopalpuri Hospital, Kandla A-7: Coalpuri Hospital, Kandla A-6: Gopalpuri Hospital, Kandla A-7: A-7: A-7: A-7: A-7: A-7: A-7: A-7								
A-5: 2/7/2024 446.39 49.22 24.76 26.92 0.10 0.89 4/7/2024 383.47 29.42 18.66 12.80 0.07 0.91 10.7/2024 383.47 29.42 18.66 12.80 0.07 0.91 10.7/2024 333.28 43.66 37.09 18.47 0.12 0.90 Minimum 333.28 29.42 4.94 6.76 0.07 0.88 Maximum 588.16 82.57 43.86 32.68 0.22 0.94 Average 440.09 52.95 28.37 17.79 0.15 0.91 17/06/2024 113.68 43.07 4.97 5.87 0.11 0.73 19/06/2024 95.01 10.01 4.88 5.92 0.22 0.67 24/06/2024 105.1 29.38 16.23 8.37 0.13 0.7 22/06/2024 105.1 29.38 16.23 8.37 0.13 0.7 22/06/2024 98.34 36.44 11.74 11.33 0.08 0.75 4/7/2024 61.27 16.27 4.85 5.94 0.16 0.85 8/7/2024 83.67 18.87 9.68 9.79 0.20 0.82 Minimum 61.27 10.01 4.79 5.68 0.08 0.67 Maximum 113.68 43.07 23.58 11.96 0.24 0.78 54. Deviation 16.91 10.86 6.88 2.63 0.06 0.07 11/06/2024 44.86 15.69 15.82 11.76 0.12 0.71 19/06/2024 29.92 23.66 4.88 6.33 0.14 0.69 24/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 19/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 19/06/2024 29.72 23.66 29.72 23.66 4.88 5.73 0.11 0.70 0.70 0.88 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73		, ,						
A-5: Coal Storage Area, Kandla Areage Area, Kandla Areage Areag		· '						
Aca, Kandla Africant Africa	A-5:	, ,						
Area, Kandla		, ,						
Minimum 333.28 29.42 4.94 6.76 0.07 0.88	0							
Maximum	Kandla	, ,						
Average								
Std. Deviation								
A-6: Gopalpuri Hospital, Kandla Minimum 61.27 10/6/2024 44.86 A-6: A-crage 89.30 25td. Deviation 16.91 16.91 16.92 17/06/2024 18.91 A-7: Admin Building, Vadinar Building, Vadinar 10/7/2024 41.06/2024 113.68 113.68 43.07 4.97 5.87 0.11 0.73 4.88 5.92 0.22 0.67 24/06/2024 78.76 21.78 4.79 5.68 0.19 0.67 27/06/2024 105.1 29.38 16.23 8.37 0.13 0.7 2/7/2024 98.34 36.44 11.74 11.33 0.08 0.75 5.94 0.16 0.85 5.94 0.16 0.85 10/7/2024 83.67 18.87 9.68 9.79 0.20 0.82 Minimum 61.27 10.01 4.79 5.68 0.08 0.67 Maximum 113.68 43.07 23.58 11.96 0.24 0.85 Average 89.30 25.19 10.09 8.11 0.17 0.75 Std. Deviation 16.91 10.86 6.88 2.63 0.06 0.07 17/06/2024 44.86 15.69 15.82 11.76 0.12 0.71 19/06/2024 38.91 13.49 6.68 12.09 0.19 0.68 27/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 A-7: Admin Building, Vadinar Minimum 27.08 17.55 22.32 5.91 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.74 4.86 5.97 0.16 0.02 17/06/2024 42.52 0.69 4.85 5.73 0.01 0.70 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.74 19/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74								
A-6: Gopalpuri Hospital, Kandla Minimum 113.68 Average 89.30 25.19 10.09 117/06/2024 105.11 10.01								
A-6: Gopalpuri Hospital, Kandla Minimum 113.68 Average 89.30 25.19 10.90 89.30 10.91 10.91 10.95 89.30 25.19 10.90 80.80 11.96 10.90 10.90 10.90 11.90 10.90 11.90 10.90 11.90 10.90		, ,						
A-6: Gopalpuri Hospital, Kandla Kandla A-7: A-8: A-7: A-7: A-7: Admin Building, Vadinar A-8: Building, A-8: Deviation A-8: Deviation Building, Vadinar 27.06/2024 A-8: Deviation Building, Vadinar 27.06/2024 A-8: Deviation Building, Vadinar A-8: Deviation Building, Vadinar 27.06/2024 A-8: Deviation Building, Vadinar Deviation Building, Vadinar A-8: Deviation Building, Vadinar A-7: A-8: Deviation Building, Vadinar A-7: A-8: Deviation Building, Vadinar A-7: Building, Vadinar A-7: A-8: Deviation Building, Vadinar A-7: Building, Vadinar Build		, ,						
A-6: Gopalpuri Hospital, Kandla								
A-6: Gopalpuri Hospital, Kandla A		, ,						
Sopaphit	A-6:	, ,						
No.								
Minimum Mini	1 '							
Maximum 113.68 43.07 23.58 11.96 0.24 0.85 Average 89.30 25.19 10.09 8.11 0.17 0.75 Std. Deviation 16.91 10.86 6.88 2.63 0.06 0.07 17/06/2024 44.86 15.69 15.82 11.76 0.12 0.71 19/06/2024 47.70 12.78 4.98 5.98 0.10 0.70 24/06/2024 38.91 13.49 6.68 12.09 0.19 0.68 27/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 A-7: 3/7/2024 27.40 19.44 4.93 5.89 0.04 0.72 Admin 4/7/2024 34.3 21.66 19.73 9.63 0.09 0.7 Building, Vadinar 8/7/2024 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73	Kandla	, ,						
Average 89.30 25.19 10.09 8.11 0.17 0.75 Std. Deviation 16.91 10.86 6.88 2.63 0.06 0.07 17/06/2024 44.86 15.69 15.82 11.76 0.12 0.71 19/06/2024 47.70 12.78 4.98 5.98 0.10 0.70 24/06/2024 38.91 13.49 6.68 12.09 0.19 0.68 27/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 A-7: 3/7/2024 27.40 19.44 4.93 5.89 0.04 0.72 Admin 4/7/2024 34.3 21.66 19.73 9.63 0.09 0.7 Building, 8/7/2024 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.0								
Std. Deviation 16.91 10.86 6.88 2.63 0.06 0.07 17/06/2024 44.86 15.69 15.82 11.76 0.12 0.71 19/06/2024 47.70 12.78 4.98 5.98 0.10 0.70 24/06/2024 38.91 13.49 6.68 12.09 0.19 0.68 27/06/2024 29.72 23.66 4.88 6.33 0.14 0.69 A-7: 3/7/2024 27.40 19.44 4.93 5.89 0.04 0.72 Admin Building, Vadinar 4/7/2024 34.3 21.66 19.73 9.63 0.09 0.7 Minimum 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23								
A-7: Admin Building, Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.11 0.72 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
19/06/2024 47.70 12.78 4.98 5.98 0.10 0.70								
A-7: Admin Building, Vadinar A-7/2024 29.72 23.66 4.88 6.33 0.14 0.69								
A-7: Admin Building, Vadinar 10/7/2024 29.72 23.66 4.88 6.33 0.14 0.69								
A-7: 3/7/2024 27.40 19.44 4.93 5.89 0.04 0.72 Admin Building, Vadinar 4/7/2024 34.3 21.66 19.73 9.63 0.09 0.7 Vadinar 8/7/2024 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 A-8: 19/06/2024 49.61 13.63 9.37 16.18 0.13 0.74								
Admin Building, Vadinar 4/7/2024 34.3 21.66 19.73 9.63 0.09 0.7 Wadinar 8/7/2024 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 A-8: 19/06/2024 49.61 13.63 9.37 16.18 0.13 0.74	A 7.							
Building, Vadinar 8/7/2024 27.08 17.55 22.32 5.91 0.23 0.73 Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
Vadinar 10/7/2024 42.52 20.69 4.85 5.73 0.11 0.72 Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 A-8: 19/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
Minimum 27.08 12.78 4.85 5.73 0.04 0.68 Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
Maximum 47.70 23.66 22.32 12.09 0.23 0.73 Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75	Vacinal							
Average 36.56 18.12 10.52 7.92 0.13 0.71 Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
Std. Deviation 8.10 3.92 7.49 2.79 0.06 0.02 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 A-8: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
A-8: 17/06/2024 49.61 13.63 9.37 16.18 0.13 0.74 48: 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75		Ŭ						
A-8 : 19/06/2024 52.72 10.30 4.84 5.91 0.18 0.75								
	Δ_8.							
	Vadinar	24/06/2024	51.67	28.30	8.37	19.38	0.13	0.73
Colony, 27/06/2024 35.58 25.44 4.93 6.52 0.07 0.73								

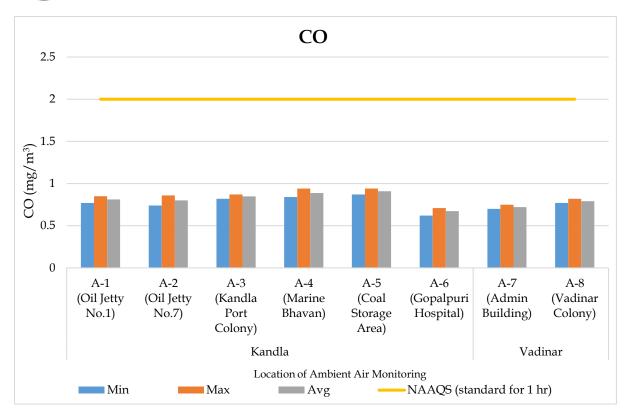


Station Code	Unit of Average Concentration	Average Pollutant Concentration							
& Name	Pollutants	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	SO ₂ (μg/m³)	NO _χ (μg/m³)	VOC (μg/m³)	CO (mg/m³)		
Ivallie	Duration		(24	hr)		(2 hr)	(1 hr)		
	NAAQS by CPCB Monitoring days		60	80	80	-	2		
Vadinar	3/7/2024	24.57	14.60	4.98	5.78	0.16	0.80		
	4/7/2024	47.58	23.53	11.91	8.48	0.11	0.76		
	8/7/2024	51.39	15.43	12.55	5.76	0.18	0.79		
	10/7/2024	30.02	21.41	4.91	5.93	0.09	0.78		
	Minimum	24.57	10.30	4.84	5.76	0.07	0.72		
	Maximum	52.72	28.30	12.55	19.38	0.23	0.80		
	Average	42.89	19.08	7.73	9.24	0.14	0.76		
	Std. Deviation	11.13	6.45	3.28	5.41	0.05	0.03		

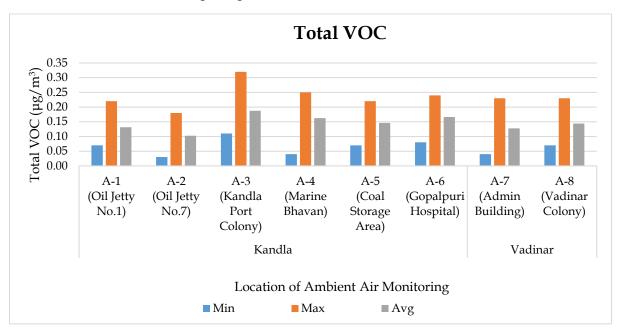

Graphs 1-6 shows spatial trend of ambient air parameter at all the eight-monitoring location (six at Kandla and 2 at Vadinar



Graph 1: Spatial trend in Ambient PM₁₀ Concentration


Graph 3: Spatial trend in Ambient SOx Concentration

Graph 2: Spatial trend in Ambient PM_{2.5} Concentration



Graph 4: Spatial trend in Ambient NOx Concentration

Graph 5: Spatial trend in Ambient CO Concentration

Graph 6: Spatial trend in Ambient Total VOCs

Table 7: Summarized results of Benzene for Ambient Air quality monitoring

	Benzene (μg/m³)									
Sr.			Vadinar		NAAQS					
No	A-1	A-2	A-8	standards (24 hr)						
1	0	0	0	0	0	0	0	0	5 μg/m ³	

Table 8: Summarized results of Polycyclic Aromatic Hydrocarbons

Sr.	Table 6. Sui		a resure		ındla	TOTHUCIC	11 y aroca	Vadinar	
No.	Components	A-1	A-2	A-3	A-4	A-5	A-6	A- 7	A-8
1	Napthalene	0.25	0.44	0.48	0.60	0.43	0.46	0.01	0.04
2	Acenaphthylene	0.05	0.02	0.08	0.05	0.04	0.08	0.01	0.01
3	Acenaphthene	0.01	0.03	0.00	0.01	0.04	0.03	0.00	0.00
4	Fluorene	0.05	0.02	0.19	0.13	0.56	0.11	0.03	0.02
5	Anthracene	0.07	0.16	0.22	0.51	2.64	0.53	0.18	0.11
6	Phenanthrene	0.00	0.02	0.26	0.18	0.53	0.06	0.01	0.00
7	Fluoranthene	0.03	0.09	0.07	0.21	0.35	0.19	0.09	0.04
8	Pyrene	0.00	0.05	0.42	0.51	0.84	0.31	0.13	0.03
9	Chrycene	0.17	0.20	0.37	0.54	1.22	0.48	0.00	0.00
10	Banz(a)anthracene	0.11	0.06	0.06	0.23	0.58	0.20	0.05	0.02
11	Benzo[k]fluoranthene	0.03	0.01	0.20	0.15	0.36	0.10	0.00	0.00
12	Benzo[b]fluoranthene	0.03	0.05	0.10	0.17	0.32	0.11	0.00	0.00
13	Benzopyrene	0.03	0.04	0.00	0.14	0.84	0.25	0.02	0.04
14	Indeno [1,2,3-cd] fluoranthene	0.08	0.13	0.02	0.12	0.23	0.28	0.04	0.26
15	Dibenz(ah)anthracene	0.03	0.06	0.17	0.15	0.46	0.02	0.02	0.09
16	Benzo[ghi]perylene	0.00	0.01	0.00	0.00	0.00	0.00	0.07	0.18

Table 9: Summarized results of Non-methane VOC

Sr		Vadinar						
No	A-1	A-2	A- 7	A-8				
1	1.11	1.08	1.63	1.24	1.43	1.69	1.53	1.27

4.3 Data Interpretation and Conclusion

The results were compared with the National Ambient Air Quality Standards (NAAQS), 2009 of Central Pollution Control Board (CPCB).

- The concentration of PM_{10} at Kandla varies in the range of 61.27 to 588.16 $\mu g/m^3$ with an average value of 203.93 $\mu g/m^3$. PM_{10} exceeded NAAQS of all the monitoring locations in Kandla. Whereas, at Vadinar, the concentration varies from 24.57 to 52.72 $\mu g/m^3$, with an average value of 39.73 $\mu g/m^3$, and complies with the stipulated norm (100 $\mu g/m^3$).
- The highest concentration of PM_{10} at locations A-5 i.e. Coal Storage Area could be attributed to the presence of heavy vehicular traffic in upwind areas which bring

higher impact causing the dispersion of emitted particulate matter in the ambient air. The unloading of coal directly in the truck, using grabs causes the coal to disperse in the air as well as coal dust to fall and settle on the ground. This settled coal dust again mixes with the air while trucks travel through it. Also, the coal-loaded trucks are generally not always covered with tarpaulin sheets and this might result in increased suspension of coal from trucks/dumpers during its transit from vessel to yard or storage site. This might increase the PM_{10} in and around the Coal storage area and Marine bhavan.

- The $PM_{2.5}$ concentrations at Kandla vary from 10.01 to 82.57 µg/m3, with an average of 31.84 µg/m3. While the $PM_{2.5}$ concentrations at most locations in Kandla fall within the NAAQS limits, the concentration at location A-5, with a value of 82.57 µg/m3, exceeds the permissible limit. Whereas, at Vadinar its concentration varies from 10.30 to 28.30 µg/m³ with average 18.60 µg/m³ which falls within the limit of NAAQS of 60 µg/m³.
- The concentration of SO_x varies from 4.79 to $48.62 \, \mu g/m^3$ with average concentration as $17.22 \, \mu g/m^3$ at Kandla and 4.84 to $22.32 \, \mu g/m^3$ with average as $9.13 \, \mu g/m^3$ at Vadinar. The average concentration of SO_x complies with the prescribed limit of NAAQS ($80 \, \mu g/m^3$) for both the monitoring site.
- The concentration of NO_x varies from 5.68 to 32.68 $\mu g/m^3$ with average 12.08 $\mu g/m^3$ at Kandla and 5.73 to 19.38 $\mu g/m^3$ with average 8.58 $\mu g/m^3$ at Vadinar. The concentration of NO_x falls within the prescribed limit of NAAQS i.e. 80 $\mu g/m^3$ at both the monitoring site of Kandla and Vadinar.
- The concentration of **CO** varies from 0.66 to 0.94 μ g/m³ with average 0.82 μ g/m³ at Kandla and 0.68 to 0.80 μ g/m³ with average 0.73 μ g/m³ at Vadinar. The concentration falls within the norm of 2 mg/m³ specified by NAAQS at both the monitoring sites
- The concentration of **Total VOCs** levels was recorded in range of 0.03 to 0.32 $\mu g/m^3$ and 0.04 to 0.23 $\mu g/m^3$ at Kandla and Vadinar respectively. The main source of VOCs in the ambient air may be attributed to the burning of Gasoline and Natural gas in Vehicle exhaust and burning fossil fuels, and garbage that release VOCs into the atmosphere. During the monitoring period, the wind flows towards South direction at Kandla, and hence the wind direction and speed also contribute to increased dispersion of pollutants from the upward areas towards the downward areas.
- **Benzene** was not detected at any of locations of Kandla and Vadinar.
- Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres. Anthropogenic sources of total PAHs in ambient air emissions are greater than those that come from natural events. These locations are commercial areas where Vehicular activity and dust emission is common. PAHs are a class of chemicals that occur naturally in coal, crude oil, and gasoline. The higher concentration which results from burning coal, oil, gas, road dust, etc. Other outdoor sources of PAHs may be the industrial plants in-and-around the DPA premises.

• The Ambient air Monitoring location of Kandla recorded the **Non-methane VOC** (NM-VOC) concentration in the range of 1.08 to 1.69 µg/m³. While at Vadinar, the concentration of NM-VOC falls in the range of 1.27 to 1.53 µg/m³.

With reference to the Ambient Air Quality monitoring conducted under the study, it may be concluded that the particulate matter PM_{10} , were reported in higher concentration and apparently exceeds the NAAQS particularly at locations of Kandla., whereas $PM_{2.5}$ complies with the NAAQS at majority of the locations. For both the ambient air monitoring parameters (PM_{10} and $PM_{2.5}$), the major exceedance was observed at location A-5 i.e. Coal Storage Area. The gaseous pollutants (NO_x , SO_x , CO, VOCs etc.) falls within the permissible limit. The probable reasons contributing to these emissions of pollutants into the atmosphere in-and-around the port area are summarized as follows: -

- 1. **Port Machinery:** Port activities involve the use of various machinery and equipment, including cranes, for lifts, tugboats, and cargo handling equipment. These machines often rely on diesel engines, which can emit pollutants such as NO_x, Particulate matter, and CO. Older or poorly maintained equipment tends to generate higher emissions.
- 2. **Port Vehicles:** Trucks and other vehicles operating within port and port area contributes to air pollution. Similar to port machinery, diesel-powered vehicles can emit NO_x, PM, CO, and other pollutants such as PAH, VOCs etc. Vehicle traffic and congestion in and around port areas can exacerbate the air quality issues.

4.4 Remedial Measures:

Efficient mitigation strategies need to be implementation for substantial environmental and health co-benefits. To improve air quality, DPA has implemented a number of precautionary measures, such as maintaining Green zone, initiated Inter-Terminal Transfer of tractor-trailers, Centralized Parking Plaza, providing shore power supply to tugs and port crafts, the use of LED lights at DPA area helps in lower energy consumption and decreases the carbon foot prints in the environment, time to time cleaning of paved and unpaved roads, use of tarpaulin sheets to cover dumpers at project sites etc. are helping to achieve the cleaner and green future at port. To address air pollution from port shipping activities, various measures that can be implemented are as follows:

- Practice should be initiated for using mask as preventative measure, to avoid Inhalation of dust particle-Mask advised in sensitive areas. Covering vehicles with tarpaulin during transportation will help to reduce the suspension of pollutants in air.
- Ensuring maintenance of engines and machinery to comply with emission standards.
- Frequent water sprinkling on roads to reduce dust suspension due to vehicular movement, this can be use during transporting coal to avoid suspension of coal dust.
- Use of proper transport methods, such as a conveyor belt, for excavated material and screens around the construction site.
- Temporary pavement of roads in construction site could considerably reduce dust emission. Prohibition of use of heavy diesel oil as fuel could be possibly reduce pollutants. Encouraging use of low-sulfur fuels (viz. Marine Gas Oil (MGO)/Liquefied Natural Gas (LNG), can significantly reduce sulfur and PM emissions from ships.

- Retrofitting ships with exhaust gas cleaning systems can help reduce sulfur emissions. Engine upgrades, such as optimizing fuel combustion and improving engine efficiency, can reduce overall emissions.
- Investing in infrastructure for cold ironing allows ships to connect to the electrical grid while docked, reducing the need for auxiliary engines and associated emissions.
- Implementing efficient cargo-handling processes, optimizing logistics to reduce congestion and idling times, and encouraging use of cleaner port machinery and vehicles can all contribute to reducing air pollution in port areas.

CHAPTER 5: DG STACK MONITORING

5.1 DG Stack Monitoring

A diesel generator is a mechanical-electrical machine that produces electrical energy (electricity) from diesel fuel. They are used by the residential, commercial, charitable and governmental sectors to provide power in the event of interruption to the main power, or as the main power source. Diesel generating (DG) sets are generally used in places without connection to a power grid, or as an emergency power supply if the grid fails. These DG sets utilize diesel as fuel and generate and emit the air pollutants such as Suspended Particulate Matter, SO₂, NO_x, CO, etc. from the stack during its functioning. The purpose of stack sampling is to determine emission levels from plant processes to ensure they are in compliance with any emission limits set by regulatory authorities to prevent macro environmental pollution. The stack is nothing but chimney which is used to disperse the hot air at a great height, emissions & particulate matters that are emitted. Hence, monitoring of these stacks attached to DG Sets is necessary in order to quantify the emissions generated from it.

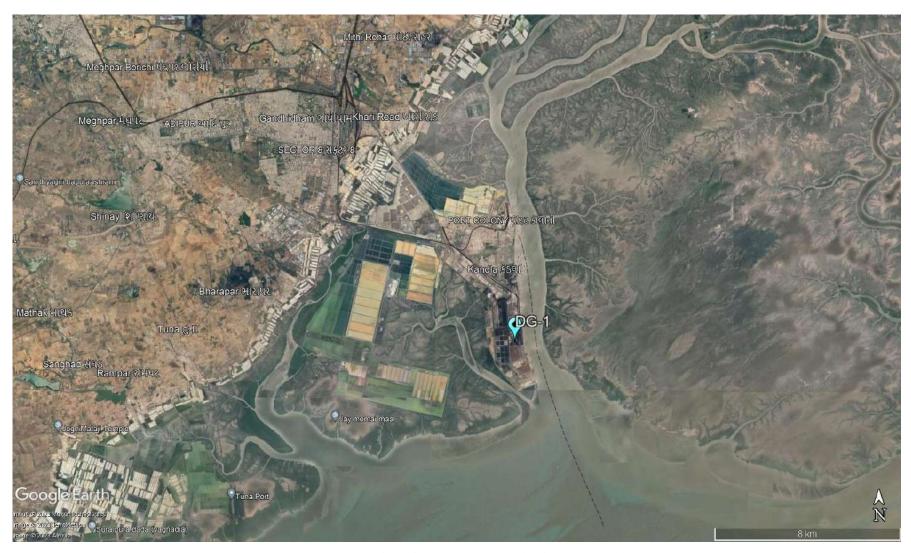

As defined in scope by DPA, the monitoring of DG Stack shall be carried out at two locations, one at Kandla and one at Vadinar. The details of the DG Sets at Kandla and Vadinar have been mentioned in **Table 10** as follows:

Table 10: Details of DG Stack monitoring locations

Sr. No.	Location Code	Location Name	Latitude/ Longitude
1.	DG-1	Kandla	22.98916N 70.22083E
2.	DG-2	Vadinar	22.44155N 69.67419E

The map depicting the locations of DG Stack Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 6 and 7** as follows:

Map 6: Locations for DG Stack monitoring at Kandla

Map 7: Locations for DG Stack monitoring at Vadinar

Methodology:

Under the study, the list of parameters to be monitored under the projects for DG Stack Monitoring has been mentioned in **Table 11** as follows:

Table 11: DG stack parameters

Sr. No.	Parameter	Unit	Instrument		
1.	Suspended Particulate Matter	mg/Nm³	Stack Monitoring Kit		
2.	Sulphur Dioxide (SO ₂)	PPM	Sensor based Flue Gas		
3.	Oxides of Nitrogen (NO _x)	PPM	Analyzer (Make: TESTO,		
4.	Carbon Monoxide	%	Model 350)		
5.	Carbon Dioxide	%			

The methodology for monitoring of DG Stack has been mentioned as follows:

The monitoring of DG Stack is carried out as per the IS:11255 and USEPA Method. The Stack monitoring kit is used for collecting representative samples from the stack to determine the total amount of pollutants emitted into the atmosphere in a given time. Source sampling is carried out from ventilation stack to determine the emission rates/or characteristics of pollutants. Sample collected must be such that it truly represents the conditions prevailing inside the stack. Whereas the parameters Sulphur Dioxide, Oxides of Nitrogen (NO_x), Carbon Monoxide and Carbon Dioxide, the monitoring is carried out by using the sensor-based Flue Gas Analyzer.

Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar.

5.2 Result and Discussion

The sampling and monitoring of DG stack emission was carried out at Kandla and Vadinar and its comparison with CPCB or Indian standards for Industrial Stack Monitoring the flue gas emission from DG set has given in **Table 12**.

Table 12: DG monitoring data

Sr.	Stack Monitoring Parameters	Stack Monitoring Limits/	DG-1	DG-2
No.	for DG Sets	Standards As per CPCB	(Kandla)	(Vadinar)
1.	Suspended Particulate Matter (SPM) (mg/Nm³)	150	85.36	39.56
2.	Sulphur Dioxide (SO ₂) (PPM)	100	6.31	N.D.
3.	Oxides of Nitrogen (NO _x) (PPM)	50	38.21	10.32
4.	Carbon Monoxide (CO) (%)	1	0.26	0.11
5.	Carbon Dioxide (CO ₂) (%)	-	2.15	1.35

5.3 Data Interpretation and Conclusion

The results of DG stack emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters.

CHAPTER 6: NOISE MONITORING

6.1 Noise Monitoring

Noise can be defined as an unwanted sound, and it is therefore, necessary to measure both the quality as well as the quantity of environmental noise in and around the study area. Noise produced during operation stage and the subsequent activities may affect surrounding environment impacting the fauna and as well as the human population. Under the scope, the noise monitoring is required to be carried out at 10 locations in Kandla and 3 locations in Vadinar. The sampling locations for noise are not only confined to commercial areas of DPA but also the residential areas of DPA.

The details of the noise monitoring stations are mentioned in **Table 13** and locations have been depicted in the **Map 8 and 9** as follow:

Table 13: Details of noise monitoring locations

Sr. No.	Location Code		Location Name	Latitude/ Longitude
1.		N-1	Oil Jetty 7	23.043527N 70.218456E
2.		N-2	West Gate No.1	23.006771N 70.217340E
3.		N-3	Canteen Area	23.003707N 70.221331E
4.		N-4	Main Gate	23.007980N 70.222525E
5.	dla	N-5	Main Road	23.005194N 70.219944E
6.	Kandla	N-6	Marin Bhavan	23.007618N 70.222087E
7.		N-7	Port & Custom Building	23.009033N 70.222047E
8.		N-8	Nirman Building	23.009642N 70.220623E
9.		N-9	ATM Building	23.009985N 70.221715E
10.		N-10	Wharf Area/ Jetty	22.997833N 70.223042E
11.	Vadinar	N-11	Near Main Gate	22.441544N 69.674495E
12.		N-12	Near Vadinar Jetty	22.441002N 69.673147E
13.	Vē	N-13	Port Colony Vadinar	22.399948N 69.716608E

Map 8: Locations for Noise Monitoring at Kandla

Map 9: Locations for Noise Monitoring at Vadinar

Methodology:

The intensity of sound energy in the environment is measured in a logarithmic scale and is expressed in a decibel (dB(A)) scale. The ordinary sound level meter measures the sound energy that reaches the microphone by converting it into electrical energy and then measures the magnitude in dB(A). Whereas, in a sophisticated type of sound level meter, an additional circuit (filters) is provided, which modifies the received signal in such a way that it replicates the sound signal as received by the human ear and the magnitude of sound level in this scale is denoted as dB(A). The sound levels are expressed in dB(A) scale for the purpose of comparison of noise levels, which is universally accepted. Noise levels were measured using an integrated sound level meter of the make Envirotech Sound Level Meter (Class-I) (model No. SLM-109). It has an indicating mode of Lp and Leq. Keeping the mode in Lp for few minutes and setting the corresponding range and the weighting network in "A" weighting set the sound level meter was run for one-hour time and Leq was measured at all locations.

Frequency

Monitoring was carried out at each noise monitoring station for Leq. noise level (Day and Night), which was recorded for 24 hours continuously at a monthly frequency with the help of Sound/Noise Level Meter (Class-1). The details of the noise monitoring have been mentioned in **Table 14**.

Table 14: Details of the Noise Monitoring

Sr. No.	Parameters	Units	Reference Method	Instrument
1.	Leq (Day)	dB(A)	10,0000, 2014	Noise Level Meter (Class-
2.	Leq (Night)	dB(A)	IS 9989: 2014	I) model No. SLM-109

Standard for Noise

Ministry of Environment & Forests (MoEF) has notified the noise standards vide the Gazette notification dated February 14, 2000 for different zones under the Environment Protection Act (1986). The day time noise levels have been monitored from 6.00 AM to 10.00 PM and night noise levels were measure from 10.00 PM to 6.00 AM at all the thirteen locations (10 at Kandla and 3 at Vadinar) monthly. The specified standards are as mentioned in **Table 15** as follows:

Table 15: Ambient Air Quality norms in respect of Noise

Aura Cada	Calama and C A man	Noise dB(A) Leq							
Area Code	Category of Area	Daytime	Night time						
A	Industrial Area	75	70						
В	Commercial Area	65	55						
С	Residential Area	55	45						
D	Silence Zone	50	40						

6.2 Result and Discussion

The details of the Noise monitoring conducted during the monitoring period have been summarized in the **Table 16** as below:

Table 16: The Results of Ambient Noise Quality

	Table 16: The Results of Ambient Noise Quality										
Sr.	Station		Category of			Day Tim	ie			Night Tin	ne
No.	Code	Station Name	Area	Standard	Max.	Min.	Leq dB(A) Total	Standard	Max.	Min.	Leq dB(A) Total
1	N-1	Oil Jetty 7	A	75	58.1	38.9	48.5	70	42.6	35.4	39.0
2	N-2	West Gate No.1	A	75	66.1	48.0	57.1	70	50.1	41.1	45.6
3	N-3	Canteen Area	В	65	60.2	44.2	52.2	55	49.2	36.7	43.0
4	N-4	Main Gate	A	75	58.4	46.9	52.7	70	45.4	36.2	40.8
5	N-5	Main Road	A	75	60.2	39.4	49.8	70	47.6	35.6	41.6
6	N-6	Marin Bhavan	В	65	61.9	39.5	50.7	55	42.0	34.6	38.3
7	N-7	Port & Custom Building	В	65	54.6	39.4	47.0	55	46.6	36.4	41.5
8	N-8	Nirman Building	В	65	54.5	42.6	48.6	55	48.1	37.1	42.6
9	N-9	ATM Building	В	65	58.1	41.6	49.9	55	45.9	35.9	40.9
10	N-10	Wharf Area/ Jetty	A	75	61.5	42.6	52.1	70	47.2	40.6	43.9
11	N-11	Near Main Gate	A	75	67.4	57.2	60.3	75	50.4	54.6	62.3
12	N-12	Near Vadinar Jetty	A	75	69.3	63.2	63.7	75	52.1	56.3	59.6
13	N-13	Port Colony Vadinar	С	55	53.5	45.1	45.3	55	43.3	44.7	52.1

6.3 Data Interpretation and Conclusion

The noise level at both the locations (Kandla and Vadinar) was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 10 locations at Kandla ranged from 47.0 dB(A) to 57.1 dB(A), while at Vadinar, the noise levels for the three-location ranged from 45.3 dB(A) to 63.7 dB(A). Whereas, during Night Time the average Noise Level ranged from 38.3 dB(A) to 45.6 dB(A) at Kandla and 52.1 dB(A) to 62.3 dB(A) at Vadinar, which was within the permissible limits for the industrial and commercial area, but exceeded slightly for location N-12, which is a residential zone. Overall, the noise levels at Kandla and Vadinar fall within the prescribed norms for both Day and Night times.

6.4 Remedial Measures

Though, the noise levels detected at the locations of Kandla and Vadinar, are found within the prescribed norms, the noise can further be considerably reduced by adoption of low noise equipment or installation of sound insulation fences. Green belt of plants can be a good barrier. If noise exceeds the applicable norms, then the working hours may be altered as a possible means to mitigate the nuisances of construction activities.

CHAPTER 7: SOIL MONITORING

7.1 Soil Quality Monitoring:

The purpose of soil quality monitoring is to track changes in the features and characteristics of the soil, especially the chemical properties of soil occurring at specific time intervals under the influence of human activity. Soil quality assessment helps to determine the status of soil functions and environmental risks associated with various practices prevalent at the location.

As defined in scope by Deendayal Port Authority (DPA), Soil Quality Monitoring shall be carried out at Six locations, four at Kandla and two at Vadinar. The details of the soil monitoring locations within the Port area of DPA are mentioned in **Table 17**:

Table 17: Details of the Soil quality monitoring

Sr. No.	Loca	tion Code	Location Name	Latitude Longitude
1.		S-1	Oil Jetty 7	23.043527N 70.218456E
2.	lla	S-2	IFFCO Plant	23.040962N 70.216570E
3.	Kandla	S-3	Khori Creek	22.970382N 70.223057E
4.		S-4	Nakti Creek	23.033476N 70.158461E
5.	ar	S-5	Near SPM	22.400026N 69.714308E
6.	Vadinar	S-6	Near Vadinar Jetty	22.440759N 69.675210E

Methodology

As per the defined scope by Deendayal Port Authority (DPA), the sampling and analysis of Soil quality has been carried out on monthly basis.

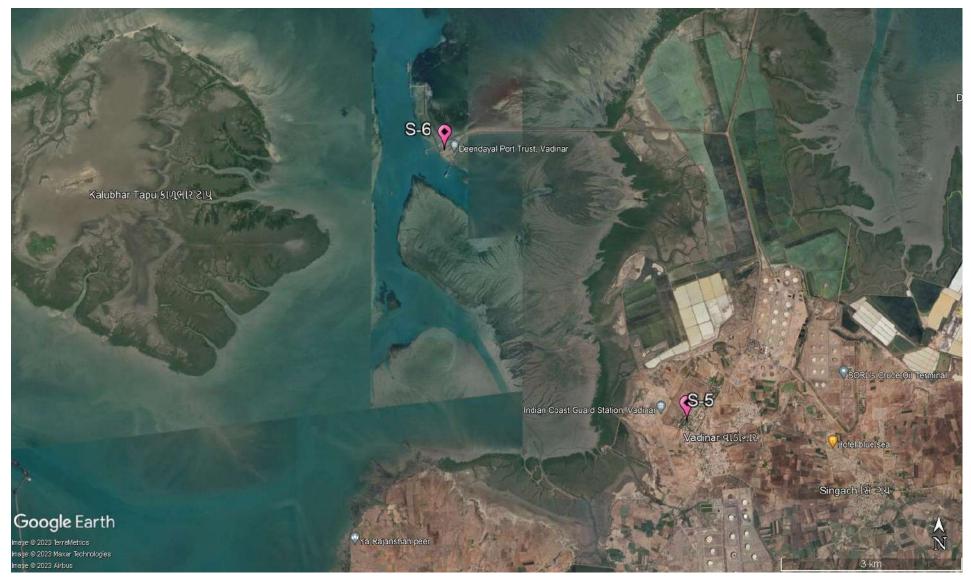
The samples of soil collected from the locations of Kandla and Vadinar and analyzed for the various physico-chemical parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures. The samples were analyzed for selected parameters to get the present soil quality status and environmental risks associated with various practices prevalent at the location. GEMI has framed its own guidelines for collection of soil samples titled as 'Soil Sampling Manual'. Soil samples were collected from 30 cm depth below the surface using scrapper, filled in polythene bags, labelled on-site with specific location code and name and sent to GEMI's laboratory, Gandhinagar for further detailed analysis. The samples collected from all locations are homogeneous representative of each location. The list of parameters to be monitored under the projects for the Soil Quality Monitoring been mentioned in **Table 18** as follows:

Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar.

Table 18: Soil parameters

Sr.	5	** **	Table 18: Soil parameters			
No.	Parameters	Units	Reference method	Instruments		
1.	TOC	%	Methods Manual Soil Testing in India January, 2011, 09. Volumetric	Titration Apparatus		
2.	Organic Carbon	%	method (Walkley and Black, 1934)	Titration Apparatus		
3.	Inorganic Phosphate	Kg/Hectare	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR- Indian Institute of Pulses Research 2017 Determination of Available Phosphorus in Soil	UV-Visible Spectrophotometer		
4.	Texture	1	Methods Manual Soil Testing in India January 2011,01	Hydrometer		
5.	рН	-	IS 2720 (Part 26): 1987	pH Meter		
6.	Conductivity	μS/cm	IS 14767: 2000	Conductivity Meter		
7.	Particle size distribution & Silt content	-	Methods Manual Soil Testing in India January 2011	Sieves Apparatus		
8.	SAR	meq/L	Procedures for Soil Analysis, International Soil Reference and Information Centre, 6 th Edition 2002 13-5.5.3 Sodium Absorption Ratio (SAR), Soluble cations	Flame Photometer		
9.	Water Holding Capacity	%	NCERT, Chapter 9, 2022-23 and Water Resources Department Laboratory Testing Procedure for Soil & Water Sample Analysis	Muffle Furnace		
10.	Aluminium	mg/Kg				
	Chromium	mg/Kg	EPA Method 3051A			
12.	Nickel	mg/Kg	Mail 1 Mail 10 times			
13.	Copper	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a			
14.	Zinc	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a	ICP-OES		
15.	Cadmium	mg/Kg				
16.	Lead	mg/Kg	EPA Method 3051A			
17.	Arsenic	mg/Kg				
18.	Mercury mg/Kg					


The map depicting the locations of Soil Quality Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 10 and 11** as follows:

Map 10: Locations for Soil Quality Monitoring at Kandla

Map 11: Locations for Soil Quality Monitoring at Vadinar

7.2 Result and Discussion

The analysis results of physical analysis of the soil samples collected during environmental monitoring mentioned in **Table 19** are shown below:

Table 19: Soil Quality for the sampling period

	Table 19: Soil Quality for the sampling period								
	Location			Kar	ndla		Vad	linar	
Sr. No	Parameters	Unit	S-1 (Oil Jetty 7)	S-2 IFFCO Plant)	S-3 (Khori Creek)	S-4 (Nakti Creek)	S-5 (Near SPM)	S-6 (Near Vadinar Jetty)	
1	pН	-	7.34	7.3	8.64	8.45	7.74	8.14	
2	Conductivity	μS/cm	45300	27200	226	219	102	272	
3	Inorganic Phosphate	Kg/ha	2.06	2.22	3.14	3.03	0.59	0.55	
4	Organic Carbon	%	0.56	0.5	0.29	0.23	0.1	0.52	
5	Organic Matter	%	0.96	0.86	0.49	0.39	0.17	0.89	
6	SAR	meq/L	24.88	10.06	0.39	0.38	0.09	0.17	
7	Aluminium	mg/Kg	11277.15	14127.51	10350.29	7708.929	12783.28	13457.49	
8	Chromium	mg/Kg	53.599	62.015	53.667	35.6	51.109	55.378	
9	Nickel	mg/Kg	14.22	5.764	13.391	5.668	18.72	24.346	
10	Copper	mg/Kg	83.233	123.235	14.591	14.22	63.292	67.75	
11	Zinc	mg/Kg	146.081	45.517	32.38	17.203	37.242	55.477	
12	Cadmium	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	
13	Lead	mg/Kg	15.314	5.068	2.698	1.591	BQL	BQL	
14	Arsenic	mg/Kg	0.198	BQL	2.298	0.795	BQL	BQL	
15	Mercury	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	
16	Water Holding Capacity	%	37.98	43.96	40	39.97	37.95	51.9	
17	Sand	%	61.52	65.55	77.54	75.53	72.81	74.8	
18	Silt	%	33.44	31.41	11.43	13.44	26.15	24.16	
19	Clay	%	5.04	3.04	11.03	11.04	1.04	1.04	
20	Texture	-	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Loamy sand	loamy sand	

7.3 Data Interpretation and Conclusion

Soil samples were collected from 6 locations (4 at Kandla and 2 at Vadinar) and further analysed for its physical & chemical characteristics. Each of the parameters have been given an interpretation based on the observations as follows:

• The value of **pH** ranges from **7.3 to 8.64**, highest at location S-3 (Khori Creek) and lowest at S-2 (IFFCO Plant); while the average pH for Kandla was observed to be 7.93. Whereas, at Vadinar the pH was observed as 7.74 at S-5 i.e., Near SPM and 8.14 at S-6

i.e., Near Jetty Area. The pH in Kandla varies from the **Slightly alkaline to strongly alkaline.** Whereas, pH of Soil at Vadinar was found to be **Slightly alkaline**.

- At entire monitoring locations of Kandla the value of **Electrical Conductivity** ranges from **219 to 45300 \mus/cm**, highest at location S-1 (Oil Jetty 7) and lowest at S-4 (Nakti Creek), with the average as **18236.25** μ s/cm. Whereas, at Vadinar the conductivity falls within the range of **102 to 272** μ s/cm with an average value of **187** μ s/cm.
- At Kandla, the concentration of **Inorganic Phosphate** varied from **2.06 to 3.14 Kg/ha**, with average 2.61 Kg/ha. Whereas, at the locations of Vadinar, the Inorganic Phosphate was observed as 0.59 Kg/ha at S-5 (Near SPM) and 0.55 Kg/ha at S-6 (near Jetty Area), with the average 0.57 Kg/ha. The phosphorus availability in soil solution is influenced by a number of factors such as Organic matter, clay content, pH, temperature, etc.
- The concentration of **Total Organic Carbon** ranges from 0.23 to 0.56% while the average TOC at Kandla was detected as 0.39%. Whereas, at Vadinar the average TOC was found to be 0.31% where the observed TOC value found at S-5 and S-6 to be 0.1% and 0.52% respectively.
- The **Sodium Adsorption Ratio** ranges from **0.38 to 24.88 meq/L** with an average value 8.92 meq/L at Kandla. Whereas, at Vadinar, the average SAR was found to be 0.13 meq/L where the observed SAR value found at S-5 (0.09 meq/L) and S-6 (0.17 meq/L).
- The **Water Holding Capacity** in the soil samples of Kandla and Vadinar varies from 37.98 to 43.96% and 37.95 to 51.9% respectively.
- The Soil Texture was observed as "Sandy loam" at all the monitoring locations in Kandla and Vadinar, except the location S-6 of Vadinar which is "loamy sand".

Heavy Metals

- For the sampling period, the concentration of **Aluminium** varied from **7708.929 to 14127.509 mg/kg** at Kandla, and **12783.28 to 13457.493 mg/kg** at Vadinar. Whereas, the average Aluminium concentration was observed to be 10865.97 and 13120.39 mg/kg at Kandla and Vadinar monitoring station respectively.
- The concentration of **Chromium** varied from **35.6 to 62.015 mg/kg** at Kandla and **51.109 to 55.378 mg/kg** at Vadinar and the average value was observed to be 51.22 and 53.24 mg/kg at Kandla and Vadinar monitoring station, respectively.

The concentration of **Nickel** varied from **5.668 to 14.22 mg/kg** at Kandla and **18.72 to 24.346 mg/kg** at Vadinar and the average value was observed to be 9.76 and 21.533 mg/kg at Kandla and Vadinar monitoring station, respectively.

- The concentration of **Zinc** varied from **17.203 to 146.081 mg/kg** at Kandla and **37.242 to 55.477 mg/kg** at Vadinar and the average value was observed to be 60.29 and 46.35 mg/kg at Kandla and Vadinar monitoring station, respectively.
- The concentration of **copper** varied from **14.22 to 123.235 mg/kg** at Kandla and **63.292 to 67.75 mg/kg** at Vadinar and the average value was observed to be 58.81 and 65.52 mg/kg at Kandla and Vadinar monitoring station, respectively.
- Concentration of **Lead** varied from **1.59 to 15.31 mg/kg** at Kandla with average value 6.16 mg/Kg, whereas for Vadinar, the values recorded 6.57 mg/Kg at S-5 and "Below Quantification Limit" at location at S-6 location.
- The concentration of **Arsenic** varied from **0.19 to 2.29 mg/kg** at Kandla with average value 1.09 mg/Kg, whereas for Vadinar, the values recorded 6.57 mg/Kg at S-5 and "Below Quantification Limit" at location at S-6 location.
- While other heavy metals in the Soil i.e., **Mercury and Cadmium** were observed "Below Quantification Limit" for the soil samples collected at Kandla and Vadinar.

CHAPTER 8: DRINKING WATER MONITORING

8.1 Drinking Water Monitoring

It is necessary to check with the drinking water sources regularly so as to know whether water quality conforms to the prescribed standards for drinking. Monitoring the drinking water quality is essential to protect human health and the environment. With reference to the scope specified by DPA, a total of 20 locations (18 at Kandla and 2 at Vadinar) were monitored to assess the Drinking Water quality.

The details of the drinking water sampling stations have been mentioned in **Table 20** and the locations have been depicted through Google map in **Map 12 and 13.**

Table 20: Details of Drinking Water Sampling Locations

Sr. No.	Locat	tion Code	Location Name	Latitude/ Longitude				
1.		DW-1	Oil Jetty 7	23.043527N 70.218456E				
2.		DW-2	Port & Custom Building	23.009033N 70.222047E				
3.		DW-3	North Gate	23.007938N 70.222411E				
4.		DW-4	Workshop	23.009372N 70.222236E				
5.		DW-5	Canteen Area	23.003707N 70.221331E				
6.		DW-6	West Gate 1	23.006771N 70.217340E				
7.		DW-7	Sewa Sadan -3	23.009779N 70.221838E				
8.		DW-8	Nirman Building	23.009642N 70.220623E				
9.	dla	DW-9	Custom Building	23.018930N 70.214478E				
10.	Kandla	DW-10	Port Colony Kandla	23.019392N 70.212619E				
11.		DW-11	Wharf Area/ Jetty	22.997833N 70.223042E				
12.		DW-12	Hospital Kandla	23.018061N 70.212328E				
13.		DW-13	A.O. Building	23.061914N 70.144861E				
14.		DW-14	School Gopalpuri	23.083619N 70.132061E				
15.		DW-15	Guest House	23.078830N 70.131008E				
16.		DW-16	E- Type Quarter	23.083306N 70.132422E				
17.		DW-17	F- Type Quarter	23.077347N 70.135731E				
18.		DW-18	Hospital Gopalpuri	23.081850N 70.135347E				
19.	Vadinar	DW-19	Near Vadinar Jetty	22.440759N 69.675210E				
20.	Va	DW-20	Near Port Colony	22.401619N 69.716822E				

Map 12: Locations for Drinking Water Monitoring at Kandla

Map 13: Locations for Drinking Water Monitoring at Vadinar

Methodology

The water samples were collected from the finalized sampling locations and analyzed for physico-chemical and microbiological parameter, for which the analysis was carried out as per APHA, 23rd Edition and Indian Standard method in GEMI's NABL Accredited Laboratory, Gandhinagar. GEMI has followed the CPCB guideline as well as framed its own guidelines for the collection of water/wastewater samples, under the provision of Water (Preservation and Control of Pollution) Act 1974, titled as 'Sampling Protocol for Water & Wastewater'; approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014. The samples under the study were collected and preserved as per the said Protocol. The parameters finalized to assess the drinking water quality have been mentioned in Table 21 as follows:

Table 21: List of parameters for Drinking Water Quality monitoring

Sr. No. Parameters Units Reference method Instrument 1. pH - APHA, 23 rd Edition (Section-4500- pH Meter pH Meter 2. Colour Hazen APHA, 23 rd Edition, 2120 B:2017 Color Comparator 3. EC μS/cm APHA, 23 rd Edition (Section-2510 B):2017 Nephlo Turbidity Meter 4. Turbidity NTU APHA, 23 rd Edition (Section-2130 B):2017 Nephlo Turbidity Meter 5. TDS mg/L APHA, 23 rd Edition (Section-2540 D: 2017 Vaccum Pump with filtration assembly and Oven 6. TSS mg/L APHA, 23 rd Edition (Section-4500-C1-B): 2017 Titration Apparatus 8. Total Hardness mg/L APHA, 23 rd Edition (Section-3500-C1-B): 2017 APHA, 23 rd Edition (Section-3500-C1-B): 2017 9. Ca Hardness mg/L APHA, 23 rd Edition (Section-3500-Mg B): 2017 UV- Visible Spectrophotometer 11. Free Residual Chlorine mg/L APHA, 23 rd Edition (Section-4500-F-D): 2017 UV- Visible Spectrophotometer 12. Fluoride mg/L APHA, 23 rd Edition (Section 4500-Scale Spectrophotometer)	0 11	Table 21: List of parameters for Drinking Water Quality monitoring									
1. H*B):2017 2. Colour Hazen APHA, 23rd Edition, 2120 B:2017 Color Comparator 3. EC μS/cm APHA, 23rd Edition (Section-2510 B):2017 Conductivity Meter 4. Turbidity NTU APHA, 23rd Edition (Section -2130 B):2017 Nephlo Turbidity Meter 5. TDS mg/L APHA, 23rd Edition (Section-2540 C):2017 Vaccum Pump with filtration assembly and Oven 6. TSS mg/L APHA, 23rd Edition (Section-4500-Cl-B):2017 Titration Apparatus 7. Chloride mg/L APHA, 23rd Edition (Section-3500-Cl-B):2017 Titration Apparatus 8. Total Hardness mg/L APHA, 23rd Edition (Section-3500-CaB):2017 APHA, 23rd Edition (Section-3500-CaB):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-MBB):2017 UV- Visible Spectrophotometer 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-FDD):2017 UV- Visible Spectrophotometer 13. Sulphate mg/L APHA, 23rd Edition (Section-3500-NaB):2017 Flame Photometer 14. Sodium mg/L AP	Sr. No.		Units								
3. EC	1.	рН	ı	H+B):2017	pH Meter						
3.	2.	Colour	Hazen	APHA, 23 rd Edition, 2120 B:2017	Color Comparator						
4. B):2017 Meter 5. TDS mg/L APHA, 23rd Edition (Section-2540 C):2017 with filtration assembly and Oven 6. TSS mg/L APHA, 23rd Edition, 2540 D: 2017 oven 7. Chloride mg/L APHA, 23rd Edition (Section-4500-Cl-B):2017 APHA, 23rd Edition (Section-2340 C):2017 8. Total mg/L APHA, 23rd Edition (Section-2340 C):2017 9. Ca Hardness mg/L APHA, 23rd Edition (Section-3500-CaB):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-MgB):2017 11. Free Residual chlorine mg/L APHA, 23rd Edition (Section-4500-FD):2017 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-FD):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-NaB):2017 15. Potassium mg/L APHA, 23rd Edition (Section-3500-NaB):2017 16. Salinity mg/L APHA, 23rd Edition (Section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	3.	EC	μS/cm	· ·	•						
C):2017 May L APHA, 23rd Edition, 2540 D: 2017 Chloride mg/L APHA, 23rd Edition (Section-4500-Cl-B):2017 R. Total mg/L APHA, 23rd Edition (Section-2340 C):2017 R. Total mg/L APHA, 23rd Edition (Section-2340 C):2017 Ga Hardness mg/L APHA, 23rd Edition (Section-3500-CaB):2017 Mg Hardness mg/L APHA, 23rd Edition (Section-3500-MgB):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-MgB):2017 11. Free Residual Chlorine mg/L APHA, 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-FD):2017 Mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 Mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 14. Sodium mg/L APHA, 23rd Edition, 3500 K-B: 2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition, 4500 NO3- B: 2017 Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: 2017	4.	Turbidity	NTU	`							
6. Chloride mg/L APHA, 23rd Edition (Section-4500-Cl-B):2017 8. Total mg/L APHA, 23rd Edition (Section-2340 C):2017 9. Ca Hardness mg/L APHA, 23rd Edition (Section-3500-CaB):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-MgB):2017 11. Free Residual Chlorine mg/L APHA, 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-FD):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-NaB):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition, 4500 NO3-B: C.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3-B: Spectrophotometer	5.	TDS	mg/L	`	-						
8. Total mg/L APHA, 23rd Edition (Section-2340 C):2017 9. Ca Hardness mg/L APHA, 23rd Edition (Section-3500-Ca B):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-Mg B):2017 11. Free Residual Chlorine mg/L APHA, 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-F-D):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (Section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV- Visible Spectrophotometer	6.	TSS	mg/L	APHA, 23rd Edition, 2540 D: 2017	•						
8. Hardness C):2017 9. Ca Hardness mg/L APHA, 23rd Edition (Section-3500-Ca B):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-Mg B):2017 11. Free Residual Chlorine mg/L APHA 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-F-D):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (Section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV- Visible Spectrophotometer	7.	Chloride	mg/L	`							
9. B):2017 10. Mg Hardness mg/L APHA, 23rd Edition (Section-3500-Mg B):2017 11. Free Residual Chlorine mg/L APHA, 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-F-D):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (Section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: 2017 18. Sodium mg/L APHA, 23rd Edition, 4500 NO3- B: 2017	8.		mg/L	`							
11. Free Residual Chlorine mg/L APHA 23rd Edition, 4500 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-F-D):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-NaB):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3-B: UV-Visible Spectrophotometer	9.	Ca Hardness	mg/L	`							
11. Chlorine 12. Fluoride mg/L APHA, 23rd Edition (Section-4500-F-D):2017 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV- Visible Spectrophotometer	10.	Mg Hardness	mg/L	· ·							
12. D):2017 Spectrophotometer 13. Sulphate mg/L APHA, 23rd Edition (Section 4500-SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	11.		mg/L	APHA 23rd Edition, 4500							
13. SO4-2-E):2017 14. Sodium mg/L APHA, 23rd Edition (Section-3500-Na-B):2017 15. Potassium mg/L APHA, 23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	12.	Fluoride	mg/L	`							
14. B):2017 15. Potassium mg/L APHA,23rd Edition, 3500 K-B: 2017 16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) Meter 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	13.	Sulphate	mg/L	`							
16. Salinity mg/L APHA, 23rd Edition (section 2520 B, E.C. Method) Salinity /TDS Meter 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	14.	Sodium	mg/L	`	Flame Photometer						
16. E.C. Method) Meter 17. Nitrate mg/L APHA, 23rd Edition, 4500 NO3- B: UV-Visible Spectrophotometer	15.	Potassium	mg/L	APHA,23 rd Edition, 3500 K-B: 2017							
2017 Spectrophotometer	16.	Salinity	mg/L	E.C. Method)	· ·						
18. Nitrite mg/L APHA, 23 rd Edition, 4500 NO2-B: 2017	17.	17.			Spectrophotometer						
	18.	Nitrite	mg/L	APHA, 23rd Edition, 4500 NO2-B: 2017							

Sr. No.	Parameters	Units	Reference method	Instrument
19.	Hexavalent	mg/L	APHA, 23rd Edition, 3500 Cr B: 2017	
	Chromium			
20.	Manganese	mg/L	APHA,23 rd Edition, ICP Method 3120 B:	ICP-OES
			2017	
21.	Mercury	mg/L	EPA 200.7	
22.	Lead	mg/L	APHA ICP 23rd Edition (Section-3120	
22.			B):2017	
23.	Cadmium	mg/L	APHA ICP 23rd Edition (Section-3120	
23.			B):2017	
24.	Iron	mg/L	APHA ICP 23rd Edition (Section-3120	
24.			B):2017	
25.	Total	mg/L	APHA ICP 23rd Edition (Section-3120	
25.	Chromium		B):2017	
26.	Copper	mg/L	APHA,23rd Edition, ICP Method 3120 B:	ICP-OES
20.			2017	
27.	Zinc	mg/L	APHA ICP 23rd Edition (Section-3120	
27.			B):2017	
28.	Arsenic	mg/L	APHA ICP 23rd Edition (Section-3120	
20.			B):2017	
29.	Total	MPN/	IS 15185: 2016	LAF/ Incubator
۷۶.	Coliforms	100ml		

8.2 Result and Discussion

The drinking water quality of the locations at Kandla and Vadinar and its comparison with the to the stipulated standard (Drinking Water Specifications i.e., IS: 10500:2012) have been summarized in **Table 22** as follows:

Table 22: Summarized results of Drinking Water quality

Sr.	Parameters	Units		ndard as per IS									Ka	ndla									Vadinar	
No.			A	P	DW-1	DW-2	DW-3	DW-4	DW-5	DW-6	DW-7	DW-8	DW-9	DW-10	DW-11	DW-12	DW-13	DW-14	DW-15	DW-16	DW-17	DW-18	DW-19	DW-20
1.	pН	-	6.5-8.5	-	8.34	6.41	7.67	8.78	7.63	8.26	8.48	8.50	7.79	8.15	7.87	7.88	7.90	8.10	7.85	7.01	6.99	6.91	7.58	7.30
2.	Colour	Hazen	5	15	1	1	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3.	EC	μS/ cm	-	-	15	44.56	677	48.7	1004	88.4	14.05	31	703	210	1041	57.9	123.7	173	169.9	165	158.6	68	499	113.9
4.	Salinity	PSU	-	-	0.02	0.21	0.33	0.03	0.49	0.05	0.02	0.02	0.34	0.10	0.51	0.03	0.06	0.09	0.08	0.08	0.08	0.04	0.24	0.06
5.	Turbidity	NTU	1	5	BQL	BQL	0.52	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.68	BQL
6.	Chloride	mg/L	250	1000	4.96	8.55	119.1 1	6.95	193.56	17.87	4.47	7.94	119.1 1	45.16	203.48	14.39	23.33	33.25	36.23	32.26	35.73	17.87	71.47	17.87
7.	Total Hardness	mg/L	200	600	2.5	8	165	13	200	7	BQL	3.5	170	20	210	4	25.0	40	12.5	25	7.5	12	130	20
8.	Ca Hardness	mg/L	-	-	1.5	6	100	10	115	5.5	1	2.5	85	5	125	3	12.5	15	7.5	12.5	2.5	5	60	5
9.	Mg Hardness	mg/L	-	-	1	2	65	3	85	1.5	BQL	1	85	15	85	1	12.5	25	5	12.5	5	7	70	15
10	Free Residual Chlorine	mg/L	0.2	1	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	4.96	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
11	. TDS	mg/L	500	2000	8	22	356	26	516	46	8	16	362	108	538	30	66	94	88	86	82	36	258	60
12	. TSS	mg/L	-	1	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
13	. Fluoride	mg/L	1.0	1.5	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.318	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.500	0.360
14	. Sulphate	mg/L	200	400	BQL	BQL	33.51	BQL	52.375	BQL	BQL	BQL	38.32	BQL	66.402	BQL	BQL	BQL	BQL	21.771	BQL	BQL	33.620	BQL
15	Nitrate	mg/L	45	•	BQL	BQL	2.783	BQL	28.36	5.037	BQL	BQL	2.242	1.865	30.93	BQL	BQL	1.330	1.353	BQL	4.432	BQL	3.584	BQL
16	. Nitrite	mg/L	-	ı	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	1.638	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL

Environmental Monitoring Report of Deendayal Port Authority, June-July 2024

Sr.	Parameters	Units		ndard as per IS									Ka	ndla									Vad	linar
No.			A	P	DW-1	DW-2	DW-3	DW-4	DW-5	DW-6	DW-7	DW-8	DW-9	DW-10	DW-11	DW-12	DW-13	DW-14	DW-15	DW-16	DW-17	DW-18	DW-19	DW-20
17.	Sodium	mg/L	-	-	BQL	BQL	72.16	BQL	109.19	16.59	BQL	BQL	78.98	28.79	109.58	10.72	16.16	19.30	27.45	21.13	28.99	13.51	54.54	17.05
18.	Potassium	mg/L	-	-	BQL	BQL	BQL	BQL	7.22	BQL	BQL	BQL	BQL	BQL	7.89	BQL								
19.	Hexavalent Chromium	mg/L	-	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
20.	Odour	TON	Agre	eable	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21.	Arsenic	mg/L	0.01	0.05	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
22.	Cadmium	mg/L	0.003	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23.	Copper	mg/L	0.05	1.5	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
24.	Iron	mg/L	0.3	-	BQL	BQL	BQL	0.119	BQL	BQL	BQL	BQL	BQL	0.126	BQL	0.872	BQL	0.121	BQL	0.252	BQL	0.109	0.128	BQL
25.	Lead	mg/L	0.01	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
26.	Manganese	mg/L	0.1	0.3	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.059	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
27.	Mercury	mg/L	0.001	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
28.	Total Chromium	mg/L	0.05	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
29.	Zinc	mg/L	5	15	BQL	BQL	BQL	BQL	BQL	BQL	BQL	3.964	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
30.	Total Coliform*	MPN/ 100ml	Shall dete		5110	380	695	BQL	3100	130	10	2018	1060	BQL	4250	BQL	35	BQL	3400	BQL	385	85	85	75

A: Acceptable, P:Permissible, BQL: Below Quantification limit Turbidity (QL=0.5 NTU), Free Residual Chlorine (QL=2 mg/L), Total Suspended Solids (QL=2 mg/L), Fluoride (QL=0.3 mg/L), Sulphate (QL=10 mg/L), Nitrate as NO₃ (QL=1 mg/L), Nitrite as NO₂ (QL=0.1mg/L), Sodium as Na (QL=5mg/L), Potassium as K (QL=5mg/L), Hexavalent Chromium (QL=0.01 mg/L), Arsenic (QL=0.005 mg/L), Cadmium (QL=0.002 mg/L), Copper (QL=0.005 mg/L), Iron (QL=0.1mg/L), Lead (QL=0.002 mg/L), Manganese (QL=0.04 mg/L), Mercury (QL=0.0005 mg/L), Total Chromium (QL=0.005 mg/L), Total Coliforms (QL=1 MPN/ 100ml)

*Note: For Total Coliform, one MPN is equivalent to one CFU. The use of either method; MPN or CFU for the detection of bacteria are considered valid measurements for bacteria limits.

8.3 Data Interpretation and Conclusion

Drinking water samples were taken from 20 locations (18 at Kandla and 2 at Vadinar), and their physical and chemical properties were analyzed. The analysis's results were compared with standard values as prescribed in IS 10500:2012 Drinking Water Specification.

- pH: The pH values of drinking water samples in Kandla were reported to be in the range of 6.41 to 8.78, with an average pH of 7.80. In Vadinar, its values ranged from 7.30 to 7.58, with an average pH of 7.44. Notably, the pH levels at both project sites fall within the acceptable range of 6.5 to 8.5, except the location DW-2 & DW-4, as specified under IS:10500:2012.
- Colour: The colour varies from 1 to 5 at the monitoring locations of Kandla. Only locations DW-3 showed the value of 5 Hazen, whereas, all the other locations showed a value of 1 in Hazen at Kandla. At Vadinar, the color was observed to be 1 Hazen at both the monitoring locations.
- **Electrical Conductivity (EC):** It is a measure of the ability of a solution to conduct electric current, and it is often used as an indicator of the concentration of dissolved solids in water. During the monitoring period, the EC values for samples collected in Kandla were observed to range from **14.05 to 1041 μS/cm**, with an average value of 266.26 μS/cm. In Vadinar, the EC values showed variation from **113.9 to 499 μS/cm**, with an average value of 306.45 μS/cm. It's important to regularly monitor EC levels in drinking water as it can provide valuable information about water quality and presence of dissolved substances.
- Salinity: Salinity at Kandla varies from 0.02 to 0.51 PSU with an average of 0.14 PSU, while at Vadinar, salinity was observed to be 0.24 and 0.06 PSU for locations DW-19 & DW-20 respectively.
- **Turbidity:** At the drinking water locations of Kandla, the turbidity was found BQL for all locations except locations DW-3 (0.52 NTU. Whereas, at Vadinar the value of turbidity was reported 0.68 NTU at DW-19 and BQL at DW-20 respectively.
- Chlorides: The chloride concentrations in Kandla varied from 4.47 to 203.48 mg/L, with an average value of 51.34 mg/L. At Vadinar the locations DW-19 and DW-20, the chloride concentration was observed as 71.47 mg/L and 17.87 mg/L, with an average value of 44.67 mg/L. Thus, the chloride levels at both project sites fall within the acceptable limit of 250 mg/L, as specified under IS:10500:2012.
- Total Hardness (TH): The concentration of Total Hardness varies from 2.5 to 210 mg/L, with an average concentration of 54.41 mg/L. At location DW-11, the total hardness was observed 210 mg/L, which exceeds the acceptable limit but falls within the permissible limit. While at Vadinar, the observed values were 130 & 20 mg/L; at locations DW-19 & D-20, with an average concentration of 75 mg/L. which was found to be within the acceptable norm of 200 mg/L as specified by IS:10500:2012 and is not harmful for local inhabitants.
- Total Dissolved Solids (TDS): Monitoring TDS is crucial because it provides an indication of overall quality of the water. During the monitoring period, the TDS concentrations in Kandla were observed to vary in a wide range i.e., between 8 to 538 mg/L, with an average concentration of 138.22 mg/L. At Locations DW-11, the TDS

value is 538 mg/L, which is more than the acceptable limit but within the permissible limit. while in Vadinar, it ranged from 60 to 258 mg/L, with an average of 159 mg/L. It is important to note that the TDS concentrations in both Kandla and Vadinar fall well within the acceptable limit of 500 mg/L.

- **Fluoride:** The concentration was found BQL, at all of the monitoring location except for locations DW-11 (0.31 mg/L) at Kandla. While at Vadinar Fluoride concentration was reported to be 0.500 & 0.360 mg/L respectively at both of the monitoring location.
- Sulphate: At the monitoring locations of Kandla, the sulphate concentrations were recorded BQL for majority of the locations except the locations DW-3(33.516 mg/L), DW-5 (52.375 mg/L), DW-9 (38.326 mg/L), DW-11 (66.402 mg/L), and DW-16 (21.771 mg/L). In Vadinar, the sulphate concentration was observed 33.620 mg/L at location DW-19 and BQL at location DW-20. During monitoring period in Kandla and Vadinar, the sulphate concentrations were found to be within the acceptable limits i.e., 200 mg/L as per the specified norms.
- **Nitrate:** During the monitoring period, at Kandla & Vadinar variation in the concentration of Nitrate was observed to be in the range of **1.33 to 30.93 mg/L**, with the average concentration of 8.70 mg/L and locations DW-1, DW-2, DW-4, DW-7, DW-8, DW-12, DW-13, DW-16 and DW-18 were recorded as "BQL". While at Vadinar, the concentration recorded 3.584 mg/L at location DW-19 and BQL at location DW-20.
- **Nitrite:** Except locations DW-11 (1.638 mg/L), all monitoring locations showed the Nitrite concentration as BQL at Kandla & Vadinar.
- **Sodium:** During the monitoring period, at Kandla variation in the concentration of Sodium was observed to be in the range of **10.72 to 109.58 mg/L**, with the average concentration of 42.50 mg/L and Location DW-1, DW-2, DW-4, DW-7 & DW-8 showed the BQL concentration for Sodium. While at Vadinar, the concentration recorded 54.54 mg/L at DW-19 and 17.05 mg/L at DW-20.
- Odour: Odour values recorded 1 TON at all monitoring locations of Kandla and Vadinar.
- **Arsenic:** In Kandla & Vadinar, the Arsenic concentrations were recorded BQL for all of the locations.
- **Copper:** In Kandla & Vadinar, the Copper concentrations were recorded BQL for all of the locations.
- Iron: Except for locations DW-4 (0.119 mg/L), DW-10 (0.126 mg/L), DW-12 (0.872 mg/L), DW-14 (0.121 mg/L), DW-16 (0.252 mg/L), and DW-18 (0.109 mg/L), the other locations were observed to have concentrations Below the detection Limit at Kandla. Whereas, at Vadinar the Copper concentrations were recorded 0.128 mg/L & BQL for locations DW-19 and DW-20 respectively.
- Lead: In Kandla & Vadinar, the Lead concentrations were recorded BQL for all of the locations.
- **Manganese:** All of locations observed to have BQL concentration for both the monitoring locations at Kandla and Vadinar except the location DW-8 (0.059 mg/L).
- Free Residual Chlorine: Free Residual Chlorine concentrations at all monitoring locations, including Kandla and Vadinar, were observed to be below quantifiable limits (BQL) except at location DW-11, where a concentration of 4.96 mg/L was

recorded. According to health standards, concentrations exceeding 4 mg/L are considered unsafe for human health, potentially leading to adverse health effects.

- The parameters such as Free Residual Chlorine, Toal Suspended Solid, Potassium Hexavalent Chromium and the metals (Cadmium, Mercury, Total Chromium and Zinc) were all observed to have concentrations "Below the Quantification Limit (BQL)" at majority of the locations during the monitoring period.
- Bacteriological Analysis of the drinking water reveals that Total Coliforms (TC) were detected in higher number at location DW-1 (5110 MPN/100ml), DW-11 (4250 MPN/100ml), DW-15 (3400 MPN/100ml), DW-5 (3110 MPN/100ml) & DW-8 (2018 MPN/100ml). Whereas, TC were also detected at locations DW-2 (380 MPN/100ml), DW-3 (695 MPN/100ml), DW-6 (130 MPN/100ml), DW-7 (10 MPN/100 ml), DW-9 (1060 MPN/100 ml), DW-13 (35 MPN/100 ml), DW-17 (385 MPN/100 ml), DW-18 (85 MPN/100 ml), DW-19 (75 MPN/100 ml) and DW-20 (5 MPN/100 ml) and for the rest of the monitoring locations of Kandla and Vadinar were detected "Below the Quantification Limit (BQL)". Reporting such concentration of Coliforms indicates certain external influx may contaminate the source. Hence, it should be checked at every distribution point.

8.4 Remedial Measures

Appropriate water treatment processes should be administered to eradicate coliform bacteria. The methods of disinfection such as **chlorination**, **ultraviolet** (UV), or **ozone** etc, apart from that, filtration systems can also be implemented to remove bacteria, sediment, and other impurities.

The following steps can be implemented to ensure that the water being supplied is safe for consumption:

- Regular monitoring should be carried out to assess the quality of drinking water at various stages, including the source, purification plants, distribution network, and consumer endpoints would help in early detection of coliform bacteria or other contaminants in the drinking water.
- It is necessary to carry out a system assessment to determine whether the drinking-water supply chain (up to the point of consumption) as a whole can deliver water of a quality that meets identified targets. This also includes the assessment of design criteria of the treatment systems employed.
- Identifying control measures in a drinking-water system that will collectively control identified risks and ensure that the health-based targets are met. For each control measure identified, an appropriate means of operational monitoring should be defined that will ensure that any deviation from required performance (water quality) is rapidly detected in a timely manner.
- Management and communication plan should be formulated describing actions to be taken during normal operation as well as during incident conditions (such as drinking water contamination) and documenting the same.

CHAPTER 9: SEWAGE TREATMENT PLANT MONITORING

9.1 Sewage Treatment Plant (STP) Monitoring:

The principal objective of STP is to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. As defined in the scope by Deendayal Port Authority (DPA), Kandla, the STP Monitoring is to be carried out weekly at three locations, one at Kandla, one at Gopalpuri and one STP at Vadinar. The samples from the inlet and outlet of the STP have been collected weekly. The details of the locations of STP to be monitored for Kandla and Vadinar have been mentioned in **Table 23** as follows:

Table 23: Details of the monitoring locations of STP

Sr. No.	Locatio	n Code	Location Name	Latitude Longitude
1.	Kandla	STP-1	STP Kandla	23.021017N 70.215594E
2.	Kandia	STP-2	STP Gopalpuri	23.077783N 70.136759E
3.	Vadinar	STP-3	STP at Vadinar	22.406289N 69.714689E

The Consolidated Consent and Authorization (CC&A) issued by the GPCB were referred for the details of the STP for Kandla and Gopalpuri. The CC&A of Kandla and Gopalpuri entails that the treated domestic sewage should conform to the norms specified in **Table 24**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

Table 24: Treated effluent Standards (as per CC&A of Kandla STP)

		(· · I · · · · · /
Sr. No.	Parameters	Prescribed limits
1.	рН	6.5-8.5
2.	BOD (3 days at 27°C)	30 mg/L
3.	Suspended Solids	100 mg/L
4.	Fecal Coliform	< 1000 MPN/100 ml

The detailed process flow diagram of the Kandla and Gopalpuri STP have been mentioned in **Figure 3 and 4** as follows:

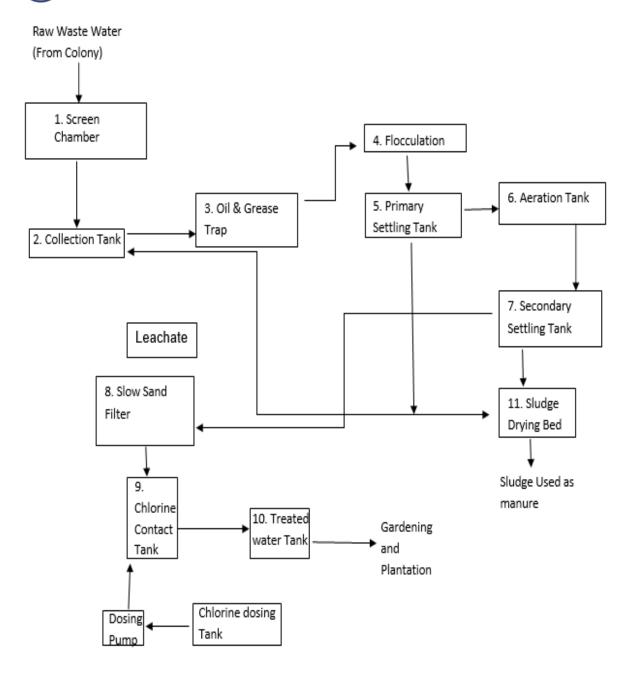


Figure 3: Process flow diagram of STP at Kandla

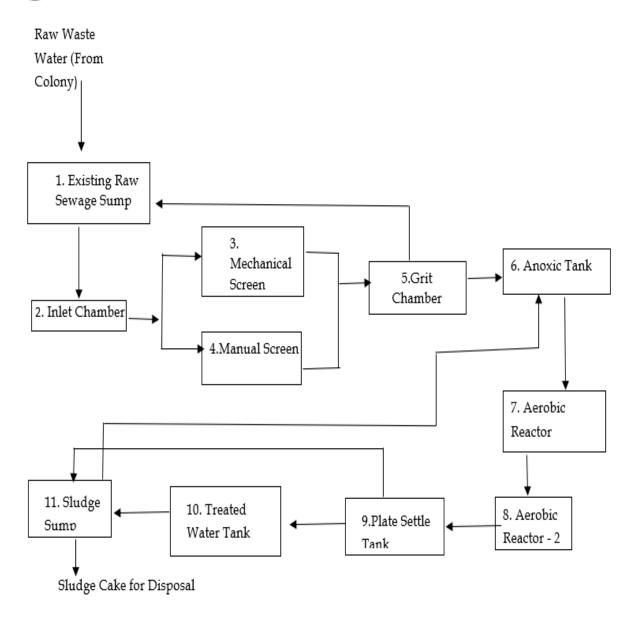


Figure 4: Process flow diagram of STP at Gopalpuri

STP at Vadinar

The STP at Vadinar has been built with a treatment capacity of 450 KLD/day. The Consolidated Consent and Authorization (CC&A) issued by the GPCB has been referred for the details of the said STP. The CC&A of the Vadinar STP suggests that the domestic effluent generated shall be treated as per the norms specified in **Table 25**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

Table 25: Norms of treated effluent as per CC&A of Vadinar STP

Sr. No.	Parameters	Prescribed limits
1.	pН	5.5-9
2.	BOD (3 days at 27°C)	10 mg/L
3.	Suspended Solids	20 mg/L
4.	Fecal Coliform	Desirable 100 MPN/100 ml
		Permissible 230 MPN/100 ml
5.	COD	50 mg/L

The detailed process flow diagram of the Vadinar STP have been mentioned in **Figure 5** as follows:

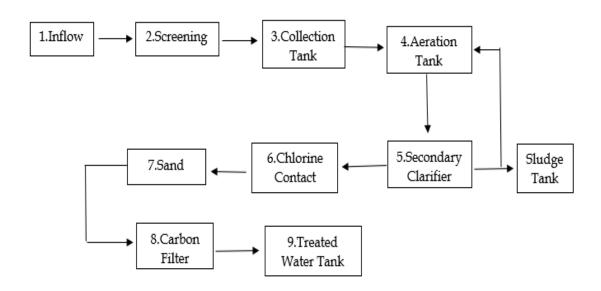
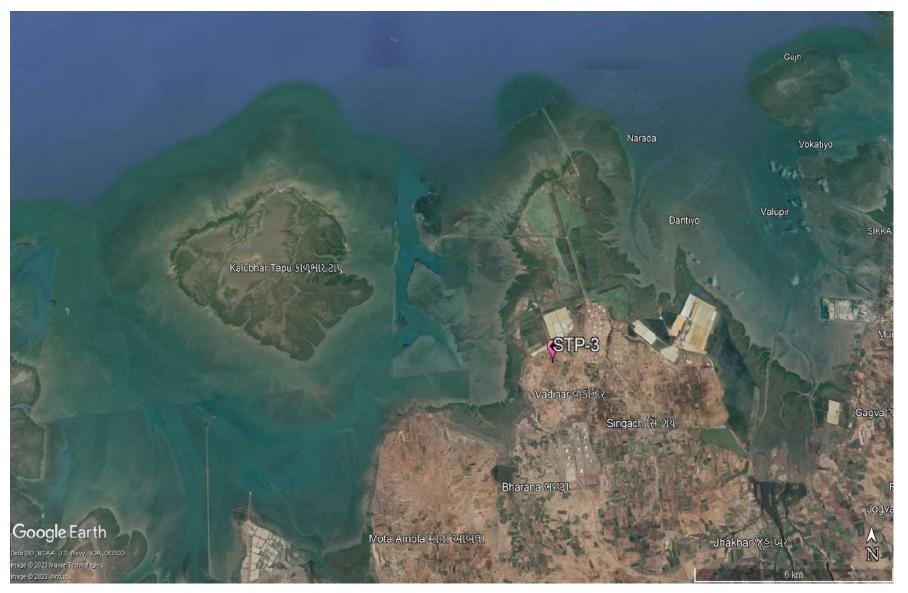


Figure 5: Process flowchart for the STP at Vadinar


The map depicting the locations of STP to be monitored in Kandla and Vadinar have been shown in **Map 14 and 15** as follows:

Map 14: Locations for STP Monitoring at Kandla

Map 15: Locations for STP Monitoring at Vadinar

Methodology

As per the defined scope by DPA, the sampling and analysis of water samples from the inlet and outlet of the STP's of Kandla and Vadinar are carried out once a week, i.e., four times a month.

The water samples were collected from inlet and the outlet of the STP's and analyzed for physico-chemical and microbiological parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures for the examination of water. The samples were analyzed for selected parameters to establish the existing water quality of the inlet and outlet points of the STP. GEMI has framed its own guidelines for collection of water/wastewater samples titled as 'Sampling Protocol for Water & Wastewater'; which has been approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014 under the provision of Water (Preservation and Control of Pollution) Act 1974. The sample collection and preservation are done as per the said Protocol. Under the project, the list of parameters to be monitored for the STP have been mentioned in **Table 26** as follows:

Frequency

Monitoring is required to be carried out once a week for monitoring location of Kandla and Vadinar i.e., two STP station at Kandla and one STP station at Vadinar.

Table 26: List of parameters monitored for STP's at Kandla and Vadinar

Sr. No.	Parameters	Units	Reference method	Instruments
1.	рН	-	APHA, 23 rd edition, 4500- H ⁺ B, 2017	pH Meter
2.	TDS	mg/L	APHA, 23rd Edition,	Vacuum Pump with
3.	TSS	mg/L	2540 C: 2017	filtration assembly and Oven
4.	DO	mg/L	APHA, 23 rd Edition, 4500 C: 2017	Titration Apparatus
5.	COD	mg/L	APHA, 23 rd Edition, 5220 B: 2017	Titration Apparatus plus Digester
6.	BOD	mg/L	IS-3025, Part 44, 1993	BOD Incubator plus Titration Apparatus
7.	SAR	meq/L	IS 11624: 2019	Flame Photometer
8.	Total Coliforms	MPN/100ml	IS 1622: 2019	LAF/ Incubator

9.2 Result and Discussion

Analytical results of the STP samples collected from the inlet and the outlet of the STP's of Kandla and Vadinar have been summarized in **Table 27 & 28**. Further it was compared with the standard norms specified in the CC&A of the respective STPs.

Table 27: Water Quality of inlet and outlet of STP of Kandla

Sr	Parameter	Units	GPCB		Kandla															
No.			Norms	Week 3 of June					Week 4 of June				Week 1 of July				Week 2 of July			
			(Kandla)	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2	STP-1	STP-1	STP-2	STP-2	
				(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	(Inlet)	(Outlet)	
1.	pН	-	6.5-8.5	7.02	7.22	7.08	7.36	7.18	7.41	7.12	7.29	7.22	7.56	7.08	7.21	7.12	7.48	6.94	7.48	
2.	TDS	mg/L	-	1896	1438	708	682	3948	3583	977	745	1869	1624	766	498	6643	3814	962	894	
3.	TSS	mg/L	100	126	8	88	10	88	12	126	18	72	14	108	10	78	6	62	8	
4.	COD	mg/L	-	249	92.4	257	52.2	229	66.47	236	42.7	173.7	66.21	385.7	54.7	233	71.2	184	52	
5.	DO	mg/L	-	BQL	5	BQL	3	BQL	4.8	BQL	4.2	BQL	3.9	BQL	5.4	BQL	2.3	BQL	4	
6.	BOD	mg/L	30	77.81	11.55	80.32	6.53	71.19	14.16	87.19	9.26	68.34	8.27	118.54	7.59	79.46	6.89	57.5	6.5	
7.	SAR	meq/L	-	10.69	8.54	4	3.58	18.47	13.91	7.41	5.34	8.79	8.13	4.92	2.78	16.72	5.63	4.75	5.14	
8.	Total Coliforms	MPN/ 100ml	<1000	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	

Table 28: Water Quality of inlet and outlet of STP of Vadinar

				14010 20. 1	rater Quality	or milet und	outiet of 511	or vadilla	•		
Sr No.	Parameter	Units	GPCB Norms (Vadinar)	Week 3	of June	Week 4	of June	Weel	k 1 of July	Week 2 of July	
INU.					STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)	STP-3 (Outlet)	STP-3 (Inlet)
1.	рН	-	5.5-9	7.21	7.07	7.22	7.04	7.24	7.05	7.2	7.48
2.	TDS	mg/L	-	584	578	532	442	436	378	452	366
3.	TSS	mg/L	20	8	4	8	2	12	6	18	4
4.	COD	mg/L	50	116.9	36.3	149.2	52.4	132	52	148.6	36.1
5.	DO	mg/L	-	BQL	4.5	BQL	5.6	BQL	7	0.9	7.8
6.	BOD	mg/L	10	36.53	4.54	46.63	6.55	39.6	7.8	46.44	6.77
7.	SAR	meq/L	-	3.08	2.59	3.51	2.96	2.32	2.2	2.4	1.99
8.	Total Coliforms	MPN/100ml	100-230	1600	1600	1600	1600	1600	1600	1600	1600

BQL: Below Quantification limit; Total Suspended Solids (QL=2), Dissolved Oxygen (QL=0.5), Biochemical Oxygen Demand (QL=3 mg/L)

9.3 Data Interpretation and Conclusion

For physicochemical analysis, the treated sewage water was gathered from the Kandla STP, Gopalpuri STP, and Vadinar STP and the analytical results were compared with the standards mentioned in the Consolidated Consent and Authorization (CC&A) by GPCB.

- The **pH** of treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) conform to their respective stipulated norms of 7.21-7.56 at Kandla and 7.04-7.48 at Vadinar respectively.
- The **TDS** of treated sewage at Kandla was ranges from 498 to 3814 mg/L, whereas for Vadinar it ranges from 366 to 578 mg/L.
- The **TSS** of the Treated effluent for the STP-1 and STP-2 at Kandla and STP-3 at Vadinar falls within the stipulated norms of 100 and 20 mg/L respectively as mentioned in their respective CCA.
- COD value for Kandla was observed in the range of 42.7 to 92.4 mg/L. Whereas for Vadinar the value of COD falls within the range of 36.1 52.4 mg/L, and conforms the CCA norms of 50 mg/L, except the 4th & 1st week sample of June & July.
- The value of **DO** was observed in the range of 2.3 to 5.4 mg/L, whereas for Vadinar it was observed in the range of 4.5 to 7.8 mg/L.
- The **BOD** of the outlet for the STPs of Kandla and Vadinar falls within the stipulated norms.
- The value of **SAR** for Kandla was observed in the range of 2.78 to 13.91 meq/L, whereas for Vadinar, it was observed in the range of 1.99 to 2.96 meq/L.
- The **Total Coliforms** was observed to exceed the norms at the locations of the STP-1 & STP-2 for the treated effluent at Kandla and STP-3 at Vadinar.

During the monitoring period, only Total Coliforms were observed to be exceeding the limits at STPs of Kandla and Vadinar while rest of the treated sewage parameters for STP outlet were within norms as specified under the CCA at both the monitoring sites. Regular monitoring of the STP performance should be conducted on regular basis to ensure adequate treatment as per the norms.

9.4 Remedial Measures:

- The quantum of raw sewage (influent) entering the STP should be monitored by installation of the flow meter. If the quantity of the sewage exceeds the treatment capacity of the treatment plant, then provision of additional capacity of collection sump should be provided.
- The adequacy and efficacy of the stages of Sewage treatment units shall be conducted.
- The results show the presence of total coliforms; hence the method of disinfection (Chlorination) sodium or calcium Hypochlorite can be used.
- Effectiveness of any technology depends on factors such as the specific pollutants in the
 wastewater, plant size, local regulations, and available resources. There are several
 processes that may be implemented such as Advanced oxidation process involve using
 strong oxidants to break down complex organic compounds. Methods like Fenton's

- reagent (hydrogen peroxide and iron catalyst) and UV/H_2O_2 treatment can help in reducing COD through oxidation.
- Electrochemical processes like Electrocoagulation (EC) and Electrooxidation (EO) that involve the application of an electric current to facilitate the removal of pollutants through coagulation, flocculation, and oxidation. These methods can be useful for treating sewage containing various pollutants.

CHAPTER 10: MARINE WATER QUALITY MONITORING

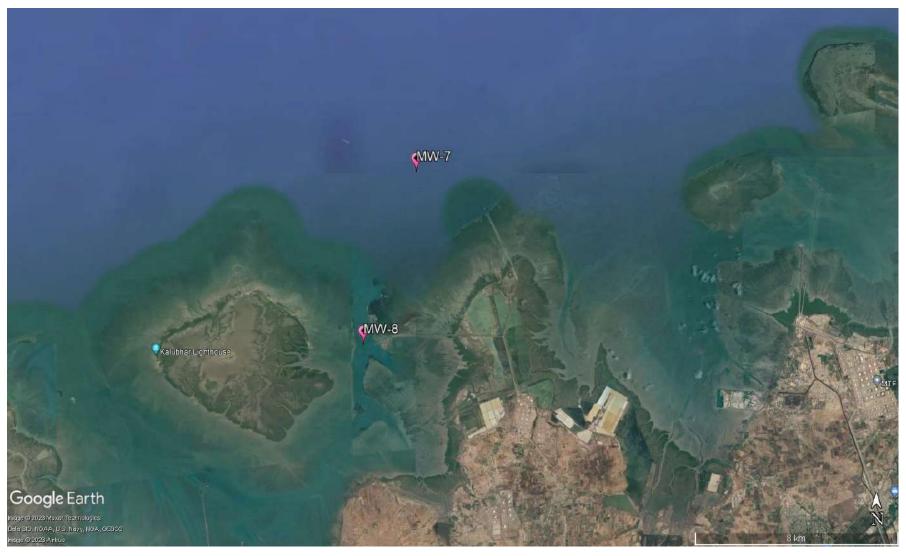
10.1 Marine Water

Deendayal Port is one of the largest ports of the country and thus, is engaged in wide variety of activities such as movement of large vessels, oil tankers and its allied small and medium vessels and handling of dry cargo several such activities whose waste if spills in water, can cause harmful effects to marine water quality.

Major water quality concerns at ports include wastewater and leakage of toxic substances from ships, stormwater runoff, etc. This discharge of wastewater, combined with other ship wastes which includes sewage and wastewater from other on-board uses, is a serious threat to the water quality as well as to the marine life. As defined in the scope by DPA, the Marine Water sampling and analysis has to be carried out at a total of eight locations, six at Kandla and two at Vadinar. The marine water sampling has been carried out with the help of Niskin Sampler with a capacity of 5L. The Niskin Sampler is a device used to take water samples at a desired depth without the danger of mixing with water from other depths. Details of the locations to be monitored have been mentioned in **Table 29**:

Table 29: Details of the sampling locations for Marine water

Sr. No.	Location Code		Location Name	Latitude Longitude	
1.		MW-1	Near Passenger Jetty One	23.017729N 70.224306E	
2.	MW-2		Kandla Creek (nr KPT Colony)	23.001313N 70.226263E	
3.	lla	MW-3	Near Coal Berth	22.987752N70.227923E	
4.	Kandla	MW-4	Khori Creek	22.977544N 70.207831E	
5.		MW-5	Nakti Creek (nr Tuna Port)	22.962588N 70.116863E	
6.		MW-6	Nakti Creek (nr NH-8A)	23.033113N 70.158528E	
7.	nar	MW-7	Near SPM	22.500391N 69.688089E	
8.	Vadinar	MW-8	Near Vadinar Jetty	22.440538N 69.667941E	


The map depicting the locations of Marine Water to be sampled and analysed for Kandla and Vadinar have been mentioned in **Map 16 and 17** as follows:

Map 16: Locations for Marine Water Monitoring at Kandla

Map 17: Locations for Marine Water Monitoring at Vadinar

Methodology

The methodology adopted for the sampling and monitoring of Marine Water was carried out as per the 'Sampling Protocol for Water & Wastewater' developed by GEMI. The water samples collected through the Niskin Sampler are collected in a clean bucket to reduce the heterogeneity. The list of parameters to be monitored under the project for the Marine Water quality have been mentioned in Table 30 along with the analysis method and instrument.

Frequency:

As defined in the scope by DPA, the sampling and analysis of Marine Water has to be carried out once in a month at the eight locations (i.e., six at Kandla and two at Vadinar).

Table 30: List of parameters monitored for Marine Water

Sr. No	Parameters	Units	Reference method	Instrument	
1.	Electrical Conductivity	μS/cm	APHA, 23 rd Edition (Section- 2510 B):2017	Conductivity Meter	
2.	Dissolved Oxygen (DO)	mg/L	APHA, 23 rd Edition, 4500 O C, 2017	Titration Apparatus	
3.	рН	-	APHA, 23 rd Edition (Section- 4500-H+B):2017	pH meter	
4.	Color	Hazen	APHA, 23 rd Edition, 2120 B: 2017	Color comparator	
5.	Odour	-	IS 3025 Part 5: 2018	Heating mantle & odour bottle	
6.	Turbidity	NTU	IS 3025 Part 10: 1984	Nephlo Turbidity Meter	
7.	Total Dissolved Solids (TDS)	mg/L	APHA, 23 rd Edition (Section- 2540 C):2017	Vaccum Pump with Filtration Assembly and	
8.	Total Suspended Solids (TSS)	mg/L	APHA, 23 rd Edition, 2540 D: 2017	Oven	
9.	Particulate Organic Carbon	mg/L	APHA, 23 rd Edition, 2540 D and E	TOC analyser	
10.	Chemical Oxygen Demand (COD)	mg/L	IS-3025, Part- 58: 2006	Titration Apparatus plus Digester	
11.	Biochemical Oxygen Demand (BOD)	mg/L	IS-3025, Part 44,1993,	BOD Incubator plus Titration apparatus	
12.	Silica	mg/L	APHA, 23 rd Edition, 4500 C, 2017		
13.	Phosphate	mg/L	APHA, 23 rd Edition, 4500 P- D: 2017	UV- Visible	
14.	Sulphate	mg/L	APHA, 23 rd Edition, 4500 SO4-2 E: 2017	Spectrophotometer	
15.	Nitrate	mg/L	APHA, 23 rd Edition, 4500 NO3-B: 2017		

Sr. No	Parameters	Units	Reference method	Instrument	
16.	Nitrite	mg/L	APHA, 23 rd Edition, 4500 NO2- B: 2017		
17.	Sodium	mg/L	APHA, 23 rd Edition, 3500 Na- B: 2017	Flame photometer	
18.	Potassium	mg/L	APHA, 23 rd Edition, 3500 K- B: 2017	riame photometer	
19.	Manganese μg/L		APHA, 23 rd Edition, ICP Method 3120 B: 2017		
20.	Iron	mg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017	ICP-OES	
21.	Total Chromium	μg/L	APHA, 23rd Edition, 3500 Cr		
22.	Hexavalent Chromium	μg/L	B: 2017	UV- Visible Spectrophotometer	
23.	Copper	μg/L			
24.	Cadmium	μg/L			
25.	Arsenic	μg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017	ICP-OES	
26.	Lead	μg/L		102 020	
27.	Zinc	mg/L			
28.	Mercury	μg/L	EPA 200.7		
29.	Floating Material (Oil grease scum, petroleum products)	mg/L	APHA, 23 rd Edition, 5520 C: 2017	Soxhlet Assembly	
30.	Total Coliforms (MPN)	MPN/ 100ml	IS 1622: 2019	LAF/ Incubator	

10.2 Result and Discussion

The quality of the Marine water samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 31**. The said water quality has been represented in comparison with the standard values as stipulated by CPCB for Class SW-IV Waters.

Table 31: Results of Analysis of Marine Water Sample for the sampling period

Sr.	Parameters	Unit	Primary			Ka	ndla			Vad	inar
No			Water			IXu				, ad	
			Quality								
			Criteria								
			for Class	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8
			SW-IV								
			Waters								
1.	Density	kg/m³	-	1.018	1.024	1.022	1.019	1.02	1.023	1.02	1.023
2.	рН	-	6.5-9.0	7.79	7.89	7.85	7.80	7.79	7.82	7.83	7.88
3.	-	Hazen	No								
	Color		Noticeable	5	5	5	5	5	5	5	1
4.	EC	μS/cm	-	62,600	57,800	59,400	60,500	61,500	58,900	53,300	55,100
5.	Turbidity	NTU	_	>500	150	>500	323	>500	424	11.7	18.2
6.	TDS	mg/L	<u>-</u>	42,638	39,356	41,264	41,884	42,728	43,544	36,178	37,296
7.	TSS	_	-	744	152	568	348	608	348	12	14
	COD	mg/L	-								46.8
8.		mg/L	- /1	68.1	58.7	89.4	60.4	88.5	80.9	57.9	
9.	DO	mg/L	3.0 mg/L	5.7	6.2	5.5	5.6	5.6	5.8	6.5	7.8
10.	BOD	mg/L	5.0 mg/L	4.26	3.67	5.59	3.78	5.53	5.05	3.62	5.85
11.	Oil &	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	Grease										
12.	Sulphate	mg/L	-	3444.7	3473.1	3160.3	3452.6	3344	3045.9	3041.8	2772.6
13.	Nitrate	mg/L	-	4.144	3.599	4.578	3.678	5.200	3.834	2.963	2.371
14.	Nitrite	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
15.	Phosphate	mg/L		0.901	BQL	BQL	BQL	BQL	BQL	BQL	BQL
16.	Silica	mg/L	-	4.23	3.67	3.15	3.75	4.74	3.94	1.80	1.60
17.	Sodium	mg/L	-	>10,00	>10,000	>10,000	>10,000	>10,000	>10,000	>10,00	>10,00
	Socium			0						0	0
18.	Potassium	mg/L	-	444	336	454	428	419	441	382	384
19.	Hexavalent		-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	Chromium	mg/L									
20.	Odour	-	-	1	1	1	1	1	1	1	1
21.	Arsenic	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
22.	Cadmium	mg/L	_	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23.	Copper	mg/L	=	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
24.	Iron	mg/L	-	4.477	0.970	3.887	2.861	4.058	2.876	BQL	0.225
25.	Lead	mg/L	_	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
26.	Manganese	mg/L	-	0.17	BQL	0.14	0.094	0.16	0.10	BQL	BQL
27.	Total	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
۷,	Chromium	mg/ L	-	DQL	DQL	DQL	DQL	DQL	DQL	DQL	DQL
28.	Zinc	ma/I	-	ROI	ROI	BQL	ROI	ROI	ROI	ROI	BQL
		mg/L	-	BQL	BQL		BQL	BQL	BQL	BQL	_
29.	Mercury	mg/L	-	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
30.	Particulate	/т		4.00	1.07	2.02	2.06	2.26	4.20	0.00	DOI.
	Organic	mg/L	-	4.82	1.27	3.92	2.86	3.26	4.28	0.08	BQL
	Carbon	A ADNI /	E00 /400								
31.	Total	MPN/	500/100	8	2	2	1600	13	4	DO:	
	Coliforms	100ml	ml							BQL	9

Sr.	Parameters	Unit	Primary		Kandla					Vadinar	
No ·			Water Quality Criteria for Class SW-IV Waters	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8
32.	Floating Material (Oil grease scum, petroleum products)	mg/L	10 mg/L	1.018	1.024	1.022	1.019	1.02	1.023	1.02	1.023

10.3 Data Interpretation and Conclusion

The Marine water quality of Deendayal Port Harbor waters at Kandla and Vadinar has been monitored for various physico-chemical and biological parameters during the monitoring period. The detailed interpretation of the parameters in comparison to the Class SW-IV for Harbour Waters is as follows:

- Density at Kandla was observed in the range of 1.018 to 1.024 kg/m³, with the average of 1.021 kg/m³. Whereas for the location of Vadinar, it was observed 1.02 kg/m³ at MW-7 and 1.023 kg/m³ at MW-8, with the average of 1.021 kg/m³.
- **pH** at Kandla was observed in the range of **7.79 to 7.89**, with the average pH as 7.89. Whereas for the locations of Vadinar, it was observed in the range of be **7.83 to 7.88**, with the average pH as 7.85. For the monitoring location of both the study areas, pH was found to comply with the norms of 6.5-8.5.
- **Color** range varied from **5 Hazen** at all the monitoring locations in Kandla, and for Vadinar, it found **5 Hazen** at MW-7 and **1 Hazen** at MW-8 location.
- Electrical conductivity (EC) was observed in the range of 57,800 to 62,600 μ S/cm, with the average EC as 60116.7 μ S/cm for the locations of Kandla, whereas for the locations of Vadinar, it was observed in the range of 53,300 to 55,100 μ S/cm, with the average EC as 54,200 μ S/cm.
- For all monitoring locations of Kandla the value of Turbidity was observed in the range of 150 to 424 NTU, with average value of 299 NTU, and location MW-1, MW-3 & MW-5 exceeds the quantification limit of 500 NTU. For Vadinar it ranges from 11.7 to 18.2 NTU, with average of 14.95 NTU. Materials that cause water to be turbid include clay, silt, finely divided organic and inorganic matter, soluble coloured organic compounds, plankton and microscopic organisms. Turbidity affects the amount of light penetrating to the plants for photosynthesis.
- For the monitoring locations at Kandla the value of **Total Dissolved Solids (TDS)** ranged from **39,356 to 43,544 mg/L**, with an average value of 41,902.3 mg/L. Similarly, at Vadinar, the TDS values ranged from **36,178 to 37,296 mg/L**, with an average value of 36,737 mg/L.

- TSS values in the studied area varied between 152 to 744 mg/L at Kandla and 12 to 14 mg/L at Vadinar, with the average value of 461.33 mg/L and 13 mg/L respectively for Kandla and Vadinar.
- COD varied between 58.7 to 89.4 mg/L at Kandla and 46.8 to 57.9 mg/L at Vadinar, with the average value as 74.33 mg/L and 52.35 mg/L respectively for Kandla and Vadinar.
- DO level in the studied area varied between 5.5 to 6.2 mg/L at Kandla and 6.5 to 7.8 mg/L at Vadinar, with the average value of 5.73 mg/L and 7.15 mg/L respectively for Kandla and Vadinar. Which represents that the marine water is suitable for marine life.
- **BOD** observed was observed in the range of **3.67 to 5.59 mg/L**, with average of 4.64 mg/L for the location of Kandla and for the locations of Vadinar, it was observed in the range of **3.62 to 5.85 mg/L**, with an average value of 4.73 mg/L.
- Sulphate concentration in the studied area varied between 3045.9 to 3473.1 mg/L at Kandla and 2772.6 to 3041.8 mg/L at Vadinar. The average value observed at Kandla was 3320.1 mg/L, whereas 2907.2 mg/L was the average value of Vadinar. Sulphate is naturally formed in inland waters by mineral weathering or the decomposition and combustion of organic matter.
- **Nitrate** in the study area was observed in the range of **3.59 to 5.2 mg/L**, with the average of 4.17 mg/L. Whereas for the Vadinar, recorded value was observed as 2.96 mg/L at MW-7 and 2.37 mg/L at MS-8.
- In the study area of Kandla the concentration of **Potassium** varied between **336 to 454** mg/L and **382 to 384 mg/L** at Vadinar, with the average value as 420.33 mg/L and 383 mg/L respectively for Kandla and Vadinar.
- Silica in the studied area varied between 3.15 to 4.74 mg/L, with the average of 3.91 mg/L, at Kandla. Vadinar, observed value was found to be 1.80 mg/L at MW-7 and 1.60 mg/L at MS-8 locations.
- **Sodium** in the study area at both Kandla & Vadinar the sodium concentration value recorded Above the quantification limit.
- Odour was observed 1 for all locations of Kandla and Vadinar.
- **Copper** at the Kandla site as well as both locations at the Vadinar site, had levels below the quantification limit (BQL)."
- **Iron** in the studied area varied between **0.97 to 4.47 mg/L**, with the average of 3.18 mg/L, at Kandla, and for Vadinar value were recorded BQL for location MW-7 and 0.225 mg/L for location MW-8.
- Lead concentration was observed BQL at both site of Kandla & Vadinar.
- **Manganese** in the studied area varied between **0.094 to 0.17 mg/L**, with the average of 0.13 mg/L, at Kandla. At Vadinar both location MW-7 and MW-8 observed BQL.
- **Particulate Organic Carbon** in the study area was observed in the range of **1.27 to 4.82**, with the average value of 3.40. Whereas for the Vadinar, the value observed was 0.08 at MW-7 and BQL at MW-8.
- Oil & Grease, Nitrite, Phosphate, Hexavalent Chromium, Arsenic, Cadmium, Total Chromium, Zinc, Mercury and Floating Material (Oil grease scum, petroleum

products) were observed to have concentrations "Below the Quantification Limits (BQL)" for most of the locations of Kandla and Vadinar.

 Total Coliforms were detected complying with the specified norm of 500 MPN/100ml for all the locations of Kandla and Vadinar, except the location MW-4, which is 1600 MPN/100ml.

During the Monitoring period, marine water samples were analysed and found in line with Primary Water Quality criteria for class-IV Waters (For Harbour Waters).

However, as a safeguard towards marine water pollution prevention, appropriate regulations on ship discharges and provision of reception facilities are indispensable for proper control of emissions and effluent from ships. Detection of spills is also important for regulating ship discharges. Since accidental spills are unavoidable, recovery vessels, oil fences, and treatment chemicals should be prepared with a view to minimizing dispersal. Proper contingency plans and a prompt reporting system are keys to prevention of oil dispersal. Periodical clean-up of floating wastes is also necessary for preservation of port water quality.

CHAPTER 11: MARINE SEDIMENT QUALITY MONITORING

11.1 Marine Sediment Monitoring

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind. The unconsolidated materials derived from pre-existing rocks or similar other sources by the process of denudation are deposited in water medium are known as sediment. For a system, like a port, where large varieties of raw materials and finished products are handled, expected sediment contamination is obvious.

The materials or part of materials spilled over the water during loading and unloading operations lead to the deposition in the harbour water along with sediment and thus collected as harbour sediment sample. These materials, serve as receptor of many trace elements, which are prone to environment impact. In this connection it is pertinent to study the concentration and distribution of environmentally sensitive elements in the harbour sediment. However, human activities result in accumulation of toxic substances such as heavy metals in marine sediments. Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulation. Metals affect the ecosystem because they are not removed from water by self-purification, but accumulate in sediments and enter the food chain.

Methodology

As defined in the scope by DPA, the Marine Sediment sampling is required to be carried out once in a month at total eight locations, i.e., six at Kandla and two at Vadinar. The sampling of the Marine Sediment is carried out using the Van Veen Grab Sampler (make Holy Scientific Instruments Pvt. Ltd). The Van Veen Grab sampler is an instrument to sample (disturbed) sediment up to a depth of 20-30 cm into the sea bed. While letting the instrument down on the seafloor, sediment can be extracted. The details of locations of Marine Sediment to be monitored under the study are mentioned in **Table 32** as follows:

Table 32: Details of the sampling locations for Marine Sediment

Sr. No	Loc	ation Code	Location Name	Latitude Longitude
1.		MS-1	Near Passenger Jetty One	23.017729N 70.224306E
2.	a	MS-2	Kandla Creek	23.001313N 70.226263E
3.	Kandla	MS-3	Near Coal Berth	22.987752N 70.227923E
4.	Ka	MS-4	Khori Creek	22.977544N 70.207831E
5.		MS-5	Nakti Creek (near Tuna Port)	22.962588N 70.116863E
6.		MS-6	Nakti Creek (near NH-8A)	23.033113N 70.158528E
7.	Vadinar	MS-7	Near SPM	22.500391N 69.688089E
8.	Vad	MS-8	Near Vadinar Jetty	22.440538N 69.667941E


The map depicting the locations of Marine Sediment sampling at Kandla and Vadinar have been mentioned in **Map 18 and 19** as follows:

Map 18: Location of Marine Sediment Monitoring at Kandla

Map 19: Locations of Marine Sediment Monitoring at Vadinar

The list of parameters to be monitored under the projects for the Marine Sediment sampling been mentioned in **Table 33** as follows:

Table 33: List of parameters to be monitored for Sediments at Kandla and Vadinar

Sr. No.	Parameters	Units	Reference method	Instruments
1.	Texture		Methods Manual Soil Testing in India January 2011,01	Hydrometer
2.	Organic Matter	%	Methods Manual Soil Testing in India January, 2011, 09. Volumetric method (Walkley and Black, 1934)	Titration apparatus
3.	Inorganic Phosphates	mg/Kg	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR-Indian Institute of Pulses Research 2017	UV- Visible Spectrophotometer
4.	Silica	mg/Kg	EPA METHOD 6010 C & IS: 3025 (Part 35) – 1888, part B	
5.	Phosphate	mg/Kg	EPA Method 365.1	
6.	Sulphate as SO ⁴⁻	mg/Kg	IS: 2720 (Part 27) - 1977	
7.	Nitrite	mg/Kg	ISO 14256:2005	
8.	Nitrate	mg/Kg	Methods Manual Soil Testing in India January, 2011, 12	
9.	Calcium as Ca	mg/Kg	Methods Manual Soil Testing in India January 2011, 16.	Titration
10.	Magnesium as Mg	mg/Kg	Method Manual Soil Testing in India January 2011	Apparatus
11.	Sodium	mg/Kg	EPA Method 3051A	
12.	Potassium	mg/Kg	Methods Manual Soil Testing in India January, 2011	Flame Photometer
13.	Aluminium	mg/Kg	·	
14.	Chromium	mg/Kg		
15.	Nickel	mg/Kg		
16.	Zinc	mg/Kg	TDA M. d. 10054 A	IOD OFF
17.	Cadmium	mg/Kg	EPA Method 3051A	ICP-OES
18.	Lead	mg/Kg		
19.	Arsenic	mg/Kg		
20.	Mercury	mg/Kg		

11.2 Result and Discussion

The quality of Marine Sediment samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 34**.

Table 34: Summarized result of Marine Sediment Quality

	Table 34: Summarized result of Marine Sediment Quality									
Sr	Parameters	Unit				ndla			Vadi	nar
No.	1 arameters	Omt	MS-1	MS-2	MS-3	MS-4	MS-5	MS-6	MS-7	MS-8
1.	Inorganic Phosphate	kg/ ha	2.12	2.41	3.64	2.88	3.42	1.71	1.85	1.06
2.	Phosphate	mg/Kg	288.72	329.62	467.84	363.18	319.45	213.507	217.339	339.31
3.	Organic Matter	%	1.12	1.36	1.02	1.28	0.94	1.43	1.13	1.52
4.	Sulphate as SO ⁴⁻	mg/Kg	170.55	146.88	133.90	122.57	189.41	169.42	145.05	126.34
5.	Ca	mg/Kg	3680.00	3850.00	4600.00	4100.00	3740.00	3500.00	3400.00	3800.00
6.	Magnesium as Mg	mg/Kg	1928.00	2473.00	2541.00	2849.00	2473.00	1342.00	976.00	1865.00
7.	Silica	g/Kg	519.37	521.29	534.91	546.62	554.35	523.5	507.02	534.29
8.	Nitrite	mg/Kg	0.68	0.79	0.61	0.72	0.77	0.29	0.22	0.31
9.	Nitrate	mg/Kg	6.83	7.42	6.21	5.88	6.12	15.28	11.6	5.79
10	Sodium	mg/Kg	8190	10687	7526	13760	9149	11972	9548	12586
11	Potassium	mg/Kg	2671	2149	2375	3460	2549	6376	4447	1172
12	Aluminium	mg/Kg	7234.11	6841.64	8423.36	9864.22	7246.18	12327.688	10215.74	12643.2
13	Chromium	mg/Kg	49.21	53.46	52.15	56.51	48.72	50.009	48.941	86.61
14	Copper	mg/Kg	5.52	5.63	5.75	6.29	5.31	48.227	30.463	4.25
15	Nickel	mg/Kg	24.87	21.79	25.48	27.62	26.73	29.24	22.776	24.37
16	Zinc	mg/Kg	58.75	52.4	61.85	82.41	55.12	62.49	41.691	40.85
17	Cadmium	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
18	Lead	mg/Kg	6.08	6.41	6.19	6.77	6.28	6.54	2.97	4.494
19	Arsenic	mg/Kg	4.61	4.82	4.58	4.72	4.42	4.61	1.485	2.497
20	Mercury	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
21	Texture	-	Sandy loam	Sandy loam	Silt loam	Sandy loam	Silt loam	Silt loam	Sandy loam	Loam

11.3 Data Interpretation and Conclusion

The Marine sediment quality at Kandla and Vadinar has been monitored for various physico-chemical parameters during the monitoring June-July. The detailed interpretation of the parameters is given below:

• Inorganic Phosphate for the sampling period was observed in range of **2.12 to 3.64** Kg/ha for Kandla. Whereas for Vadinar the value observed at location MS-7 (Nakti creek) is 1.71 Kg/ha and MS-8 (Near Vadinar Jetty) is 1.85 Kg/ha. For Kandla and Vadinar the average value of Inorganic Phosphate was observed 2.81 and 1.78 Kg/ha respectively.

- The concentration of Phosphate was observed in range of 288.72 to 467.84 mg/Kg for Kandla and for Vadinar the value observed at location MS-7 (Nakti creek) as 213.507 mg/Kg and MS-8 (Near Vadinar Jetty) as 217.339 mg/Kg. For Kandla and Vadinar the average concentration of Phosphate was observed 367.238 and 215.423 mg/Kg respectively.
- The **Organic Matter** for the sampling period was observed in the range of **0.94 to 1.36** % for Kandla with the average value of 1.16% and for Vadinar the value recorded at location MS-7 and MS-8 was observed 1.43% & 1.13% respectively, with average concentration as 1.28 %.
- The concentration of **Sulphate** was observed in the range of **122.57 to 212.27 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 169.42 mg/Kg and at MS-8 is 145.05 mg/Kg. For Kandla and Vadinar the average value of Sulphate was observed 162.596 and 157.235 mg/Kg respectively.
- The value of **Calcium** was observed in the range of 3680 **to 4900 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 3500.00 mg/Kg and at MS-8, is 3400.00 mg/Kg. The average value of Calcium for the monitoring period was observed 4145 mg/Kg and 3450 mg/Kg at Kandla and Vadinar, respectively.
- The value of **Magnesium** for the sampling period was observed in the range of **1928 to 2849 mg/Kg** for Kandla and for Vadinar the value observed at MS-7 is 1342.00 mg/Kg and at MS-8, is 976.00 mg/Kg. For Kandla and Vadinar the average value of Magnesium was observed 2427 mg/Kg and 1159 mg/Kg respectively.
- For the sampling period **Silica** was observed in the range of **519.27 to 559.73 mg/Kg** for Kandla with average value 539.37 mg/Kg and for Vadinar the value observed to be 523.5 and 507.02 mg/Kg at MS-7 and MS-8, respectively with average 515.26 mg/Kg.
- The value of **Nitrate** was observed in the range of **5.88 to 8.19 mg/Kg** for Kandla with average value 6.77 mg/Kg and for Vadinar the value observed to be 15.28 and 11.6 mg/Kg at MS-7 and MS-8, respectively with average 13.44 mg/Kg.
- The value of **Nitrite** was observed in the range of **0.61 to 0.83 mg/Kg** for Kandla with average value 0.73 mg/Kg and for Vadinar the value observed to be 0.29 and 0.22 mg/Kg at MS-7 and MS-8, respectively with average 0.25 mg/Kg.
- The value of **Sodium** was observed in the range of **7526 to 13760 mg/Kg** for Kandla with average value 10327.66 mg/Kg and for Vadinar the value observed to be 11972 and 9548 mg/Kg at MS-7 and MS-8, respectively with average 10760 mg/Kg.
- The value of **Potassium** was observed in the range of **2149 to 3671 mg/Kg** for Kandla with average value 2812.5 mg/Kg and for Vadinar the value observed to be 6376 and 4447 mg/Kg at MS-7 and MS-8, respectively with average 5411.5 mg/Kg.
- The value of **Aluminium**, was observed in the range of **6841.64 to 10157.25 mg/Kg** for Kandla with average value 8294.46 mg/Kg and for Vadinar the value observed to be 12327.68 and 10215.74 mg/Kg at MS-7 and MS-8, respectively with average 11271.7 mg/Kg.

- The value of Mercury was observed "Below the Quantification Limit" at all the eightmonitoring location of Kandla and Vadinar.
- Texture was observed to be "Sandy Loam" at location MS-1, MS-2, and MS-4 "Silt loam" at location MS-3, MS-5 & MS-6 in Kandla. "Sandy Loam" at location MS-7 & "loam" at location MS-8 in Vadinar during sampling period.

Heavy Metals

The sediment quality of Kandla and Vadinar has been compared with respect to the Average Standard guideline applicable for heavy metals in marine sediment specified by EPA have been mentioned in **Table 35.**

Table 35: Standard Guidelines applicable for heavy metals in sediments

Sr.	Metals		Sediment quality (mg/k	g)	Source			
No.	Metals	Not polluted	Moderately polluted	Heavily polluted				
1.	As	<3	3-8	>8				
2.	Cu	<25	25-50	>50				
3.	Cr	<25	25-75	>75				
4.	Ni	<20	20-50	>50	EPA			
5.	Pb	<40	40-60	>60				
6.	Zn	<90	90-200	>200				
7.	Cd	-	<6	>6				
ND =	ND = Not Detected							

(Source: G Perin et al. 1997)

Table 36: Comparison of Heavy metals with Standard value in Marine Sediment

Sr.	Parameters	Unit				Vadinar				
No.	1 arameters	Ollit	MS-1	MS-2	MS-3	MS-4	MS-5	MS-6	MS-7	MS-8
1.	Arsenic	mg/Kg	4.61	4.82	4.58	4.72	4.42	4.61	1.485	2.497
2.	Copper	mg/Kg	5.52	5.63	5.75	6.29	5.31	48.227	30.463	4.25
3.	Chromium	mg/Kg	49.21	53.46	52.15	56.51	48.72	50.009	48.941	86.61
4.	Nickel	mg/Kg	24.87	21.79	25.48	27.62	26.73	29.24	22.776	24.37
5.	Lead	mg/Kg	6.08	6.41	6.19	6.77	6.28	6.54	2.97	4.494
6.	Zinc	mg/Kg	58.75	52.4	61.85	82.41	55.12	62.49	41.691	40.85
7.	Cadmium	mg/Kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL

- **Arsenic** was observed in the range of **4.42 to 4.82 mg/Kg** for Kandla with average value 4.62 mg/Kg and for Vadinar the value observed to be 1.48 and 2.49 mg/Kg at MS-7 and MS-8, respectively with average 1.99 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to arsenic falls in moderately polluted class.
- Copper was observed in the range of **5.31 to 6.54 mg/Kg** for Kandla with average value 5.84 mg/Kg and for Vadinar the value observed to be 48.22 and 30.46 mg/Kg at MS-7 and MS-8, respectively with average 39.74 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to copper falls in non-polluted class.

- Chromium was observed in the range of 48.72 to 59.81 mg/Kg for Kandla with average value 53.31 mg/Kg and for Vadinar the value observed to be 50 and 48.94 mg/Kg at MS-7 and MS-8, respectively with average 49.47 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to chromium falls in moderately polluted class.
- **Nickel** was observed in the range of **21.79 to 29.24 mg/Kg** for Kandla with average value 25.95 mg/Kg and for Vadinar the value observed to be 22.77 and 24.37 mg/Kg at MS-7 and MS-8, respectively with average 38.1mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to nickel falls in moderately polluted class.
- **Lead** was observed in the range of **6.08 to 6.77 mg/Kg** for Kandla with average value 6.37 mg/Kg and for Vadinar the value observed to be 2.97 and 4.49 mg/Kg at MS-7 and MS-8, respectively with average 3.73 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to lead falls in moderately polluted class.
- **Zinc** was observed in the range of **52.4 to 82.41 mg/Kg** for Kandla with average value 62.17 mg/Kg and for Vadinar the value observed to be 41.69 and 40.85 mg/Kg at MS-7 and MS-8, respectively with average 56 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to zinc falls in non-polluted class.
- Cadmium was observed BQL for all locations at Kandla and Vadinar during sampling period. With reference to the guidelines mentioned in table 35, the sediment quality with respect to cadmium falls in non-polluted class.

Analysis of the sediments indicates moderate pollution. However, it may be noted that, the sediments are highly dynamic being constantly deposited and carried away by water currents. Hence maintaining the quality of sediments is necessary as it plays a significant role in regulating the quality of the marine water and the marine ecology.

The presence of anthropic activity in the coastal areas has an effect upon the marine water and sediment. One of the primary risks associated with contaminated sediments is bioaccumulation in benthic organisms, which is a route of entry into the food chain. Generally adopted sediment remediation approaches include dredging, capping of contaminated areas, and monitored natural recovery (MNR). Dredging can remove contaminated sediments, but it requires large areas of land for sediment disposal. It is expensive and may cause secondary contamination of the water column during resuspension. MNR relies on ongoing naturally occurring processes to decrease the bioavailability or toxicity of contaminants in sediment. These processes may include physical, biological, and chemical mechanisms that act together to reduce the environmental risks posed by contaminated sediments. MNR require longer monitoring time and can be even more expensive than for dredging and capping. Capping consists of in situ covering of clean or suitable isolating material over contaminated sediments layer

to limit leaching of contaminants, and to minimize their re-suspension and transport. Hence appropriate remedial measures for the polluted sediment sites may be implemented, to reduce the concentration of the heavy metals.

CHAPTER 12: MARINE ECOLOGY MONITORING

12.1 Marine Ecological Monitoring

The monitoring of the biological and ecological parameters is important in order to assess the marine environment. A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval. Deendayal Port and its surroundings have mangroves, mudflats and creek systems as major ecological entities. As defined in the scope by DPA, the Marine Ecological Monitoring is required to be carried out once a month specifically at eight locations, six at Kandla and two at Vadinar. The sampling of the Benthic Invertebrates has been carried out with the help of D-frame nets, whereas the sampling of zooplankton and phytoplankton has been carried out with the help of Plankton Nets (60 micron and 20 micron). The details of the locations of Marine Ecological Monitoring have been mentioned in **Table 37** as follows:

Table 37: Details of the sampling locations for Marine Ecological

Sr. No.	Locat	ion Code	Location Name	Latitude Longitude	
1.		ME-1	Near Passenger Jetty One	23.017729N 70.224306E	
2.	-	ME-2	Kandla Creek (near KPT Colony)	23.001313N 70.226263E	
3.	Kandla	ME-3	Near Coal Berth	22.987752N 70.227923E	
4.	¥ ME-4		Khori Creek	22.977544N 70.207831E	
5.	ME-5		Nakti Creek (near Tuna Port)	22.962588N 70.116863E	
6.		ME-6	Nakti Creek (near NH - 8A)	23.033113N 70.158528E	
7.	. H ME-7		Near SPM	22.500391N 69.688089E	
8.	Vadinar	ME-8	Near Vadinar Jetty	22.440538N 69.667941E	

The map depicting the locations of Marine Ecological monitoring in Kandla and Vadinar have been mentioned in **Map 20 and 21** as follows:

Map 20: Locations of Marine Ecological Monitoring at Kandla

Map 21: Locations of Marine Ecological Monitoring at Vadinar

The various parameters to be monitored under the study for Marine Ecological Monitoring are mentioned in **Table 38** as follows:

Table 38: List of parameters to be monitored for Marine Ecological Monitoring

Sr. No.	Parameters
1.	Productivity (Net and Gross)
2.	Chlorophyll-a
3.	Pheophytin
4.	Biomass
5.	Relative Abundance, species composition and diversity of phytoplankton
6.	Relative Abundance, species composition and diversity of zooplankton
7.	Relative Abundance, species composition and diversity of benthic invertebrates (Meio, Micro and macro benthos)
8.	Particulate Oxidisable Organic Carbon
9.	Secchi Depth

Methodology

Processing for chlorophyll estimation:

Samples for chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size $0.45~\mu m$) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665~nm.

• Phytoplankton Estimation

Phytoplankton are free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio-purifier and bio-indicators of the aquatic ecosystems of which diverse array of the life depends. They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem. The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the

primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are Diatoms (*Bacillariophyceae*) and Dinoflagellates (*Dinophyceae*). Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as Cyanophytes (Bluegreen algae). Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts. Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton Estimation

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes. Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of 'biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior. The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

• Benthic Organisms Estimation

Benthic macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. They include dragonfly and stonefly larvae, snails, worms, and beetles. Use of benthic macroinvertebrates has been in vogue as indicator organisms for water quality monitoring since long. Traditional methods of water quality monitoring incorporates mostly monitoring of physicochemical parameters. Benthic macroinvertebrates are majorly insects that dwell on the floor of water bodies. They are found in all water bodies, as they have a wide range of pollution tolerance among various species. The benthic

macro-invertebrate's community structure depends on the exposure to pollution it receives. Benthic macroinvertebrates have been used as indicator organisms to measure the water quality of water bodies across the world. Evaluating the abundance and variety of benthic macroinvertebrates in a waterbody gives us an indication of the biological condition of that waterbody. Generally, waterbodies in healthy biological condition support a wide variety and high number of macroinvertebrate taxa, including many that are intolerant of pollution. Samples yielding only pollution—tolerant species or very little diversity or abundance may indicate a less healthy waterbody. Biological condition is the most comprehensive indicator of waterbody health. When the biology of a waterbody is healthy, the chemical and physical components of the waterbody are also typically in good condition.

Diversity Index

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

1. Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index (H), which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species. Shannon-Wiener's index (H) reproduces community parameters to a single number by using an equation are as follow:

$$H' = \sum p_i * \ln (p_i)$$

Where, Σ = Summation symbol,

pi = Relative abundance of the species,

In = Natural logarithm

More diverse ecosystems are considered healthier and more resilient. Higher diversity ecosystems typically exhibit better stability and greater tolerance to fluctuations. e.g., The Shannon diversity index values between 2.19 and 2.56 indicate relatively high diversity within the community compared to communities with lower values. It suggests that the community likely consists of a variety of species, and the species are distributed somewhat evenly in terms of their abundance.

2. Simpson's index:

A reasonably high level of dominance by one or a small number of species is indicated by the range of **0.89 to 0.91**. The general health and stability of the ecosystem may be impacted by this dominance. Community disturbances or modifications that affect the dominant species may be more likely to have an impact. The dominating species

determined by the Simpson's index can have big consequences on how the community is organised and how ecological interactions take place.

The formula for calculating D is presented as:

$$D=1-\sum (p_i\hat{2})$$

Where, Σ = Summation symbol, pi = Relative abundance of the species

3. Margalef's diversity index:

The number of species is significantly related to the port's vegetation cover surface, depth, and photosynthetic zone. The habitat heterogeneity is a result of these three elements. Species richness is related to the number of distinct species present in the analysed area. Margalef's index has a lower correlation with sample size. Small species losses in the community over time are likely to result in inconsistent changes.

Margalef's index D_{Mg} , which is also a measure of species richness and is based on the presumed linear relation between the number of species and the logarithm of the number of individuals. It is given by the formula:

$$D_{Mg} = \frac{S-1}{\ln N}$$

Where, N = total number of individuals collected

S = No. of taxa or species or genera

4. Berger-Parker index:

This is a useful tool for tracking the biodiversity of deteriorated ecosystems. Environmental factors have a considerable impact on this index, which accounts for the dominance of the most abundant species over the total abundance of all species in the assemblage. The preservation of their biodiversity and the identification of the fundamental elements influencing community patterns are thus critical for management and conservation. Successful colonising species will dominate the assemblage, causing the Berger-Parker index to rise, corresponding to well-documented successional processes. The environmental and ecological features of the system after disturbance may therefore simply but significantly determine the identity of the opportunistic and colonising species through niche selection processes.

The Berger-Parker index is a biodiversity metric that focuses on the dominance or relative abundance of a single species within a community. It provides a measure of the most abundant species compared to the total abundance of all species present in the community. Mathematically, it can be represented as follows:

$$d = \frac{N_{max}}{N_i}$$

Where, N_{max} = Max no of individuals of particular genera or species

 $\sum N_i$ = Total no of individuals obtained.

The resulting value of the Berger-Parker index ranges between 0 and 1. A higher index value indicates a greater dominance of a single species within the community. Conversely, a lower index value suggests a more even distribution of abundance among different species, indicating higher species diversity. The range of the Berger-Parker

index can be interpreted as when the index value is close to 0, it signifies a high diversity with a more even distribution of abundances among different species. In such cases, no single species dominates the community, and there is a balanced representation of various species.

5. Evenness index-

Evenness index determines the homogeneity (and heterogeneity) of the species' abundance. Intermediate values between 0 and 1 represent varying degrees of evenness or unevenness in the distribution of individuals among species. Value of species evenness represents the degree of redundancy and resilience in an ecosystem. High species evenness = All species of a community can perform similar ecological activities or functions= even utilization of available ecological niches = food web more stable = ecosystem is robust (resistant to disturbances or environmental changes). Intermediate values between 0 and 1 represent variable degrees of evenness or unevenness.

$$EI = \frac{H}{\ln{(S)}}$$

Where, H= Shannon value

ln(S) = the natural logarithm of the number of different species in the community

Relative Abundance: The species abundance distribution (SAD) from disturbed ecosystems follows even/ uneven pattern. E.g., If relative abundance is 0.15, then the found species are neither highly dominant nor rare.

$$RA = \frac{No.\,of\,\,Individuals\,\,of\,\,Sp.}{Total\,\,no.\,of\,\,Individual} * 100\%$$

The basic idea of index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time. Biodiversity is commonly expressed through indices based on species richness and species abundances. Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

12.2 Result and Discussion

The details of Marine Ecological Monitoring conducted for the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 39**.

Table 39: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity (GPP), Pheophytin and Chlorophyll for Kandla and Vadinar

Sr.	Parameters	Unit				Vadinar				
No.			ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
1.	Biomass	mg/L	158	220	92	147	130	108	115	158
2.	Net Primary Productivity	mg/L/hr	0.58	BQL	0.82	BQL	0.72	BQL	BQL	BQL
3.	Gross Primary Productivity	mg/L/hr	1.12	BQL	1.22	0.78	1.19	0.66	0.76	BQL
4.	Pheophytin	mg/m³	0.88	4	0.78	0.84	1.12	0.97	1.32	BQL

Sr.	Parameters	Unit				Vadinar				
No.			ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
5.	Chlorophyll-a	mg/m³	0.93	1.210	1.87	1.19	1.86	1.52	1.44	1.26
6.	Particulate Oxidisable Organic Carbon	mg/L	1.11	0.78	0.74	0.81	0.92	1.08	0.61	0.62
7.	Secchi Depth	ft	0.62	0.59	0.53	0.71	0.64	0.68	1.05	1.16

Biomass:

With reference to the **Table 39**, the concentration of **Biomass** reported from location ME-1 to ME-6 in range between **92-220mg/L** where lowest biomass presents in ME-3 (Near Coal Berth) and highest biomass present in ME-2 (Kandla Creek) during sampling period. In Vadinar, the value of biomass was observed 115 mg/L at ME-7 (Near SPM) and 158 mg/L in ME-8 (Near Vadinar Jetty) monitoring station.

• Productivity (Net and Gross)

Gross primary productivity (GPP) is the rate at which organic matter is synthesised by producers per unit area and time (GPP). The amount of carbon fixed during photosynthesis by all producers in an ecosystem is referred to as gross primary productivity. The monitoring location of Kandla reported GPP value in range between 0.66 to 1.22 mg/L/48 Hr where the highest value recorded for ME-3 and lowest recorded at ME-6 (Nakti Creek (near NH - 8A)). In Vadinar, the value of GPP was observed 0.76 at ME-7 (Near SPM) and BQL at ME-8 (Near Vadinar Jetty) monitoring station.

Net primary productivity, is the amount of fixed carbon that is not consumed by plants, and it is this remaining fixed carbon that is made available to various consumers in the ecosystem. The Net primary productivity of the monitoring location at Kandla from (ME-1 to ME-6) has been estimated to be between **0.58 to 0.82 mg/L/48 Hr**. While in Vadinar, the value of **NPP** was observed BQL at ME-7 (Near SPM) and ME-8 (Near Vadinar Jetty) monitoring station.

Pheophytin

The level of Pheophytin was detected in the range from **0.78 to 4 mg/m³** where the highest value observed at ME-2 (Kandla Creek (near KPT Colony)) and the lowest value observed at ME-3 (Near Coal Berth). While in Vadinar, the value of Pheophytin was observed 1.32mg/m³ at ME-7 and BQL at ME-8 monitoring station.

• Chlorophyll-a

In the sub surface water, the value of Chlorophyll-a reported in range from **0.93 to 1.87 mg/m**³. The highest value observed at ME-3 (Near Coal Berth) while the lowest value observed at ME-1 (Near Passenger Jetty One). In Vadinar, the value of chlorophyll-a was observed 1.44 mg/m³ at ME-7 (Near SPM) and 1.26 mg/m³ in ME-8 (Near Vadinar Jetty) monitoring station.

• Particulate Oxidisable Organic Carbon

During the sampling period, the particulate oxidisable organic carbon falls within the range of **0.74 to 1.11 mg/L** from monitoring location ME-1 to ME-6 at Kandla, whereas for Vadinar, the value of POC observed 0.61 mg/L at ME-7 (Near SPM) and 0.62 mg/L in ME-8 (Near Vadinar Jetty) monitoring station.

• Secchi Depth

In monitoring station of Kandla (ME-1 to ME-6) the level of Secchi Depth was observed between **0.53 to 0.71 ft** whereas at Vadinar, the value recorded at ME-7 i.e. Near SPM is 1.05 ft and in Near Vadinar Jetty is 1.16 ft.

Ecological Diversity

Phytoplankton: For the evaluation of the Phytoplankton population in DPA Kandla and Vadinar within the immediate surroundings of the port, sampling was conducted during the study period. Total 8 sampling locations were studied i.es. sampling locations (6 from Kandla and two from Vadinar).

The details of variation in abundance and diversity in phytoplankton communities is mentioned in **Table 40**.

Table 40: Phytoplankton variations in abundance and diversity in sub surface sampling stations

Genera	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Bacillaria sp.	-	253	-	-	258	155	-	-
Biddulphia sp.	219	-	377	116	-	-	129	211
Chaetoceros sp.	-	-	-	-	119	-	-	-
Chlamydomonas sp.	189	129	-	268	-	262	355	282
Cyclotella sp.	202	-	324	-	143	-	-	-
Coscinodiscus sp.	-	156	-	179	-	154	166	197
Ditylum sp	225	-	170	-	-	-	-	-
Fragilaria sp.	-	344	-	-	264	255	-	208
Bacteriastrum sp.	176	-	432	202	187	-	345	-
Pleurosigma sp.	-	181	-	-	-	192	-	-
Navicula sp.	281	-	186	-	246	-	-	149
Merismopedia sp.	-	191	-	161	-	164	250	-
Synedra sp.	217	-	-	-	266	-	-	-
Skeletonema sp.	-	131	-	153	-	238	-	294
Oscillatoria sp.	-	-	166	-	169	-	192	-
Thallassiosira	297	198	-	232	-	356	-	189
Gomphonema sp.	-	-	158	-	188	-	221	-
Density-Units/L	1806	1583	1813	1311	1840	1776	1658	1530
No. of genera	8	8	7	7	9	8	7	7

The phytoplankton community of the sub surface water in the Kandla and Vadinar was represented by, Diatoms, green algae and filamentous Cynobacteria. Diatoms were represented by 15 genera; green algae were represented by 1 genera and filamentous Cynobacteria were represented by 1 genera during the sampling period.

The density of phytoplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from 1311 to 1840 units/L, while for Vadinar its density of phytoplankton observed 1658 units/L at ME-7 and 1530 units/L at ME-8. During the sampling, phytoplankton communities were dominated by *Thallassiosira* and *Cyclotella sp.* in Kandla, while *Chlamydomonas sp.* in Vadinar.

The details of Species richness Index and Diversity Index in Phytoplankton is mentioned in **Table 41**.

Table 41: Species richness Index and Diversity Index in Phytoplankton

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8			
Taxa S	8	8	7	7	9	8	7	7			
Individuals	1806	1583	1813	1311	1840	1776	1658	1530			
Shannon diversity	2.06	1.89	1.87	1.62	2.18	2.02	1.81	1.77			
Simpson 1-D	0.87	0.86	0.83	0.85	0.88	0.86	0.84	0.85			
Species Evenness	0.99	0.91	0.96	0.83	0.99	0.97	0.93	0.91			
Margalef richness	0.93	0.95	0.80	0.84	1.06	0.94	0.81	0.82			
Berger-Parker	0.16	0.22	0.24	0.20	0.14	0.20	0.21	0.19			
Relative abundance	0.44	0.51	0.39	0.53	0.49	0.45	0.42	0.46			

- Shannon-Wiener's Index (H) of phytoplankton communities was in the range of 1.62 to 2.18 between selected sampling stations from ME-1 to ME-6 with an average value of 1.94 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of phytoplankton communities recorded to be 1.81 at location ME-7 and 1.77 at ME-8 with an average value of 1.79. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla.
- Simpson diversity index (1-D) of phytoplankton communities was ranged between 0.83 to 0.88 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.86 Similarly, for Vadinar Simpson diversity index (1-D) of phytoplankton communities was 0.84 at location ME-7 and 0.85 at ME-8 with an average of 0.85.
- Margalef's diversity index (Species Richness) of phytoplankton communities in Kandla and nearby creeks sampling stations was varying from **0.80 to 1.06** with an average of 0.92 during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of phytoplankton communities observed 0.81 at ME-7 and 0.82 at ME-8 with an average value of 0.82.
- Berger-Parker Index (d) of phytoplankton communities was in the range of 0.14 to 0.24 between selected sampling stations from ME-1 to ME-6 with an average value of 0.19 at Kandla creek and nearby creeks. Berger-Parker Index (d) of phytoplankton communities in the sampling stations of Vadinar, was in the range of 0.19 to 0.21 with an average value of 0.20. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.83 to 0.99** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed 0.93 at location ME-7 & 0.91 at ME-8 location.
- During the sampling period, **Relative Abundance** of phytoplankton communities was in range of **0.39 to 0.53** between selected sampling stations from ME-1 to ME-6 with an average value of 0.47 at Kandla creek and nearby creeks. Whereas for Vadinar the Index value 0.42 at ME-7 and 0.46 at ME-8 with an average value 0.44, thus it is concluded that the studied species can be stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in zooplankton communities is mentioned in **Table 42**.

Table 42: Zooplankton variations in abundance and diversity in sub surface sampling stations

Genera	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Acartia sp.	-	2	1	-	1	-	-	1
Acrocalanus	1	-	-	1	-	2	1	-
Amoeba	-	1	1	-	-	1	-	-
Brachionus sp.	2	-	-	-	2	-	1	1
Calanus sp.	2	1	-	2	-	1	-	-
Cladocera sp.	-	-	2	-	1	-	2	2
Cyclopoid sp.	ı	-	-	1	1	-	-	-
Copepod larvae	1	1	-	1	-	1	-	1
Diaptomus sp.	ı	-	1	-	-	1	1	-
Eucalanus sp.	1	-	-	1	2	-	1	1
Mysis sp.	1	2	2	-	-	2	-	-
Paracalanus sp.	-	1	-	2	1	-	2	1
Density Unit/L	8	8	7	8	8	8	8	7
No. of genera	6	6	5	6	6	6	6	6

A total of 12 groups/taxa of zooplankton were recorded in Kandla and Vadinar during the study period which mainly constituted by *Mysis, brachionus, Calanus*, fish and shrimp larval forms. *Cladocera, Mysis* and *Paracalanus* had the largest representation at all stations from (ME-1 to ME-8). The density of Zooplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from 7 to 8 units/L, while for Vadinar its density of zooplankton observed 8 units/L at ME-7 and 8 units/L at ME-8. During the sampling, zooplankton communities were dominated by *Mysis sp.* in Kandla, while, *Cladocera* and *Paracalanus* had the largest representation at monitoring location of Vadinar.

The details of Species richness Index and Diversity Index in Zooplankton communities is mentioned in **Table 43**.

Table 43: Species richness Index and Diversity Index in Zooplankton

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Taxa S	6	6	5	6	6	6	6	6
Individuals	8	8	7	8	8	8	8	7
Shannon diversity	1.73	1.73	1.47	1.73	1.73	1.73	1.73	1.65
Simpson (1-D)	0.93	0.93	0.9	0.93	0.93	0.93	0.93	0.95
Species Evenness	0.97	0.97	0.91	0.97	0.97	0.97	0.97	0.92
Margalef	2.4	2.4	2.06	2.4	2.4	2.4	2.4	2.57
Berger-Parker	0.25	0.25	0.29	0.25	0.25	0.25	0.25	0.29
Relative abundance	<i>7</i> 5	<i>7</i> 5	71.43	<i>7</i> 5	<i>7</i> 5	75	<i>7</i> 5	85.71

• Shannon- Wiener's Index (H) of zooplankton communities was in the range of 1.47 to 1.73 between selected sampling stations from ME-1 to ME-6 with an average value of 1.68 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of zooplankton communities recorded to be 1.73 at ME-7 and 1.65 at ME-8 with an average

value of 1.69. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Near SPM (Vadinar).

- Simpson diversity index (1-D) of zooplankton communities was ranged between 0.9 to 0.93 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.92 Similarly, for Vadinar Simpson diversity index (1-D) of zooplankton communities was 0.93 at ME-7 and 0.95 at ME-8 with an average of 0.94.
- Margalef's diversity index (Species Richness) of zooplankton communities in Kandla and nearby creeks sampling stations was varying from 2.06 to 2.4 with an average of 2.34 during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of zooplankton communities observed 2.4 at ME-7 and 2.57 at ME-8 with an average value of 2.48.
- Berger-Parker Index (d) of zooplankton communities was in the range of 0.25 to 0.29 between selected sampling stations from ME-1 to ME-6 with an average value of 0.25 at Kandla creek and nearby creeks. Berger-Parker Index (d) of zooplankton communities in the sampling stations of Vadinar, was in the range of 0.25 to 0.29 with an average value of 0.27. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.91 to 0.97** for all the six-monitoring station of Kandla whereas, for the Vadinar the species evenness was observed in the range of 0.92 to 0.97, during the monitoring month.
- During the sampling period, **Relative Abundance** of zooplankton communities was in range of 71.43 to 75 between selected sampling stations from ME-1 to ME-6 with an average value of 74.40 at Kandla creek and nearby creeks. Whereas for Vadinar the Index value 75 at ME-7 and 85.71 at ME-8 with an average value 80.36, thus it can be concluded that the studied species is stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in **Benthic organism** is mentioned in **Table 44.**

Table 44: Benthic Fauna variations in abundance and diversity in sub surface sampling

Family/Class	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Thiaridae	1	-	-	-	1	-	-	-
Mollusca	-	1	1	-	-	2	1	-
Odonata	-	-	1	2	-	-	1	1
Lymnidae	1	-	-	1	1	-	-	-
Planorbidae	-	2	2	-	-	1	-	-
Talitridae	2	-	-	-	-	-	2	3
Trochidae	-	1	-	1	2	1	-	2
Atydae	1	-	1	2	-	-	1	3

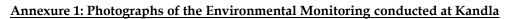
Family/Class	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Gammaridae	-	-	-	-	1	2	-	-
Portunidae	-	-	1	-	-	-	-	-
Turbinidae	2	1	1	1	1	1	1	-
Palaemonidae	-	-	-	-	1	-	1	-
No. of Family	7	5	7	7	7	7	7	9
No of Class	5	4	6	5	6	5	6	4

Few Benthic organisms were observed in the collected sample by using the Van-Veen grabs during the sampling conducted for DPA Kandla and Vadinar. Majority of the species were found under the Macro-benthic organisms during the sampling period were represented by *Odonta, Portunidae sp.,* etc. The No. of Family of benthic fauna was varying from 5 to 9. The dominating benthic communities at Kandla Creek and nearby creek (Nakti and Khori creek) were represented Atydae, Turbinidae. While lowest number of benthic species was represented by Portunidae.

The details of Species richness Index and Diversity Index in Benthic Organisms is mentioned in **Table 45**.

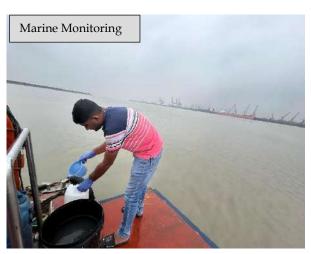
Table 45: Species richness Index and Diversity Index in Benthic Organisms

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
Taxa S	5	4	6	5	6	5	6	4
Individuals	7	5	7	7	7	7	7	9
Shannon diversity	1.55	1.19	1.75	1.55	1.75	1.55	1.75	1.36
Simpson 1-D	0.9	0.9	0.95	0.9	0.95	0.9	0.95	0.81
Species Evenness	0.96	0.86	0.98	0.96	0.98	0.96	0.98	0.98
Margalef	2.06	1.86	2.57	2.06	2.57	2.06	2.57	1.37
Berger-Parker	0.29	0.4	0.29	0.29	0.29	0.29	0.29	0.33
Relative abundance	71.43	80	85.71	71.43	85.71	71.43	85.71	44.44


- Shannon- Wiener's Index (H) of benthic organism was in the range of 1.19 to 1.75 between selected sampling stations from ME-1 to ME-6 with an average value of 1.55 at Kandla creek and its nearby creeks. While for Vadinar, Shannon Wiener's index of benthic organism recorded to be 1.75 at ME-7 & 1.36 at ME-8 location with an average value of 1.55. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar.
- Simpson diversity index (1-D) of benthic organism was ranged between 0.9 to 0.95 at all sampling stations in the Kandla creek and nearby creeks, with an average of 0.91. Similarly, for Vadinar Simpson diversity index (1-D) of benthic organism was 0.95 at ME-7 and 0.81 at ME-8 location with an average of 0.88.
- Margalef's diversity index (Species Richness) of benthic organism in Kandla and nearby creeks sampling stations was varying from 1.86 to 2.57 with an average of 2.19 during the sampling period. While for Vadinar, Margalef's diversity index (Species Richness) of

benthic organism observed to be 2.57 at ME-7 and 1.37 at ME-8 location with an average of 1.97.

- **Berger-Parker Index (d)** of benthic organism was in the range of **0.29 to 0.4** between selected sampling stations from ME-1 to ME-6 with an average value of 0.30 at Kandla creek and nearby creeks. Berger-Parker Index (d) of benthic organism in the sampling stations of Vadinar, was observed to be 0.29 at ME-7 and 0.33 at ME-8 location with an average value of 0.31. All the monitoring station signifies a low diversity with an even distribution among the different species.
- The **Species Evenness** is observed in the range of **0.86 to 0.98** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed 0.98 at both of the location.
- During the sampling period, **Relative Abundance** of Benthic organisms was in range of **71.43 to 85.71** between selected sampling stations from ME-1 to ME-6 with an average value of 77.61 at Kandla creek and nearby creeks. Whereas for Vadinar the Index value 85.71 at ME-7 and 44.44 at ME-8 location, with an average value 65.08, thus it is concluded that the studied species can be stated as neither highly dominant nor rare.



Annexure 2: Photographs of the Environmental Monitoring conducted at Vadinar

Source: GEMI

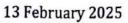
Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

'An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Institute

Head Office

Plot No. B 246 & 247, G.I.D.C. Electronic Estate, Sector-25, Gandhinagar-382024


Laboratory

Plot No. B-64, G.I.D.C. Electronic Estate, Opp. I.P.R., Sector-25, Gandhinagar-382025

Tel: (+91) 79-23240964 (O), T: (+91) 79-23287758 (Lab), F: (+91) 79-23240965 E-mail: info-gemi@gujarat.gov.in | Website: www.gemi.gujarat.gov.in

"We Provide Environmental Solutions"

Annexure -C

To The Chief Engineer **Deendayal Port Authority** Administrative Office Gandhidham 370201

Sir,

Sub: Half-yearly Compliance Report Submission for development of Tuna Tekra Container Terminal Project

The point-wise half yearly compliance report of the conditions stipulated in EC-CRZ Clearance, CRZ Recommendation and CTE Compliance Reports for September 2024 are enclosed. These are in supersession of the reports submitted in October 2024.

Kindly acknowledge receipt of the aforesaid documents.

Thanking you,

Yours sincerely.

Hindustan Gateway Container Terminal Kandla Private Limited

(SURESH JOSEPH)

Vice President - Projects - Ports and Terminals - Kandla

M 9387933440

E suresh.joseph@dpworld.com

Enclosures:

1. EC-CRZ Clearance Compliance Report

- 2. CRZ Recommendation Compliance Report
- 3. CTE Compliance Report
- 4. Monitoring Datasheet

Registered Office

Hindustan Gateway Container Terminal Kandla Private Limited Ahura Centre, A Wing, 5th Floor, Mahakali Caves Road, Andheri (East), Mumbai - 400 093, Maharashtra, India. CIN - U52242MH2023PTC398113 T: +91 22 6910 7300, E: contact_sco@dpworld.com

dpworld.com

मुख्य अभियंता का कार्यालय दीनदयाल पत्तन प्राधिकरण 14/2/2025

DY CE CPPR) Shows and

ANNEXURE 1 EC AND CRZ COMPLIANCE REPORT (up to September 2024)

Subject: Compliance of conditions stipulated by the Ministry of Environment,

Forests & Climate Change (MoEF&CC), GoI in Environmental & CRZ Clearance granted for "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Trust

(Erstwhile: Kandla Port Trust) at Gandhidham, Kutch, Gujarat."

Ref.: Environment and CRZ clearance accorded by the MoEF&CC, GoI vide file

no. 10-9/2017-IA-III dated 18/2/2020.

Sr. No.	A. Specific Conditions	Compliance
I	Consent to Establish/ Operate for the project shall be obtained from the State Pollution Control Board as required under the Air (Prevention and Control of Pollution) Act, 1981 and the Water (Prevention and Control of Pollution) Act, 1974.	Obtained by DPA – (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025.
ii	The project proponents will submit a declaration under Oath that the Railway line will not pass through mangrove area.	Not applicable
111	A detailed traffic management and traffic decongestion plan to ensure that the current level of service of the roads within a 05 kms radius of the project is maintained and improved upon after the implementation of the project. This plan should be based on cumulative impact of all development and increased habitation being carried out or proposed to be carried out by the project or other agencies in this 05 Kms radius of the site in different scenarios of space and time and the traffic management plan shall be duly validated and certified by the State Urban Development	Not applicable as on date
'	department and the P.W.D. and shall also have their consent to the implementation of components of the	

	plan which involve the participation of	
	these departments.	*
iv	A detailed marine biodiversity impact	
	assessment report and plan shall be	
	drawn up and implemented to the	Not applicable as on date
	satisfaction of the State Biodiversity	
	Board and the CRZ authority. This	
	shall be prepared through the NIOS or	30
	any other institute of repute on	
	any other institute of repute on	
	marine, brackish water and fresh	a a
	water ecology and biodiversity. The	16
	report shall be based on a study of the	
	impact of the project activities on the	
	intertidal biotopes, corals and coral	
	communities, molluscs, sea grasses,	
	sea weeds, sub-tidal habitats, fishes,	4
	other marine and aquatic micro,	
	macro and mega flora and fauna	
	including benthos, plankton, turtles,	
	birds etc. as also the productivity. The	
	data collection and impact	x 10
	assessment shall be as per standards	
		V
	54,107	E
The	underwater photography.	ocuments/certificate mentioned in para
The	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o	nline to the Ministry's Regional Office,
The (i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o Bhopal before starting imples	nline to the Ministry's Regional Office,
The (i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o	nline to the Ministry's Regional Office,
(i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o Bhopal before starting imples Construction activity shall be carried out strictly according to the	nline to the Ministry's Regional Office, mentation of the project.
(i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o Bhopal before starting imples Construction activity shall be carried	nline to the Ministry's Regional Office,
(i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o Bhopal before starting imples Construction activity shall be carried out strictly according to the	nline to the Ministry's Regional Office, mentation of the project.
(i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other	nline to the Ministry's Regional Office, mentation of the project.
(i)	underwater photography. project proponent shall obtain all the dot to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal	nline to the Ministry's Regional Office, mentation of the project.
(i)	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded o Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be	nline to the Ministry's Regional Office, mentation of the project.
(i)	underwater photography. project proponent shall obtain all the dot to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone	nline to the Ministry's Regional Office, mentation of the project.
<i>(1)</i> v	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area.	nline to the Ministry's Regional Office, mentation of the project.
<i>(1)</i> v	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and	nline to the Ministry's Regional Office, mentation of the project.
<i>(1)</i> v	underwater photography. project proponent shall obtain all the dot (iv) above and submitted/uploaded of Bhopal before starting implement out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat	nline to the Ministry's Regional Office, mentation of the project. Noted
<i>(1)</i> v	underwater photography. project proponent shall obtain all the dot to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority	nline to the Ministry's Regional Office, mentation of the project.
<i>(1) v</i>	underwater photography. project proponent shall obtain all the dot (iv) above and submitted/uploaded of Bhopal before starting impless out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project	nline to the Ministry's Regional Office, mentation of the project. Noted
(i)	underwater photography. project proponent shall obtain all the dot to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project vide letter No. ENV-10-2015-249-E (T	nline to the Ministry's Regional Office, mentation of the project. Noted
<i>(1)</i> v	underwater photography. project proponent shall obtain all the dot (iv) above and submitted/uploaded of Bhopal before starting impless out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project	nline to the Ministry's Regional Office, mentation of the project. Noted
<i>(1)</i> v	underwater photography. project proponent shall obtain all the dot to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project vide letter No. ENV-10-2015-249-E (T	nline to the Ministry's Regional Office, mentation of the project. Noted
<i>(1)</i> v	underwater photography. project proponent shall obtain all the do to (iv) above and submitted/uploaded of Bhopal before starting imples Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project vide letter No. ENV-10-2015-249-E (T cell) dated 19.06.2017 shall be	nline to the Ministry's Regional Office, mentation of the project. Noted
vi Vi	underwater photography. project proponent shall obtain all the dot (iv) above and submitted/uploaded of Bhopal before starting impless of the Construction activity shall be carried out strictly according to the provisions of the CRZ Notification, 2011. No construction work other than those permitted in Coastal Regulation Zone Notification shall be carried out in Coastal Regulation Zone area. All the recommendations and conditions specified by the Gujarat Coastal Zone Management Authority who has recommended the project vide letter No. ENV-10-2015-249-E (T cell) dated 19.06.2017 shall be complied with.	nline to the Ministry's Regional Office, mentation of the project. Noted

	Government under the provisions of the CRZ Notification, 2011.	
Viii	Notification GSR 94(E) dated 25.01.2018 of MoEF&CC regarding Mandatory Implementation of Dust Mitigation Measures for Construction and Demolition Activities for projects requiring Environmental Clearance shall be complied with.	Not applicable as yet
ix	The Project proponent shall ensure that no creeks or rivers are blocked due to any activities at the project site and free flow of water is maintained.	· ·
X	No solid, semi-solid cargos would be handled.	
χi	Dredging shall not be carried out during the fish breeding season.	Noted
· xii	Dredging, etc. shall be carried out in the confined manner to reduce the impacts on marine environment including turbidity.	Noted
xiii	Dredged material shall be disposed safely in the designated areas	Not applicable as yet
xiv	Shoreline should not be disturbed due to dumping. Periodical study on shoreline changes shall be conducted, and mitigation carried out, if necessary. The details shall be submitted along with the six monthly monitoring report.	
xv	While carrying out dredging, an independent monitoring shall be carried out by Government Agency/Institute to check the impact and necessary measures shall be taken on priority basis if any adverse impact is observed.	

xvi	Water will be received from high service reservoir near Bhachau and Narmada Canal through pipeline of Gujarat Water supply and Sewerage Board. 5.0 KLD water will be used for various purposes during the project. Rain water harvesting shall be	Noted
	followed as per local byelaw and harvested water shall be stored, treated and reused to reduce the additional water requirement since Chennai is a water deficient area, besides use of water efficient appliances.	
xvii	The concerns expressed during the public hearing held by the M/s Kandla Port Authority for development of 3 remaining integrated facilities (Stage I) within the existing Kandla Port needs to be addressed during the project implementation. These would also cover socio-economic and ecological and environmental concerns, besides commitment by the management towards employment opportunities.	Noted
xviii	The Marine biodiversity impact assessment report and management plan prepared by Gujarat Institute of Desert Ecology (GUIDE), Bhuj and approved by NIO and its mitigation measures for protection of sand dune vegetation, mangroves, sea grasses, macrophytes and phytoplankton etc., as given in the EIA-EMP Report shall be complied with in letter and spirit.	

xix	A continuous monitoring programme covering all the seasons on various aspects of the coastal environs need to be undertaken by a competent organization available in the State or by entrusting to the National Institutes/ renowned Universities/ accredited Consultant with rich experiences in marine science aspects. The monitoring should cover various physico-chemical parameters coupled with biological indices such as sand dune vegetation, mangroves, sea grasses,	Noted
	macrophytes and phytoplankton on a periodic basis during construction and operation phase of the project. Any deviations in the parameters shall be given adequate care with suitable measures to conserve the marine environment and its resources	
xx	Continuous online monitoring of for air and water covering the total area shall be carried out and the compliance report of the same shall be submitted along with the 6 monthly compliance report to the	Noted
xxi	regional office of MOEF&CC. Ambient air quality shall be maintained at prescribed levels. The existing ambient air quality stations shall have a system of reporting exceedances separately to the Pollution Control Board.	Noted
xxii	The project configuration should integrate and dovetail with the State Plan and not implemented unless the state plan is prepared and dovetailing ratified.	Noted
xxiii	Marine ecology shall be monitored regularly also in terms of sea weeds, sea grasses, mudflats, sand dunes, fisheries, echinoderms, shrimps, turtles, corals, coastal vegetation, mangroves and other marine	Noted

	biodiversity components as part of the management plan. Marine ecology shall be monitored regularly also in terms of all micro, macro and mega floral and faunal components of marine biodiversity	
xxiv	Spillage of fuel/engine oil and lubricants from the construction site are a source of organic pollution which impacts marine life, particularly benthos. This shall be prevented by suitable precautions and also by providing necessary mechanisms to trap the spillage.	Noted
xxv	The handling of Hazardous Cargo should follow the provisions of the MSIHC Rules 1989 as amended. An onsite management plan shall be drawn up and integrated with that off site management plan. This shall be to the satisfaction of the state pollution control board, the Factory Department and the District Management.	Noted
xxvi	Necessary arrangements for the treatment of the effluents and solid wastes/ facilitation of reception facilities under MARPOL must be made and it must be ensured that they conform to the standards laid down by the competent authorities including the Central or State Pollution Control Board and under the Environment (Protection) Act, 1986. The provisions of Solid Waste Management Rules, 2016. E - waste Management Rules, 2016, and Plastic Waste Management Rules, 2016 shall be followed	
xxvii	Compliance to Energy Conservation Building (ECBC-2017) shall be ensured for all the building complexes. Solar/wind or other renewable energy shall be installed to	Not applicable as yet

	meet energy demand of 1 % equivalent.	A 6 3
xxviii	All the recommendations mentioned in the rapid risk assessment report, disaster management plan and safety guidelines shall be implemented.	Noted
xxix	Measures should be taken to contain, control and recover the accidental spills of fuel and cargo handle.	Noted
xxx	Necessary arrangement for general safety and occupational health of people should be done in letter and spirit.	Noted
xxxi	KPT shall take up massive greenbelt development activities in and around Kandla and also within the KPT limits.	No comments
xxxii	All the mitigation measures submitted in the EIA report shall be prepared in a matrix format and the compliance for each mitigation plan shall be submitted to the Regional Office, MoEF&CC along with half yearly	Noted
xxxiii	compliance report. As per the Ministry's Office	
	Memorandum F. No. 22-65/2017-IA.III dated 1st May 2018, an amount of Rs. 8.04 Crore (@0.25% of project Cost) shall be earmarked under Corporate Environment Responsibility (CER) for the activities such as drinking water,	Not applicable as yet
	sanitation, health, education, skill development, roads, solar power, rain water harvesting, avenue	
	plantation and plantation in the community areas. The activities proposed under CER shall be restricted to the affected area around	
v	the project. The entire activities proposed under the CER shall be treated as project and shall be monitored. The monitoring report shall be submitted to the regional office as a part of half yearly compliance report, and to the District	

	Collector. It should be posted on	
	the website of the project proponent.	
xxxiv	The project is recommended for grant of Environmental and CRZ Clearance subject to final outcome/legal opinion on the Order dated 22nd November, 2017 of Hon'ble NGT in the Original Application No. 424 of 2016 (Earlier O.A. No. 169 of 2015) and Original Application No. 11 of 2014 in the matter of M/s. Mehdad & Anr. Vs. Ministry of Environment, Forests & Climate Change & Ors.	
	and Shamsunder Shridhar Dalvi & Ors. Vs. Govt. of India &Ors.	
В	GENERAL CONDITIONS:	
ì	Appropriate measures must be taken while undertaking digging activities to avoid any likely degradation of water quality.	Noted
II	Full support shall be extended to the officers of this Ministry/Regional Office at Bhopal by the project	Noted
	proponent during inspection of the project for monitoring purposes by furnishing full details and action plan including action taken reports in respect of mitigation measures and other environmental protection activities.	
III	A six-Monthly monitoring report shall need to be submitted by the project proponents to the Regional Office of this Ministry at Bhopal regarding the implementation of the stipulated conditions	Noted
iv	Ministry of Environment, Forest and Climate Change or any other competent authority may stipulate any additional conditions or modify the existing ones, if necessary in the interest of environment and the same shall be complied with	Noted

٧	The Ministry reserves the right to	Noted
	revoke this clearance if any of the conditions stipulated are not complied with the satisfaction of the Ministry	Noted
Vİ	In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to the Ministry of Environment, Forest and Climate Change.	Noted
VII	The project proponents shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of land development work.	Date of Financial Closure intimated to DPA in March 2024
viii	A copy of this clearance letter shall also be displayed on the website of the concerned State Pollution Control Board.	No comments
7	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation	Noted
	Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project proponents from the respective competent authorities	
8	The project proponent shall advertise in at least two local Newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental and CRZ Clearance and copies of clearance letters are available with the State Pollution Control Board and may also be seen on the website of the Ministry of Environment, Forest and Climate Change at http://www.envfor.nic.in.The advertisement should be made within	

	Seven days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of this Ministry at Bhopal. The Clearance letter shall also be displayed at the Regional Office, District Industries Centre and Collector's Office/ Tehsildar's office for 30days.	
9	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parisad/Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	No comments
10	This clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ Petition (Civil) No.460 of 2004 as may be applicable to this project	No comments
11	Any appeal against this clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.	No comments
12	Status of compliance to the various stipulated environmental conditions and environmental safeguards will be uploaded by the project proponent in its website.	No comments
13	The proponent shall upload the status of compliance of the stipulated Clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously	No comments
	be sent to the Regional Office of MoEF&CC, the respective Zonal Office of CPCB and the SPCB.	

14	The project proponent shall also submit six monthly reports on the	1
	status of compliance of the stipulated Clearance conditions including results of monitored data (both in hard copies as well as by e-	
	mail) to the respective Regional Office of MoEF&CC, the respective Zonal Office of CPCB and the SPCB.	•
15	The environmental statement for each financial year ending 31st March in Form-V as is mandated to	No comments
	be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along	
	with the status of compliance of Clearance conditions and shall also be sent to the respective Regional Office of MoEF&CC by e-mail.	
16	The above stipulations would be enforced among others under the provisions of Water (Prevention and	No comments
	Control of Pollution) Act 1974, the Air (Prevention and Control of Pollution) Act 1981, the Environment (Protection) Act, 1986, the Public liability (Insurance) Act, 1991 and EIA Notification 1994, including the amendments and rules made thereafter	

Annexure 1

CRZ RECOMMENDATION COMPLIANCE REPORT (up to September, 2024)

<u>Subject</u>: Compliance of conditions stipulated in CRZ recommendations issued by GCZMA for the proposal "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Authority (Erstwhile: Deendayal Port Trust) at Gandhidham, Kutch, Gujarat".

Ref.: Letter No. ENV-10-2015-248-E (T - Cell) dated 29/6/2016 of Director (Environment) & Member Secretary, GCZMA, Forest & Environment Department, GoG.

Sr. No.	Conditions in CRZ Recommendation Letter	Compliance
	Specific Conditions	
1	The provisions of the CRZ notification of 2011 shall be strictly adhered to by the KPT. No activity in contradiction to the Provisions of the CRZ Notification shall be carried out by the KPT.	Noted
2	All necessary permissions, under various laws/ Rules/ Notifications issued there under from different Government Departments/ agencies shall be obtained by M/s KPT before commencing any enabling activities for proposed project.	Noted
3	The KPT shall have to ensure that there shall not be any damage to the existing mangrove area.	Noted
4	The KPT shall effectively implement the Mangrove Development, Protection & Management Plan for control of indirect impact on mangrove habitat.	Noted
5	The KPT shall have to make a provision that mangrove areas get proper flushing water and free flow of water shall not be obstructed.	Noted
6	The KPT shall have to abide by whatever decision taken by the GCZMA for violation of CRZ Notification.	Noted

7	No dredging, reclamation or any other project related activities shall be carried out in the CRZ area categorized as CRZ I (i) and it shall have to be ensured that the mangrove habitats and other ecologically important and significant areas, if any, in the region are not affected due to any of the project activity.	Noted
8	The KPT shall participate financially in installing and operating the Vessel Traffic Management System in the Gulf of Kachchh and shall also take the lead in preparing and operational sing and regularly updating it after getting it vetted by the Indian Coast Guard.	No comments
9	The KPT shall strictly ensure that no creeks or rivers are blocked due to any activity at Kandla.	Noted
10	Mangrove plantation in an area of 50 ha. Shall be carried out by the KPT within 2 years in time bound manner on Gujarat coastline either within or outside the Kandla port Trust area and six monthly compliance reports along with the satellite images shall be submitted to the Ministry of Environment and Forest as well as to this Department without fail.	No comments
11	No activities other than those permitted by the competent authority under the CRZ Notification shall be carried out in the CRZ area.	Noted
12	No ground water shall be tapped for any purpose during the proposed expansion modernization activities.	Noted
13	All necessary permissions from different Government Departments / agencies shall be obtained by the KPT before commencing the expansion activities.	Noted
14	No effluent or sewage shall be discharged into sea/creek or in the CRZ	Noted

	area and it shall be treated to conform to the norms prescribed by the GPCB and would be reused /recycled within the plant premises.	
15	All the recommendations and suggestion given by the Mantec Consultants Pvt. Ltd. in their Comprehensive Environment Impact Assessment report for conservation/protection and betterment of environment shall be implemented strictly by the KPT.	Noted
16	The construction and operational activities shall be carried out in such a way that there is no negative impact on mangroves and other coastal /marine habitats. The construction activities and dredging shall be carried out only under the constant supervision and guidelines of the Institute of National repute like NIOT.	Noted
17	The KPT shall contribute financially for any common study or project that may be proposed by this Department for environmental management/ conservation/ improvement for the Gulf of Kutch.	No comments
18	The construction debris and/ or any other of waste shall not be disposed of into the sea, creek or the CRZ areas. The debris shall be removed from the construction site immediately after the construction is over.	Noted
19	The construction camps shall be located outside the CRZ area and the construction labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by the construction labours.	Noted

20	The KPT shall regularly updates its Local Oil Spill Contingency and Disaster management Plan in accordance with the National Oil Spill and Disaster Contingency Plan and shall submit the same to the MoEF, GoI and this department after having it vetted through the Indian Coast Guard.	No comments
21	The KPT shall bear the cost of the external agency that may be appointed by this Department for supervision/monitoring of proposed activities and the environmental impacts of the proposed activities.	No comments
22	The KPT shall take up massive greenbelt development activities in and around Kandla and also within the KPT limits.	No comments
23	The KPT shall have to contribute financially for talking up the socio-economic upliftment activities in this region in construction with the Forest and Environment Department and the District Collector/ District Development Officer.	No comments
24	A separate budget shall be earmarked for environmental management and socioeconomic activities and details there of shall be furnished to this Department as well as the MoEF, GOI. The details with respect to the expenditure from this budget head shall also be furnished.	Noted
25	A separate environmental management cell with qualified personnel shall be created for environmental monitoring and management during construction and operational phases of the project.	Noted

26	An Environmental reports indicating the changes, if any, with respect to the baseline environmental quality in the coastal and marine environment shall be submitted every year by the KPT to this Department as well as to the MoEF&CC, GOI.	Noted
27	The KPT shall have to contribute financially to support the National Green Corps Scheme being implemented in Gujarat by the GEER Foundation, Gandhinagar, in construction with Forests and Environment Department.	No comments
28	A six monthly reports on compliance of the conditions mentioned in this letter shall have to be furnished by the KPT on regular basis to this department/MoEF, GOI.	Noted
29	Any other condition that may be stipulated by this department from time to time for environmental protection/management purpose shall also have to be complied with by the KPT.	Noted

(up to September 2024)

Subject: Compliance report of conditions stipulated in Consent to Establish (CTE/NOC) issued by GPCB for the proposal "Development of 3 Remaining Integrated Facilities (stage I) within the existing Deendayal Port Authority (Erstwhile: Kandla Port Trust) at Gandhidham, Kutch, Gujarat ".

Ref.: Amendment to NOC/CTE issued by the GPCB (CTE - 89537) vide no. PC/CCA-KUTCH-1231 (2)/GPCB ID 44000/429717 dated 4/12/2017 for inclusion of the following three projects in the CTE granted for seven projects vide CTE - 74334 dated 22/12/2015. Further, DPA had obtained CTE validity extension (CTE-125870) from GPCB vide Order dated 27/04/2023 with validity up to 15/11/2025.

Sr. No.	Specific Condition	Compliance
	Subject to the following Specific Conditions	5.
1	You shall not commence of any construction activities of project, till obtaining EC clearance from MoEF&CC, GoI.	Noted
2	You shall have to comply with the all conditions stipulated in ToR of MoEF in order of EC no. F. No. 10-9/2017-IA.III dated 6/6/2017.	Noted
3	You shall have to comply with the all conditions of CRZ vide order no. ENV-10-2015-248-E (T Cell), dated 29/6/2016.	Noted
3.	Conditions under Water Act 1974.	
3.1	There shall be no industrial effluent generation from the loading and unloading activities at Port and other ancillary operations.	Noted
3.2	(a) The total water consumption for shall not exceed 11 KL/day.(b) The quantity of Domestic waste water (sewage) shall not exceed 8 KL/Day	Noted
3.3	The quantity of sewage shall conform to the following standards: Parameters GPCB	Noted

				Norms			
	PH			6.5 to 9	-		
	BO	D (5 days at 2	20 *C)	30 mg/L			
	Sus	spended solid		100 mg/L			
	Fed	al Coliform		1000			
3.4	the a	above standar ation/gardenir	rds shall be ng within pre		*0	Noted	
3.5	for m	neasuring cate	egory wise s act - 1977	er at utilities (category as schedule II)	n	Noted	* a.
4		ditions Unde					
4.1	shall	be no flue gaing activity	s emission	hence there from storage er ancillary	2	Noted	
4.2	ladde monit open staff. variou desig and	r, platform e toring the air for inspection The chimne us sources ned by numbe	etc. at chir r emission to and for ey(s) vents of emission ers such as the painted/	e portholes, nney (s) for and shall be use of Boards attached to on shall be S-1, S-2, etc. displayed to		Noted	
4.3	premi the nation Stand Enviro	neters in the ises of the ir limits specif nal Ambient	ambient andustry shalied hereun Air Qual	ir within the II not exceed der as per		Noted	
	Sr. No.	Pollutant	Time weighted Average	Concent ration in Ambient air in µg/M ³		7 1 2 ±	
	1	Sulphur Dioxide	Annual 24 Hours	50 80	a7		
		(SO2)	11.6				

	(Annual 60 24 Hours 100	
	than 2.5 2 mm) OR PM _{2.5}	Annual 40 24 Hours 60	
3.4	within the premises shall not exceed for	ollowing levels:	Noted
	MCASTANASTA	10 P.M.: 75 dB (A) d 6 A.M.: 70 dB (A)	y. 1
5		Hazardous Waste	
5.1	The applicant shall storage facilities for example waste as per (management, hand	I provide temporary each type of hazardous hazardous waste ling & trans boundary 008 as amended from	Noted
5.2	of common TSDF Hazardous waste Hazardous waste (Ma	as categorized in anagement, Handling & ement) Rules, 2008 as	Noted
6	General Condition	ıs	
6.1	Any change in per working conditions	sonnel, equipment or as mentioned in the should immediately be	
6.2	responsible for (i.e	itor shall be totally e collection, storage, Itimate disposal) of the	
6.3	submitted to Guja	ste generation, its nnual returns shall be arat Pollution Control by 31 st January of every	Noted

	year.	
5.4	In case of any accident of the same shall be submitted in form – 5 to Gujarat Pollution Control Board.	Noted
5.5	Applicant shall comply relevant provision of "Public liability insurance act – 91".	Noted
6.6	Unit shall take all concrete measures to show tangible result in waste generation reduction, voidance, reuse and recycle. Action taken in this regard shall be submitted within 03 months and also along with form 4.	Noted
6.7	Industry shall have to display on – line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emission and solid hazardous waste generated within the factory premises.	Noted
6.8	Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 10 meters width is developed.	Noted
6.9	The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the water (prevention & control of pollution) Cess Act-1977.	Noted

Monitoring the Implementation of Environmental Safeguards Ministry of Environment Forest & Climate Change Integrated Regional Office (WZ), Gandhinagar Monitoring Report (for the period up to 1 September 2024)

DATA SHEET

		DATASID	111	
1.		oject type: River-valley/ Mining / Industry / ermal / Nuclear / Other (specify)	:	Other - Container Terminal
2.	-	Name of the project		Tuna Tekra Container Terminal Project
3.		arance letter (s) / OM No. and Date	:	Letter of Award: No: Civil Engineering/Design/143/CT/2023/48 dated 14.03.2024
4.	Loc	ation	1	Tuna Tekra
	a.	District (S)	:	Kutch
	b.	State (s)	:	Gujarat
	c.	Latitude/ Longitude		
5.	Add	iress for correspondence		
	a.	Address of Concerned Project Chief Engineer (with pin code & Telephone/telex/fax numbers)	:	Suresh Joseph, Vice-President Project – Ports & Terminals, Hindustan Gateway Container Terminal, Pavilion Corner, Second Floor, Plot No. 13, Ward No. 6, Gandhidham 370201
	b.	Address of Project: Engineer/Manager (with pin code/ Fax numbers)	:	Project address yet to be established
6.	Sali	ent features		
	a.	of the project		54 Ha back-up area, 1650x20 meters trestle, 1100x54 meters berth length, capacity 2.19 million TEUs
	b.	of the environmental management plans	:	-
7.		Production details during the compliance period and (or) during the previous financial year		-
8.	The breakup of the project area			Not applicable
	a.	submergence area forest & non-forest	:	
	b.	Others	:	
9.	Breakup of the project affected Population with enumeration of Those losing houses / dwelling units Only agricultural land only, both Dwelling units & agricultural Land &landless labourers/artisan		:	Not applicable
	a.	SC, ST/Adivasis	:	
	b.	Others (Please indicate whether these Figures are based on any scientific And systematic survey carried out Or only provisional figures, it a Survey is carried out give details And years of survey)	:	
	1			

	a.	Project cost as originally planned and subsection price reference:	que	_
	1.	Estimated Cost of the Project	:	Rs. 4200 crores
	b.	Allocation made for environmental management plans with item wise and year wise Break-up.	:	Construction not yet started – hence, no allocation
	c.	Benefit cost ratio / Internal rate of Return and the year of assessment	:	
	d.	Whether (c) includes the Cost of environmental management as shown in the above.	:	•
	e.	Actual expenditure incurred on the project so far	:	Rs. 20.94 crores
	f.	Actual expenditure incurred on the environmental management plans so far	:	-
11.	For	est land requirement	:	Not applicable
	a.	The status of approval for diversion of forest land for non-forestry use	:	
	b.	The status of clearing felling		
	c.	The status of compensatory afforestation, it any	:	
	d.	Comments on the viability & sustainability of compensatory afforestation program in the light of actual field experience so far	:	
12.	(su	status of clear felling in Non-forest areas ch as submergence area of reservoir, proach roads), it any with quantitative prmation	:	Not applicable
13.	Sta	tus of construction		Construction not yet begun
	a.	Date of commencement (Actual and/or planned)	:	
	b.	Date of completion (Actual and/or planned)	:	
14.	Rea star	sons for the delay if the Project is yet to t	:	No delay
15		ails of site visit: a) The dates on which the project was monitored by the MoEF&CC Regional Office on previous occasions (if applicable). b) Date of site visit for this monitoring		Not applicable
16	auti plan safe	report. ails of correspondence with project horities for obtaining action as/information on status of compliance to eguards other than the routine letters for stic support for site visit.	:	Not applicable



(The first monitoring report may contain the details of all the letters issued so far but the later reports may cover only the letters issued	
subsequently)	

Market Market

Annexure -D

DISCLAIMER This report has been prepared by Gujarat Environment Management Institute (GEMI), solely as a part of the assignment "Preparation of Plan for management of Plastic Waste, Solid Waste, C&D Waste, E-waste, Hazardous Waste including Bio-medical Waste and Nonhazardous waste in the Deendayal Port Authority Area". This report is based on the data and information furnished by DPA and GEMI is not responsible for the accuracy and correctness of the same. GEMI has taken all reasonable precautions in the preparation of this report. However, it is impossible to dismiss absolutely, the possibility of errors or omissions. GEMI therefore specifically disclaims any liability resulting from the use or application of the information contained in this report.

About this Document

Name of the Document: Plan for Management of Plastic Waste, Solid Waste, C&D

Waste, E-waste, Hazardous Waste including Bio-medical Waste and Non-hazardous waste in the Deendayal Port

Authority Area

Name of Client: Deendayal Port Authority

Date of issue: 19/07/2024

Reference no.: GEMI/844(1)/101/2024-25

Version: Final Report

Dedicated Team:

Overall supervision and Dr. Jaipal Singh, IFS, PCCF & Director

guidance: Dr. Nitasha Khatri, Sr. Scientific Officer & Lab Head

Project Head: Mr. Gunjan Gupta, Dy. Environmental Engineer

Project Manager: Ms. Niyati Raval, Asst. Environmental Engineer

Project Assistants: Ms. Honey Panchal, Project Assistant

Mr. Jay Italiya, Project Assistant

PART-1 WASTE MANAGEMENT PLAN

Table of Contents

C	hapter-	1	1
Iı	ntroduc	tion	1
1.1.	A	bout Kandla Port (Deendayal Port Authority, DPA)	2
1.2.	D	etails of berths at Kandla and Vadinar ports	1
1.3.	N	eed for the Waste Management Plan	1
1.4.		bjectives of the Waste Management Plan	
1.5.		cope of Work	
		2	
	•	l Solid Waste	
	_		
2.1.	А	pplicable laws and rules	5
2.2.	R	esponsibility of DPA as per Rules:	5
2.3.	Н	andling and Management of Waste	6
	2.3.1.	Identification of sources, Quantification and Inventory of waste	6
	2.3.2.	Segregation	7
	2.3.3.	Collection	8
	2.3.4.	Storage (on-site and centralized)	8
	2.3.5.	Intramural transportation and transfer	8
	2.3.6.	Pre-treatment / Pre-processing	9
	2.3.7.	Disposal	9
2.4.	R	ecord keeping	9
2.5.	P	rocedure adopted for engagement of external agencies/private operators	9
2.6.	0	btaining Authorization/Clearance/License	9
2.7.	S	trategy for management of MSW at DPA	9
	2.7.1.	Segregation at source:	10
	2.7.2.	Door-to-Door collection:	15
	- N	ımber of canteen spaces	18

	2.7.3.	Material Recovery Facility (MRF)	18
	2.7.4.	Organic Waste Converter (OWC)	26
2.8.	F	inancial outlay for proposed MSW management	29
2.9.	C	ther recommendations:	30
C	hapter-	3	32
P	LASTIC	WASTE	32
3.1.	A	pplicable laws and rules	33
3.2.	F	esponsibility of DPA as per PWM Rules	33
3.3.	C	urrent Scenario - Handling and Management of Waste	33
	3.3.1.	Identification and Quantification	33
	3.3.2.	Sources of waste	34
	3.3.3.	Segregation	34
	3.3.4.	Recycling / Processing and Disposal	34
3.4.	F	lecord keeping	34
3.5.	P	rocedure adopted for engagement of external agencies/private operators	35
3.6.	C	Obtaining Authorization/Clearance/License	35
3.7.	F	ecommendations and strategies	35
C	hapter-	4	38
E	-WASTE		38
4.1.	A	pplicable laws and rules	39
4.2.	F	desponsibility of DPA as per Rules:	39
4.3.	ŀ	Iandling and Management of Waste	39
	4.3.1.	Identification, Quantification and Inventory of waste	39
	4.3.2.	Sources of waste:	40
	4.3.3.	Segregation	40
	4.3.4.	Storage (on-site)	40
	4.3.5.	Collection	40
	4.3.6.	Disposal	40

4.4.	Record keeping	41
4.5.	Procedure adopted for engagement of external agencies/private op	erators41
4.6.	Recommendations and strategies	41
C	Chapter-5	42
В	Bio-medical Waste	42
5.1.	Applicable laws and rules	43
5.2.	Responsibility of DPA as per BMWM Rules:	43
5.3.	Handling and Management of Waste	44
	5.3.1. Identification of sources and Quantification of waste	44
	5.3.2. Segregation:	46
	5.3.3. Storage (on-site and centralized)	47
	5.3.4. Collection and Intramural Transportation	48
	5.3.5. Disposal	49
5.4.	Record keeping	49
5.5.	Procedure adopted for engagement of external agencies/private op	erators50
5.6.	Obtaining Authorization/Clearance/License	50
5.7.	Recommendations and strategies	51
C	Chapter-6	53
C	Construction and Demolition Waste	53
6.1.	Applicable laws and rules	54
6.2.	Responsibility of DPA as per various Conventions, Acts and Rules:	54
6.3.	Handling and Management of Waste	54
6.4.	Procedure adopted for engagement of external agencies/private op	erators55
6.5.	Recommendations and strategies	55
C	Chapter-7	57
S	hipping Waste	57
7.1.	Applicable laws and rules	58

7.2.	D	Definitions	5	8
7.3.	R	Responsibility of DPA as per various Conventions, Acts and Rules:	5	9
	7.3.1.	Regulatory Requirements under MARPOL		60
	7.3.2.	Regulatory requirements under Anti-Fouling Convention		61
	7.3.3.	Regulatory requirements under Ballast Water Management Convention		61
	7.3.4.	Regulatory requirements under Merchant Shipping Act, 1958		61
	7.3.5.	Regulatory requirements under The Hazardous and Other Wastes Manage	ment	and
	Transb	ooundary Movement) Rules, 2016		62
7.	3.6. Re	egulatory Requirement under The plastic waste (Management and Moveme	nt) Ru	ıles,
		20	016	62
7.4.	Н	Handling and Management of Waste	6	2
	7.4.1.	Source Identification, Quantification and Inventory of waste at Kandla & V	'adina	r63
	7.4.2.	Collection, Transport, Processing and Disposal		65
	7.4.3.	Storage:		71
	7.4.4.	Intramural transportation		71
7.5.	R	Record keeping	7	1
7.6.	P	Procedure adopted for engagement of external agencies/private operators	7	1
7.7.	0	Obtaining Authorization/Clearance/License	7	2
7.8.	R	Recommendations and strategies	7	2

List of Tables

Table 1 Details of Jetties at DPA ports	1
Table 2 MSW generation at DPA establishment	6
Table 3 Waste Management Agency appointed at DPA ports	8
Table 4 Summary of total no. of bins required	13
Table 5 Typical Fractions of Municipal Solid Waste Generated in DPA	16
Table 6 Categories of dry waste that can be segregated in MRF	22
Table 7 MRF specifications for Gandhidham	26
Table 8 Specifications of OWC proposed for DPA	29
Table 9 Financial outlay for proposed MSW management	29
Table 10: Estimated quantum of Plastic waste generation for DPA establishments	33
Table 11 Do's and Don'ts regarding plastic usage	35
Table 12 Action points for effective plastic waste management	36
Table 13 E-waste inventory for DPA Ports	39
Table 14 BMW generation at DPA HCFs	45
Table 15 Details of CBWTF appointed for DPA HCFs	49
Table 16 Requirements of obtaining authorization for HCFs as per BMW Rules	50
Table 17 Potential uses of C&D waste	55
Table 18 General type and source of wastes generated on ships	63
Table 19 Type and quantum of waste generated at DPA ports	64
Table 20 List of Waste Management Agencies operating at Kandla and Vadinar ports	65
Table 21 Details of Authorization	72

List of Figures

Figure 1: Layout Plan of Deendayal Port Authority (DPA)	3
Figure 1a. Layout of Gopalpuri Colony	4
Figure 2: Dustbins provided in DPA office premises, Gandhidham	7
Figure 3: Concrete bins at Gopalpuri colony campus, Gandhidham	7
Figure 4: Door-to-door waste collection	8
Figure 7: Wet and Dry waste collection bins	10
Figure 8: Handcart for collection of MSW from slum areas	12
Figure 9: Indicative sizes of 10L green and blue bins	15
Figure 10: A schematic of proposed MRF for Kandla	19
Figure 11: Dry Waste MRFs	23
Figure 12: Activities in Manually Operated MRF	
Figure 13: Layout of Manual Material Recovery Facility	24
Figure 14: Operations at a typical Automated Material Recovery Facility	25
Figure 15: Layout of an Automated Material Recovery Facility	25
Figure 16: Process flow of Organic Waste Converter	27
Figure 17: Typical Organic Waste Convertor	28
Figure 18: Best out of Waste	37
Figure 19: E-waste storage room at Vadinar	40
Figure 20: Gopalpuri hospital at Kandla	45
Figure 23: Designated storage room for BMW at Gopalpuri Hospital	48

Annexures

Annexure I: Non-exhaustive list of Organic Waste Convertor (OWC) dealers	78
Annexure II: List of banned plastic items	79
Annexure III: Non-exhaustive list of GPCB approved plastic Waste Management Agencies	
(Recyclers)	80
Annexure IV: Form for Maintaining Records of E-Waste Handled/ Generated as per Form -	2 of
E-waste management Rules, 2022	81
Annexure V: Non-exhaustive list of GPCB approved E-waste management agencies	82
Annexure VI	87
Biomedical wastes categories and their segregation, collection, treatment, processing and	
disposal options as per Schedule I of BMW Rules, 2016	87
Annexure VII	91
ANNUAL REPORT (Form – IV) of BMW Rules, 2016	91
Annexure VIII: List of Information related to HCFs to be updated on website	95
Annexure IX: Potential Uses of C & D Wates	96
Annexure X: Proposed responsibility and constitution of the Waste Management Cell (WMG	C) for
DPA	98
Annexure XI: List of items to be disposed through GeM portal as on June 2024	85

Chapter-1 Introduction

1.1. About Kandla Port (Deendayal Port Authority, DPA)

Kandla Port, also known as the Deendayal Port is one of the major seaports on the western coast in Kutch District of Gujarat, India. It is located near the city of Gandhidham. It is situated on the west bank of Kandla creek at Latitude 23° 01' N and Longitude 70° 13' E. It is the largest port of India by volume of cargo handled. This port is operational throughout the year as it is an all-weather port. There are no adverse wave effects as it is a sheltered port situated in a creek. The rainfall is scanty in this region making the port most suitable option for handling food grains. It is well connected with the hinterland by broad gauge railway system and National Highway No. 8-A. This port handles dry bulk, break bulk, liquid bulk and container cargo. Kandla is the closest major port to the Middle East and Europe. It is also enroute port for ships calling at Karachi, Pakistan's only major port handling its seaborne cargo. Presently, the Port has total 1-16 dry cargo berths for handling dry cargo, 6 oil jetties, and one barge jetty at Bunder basin, dry bulk terminal at Tuna Tekra, barge jetty at Tuna and two SPMs at Vadinar for handling oil. The offshore oil terminals at Vadinar, located in the Devbhumi Dwarka district, roughly 300 km away from Kandla by road and 50 nautical miles by sea, is also managed by DPA.

Since its formation in the 1950s, the Deendayal Port caters to the maritime trade requirements of Rajasthan, Madhya Pradesh, Uttar Pradesh, Haryana and Gujarat. Because of its proximity to the Gulf countries, large quantities of crude petroleum are imported through this port. About 35% of the country's total export takes place through the ports of Gujarat in which the Deendayal port has a considerable contribution. Assortments of liquid and dry cargo are being handled at DPA Port. The dry cargo includes fertilizers, iron and steel, food grains, metal products, ores, cement, coal, machinery, sugar, wooden logs, etc. The liquid cargo includes edible oil, crude oil and other petroleum products. The layout plan of DPA port at Kandla is given in Figure 1. and details of its berths and jetties is given Table 1.

Deendayal Port Authority is committed to sustainable development by taking adequate measures to maintain the Environmental well-being of the Port and its surrounding. The Ministry of Shipping started, "Project Green Ports", an effort to making the major ports across India cleaner and greener. "Project Green Ports" will have two verticals - one is "Green Ports Initiatives" related to environmental issues and second is "Swachh Bharat Abhiyaan". As a part of this initiative DPA has appointed GEMI to formulate a detailed Waste Management Plan for environmentally sound management of all types of waste generated at the Port area and other commercial and residential establishments under jurisdiction of DPA.

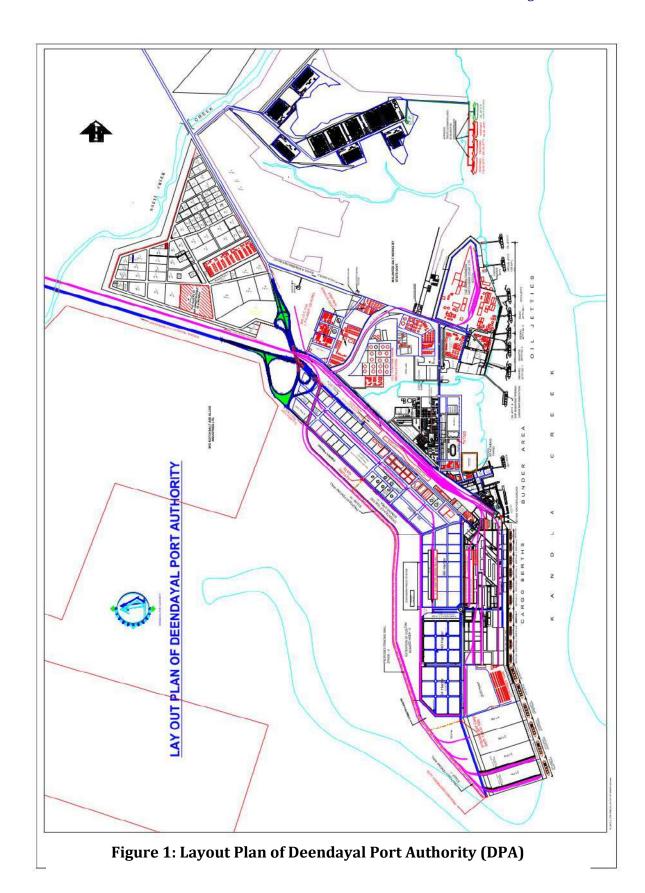


Figure 1a. Layout of Gopalpuri Colony

1.2. Details of berths at Kandla and Vadinar ports

Table 1 Details of Jetties at DPA ports

Sr. No.	Berth	No. of Berths	Name of Berth	Type of Berth	Designed/Vessel Depth (Mts) (Draught)	
			Kandla port			
1			Cargo Berth 1 to 10	Mainly Dry Bulk	10.5 to 13.50	
2	Cargo Berth	16	Cargo Berth No. 11 and 12 (KICT)	Container Berth	13.5 to 14.0	
3			Cargo Berth 13 to 16	Mainly Dry bulk/Logs	13.5 to 14.0	
4	Tuna Tekra	4	Tuna Tekra (AKBPTL) (BOT) Bulk Terminal	Dry Bulk	15.0 (Front) 13.0 (Back)	
5	IFFCO Barge Jetty	1	IIFCO Barge Jetty (BOT)	Fertilizer (Captive)	4	
6			Oil Jetty (OJ1)	LPG and Chemicals	10	
7			Oil Jetty (OJ2)	Chemicals	10	
8			Oil Jetty (OJ3)	Chemicals	9.8	
9	Oil Jetties	7	Oil Jetty (OJ4)	Chemicals	10.7	
10			IFFCO Jetty (OJ5)	Gas Carrier/ Chemicals	9.5	
11			IOC Jetty (OJ6)	Petroleum products	10.1	
Vadinar Port (SBMs and POL Product jetties)						
12	S.B.M.	3	1 st and 2 nd SBM: M/s IOCL 3 rd SBM: M/s Essar Oil Ltd.	Crude oil	33 m draft	
13	Nayra Jetty 1	1	Nayra Jetty 1	Crude oil	-	
14	Nayra Jetty 2	1	Nayra Jetty 2	Crude oil	-	

1.3. Need for the Waste Management Plan

Having a comprehensive waste management plan, in place, that incorporates all applicable provisions laid by regional and national legislations for the types of wastes generated within its boundary, enables an organization to manage its wastes (generated within its boundary) in environmentally sound manner, from on-site storage, segregation to its final disposal. It acts as a

standalone document guiding the organization in making policy level decisions regarding its overall waste management. Appropriate implementation of the waste management strategies detailed in the plan also helps in ensuring protection of the marine environment by reducing discharges into the sea of ship generated wastes and cargo residues, to improve the availability and use of reception facilities and strengthen the enforcement regime.

1.4. Objectives of the Waste Management Plan

The objectives of the waste management plan are as below:

For non-shipping waste viz. Municipal Solid Waste (MSW), Plastic Waste (PW), E-waste, Biomedical Waste (BMW), and Construction & Demolition (C&D) Waste:

- 1. Understand the current waste management scenario at DPA followed by identification of opportunities for improvement in the same.
- 2. Document the legal requirements pertaining to different types of wastes.
- 3. Formulation of action plan for an efficient and robust waste management system.
- 4. Preparation of a training module for capacity building aimed at effective waste management.

For shipping waste

- 1. Understand the current waste management scenario at DPA followed by identification of opportunities for improvement in the same.
- 2. Identification and categorization of wastes produced at Kandla and Vadinar ports w.r.t MARPOL and applicable Indian legislations.
- 3. Assess the requirement of Port Reception Facility (PRF) for ship-generated waste w.r.t the identified ship wastes.
- 4. Suggest suitable Waste Management System for environmentally sound waste management based on available case studies and Standard Operating Procedures.

1.5. Scope of Work

1. Identification & categorization of various Wastes, into hazardous & non-hazardous Biodegradable wastes, Solid wastes including C & D Wastes, Biomedical Waste, plastic

- waste, E- waste etc. with assessment of quantity & disposal.
- 2. Separate identification of Ship waste into hazardous, non-hazardous & Biodegradable waste as per the MARPOL 73/78 (as amended) and other conventions of IMO as applicable for Port and Harbour.
- 3. Preparation of Training Module for Port officers & Employees.
- 4. Provide comprehensive reception and safe disposal facilities plan with subsequent monitoring plan including provision for engagement external agencies/private operators.
- 5. List out requirement of obtaining necessary clearance/license from statutory authorities under respective category of waste management rules.
- 6. Review Procedure with respect to Audits/Inspection reports of licensed contractors.
- 7. Provide consultation to DPA in implementation of waste management plan during the period of contract.
- 8. Preparation of detailed waste management plan for all wastes as per the provisions of covered under Environment Protection Act, EPA 2006.

Chapter-2 Municipal Solid Waste

2.1. Applicable laws and rules

Solid Waste Management Rules, 2016 (SWM Rules, 2016)

2.2. Responsibility of DPA as per Rules:

Definition of Bulk waste generator as per SWM Rules, 2016

"Bulk Waste Generator" means and includes buildings occupied by the Central Government Departments or undertakings, State Government Departments or Undertakings, Local Bodies, Public Sector Undertakings or Private Companies, Hospitals, Nursing Homes, Schools, Colleges, Universities, other Educational Institutions, Hostels, Hotels, Commercial Establishments, Markets, Places of Worship, Stadia and Sports Complexes etc. having an average waste generation rate exceeding 100 kg per day (of all waste streams put together).

Rule 4 of Solid Waste Management Rules, 2016 - Duties of waste generator

- Segregate and store the waste generated in three separate streams namely bio-degradable, non-biodegradable and domestic hazardous wastes in suitable bins and handover segregated wastes to authorized waste pickers or waste collectors as per the direction or notification by the local authorities from time to time.
- Wrap securely the used sanitary waste like diapers, sanitary pads etc., in the pouches
 provided by the manufacturers or brand owners of these products or in a suitable wrapping
 material as instructed by the local authorities and shall place the same in the bin meant for
 dry waste or non- bio-degradable waste.
- Store separately construction and demolition waste, as and when generated, in his own premises and shall dispose of as per the Construction and Demolition Waste Management Rules, 2016.
- store horticulture waste and garden waste generated from his premises separately in his own premises and dispose of as per the directions of the local body from time to time.
- No waste generator shall throw, burn or burry the solid waste generated by him, on streets,
 open public spaces outside his premises or in the drain or water bodies.
- All waste generators shall pay such user fee for solid waste management, as specified in the bye-laws of the local bodies.
- No person shall organize an event or gathering of more than one hundred persons at any
 unlicensed place without intimating the local body, at least three working days in advance

- and such person or the organizer of such event shall ensure segregation of waste at source and handing over of segregated waste to waste collector.
- The bio-degradable waste shall be processed, treated and disposed off through composting or bio-methanation within the premises as far as possible. The residual waste shall be given to the waste collectors or agency as directed by the local body.

2.3. Handling and Management of Waste

2.3.1. Identification of sources, Quantification and Inventory of waste

Based on the population data provided by DPA for its residential, port and slum establishments at Gandhidham, Kandla and Vadinar, MSW is quantified as per provisions stated in Central Public Health and Environmental Engineering Organization (CPHEEO) Manual.

As per CPHEEO Manual guidelines:

- For residential zones MSW generation rate is 0.3 kg per capita per day.
- For commercial zones MSW generation rate is 0.2 kg per capita per day.
- For Floating population MSW generation rate is 0.2 kg per capita per day.

Note: Factor of commercial zone assumed for port area

The factor of 0.125 kg/per capita/per day as outlined in the research paper titled "Solid Waste Disposal Practices in an Urban Slum Area of South India", is assumed for calculation of MSW by slum population at DPA.

The projection of MSW in next 5 and 10 years is calculated based on the assessment finding reported in CPHEEO manual that states that per capita waste generation increases by about 1.3% per year.

The estimated quantity of Solid waste generation for the area is given in Table 2 below.

Quantity of waste in kg/day **Population** Sr. **Projected** Locality **Projected** No. (nos.) Current after 10 after 5 Years Years For Gandhidham and Kandla Residential Gopalpuri 5000 1700 1500 1600 1. colony

Table 2 MSW generation at DPA establishment

2.	Port colony (Occupied HH + Barracks)	744**	223.2	238.08	252.96
3.	Slum	500*	100	108	115
Comm	ercial				
1.	A.O. office	1577	315.4	331.17	362.71
2.	Port (employees + workers)	505	101	106.05	116.15
3.	Floating	100*	20	21.6	23
Total for Gandhidham and Kandla		•	2259.6	2404.9	2569.82
		F	or Vadinar		
1.	Residential	600	180	190	207
2.	Commercial	50	10	10.5	11.5
3.	Floating	100*	20	21.6	23
Tot	al for Vadinar	-	210	226.8	241.5

^{*}Assumed values; ** calculated based on no. of HH / rooms by applying factor adopted from Ministry of Statistics and Program Implementation, GoI (https://shorturl.at/8F40z)

2.3.2. Segregation

Current scenario: At present, MSW generated at various DPA establishments at Kandla as well as Vadinar like residential colony, administrative offices, Port offices, slum areas etc., is not segregated into wet or dry waste. Dustbins have been provided at various DPA campuses however there is need for providing different colored bins for collection of wet and dry waste to promote waste segregation at source.

Figure 2: Dustbins provided in DPA office premises, Gandhidham

Figure 3: Concrete bins at Gopalpuri colony campus, Gandhidham

2.3.3. Collection

Current scenario: Door to Door collection of waste is practiced at Gandhidham, Kandla and Vadinar DPA establishments on daily basis. Private agencies have been contracted for collection, transportation and disposal of MSW at these locations. The agencies contracted for this purpose at various locations are given in Table 3.

DPA establishments	Waste Management Agency		
Gopalpuri and KDLB Colony	M/s Patel Construction Co.		
New Port Colony, New	M/s Assu Infra Tuede		

M/s Acer Infra Trade

M/s. Jay Chamunda Enterprise

Table 3 Waste Management Agency appointed at DPA ports

Figure 4: Door-to-door waste collection

2.3.4. Storage (on-site and centralized)

Kandla Vadinar

Door to Door collection is practiced on daily basis at Gandhidham, Kandla and Vadinar hence there is no requirement of designated onsite storage area for MSW. The collected MSW from each household and offices is directly transferred into the bin loaded on the vehicle.

2.3.5. Intramural transportation and transfer

Depending on requirement, trip length and vehicle capacity, intramural transportation and

transfer of waste is carried out by the agency.

2.3.6. Pre-treatment / Pre-processing

No pre-treatment or processing is carried out at present

2.3.7. Disposal

- At Gandhidham, MSW is disposed at a designated site allotted by Gandhidham Municipality.
- At Vadinar, there is a provision of dumpsite behind port colony for dumping of MSW. Here, 12-13 ft. deep trenches are dug into which the MSW is dumped. Once the trench is completely filled, it is systematically covered with layer of top soil.

2.4. Record keeping

There is no statutory requirement of record keeping for MSW, however it is a good practice to maintain the records of MSW generated at various locations and collect the waste receipts for the quantum of waste collected. At DPA establishments record keeping is maintained in terms of no. of trips (for MSW collection) by waste collecting agency.

2.5. Procedure adopted for engagement of external agencies/private operators

The selection of agency is through tendering procedure. The work is a comprehensive maintenance contract for all sanitation works which includes collection, transportation and disposal of MSW, street sweeping etc. The work is awarded to the bidder who meets the minimum eligibility criteria and who has submitted the lowest bid. The contract is usually for a period of 2 years.

2.6. Obtaining Authorization/Clearance/License

DPA is not required to obtain any Authorization/Clearance/License for MSW

2.7. Strategy for management of MSW at DPA

Management of MSW can be broadly categorized into the following steps:

- a) Segregation at source
- b) Collection
- c) Transportation
- d) Sorting and Processing
- e) Recycling (of recyclable items)

f) Disposal

In the subsequent section, detailed plan for segregation, sorting and processing has been provided. Collection and transportation is already carried out by a dedicated agency.

2.7.1. Segregation at source:

Estimation of no. of bins:

2 different colored bins, Green for wet waste and Blue for dry wastes etc. shall be made available to all households and offices, and awareness be made, encouraging segregating of wastes into designated bins. The provision for collection of waste generated from floating population has been covered under provision of bins made for administrative offices for Gandhidham, Kandla and Vadinar locations, as the bins calculated to be put up on sides of roads inside the colony will suffice, receiving the waste quantum from incoming-outgoing floating population of residential colonies. These bins shall be placed on a platform elevated from ground to avoid possibility of tampering or spillage caused by stray dogs and covered with a lid to ensure pleasant aesthetics.

Figure 7: Wet and Dry waste collection bins

a) For Kandla and Gandhidham

The current quantum of MSW generation estimated at Gopalpuri is 1.5 tons/day. The calculation of bins to be provided for MSW collection is done for the projected increase after 10 years i.e 1.7 tons/day. Similarly, for Administrative Office the current MSW generation is 0.35 tons/day and projected quantity after 10 years is 0.4 tons/day. For calculation of no. of bins 0.4 tons/day

quantum is considered.

Gopalpuri colony, Gandhidham

- Waste Quantity (W) = 1.7 tons/day
- As per CPHEEO manual bulk density (D) of MSW is 0.5 tons/m³
- Total Volume of Waste = $W \div D = 1.7 \div 0.5 = 3.4 \text{ m}^3/\text{day}$

To accommodate 3.4 m³/day of generated MSW total of 340 bins would be required. However, since there are approx. 1100 households, 2200 bins are recommended (2 bins, for wet and dry waste at each HH).

The approximate length of internal major roads inside the Gopalpuri colony calculated through GIS tool is 6132 m. (Approx 6 kms.). Adopting the provision of providing 1 bin at a distance of 75 m along the length of roads, from the paper (https://shorturl.at/FPDF4) 82 bins of 50 L capacity are proposed to be provided along the length of all major internal roads of Gopalpuri.

Port colony, Kandla

Waste Quantity – W=0.25 tons/day

- As per CPHEEO manual bulk density(D) of Municipal solid waste is 0.5 ton/m³
- Total Waste Quantity is Volume = $W \div D = 0.25 \div 0.5 = 0.5 \text{ m}^3/\text{day}$

Assuming 0.01 m^3 bins on 25 Location (50 Bins), so total waste collected will be $50 \times 0.01 = 0.5 \text{ m}^3$. So, total waste collected will be around $0.5 \times 0.5 = 0.25 \text{ tons/day}$. Waste collection can be increased if more waste deposited in bins.

The approximate length of internal roads inside the port colony, Kandla is 2148 m. (Approx 2.1 kms.). 58 bins of 50 L in capacity at 29 locations at a distance of 75m are proposed to be provided on all major internal roads.

Administrative Office, Gandhidham

Waste Quantity – W=0.36 tons/day

- As per CPHEEO manual bulk density(D) of Municipal solid waste is 0.5 ton/m³
- Total Waste Quantity is Volume = $W \div D = 0.36 \div 0.5 = 0.72 \text{ m}^3/\text{day}$

Assuming 0.01 m^3 bins at 40 office rooms (80 Bins), so total waste collected will be 80 X $0.01 = 0.8 \text{ m}^3$. So, total waste collected will be around $0.8 \times 0.5 = 0.4 \text{ tons/day}$, sufficing the waste generation of $0.72 \text{ m}^3/\text{day}$.

The approximate length of internal roads inside the AO office at Kandla is 522.4 m. (Approx 0.5 kms.). 07 bins of 50 L in capacity are proposed to be provided on all major internal roads.

Port office (employees + workers), Kandla

Waste Quantity – W=0.12 tons/day

- As per CPHEEO manual bulk density(D) of Municipal solid waste is 0.5 ton/m³
- Total Waste Quantity is Volume = $W \div D = 0.12 \div 0.5 = 0.24 \text{ m}^3/\text{day}$

Assuming 0.01 m^3 bins on 12 Location (24 Bins), so total waste collected will be 24 X $0.01 = 0.24 \text{ m}^3$. So, total waste collected will be around 0.24 X 0.5 = 0.12 tons/day. Waste collection can be increased if more waste deposited in bins.

The approximate length of internal roads inside the port office, Kandla is 380 m. (Approx 0.3 kms.). 10 bins of 50 L in capacity at 5 locations at a distance of 75m are proposed to be provided on all major internal roads.

Unorganized slum area, Kandla

As per Solid Waste Management Rules, 2016, it is the responsibility of DPA to arrange for door-to-door collection of segregated MSW from all its establishments including slums and informal settlements. 200 bins are proposed to be distributed at these places. In addition, 50 nos. of hand carts are proposed.

Figure 8: Handcart for collection of MSW from slum areas

b) For Vadinar

The current quantum of MSW generation reported at Vadinar port colony is 0.19 tons/day. The

calculation of bins to be provided for MSW collection is done for the projected increase in MSW generation after 10 years i.e 0.2 tons/day. Similarly, for administrative office at Vadinar the current MSW generation is 0.02 tons/day and projected quantity after 10 years is 0.023 tons/day. For calculation purpose 0.023 tons/day quantum is considered.

Residential colony

- Waste Quantity (W)= 0.2 tons/day
- As per CPHEEO manual bulk density (D) of MSW is 0.5 ton/m³
- Total Volume of Waste to be handled = $W \div D = 0.2 \div 0.5 = 0.42 \text{ m}^3/\text{day}$

Since there are around 150 households in the colony, 300 bins would be required.

The approximate length of internal major roads inside the port colony at Vadinar, calculated through GIS is 3687.2 m. (Approx 4 kms.). 50 bins of 50 L capacity are proposed to be provided on all major internal roads of Gopalpuri.

Administrative Office

- Waste Quantity (W) = 0.023 tons/day
- As per CPHEEO manual bulk density (D) of MSW is 0.5 ton/m³
- Waste Volume = $W \div D = 0.023 \div 0.5 = 0.046 \text{ m}^3/\text{day}$

A provision of total 50 bins has been estimated.

The approximate length of internal roads inside the AO office at Vadinar is 856 m. (Approx 1 kms.). 12 bins of 50 L in capacity are proposed to be provided internal roads of the office.

Summary of total no. of bins required is given in Table 4.

Table 4 Summary of total no. of bins required

DPA establishments generating MSW	No. of bins to be provided	Capacity of bin	Identified locations for bins	Remarks (If any)
	(Gandhidham	and Kandla	
Residential				
Canalauri salaur	2200	10L (0.01m³)	1100 HH in the colony	2 bins at each HH: 1 Green (wet waste) and 1 Blue (dry waste)
Gopalpuri colony, Gandhidham	82	50 L	6 km long Internal roads and parks of the colony	1 bin to be provided at a distance of 75m
Port colony,	840	10L	120 (currently	2 bins at each HH and

Kandla		(0.01m ³)	occupied) HH	barrack: 1 Green (wet
			and 300 barracks	waste) and 1 Blue (dry waste)
	58	50 L	2.1 km long Internal roads and parks of the colony	1 bin to be provided at a distance of 75m
Commercial				
Administrative	80	10L (0.01m ³)	2 bins in each office rooms	
office, Gandhidham	07	50 L	On 0.5 km long internal roads inside AO premises	1 bin to be provided at a distance of 75m
Dort office Vandle	24	10L (0.01m ³)	2 bins in each office rooms	
Port office, Kandla (Marine + Nirman bhavan)	10	50 L	On 0.4 km long internal roads inside AO premises	1 bin to be provided at a distance of 75m
Slum				
Unorganized	50 Handcarts			
slum, Kandla	200	10L (0.01m ³)	Around 100 HH	2 bins at each HH: 1 Green and 1 Blue
		Vadi	nar	
	300	10L (0.01m ³)	21 HH in the colony	2 bins at each HH: 1 Green and 1 Blue
Port colony	50	50 L	3.6 km long Internal roads and parks of the colony	1 bin to be provided at a distance of 75m
	50	10L (0.01m ³)	2 bins in each office rooms	
Administrative office, Vadinar	12	50 L	On 1 km long internal roads inside AO premises	1 bin to be provided at a distance of 75m

Grand Total:

10 L bins: 3344 nos. for Gandhidham and Kandla and 350 nos. for Vadinar

Handcarts: 50 nos. for unorganized slum at Kandla port

50 L bins: 157 nos. for Gandhidham and Kandla and 62 nos. for Vadinar

HH- Households in the colony

Figure 9: Indicative sizes of 10L green and blue bins

Figure 9a: Indicative size and arrangement of 50L roadside bin

2.7.2. Door-to-Door collection:

DPA has outsourced door-to-door collection of wastes from residencies and offices by appointing an agency on annual renewal basis. As per current scenario, the agency dumps the MSW collected from door-to-door to a designated site allotted by Gandhidham Municipality without processing. This gap could be addressed by introducing an on-site Material Recovery Facility (MRF), enabling proper segregation of MSW into Organic and Inorganic sections. Thereby the MSW collected from every household and office will get diverted to the MRF.

The characterization of MSW is an important aspect as the composition will determine the applicability of waste processing technology. On an average, garbage is composed of 40-45% of organic fraction and 20-30% inert fraction, rest being plastics, paper, rags and other components.

NEERI's study "Assessment of Status of Municipal Solid Wastes Management in Metro Cities and State Capitals" in 2004–2005 assessed 59 cities (35 metro cities and 24 state capitals). Studies have revealed that waste generation rate varies from 0.12 to 0.60 kg/capita/day. Analysis of physical composition indicates that total compostable matter in the waste is 40%–60%, while recyclable fraction is 10%–25%. The moisture content in the MSW is 30%–60%, while the C/N ratio is 20–40. Typical Fractions of Municipal Solid Waste Generated in DPA is given in Table 5

Table 5 Typical fractions of Municipal Solid Waste Generated in DPA

		Quantity of Waste Generated (kg/day)					
Sr.	Type of Waste	Gandhidham		Kandla		Vadinar	
No.	Type of waste	R	С	R	С	R	С
1.	Biodegradables	711	149.49	105.79	11.85	85.32	4.74
2.	Paper	121.5	25.54	18.08	2.025	14.58	0.81
3.	Plastic	138	29.01	20.53	2.3	16.56	0.92
4.	Metal	7.5	1.57	1.11	0.13	0.9	0.05
5.	Glass	15	3.15	2.23	0.25	1.8	0.1
6.	Rags	66	13.87	9.82	1.1	7.92	0.44
7.	Other	60	12.61	8.92	1	7.2	0.4
8.	Inerts	376.5	79.16	56.02	6.27	45.18	2.51
Total		1500	315.4	223.2	25	180	10
Total Waste Generation		18	340.4	24	8.2	19	90

R- Residential: C- Commercial

The calorific value of garbage will help to identify the treatment technologies like Waste-to-Energy and other thermal processes. For secondary segregation MRF is proposed as follows for DPA establishments at Gandhidham.

2.7.2.1 Staff requirement for MSW collection

Manpower requirement for various premises as per provisions given under CPHEEO Manual and Swachh Bharat Mission's Standard Operating Procedures (SOPs) is tabulated below:

Area	No. of cleaning staff to b	Remarks			
	Gopalpuri colony,	2 drivers and 4			
	Gandhidham (2 LCVs)	laborers			
	Port colony, Kandla (1	1 driver and 2	Manpower is calculated based		
	LCV)	laborers	on recommended nos. of LCVs		
MSW	AO office, Gandhidham	1 driver and 2	(Light Commercial Vehicle) of 500-700 kg capacity, for waste		
collection	(1 LCV)	laborers	collection, as per provisions of		
	Port admin offices,	1 driver and 2	CPHEEO Manual for collection		
	Kandla (1 LCV)	laborers	of MSW.		
	Entire Vadinar premises	1 driver and 2	of Movi		
	(1 LCV)	laborers			
	Gopalpuri colony, Gandhidham	12 sweepers	Calculation based on the street		
	Port colony, Kandla	04 sweepers	sweeping norms for medium		
Street	AO office, Gandhidham	01 sweepers	density roads i.e., 1 person per		
sweeping	Port admin offices	01 sweepers	500 running meters of road		
	Residential premises, Vadinar	07 sweepers	length, as per provisions of CPHEEO Manual for collection		
	Commercial premises, Vadinar	02 sweepers	of MSW.		
Office/ hospital corridors	Typically, 1 staff per floor for 1-2 corridors				
Common toilets	Typically, 1 staff per toilet block		As per manpower provision		
Gardens and parks	Appropriate number as may be needed		made under SOPs for Swachh Resident Welfare Associations and Offices.		
Common utilities like Parking, Gym, Library, Clubs etc.					

Additionally, dedicated supervisors should be engaged depending on number of cleaning staff, and number of physically disparate locations (e.g. 1 supervisor per wing/floor).

Note: No. of LCVs proposed could be optimized considering the scenario where a single LCV makes multiple trips for waste collection instead of multiple LCVs or as per DPA's discretion.

Staff requirement should be assessed on annual basis by the Waste Management Cell taking into account following particulars for each DPA establishments:

- Area of the building (Offices, Residential, Recreational etc.)
- Number of rooms
- Area of the open/common spaces like garden, parking etc.
- Number of common toilet blocks
- Number of canteen spaces

2.7.3. Material Recovery Facility (MRF)

MRF is a facility wherein incoming waste is segregated based on the type of waste and gradation within each waste type. For example, MSW is segregated into various components like paper, plastic, metal, glass etc. following which these components are further sorted into different categories based on its potential reusability (e.g., paper is segregated into news print, office paper, packaging paper, printed books, etc.). Depending on the scale of operations and the level of mechanization in the facility, MRFs may be classified as Manual or Mechanized. Usually in small-scale units, Manual MRFs largely employ manual sorting practices and are typically owned, managed, and operated by the informal sector. Segregated material is then sold to intermediaries, who supply material in bulk to the recycling industry.

For Gandhidham and Kandla, the total quantum of MSW generated from all sources (Residential, port and slum areas), projected for next 10 years is approximately 2 TPD (2000 kg/day).

Therefore, a provision of Manual MRF is proposed for effective on-site management of MSW. At Gandhidham and Kandla, the MRF will be receiving two streams of MSW, one from Gopalpuri colony & Administrative offices, which will be partially segregated and another from slum areas which will be mixed in nature, meaning- unsegregated. Secondary segregation is advisable for the waste stream generating at slum areas.

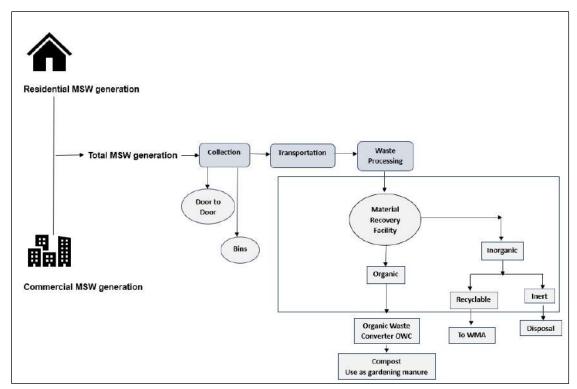


Figure 10: A schematic of proposed MRF for Kandla, Gandhidham

Need of Material Recovery Facility (MRF)

Waste management hierarchy indicates that the least preferred option of integrated solid waste management is disposal of waste in landfills. SWM Rules 2016 discourage disposal of organic matter into sanitary landfills and mandate that only inert rejects (residual waste) from processing facilities, inert street sweepings, etc. should be landfilled. All options of waste minimization should be utilized before appropriate treatment technologies are selected and implemented. With the aim to reduce the amount of waste being finally disposed, and maximizing resource recovery and efficiency, Material Recovery Facilities (MRFs) need to be established by DPA.

A Material Recovery Facility (MRF) is an infrastructure to receive, sort, process and store recyclable/non-recyclables/ RDF and inert materials, with the aim to maximize the quantity of recyclables processed, while producing materials that will generate the highest possible revenues in the market and maximize the reuse of other segregated fraction in different processes/ industries. It should be the responsibility of DPA to set up material recovery facility with enough space for sorting of recyclable materials as a follow-up of source segregation of waste at least as Dry and Wet waste in their SWM.

MRFs serve as intermediate processing step between the collection of recyclable materials from

waste generators and the sale of recyclable/non-recyclables/ RDF/inert materials to the recycling market and for other processes and industries.

- Prevents a significant fraction of MSW from being dumped or disposed in landfills.
- Helps in availability of scarce resources
- Reduces environmental impacts and the burden of waste management on public authorities.
- If the necessary market mechanisms are established, it can generate revenue, contributing to the cost recovery in the municipal solid waste service provision.
- Reduces waste volumes and results in cost savings in the collection, transportation and disposal infrastructure, longer life span for landfills/reduced requirement of land, reduced environmental management efforts
- Generates livelihood opportunities for informal, local vendors/recyclers in the recycling industry.

Selection of MRF

The configuration of MRF processing line is critical to the overall quality of the materials segregated. It depends on several factors including the quality and quantity of incoming waste (segregated or mixed) and required specifications for the end products and also the land available. Selection of MRF depends largely on ULBs capabilities- its financial conditions and its linkage to market/ industries for sale of byproducts. It is pertinent to note that every given the specific conditions, every ULB has requirement of tailormade types of MRFs. ULBs have to adopt the type of MRF as per their specific requirement depending upon the following aspects:

- Waste Quantity
- Waste characterization
- Availability of land
- Capital and Operational cost of facility (including cost of Manpower)
- Provisions/ Linkages for sale of recyclables and by products
- Type and linkage of final treatment/disposal facility

Siting Criteria for MRF

Ideally the MRF shall be located close to both the source of the MSW generation and the industries that will use the recycled materials since the minimization of travel distances is important for reducing costs. In order to be located near the residential areas, the facility must be both environmentally and aesthetically acceptable. A buffer space with trees / shrubs will

help improve aesthetics and decrease any noise pollution.

- MRFs need to be located close to existing roads, but traffic blocks resulting from the movement of waste collection trucks should be considered and avoided.
- These facilities must be near or within urban areas that generate the inputs to be processed for recyclables.
- If the development area is zoned, MRFs are preferably located in an industrial zone or close to a sanitary landfill to facilitate efficient movement of waste from various generators and disposal of residual waste.
- MRFs should be sited, considering the local geographical features, in a safe manner.
- Flood-prone areas should not be selected.

Authorizations/ Permissions Required

The permissions have to be sought from the State Pollution Control Board (SPCB) in the form of consent to establish, consent to operate, etc. Later, an annual report needs to be given to the SPCB / Pollution Control Committee (PCC). The various forms can be in the SWM Rules 2016 and the Plastic Waste Management Rules 2016. There may be exceptions for small capacity MRF's.

Constituents in an MRF

- MRF is situated within a warehouse-type building with concrete flooring and enclosed by a perimeter fence for security.
- It should have the following components:
- Weighing scale / Weighbridge
- Changing/Washroom/Rest rooms and creche, as required
- Receiving or tipping area
- Sorting/processing area
- Storage area for recyclables
- Residual storage area
- Admin/ Record room/First Aid Room
- Fire Extinguishing facilities
- It should also be provided with the basic connections for water and electricity and with adequate space for the entry and exit of waste transporting vehicles. Provisions for toilet/change/washrooms must be included.
- The warehouse design should minimize the placement of columns that could interfere with

the efficient movement of materials and equipment and should facilitate the installation of higher ceilings.

 Receiving areas should have the capacity to receive at least 2 days' waste storage space for the MRF's processing capacity in anticipation of equipment breakdown and to provide materials for the second-shift operation, if required.

The process flow in the MRF is depicted below. At the proposed MRF, incoming MSW will be divided into 2 categories Wet and Dry streams. The wet stream will be diverted to OWC for production of organic manure to be utilized for gardening and on-site horticulture or for sale to farmers, whereas dry stream will again be separated into recyclable and non-recyclable streams. The recyclable materials will be sold to recyclers and non-recyclables will be routed for reprocessing or disposal.

Categories of dry waste segregation in MRF:

The general dry waste items that can be segregated in MRF are listed in Table 6

Table 6 Categories of dry waste that can be segregated in MRF

S. No	Paper	Plastic Items (non-PVC)	Plastic items (PVC)
1	Glass Items	Rubber Items	Metal Items (Ferrous)
2	Leather Items	Thermocol	Aluminum Coated Paper
3	Wooden Items	X-ray Films	Clothes
4	Cardboards	Jute bags	Electronic Items
5	Aluminum Coated Plastic	Metal Items (Non- ferrous)	Medical Waste/ Tablet Cover

Figure 11: Dry Waste MRFs

The activities of a typical manual MRF are shown with the help of photographs in Figure 12. and layout of a manual MRF is shown in Figure 13.

Segregation

Baled plastic waste

Recyclables packed and stored

Figure 12: Activities in Manually Operated MRF

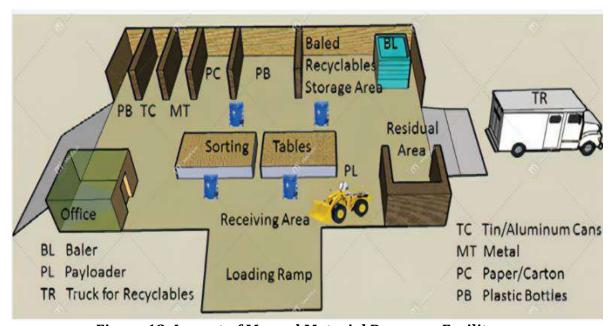


Figure 13: Layout of Manual Material Recovery Facility

The activities of a typical automated MRF are shown with the help of photographs in Figure 14 and layout of an automated MRF is shown in Figure 15.

Figure 14: Operations at a typical Automated Material Recovery Facility

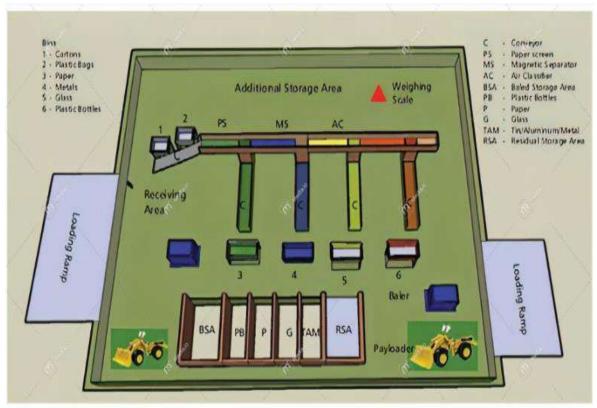


Figure 15: Layout of an Automated Material Recovery Facility

The specifications of proposed MRF for Gandhidham is as below:

Table 7 MRF specifications for Gandhidham

MRF Component	Indicative value
Design Capacity	2 tons/day
Infrastructure requirement	1 Segregation shed with cemented platform and weatherproof roofing Utilization/ processing area for wet waste 1 Admin / record room for record keeping of happenings at MRF
	Parking shed for door-to-door vehicles
	Properly covered storage area for segregated recycles until collected by hired WMAs
Total area requirement	1500-2500 sqm (Approx.)
Manpower requirement	10-12 laborers, 1 supervisor per shift

The good practices to be observed during operation of MRF have been detailed in the Training Module.

2.7.4. Organic Waste Converter (OWC)

About 40-60% of MSW is comprised of compostable materials. Assuming 50% quantum of MSW to be biodegradable, the calculated biodegradable content in MSW generated from Gopalpuri colony and AO office are 600 kg/day and 200 kg/day respectively. Similarly, for Vadinar, the biodegradable component in MSW is 90kg/day and 10 kg/day for colony and AO office respectively. The nos. and specifications of OWC proposed for DPA establishments at Gandhidham, Kandla and Vadinar are as below:

The following process flow diagram illustrates how organic waste is converted into compost within 30 to 45 days.

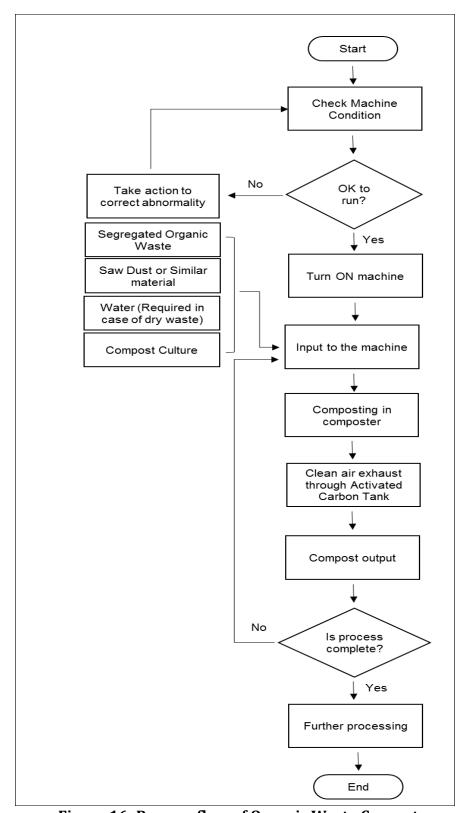


Figure 16: Process flow of Organic Waste Converter

The image of a typical OWC is shown in Figure 17

Figure 17: Typical Organic Waste Convertor

A non-exhaustive list of OWC dealers have been provided at Annexure I. The specifications of the OWC proposed for DPA is given in Table 8.

Table 8 Specifications of OWC proposed for DPA

Sr. No.	Location	Design capacity kg/day	Nos. of OWC proposed	Approx. Space requirement for 1 OWC (m x m X m)	Energy Requirement for 1 OWC Units/day	
		800	1	3.4×2.3×2.4	57-65	
1	Gopalpuri colony	OR				
	colony	200	4	1.98×1.16×1.68	16-18	
2	Kandla A0	200	1	1.98×1.16×1.68	16-18	
3	Vadinar colony and AO premises	100	1	5×3×3.5	13-15	

2.8. Financial outlay for proposed MSW management

The estimated financial outlay for the proposed provision of MSW management has been given in Table 9. This outlay consists of only capital and recurring cost of items/equipment and does not include manpower and other costs.

Table 9 Financial outlay for proposed MSW management

Sr. no.	Particulars of proposed provisions for management of MSW	Cost per unit in ₹	Capital cost in ₹	Recurring cost per year in ₹		
For Ka	For Kandla and Gandhidham					
1	Waste collection bins of 10 L capacity	100/-	3,34,400/- (for 3344 bins)	1,00,000/- (considering replacement of around 1000 bins/year due to wear and tear)		
2	Waste collection bins of 50 L capacity	600/-	94200/- (for 157 bins)	30,000/- (considering replacement of around 50 bins/year due to wear and tear)		
3	MRF facility		15-30 lakhs (excluding land cost) Considered maximum value	15-17 lakhs per year (including salary of manpower and regular repair- maintenance cost)		
4	OWC units of 800 kg/day for Residential	14,50,000/-	14,50,000/-	145,000/-		
5	OWC units of 200 kg/day for Commercial	6,00,000/-	6,00,000/-	60,000/-		
6	Handcarts for slum area	8000/-	4,00,000/-	40,000/-		

			(for 50 handcarts)	(considering replacement of around 5 handcarts/year due to wear and tear)
7	Door-to-door waste collection	As per contrac	ct	
Total			57,16,800/-	20,75,000/-
For Va	adinar			
8	Waste collection bins of 10 L capacity	100/-	35000/- (for 350 bins)	5,000/- (considering replacement of around 50 bins/year due to wear and tear)
9	Waste collection bins of 50 L capacity	600/-	37,200/- (for 62 bins)	3000/- (considering replacement of around 05 bins/year due to wear and tear)
10	OWC units of 100 kg/day	3,50,000/-	3,50,000/-	35,000/-
11	Door-to-door waste collection	As per contrac	et	
Total	Total		4,22,200/-	43,000/-
	Grand Total (for Gandhidham, Kandla and Vadinar)		61,39,000/-	21,18,000/-

Note: The costs of proposed units have been adopted based on current market price

2.9. Other recommendations:

The Integrated Solid Waste Management (ISWM) hierarchy states 5 approaches for managing wastes.

- Tier 1: Source reduction or waste prevention, which includes reuse, considered the best approach
- Tier 2: Recycling
- Tier 3: Composting of organic matter of waste.
- Tier 4: Energy recovery- the components of waste that cannot be prevented or recycled can be processed for recovering energy
- Tier 5 is disposal of waste in sanitary landfill, which is the least preferred option.

For DPA, Tier 1, 2, 3 and 4 approaches are proposed for management of MSW

Tier 1 & 2: Practicing minimalistic lifestyle by avoiding purchase and use of unnecessary goods/things used in daily lives. Ensuring the usage of goods used in day to day lives for its full

designed period or till end of life thereby avoiding accumulation that ultimately results into MSW **Tier 3**: Composting of organic waste produces a good manure that can find utility in gardens, recreational parks and kitchen gardening. Proper segregation of MSW in to wet biodegradable and Dry non-biodegradable waste is key to achieve this. To ensure segregation at source, provision shall be made to provide two separate bins at all households in the colonies and other places for discarding of wet and dry wastes thus enabling waste segregation at the source of generation itself.

- Ensure active participation of the community in reducing overall quantities of waste. The
 different waste reduction strategies, such as take-back, deposit-refund system, etc. should
 be promoted.
- Promote source reduction programs in the community and encourage handover of recyclable material to sustainable recycling facilities through informal sector, NGOs, etc.
- Campaign for reducing the use of specific non-recyclable, non-reusable, or toxic material. Practice and promote material substitution where possible.
- Generate awareness among people to avoid littering.
- Sensitize citizens to segregate waste at their premises into biodegradable, dry, and special waste and hand over the segregated waste to the collectors.
- Ensure awareness on existing recyclable collection systems, including dedicated collection points. Enforce extended producer responsibility (EPR) initiatives.
- Management shall hold regular meetings among the MSWM staff and other stakeholders to ensure successful uptake of such programs.
- Ensure active participation of the community for successful implementation of primary and secondary collection systems.
- Involve community in designing the primary collection system, e.g., in determining waste collection system and timings.
- Generate awareness on bye-laws on waste collection and management system as well as user charges levied on different waste fractions.
- The consumer shall wrap the sanitary waste using self-wrapping straps or keep the sanitary waste in leak-proof pouches provided by producer and dispose the same along with dry waste or keep the waste in separate bin provided at the time of door-to-door collection. In case separate bin is not provided by authorized waste picker, the wrapped/pouched sanitary waste should be placed in dry-waste bin for collection by authorized waste picker.

Chapter-3 PLASTIC WASTE

3.1. Applicable laws and rules

Plastic Waste Management Rules, 2016 and subsequent amendments in 2018, 2021, 2022 and 2023.

3.2. Responsibility of DPA as per PWM Rules

Rule 8 of Plastic Waste Management Rules, 2016

Responsibility of waste generator

- Take steps to minimize generation of plastic waste and segregate plastic waste at source in accordance with the Solid Waste Management Rules, 2000 or as amended from time to time.
- Not litter the plastic waste and ensure segregated storage of waste at source and handover segregated waste to urban local body or gram panchayat or agencies appointed by them or registered waste pickers', registered recyclers or waste collection agencies.
- All institutional generators of plastic waste, shall segregate and store the waste generated by them in accordance with the Municipal Solid Waste (Management and Handling) Rules, 2000 notified vide S.O 908(E) dated the 25th September, 2000 under the Act or amendments and handover segregated wastes to authorized waste processing or disposal facilities.
- All waste generators shall pay such user fee or charge as may be specified in the bye-laws of
 the local bodies for plastic waste management such as waste collection or operation of the
 facility thereof, etc.

3.3. Current Scenario - Handling and Management of Waste

3.3.1. Identification and Quantification

At all premises of DPA, plastic waste is not segregated from municipal solid waste. Therefore, for estimation of plastic waste quantum, Central Public Health and Environmental Engineering Organization (CPHEEO) manual has been referred. It states that Plastic waste forms approximately 6.92% of the total MSW. Applying this factor to the quantity of MSW generated at the respective locations, estimated PW generation at Gandhidham, Kandla and Vadinar is calculated as below:

Table 10: Estimated quantum of Plastic waste generation for DPA establishments

Location	Waste Quantum in kg/day				
	Current Estimated Estimated Estimated Plastic				
	MSW	Plastic waste	Plastic waste	waste	
	(current) (after 5 yrs) (after 10 yrs)				

Gandhidham and Kandla (Colony + AO + Port + Slum)	2259.6	156.36	166.41	177.83
Vadinar (Colony + AO + Port)	210	14.53	15.69	16.71

3.3.2. Sources of waste

Plastics have become an integral part of human day to day life. All type of establishments, residential, commercial, institutional, health care etc. generate plastic waste in varying quantities. At Gandhidham, Kandla and Vadinar, plastic waste is generated from residential areas (residential colonies), Administrative offices, Port area (including ships and vessels) and slum areas.

3.3.3. Segregation

Segregation of waste at source and its timely collection ensures proper utilization and cleanliness of the area. However, to ensure source segregation, proper awareness activities, and strict compliance system is necessary. Presently the segregation of plastic waste at source is not practiced at locations i.e Gandhidham, Kandla and Vadinar. On-site segregation could be encouraged by:

- Providing different colored bins in households/offices: It is recommended that different bins
 for wet and dry waste be provided at all sources of waste generation.
- Create awareness on benefits and procedure of segregation.
- Regular monitoring of percentage of segregation in each DPA premises.
- Since source segregation of plastic waste is difficult, an alternative is manual / mechanized segregation at centralized storage area or material recovery facility once door to door collection of waste is done.

3.3.4. Recycling / Processing and Disposal

Recycling of plastic is not practiced at present.

3.4. Record keeping

The PWM Rules do not mandate any record keeping requirement for plastic waste generators, however it is a good practice to regularly collect receipts and maintain records of quantum of PW collected by the registered Waste Management Agency.

3.5. Procedure adopted for engagement of external agencies/private operators

Currently DPA has not engaged any plastic waste management agency for environmentally sound management of the plastic waste generated in its premises. It is imperative for DPA to engage such agency registered with GPCB to ensure sound management of plastic waste. The criteria suggested for appointing a waste management agency is it should be holding a valid authorization from GPCB during the tenure of tie-up with DPA. A non-exhaustive list of Plastic Waste Collection and Recycling Agencies has been provided in Annexure III.

3.6. Obtaining Authorization/Clearance/License

The provisions under PWM Rules do not mandate PW generator to obtain any Authorization, Clearance or License.

3.7. Recommendations and strategies

- Avoid use of single use polyethylene (SUP) packaged bottles and other single use cutlery
 items at events, meetings, seminars etc. Reusable bottles and cutlery shall be encouraged. It
 is recommended to issue an office order in this regard to ensure compliance.
- Avoid any kind of packaging products made of SUPs.
- Display posters across various locations to avoid and minimize plastic usage especially SUPs.
- DPA shall tie up with GPCB recognized plastic waste collection and processing agency for recycling of its plastic waste.

3 Rs – Refuse, Reduce and Reuse shall be practiced for plastic waste minimization. It is responsibility of individuals in colonies and offices of DPA to limit the use of plastics in day to day lives by encouraging attitudes like carrying a cloth bag to markets, making use of stainless steel/earthen water bottles, making use of recyclable goods used in day to day lives etc. General Do's and Don'ts regarding plastic usage is as below:

Table 11 Do's and Don'ts regarding plastic usage

S. No.	Do's	Don'ts
1	Permit only use of plastic carry bags/ sheet/ or other with size >50µm	Use of <50 μm plastic carry bags/sheets
2	Practice use of Virgin plastic carry bags for storing/ packaging/ food stuffs.	Use of colored & recycled for storing/ packaging/ food stuffs.
3	Promote recycling of plastics 2-3 times before disposing it to landfill	Littering and unorganized dumping of PW

4	Segregation of PW from MSW	Mixing of PW with bio-degradable waste.
5	Recycling PW for use in co-processing in cement kilns, construction of roads etc.	Burning of PW in open.

- The Plastic Waste Management Amendment Rules, 2021, identified certain Single Use Plastics (SUPs) which have low utility and high littering potential for curbing pollution caused by littered and unmanaged plastic waste. The use of these SUPs as listed in Annexure II shall be strictly banned at all DPA premises.
- For the fourth R Recycle it is imperative that plastic waste is segregated from MSW.
- The following action points are recommended for effective plastic waste management system:

Table 12 Action points for effective plastic waste management

	Table 12 Action points for effective plastic waste management				
Sr. No.	Action points	Infrastructure/ actions required	Priority level		
1.	Segregation of plastic waste from municipal solid waste	 Provision of separate bins for PW and MSW at households and offices Segregation at proposed Material Recovery Facility 	Immediate		
2.	Setting-up of Plastic Waste Management system for safe collection, transport, recycling and disposal of PW.	Engaging with GPCB registered PW recycling agency.	As soon as possible		
3.	Create awareness among all employees and their families about their responsibilities towards minimizing the use of plastics.	Through social media, campaigns, co-curricular school activities, hoardings etc.	As soon as possible		
4.	Ensure that open burning of plastic waste is not permitted	Constitution of Vigilance Squad	Immediate		

• Community awareness is the best means to reduce and manage plastic waste. DPA should organize activities and competitions in its school and community gatherings to engage its residents especially children to create "Best out of Waste" items. A few ideas are given below:

Figure 18: Best out of Waste

Chapter-4 E-WASTE

4.1. Applicable laws and rules

E-Waste (Management) Rules, 2022

4.2. Responsibility of DPA as per Rules:

Rule 8- Responsibilities of consumer or bulk consumer

Bulk consumers of electrical and electronic equipment listed in Schedule I shall ensure that ewaste generated by them shall be handed over only to the registered producer, refurbisher or recycler.

List of electrical and electronic equipment (E&EE) listed in Schedule I of the Rules are mentioned in the Training Manual.

4.3. Handling and Management of Waste

4.3.1. Identification, Quantification and Inventory of waste

A 'bulk consumer' means "any entity which has used at least one thousand units of electrical and electronic equipment listed in Schedule I, at any point of time in the particular Financial Year and includes e-retailer". Based on this definition, DPA falls under the category of a bulk consumer. The E-waste inventory of Gandhidham, Kandla and Vadinar ports is tabulated below:

Table 13 E-waste inventory for DPA Ports

S.No.	Name of Port	Collection agency	E-waste	Quantity in nos.	
			PC	121	
	Gandhidham,	Under process	Printer	32	
1	Kandla	on MSTC portal	CPU	40	
	Kandia	on More portar	Monitor	41	
			UPS	18	
Total	Total				
			Monitor	5	
		*	CPU	3	
2	Vadinar		Typewriter	2	
2	vaumai		Printer	13	
			Fax	1	
			Keyboard	10	
Total	34 units				
Total E-waste in storage at DPA				252+34 = 286 Units	

^{*} E-waste collected from Vadinar is sent to Gandhidham for onward disposal.

4.3.2. Sources of waste:

Major sources of E-waste are Large Household Appliances, IT and Telecom and Consumer Equipment. At DPA, the E-waste to be managed is of IT and Telecom type generated from administrative and port offices at Gandhidham, Kandla and Vadinar. Another major source is E-waste generated from households in colonies.

4.3.3.Segregation

E-waste at Gandhidham AO is separately stored but there is no mechanism for its segregation at Gopalpuri colony. A methodology for E-waste segregation for DPA is covered in the Training Module.

4.3.4.Storage (on-site)

At Gandhidham AO, the discarded electronic equipments are stored at EDP store. The E-waste from Vadinar is brought to Gandhidham AO for onward disposal as per procedure. Currently 252 and 34 units of obsolete PCs, Monitors, Printers etc. at Kandla and Vadinar respectively are stored until the agency appointed through MSTC collects and channelizes the waste for environment-friendly disposal.

4.3.5.Collection

The responsibility of collecting the stored e-waste is of the agency appointed through MSTC portal. As an alternative to the MSTC portal, a non-exhaustive list of E-waste recyclers registered with GPCB is provided at Annexure V.

Figure 19: E-waste storage room at Vadinar

4.3.6.Disposal

The authorized agency appointed through MSTC is responsible for environment-friendly disposal of DPA's E-waste. As on June 2024, the list of scrap items to be disposed through MSTC

portal is attached at Annexure XI.

4.4. Record keeping

The E-Waste rules do not mandate any record keeping requirement for E-waste consumers however it is a good practice to collect receipts and maintain record of E-waste generated onsite and quantity collected by appointed Waste Management Agency. This is being done by Store Department at Gandhidham Administrative Office.

4.5. Procedure adopted for engagement of external agencies/private operators

DPA has entered in agreement with MSTC Ltd. Vadodara for selling / auction of all scrap items including e-waste. This agreement is valid till February, 2025 or until one of the two parties give 1-month notice in writing for termination of the agreement. DPA is in process to engage an E-waste collecting vendor through MSTC Ltd.

4.6. Recommendations and strategies

- It is recommended to maintain records of e-waste generated by them.
- DPA should consider the option of returning the end-of-life electronic items to the producer through its pick up or take back services or through its collection points.
- Create awareness at office as well as residential colonies regarding hazards and harmful environmental impacts of E-waste and not mix E-waste with general waste.

Chapter-5 Bio-medical Waste

5.1. Applicable laws and rules

Bio-Medical Waste Management Rules, 2016 and subsequent amendments in 2018 and 2019. The biomedical wastes categories and their segregation, collection, treatment, processing and disposal options as per Schedule I of the Rules are specified in Annexure VI

5.2. Responsibility of DPA as per BMWM Rules:

- It shall be the duty of every occupier (DPA) to
- Take all necessary steps to ensure that bio-medical waste is handled without any adverse effect to human health and the environment and in accordance with the rules stated above.
- Make a provision within the premises for a safe, ventilated and secured location for storage
 of segregated biomedical waste in colored bags or containers to ensure that there shall be no
 secondary handling, pilferage of recyclables or inadvertent scattering or spillage by animals
 and the bio-medical waste from such place or premises shall be directly transported in the
 manner as prescribed in the rules to the common bio-medical waste treatment facility.
- Pre-treat the laboratory waste, microbiological waste, blood samples and blood bags through disinfection or sterilization on-site and then sent to the Common bio-medical waste treatment facility for final disposal.
- Phase out the use of chlorinated plastic bags (excluding blood bags) and gloves
- Dispose of solid waste other than bio-medical waste in accordance with the provisions of respective waste management rules made under the relevant laws and amended from time to time.
- Avoid mixing of treated bio-medical waste with municipal solid waste.
- Provide training to all its health care workers and others, involved in handling of bio medical
 waste at the time of induction and thereafter at least once every year and the details of
 training programs conducted, number of personnel trained and number of personnel not
 undergone any training shall be provided in the Annual Report.
- Immunize all its health care workers and others, involved in handling of bio-medical waste for protection against diseases including Hepatitis B and Tetanus that are likely to be transmitted by handling of bio-medical waste
- Establish a Barcode System for bags or containers containing bio-medical waste to be sent out of the premises or for the further treatment and disposal
- Ensure segregation of liquid chemical waste at source and ensure pre-treatment or

- neutralization prior to mixing with other effluent generated from health care facilities.
- Ensure treatment and disposal of liquid waste in accordance with the Water (Prevention and Control of Pollution) Act, 1974
- Ensure occupational safety of all its health care workers and others involved in handling of biomedical waste by providing appropriate and adequate personal protective equipments.
- In case of bedded health care units, maintain and update on day-to-day basis the bio-medical
 waste management register and display the monthly record on its website according to the
 bio-medical waste generated in terms of category and colour coding
- Report major accidents including accidents caused by fire hazards, blasts during handling of biomedical waste and the remedial action taken and the records relevant thereto to the prescribed authority and also along with the annual report; make available the annual report on the web-site; inform the prescribed authority immediately in case the operator of a facility does not collect the bio-medical waste within the intended time or as per the agreed time;
- In case of bedded health care facilities (any number of beds), make available the annual report on its web-site
- Maintain all record for operation of incineration, hydro or autoclaving etc., for a period of five years;

5.3. Handling and Management of Waste

5.3.1. Identification of sources and Quantification of waste

There are 3 healthcare facilities at Gandhidham and Kandla of which one is a 55 bedded hospital located in Gopalpuri colony and two dispensaries, one each at Kandla port and Adipur village.

There is one operational healthcare facility at Vadinar named Shree Samarpan Wellness Pvt Ltd.

Figure 20: Gopalpuri hospital at Gandhidham

The category wise waste generation details for the identified BMW sources is tabulated below:

Table 14 BMW generation at DPA HCFs

Sr.	Name of the HCF	Category-wise BMW quantity in kg/month			
no		Yellow	Red	White	Blue
DPA	DPA HCFs in Gandhidham/Kandla				
quan	consented tity as per BMW orization	250	170.3	15.5	98.1
Avera	age BMW generated	in kg/mor	nth		I
1	Gopalpuri Hospital	47	30	1.6	33
2	Kandla dispensary	02			
3	Adipur dispensary	0.5			
HCF a	at Vadinar port are	a	•		

quan	B consented tity as per BMW orization	6.0	5.0	0.5	2.0
4	Shree Samarpan Wellness Pvt. Ltd.	2.6	0.57		0.45

At Goaplpuri HCF the BMW quantity generated is within the consented quantity as per BMW Authorization provided by GPCB.

At Shree Samarpan Wellness Pvt Ltd. in Vadinar, the BMW quantity generated is within the consented quantity as per BMW Authorization provided by GPCB

5.3.2. Segregation:

Segregation at source into different colored bins for different category bio medical waste is imperative for efficient management of Bio-medical waste management system. Following are the observations for Gopalpuri hospital and HCF at Vadinar:

- Waste is being segregated at the point of generation of source.
- Needles and syringes are destroyed at the working desk or collected in puncture proof containers for treatment at CBWTF.
- Posters/ placards for bio-medical waste segregation are provided near bins and in waste storage area.
- Adequate number of colour coded bins / containers and bags are available at the point of generation of bio-medical waste.
- PPEs have been provided to the bio-medical waste handling staff.

Figure 21: Color-coded bins at Gopalpuri Hospital

Figure 22: Color-coded bins at Shree Samarpan Wellness Pvt. Ltd., Vadinar

5.3.3. Storage (on-site and centralized)

At Gopalpuri Hospital, a designated storage room for the generated BMW is provided. The Distormed Kutch Services Pvt. Ltd. directly collects the waste from this storage room. At Shree Samarpan Wellness hospital, Vadinar, the quantum of waste generated is less hence there is no dedicated storage room.

Figure 23: Designated storage room for BMW at Gopalpuri Hospital

5.3.4. Collection and Intramural Transportation

Ward-wise collection and intramural transportation of BMW is done through trolleys and sent to designated storage room for storage until the waste is picked up the agency.

The GPCB authorized CBWTFs i.e Distormed Kutch Services Pvt. Ltd. and Dev Biomedical Waste Management Services for Gopalpuri and Vadinar respectively have been engaged for collection, transportation and disposal of BMW. The details are as below:

Table 15 Details of CBWTF appointed for DPA HCFs

Sr.no	Name of the CBWTF	Name of HCF			
For Ga	For Gandhidham and Kandla				
1		Gopalpuri Hospital			
2	Distromed Kutch Services Pvt. Ltd.	New Kandla Port Hospital			
3		Kandla Port Dispensary			
Vadina	Vadinar				
4	Dev Biomedical Waste Management Services	Shree Samarpan Wellness Pvt Ltd			

The CBWTFs are responsible for collection, transport, processing, recycling and disposal of BMW. The CBWTFs are mandated to use the vehicles that are specially designed vehicles as per CPCB guidelines and are properly labeled with symbol indicating biohazard, for transporting BMW.

5.3.5. Disposal

The BMW is disposed by CBWTF in accordance with the norms and criteria prescribed in the BMW Rules and CPCB guidelines.

5.4. Record keeping

The Bio-medical Waste Management Rules, 2016 and subsequent guidelines prescribes the below requirements as far as record-keeping is concerned:

- Maintain category-wise records of bio-medical waste generation and its treatment disposal on a daily basis in Annexure VII: Format for Bio-Medical Waste Register / Record
- Category-wise quantity of waste generated from the facility must be recorded in Bio Medical Waste Register/logbook being maintained at the central waste collection area under the supervision of one designated person.
- A weighing machine as per the specifications given in CPCB guidelines for bar code system needs to be kept in central waste collection centre of the HCF having 30 or more than 30 nos. of beds for weighing the quantity of Bio Medical Waste.
- HCFs having less than 30 beds shall maintain records of receipts printed by the CBWTF.
- Records on Annual Report on bio-medical waste management and Accident Report including preventive and corrective actions taken by the HCFs in relation to such accidents shall be submitted to GPCB

- Records shall be maintained on training on BMW Management including both Induction and in service training records.
- Maintain records for Annual Health check-up and Immunization of all the employees.
- Records of testing of Effluent generated from health care facility
- Record of recyclable waste (plastic/glass) handed over to the authorized recycler in kg/annum. The records related to the handling of BMW by healthcare facilities needs to be retained for a period of five years.

The list of information and necessary formats for record keeping have been covered in the Training Manual for Bio-Medical Waste.

5.5. Procedure adopted for engagement of external agencies/private operators

The CBWTFs Association of Gujarat based on CPCB guidelines and in coordination with GPCB have earmarked regions/districts that each CBWTF can cater to. Based on which, no other agency except M/s Distromed Kutch Services Pvt. Ltd. can cater to Kutch district. Same is the case for Devbhumi Dwarka district (HCF at Vadinar). Hence DPA or any other HCF has no choice when it comes to selection of CBWTFs for these regions. All these agencies are registered with GPCB.

5.6. Obtaining Authorization/Clearance/License

Below table 16 lists the requirements for obtaining authorization under Bio-Medical Waste Management Rules, 2016.

Table 16 Requirements of obtaining authorization for HCFs as per BMW Rules

Type of HCF	Type of authorization	Granting authority	Validity	Applicability and status w.r.t DPA's HCFs	
Bedded HCF	Fresh authorization and its timely renewal	GPCB	Validity in synchronization with the validity of: Consent under Air (Prevention and Control of Pollution) Act, 1981 and Water (Prevention and Control of Pollution) Act, 1974	Both Hospitals at Gopalpuri and Vadinar are having valid licenses (BMW 364004 & BMW 361012). The licenses need to be updated from time to time as per the Act and applicable Rules.	
Non-bedded HCF	One-time authorization*		Deemed valid until amendment sought	It, is applicable to Both the dispensaries at	

HCFs situated within 75 km reach of CBWTF	Agreement with Common Bio Medical Waste Treatment Facility (CBWTF)	Monitored by GPCB	Generally, for 3 years or varies as per different CBWTF facility	Kandla and Adipur and authorization should be done as per the rules. Bedded HCF Both Hospitals at Gopalpuri and Vadinar are having valid agreements with the CBWTF for a period of one year. Non bedded HCF Both the dispensaries at Kandla and Adipur are having valid agreements with the CBWTF for a period of one year. However, all the bedded and nonbedded HCFs need to renew the agreements from time to time.
HCFs beyond 75 km reach from CBWTF but its operator willing to provide required services	Agreement with Common Bio Medical Waste Treatment Facility (CBWTF)			Not Applicable

^{*} In case there is any change or variance in relation to the activities of HCF, these HCFs have to apply for a fresh authorization to amend earlier authorization

5.7. Recommendations and strategies

At DPA HCFs, Bio-Medical Waste is managed in a sound manner. For further improvement of this system, following points are suggested:

• The substances in bio-medical waste might contain viable microorganism such as bacterium, virus, parasite or fungus that may cause disease in humans or animals.

Therefore, packaging of such bio-medical waste shall be done in triple packaging system comprising of three layers of packaging.

- Exhaust fans should be provided in the waste storage room for ventilation.
- The entrance to the storage room must be labelled with "Entry for Authorized Personal Only".
- DPA shall develop a separate page/web link in its website for displaying the information pertaining to their Gopalpuri hospital. The list of Information for updating on website is provided on Annexure VIII.
- HCF must ensure that a comprehensive health check-up of each employee and other staff
 involved in BMW handling is carried out at the time of induction and also as a mandatory
 procedure is followed every year for every employee.
- Concerned HCF authority shall ensure the occupational safety of the healthcare workers and other staff involved in handling of Bio medical waste in the healthcare facility.
- HCF shall impart training to the staff handling BMW in accordance with the Training Manual and maintain Training records in Annual Report (Annexure VII).
- Submit an annual report to the prescribed authority in Form-IV, on or before the 30th June of every year (Annexure VII) for each HCF.

Chapter-6 Construction and Demolition Waste

6.1. Applicable laws and rules

Construction and Demolition Waste Management Rules, 2016.

6.2. Responsibility of DPA as per various Conventions, Acts and Rules:

Rule 4-Duties of the waste generator

- Every waste generator shall prima-facie be responsible for collection, segregation of concrete, soil and others and storage of construction and demolition waste generated, as directed or notified by the concerned local authority in consonance with these rules.
- The generator shall ensure that other waste (such as solid waste) does not get mixed with this waste and is stored and disposed separately.
- Waste generators who generate more than 20 tons or more in one day or 300 tons per project in a month shall segregate the waste into four streams such as concrete, soil, steel, wood and plastics, bricks and mortar and shall submit waste management plan and get appropriate approvals from the local authority before starting construction or demolition or remodeling work and keep the concerned authorities informed regarding the relevant activities from the planning stage to the implementation stage and this should be on project to project basis.
- Every waste generator shall keep the construction and demolition waste within the premise or get the waste deposited at collection center so made by the local body or handover it to the authorized processing facilities of construction and demolition waste; and ensure that there is no littering or deposition of construction and demolition waste so as to prevent obstruction to the traffic or the public or drains.
- Every waste generator shall pay relevant charges for collection, transportation, processing and disposal as notified by the concerned authorities; Waste generators who generate more than 20 tons or more in one day or 300 tons per project in a month shall have to pay for the processing and disposal of construction and demolition waste generated by them, apart from the payment for storage, collection and Transportation. The rate shall be fixed by the concerned local authority or any other authority designated by the State Government.

6.3. Handling and Management of Waste

Since the construction / demolition work is contracted to a civil contractor by DPA, the entire responsibility of transportation, management and disposal of C&D waste lies with the contractor.

6.4. Procedure adopted for engagement of external agencies/private operators

Since the responsibility of handling C&D waste lies with the civil contractor, DPA does not engage any external agency for processing / disposal of C&D waste.

6.5. Recommendations and strategies

- Proper segregation of C&D waste should be practiced to avoid mixing with bio-degradable waste destined for MSW treatment facilities / landfill.
- Explore the possibility of reusing C&D waste materials in construction related activities (Refer Table), thereby decreasing the quantum to be landfilled.
- The Delhi government has issued an advisory on the use of products made out of recycled C&D waste by the Public Works Department (PWD). All Delhi government agencies will be required to incorporate a clause in their tenders that mandates use of a minimum of 2 per cent recycled products from construction waste in all future contracts for building works and 10 per cent recycled products for road works. (Ref. CSE August 26, 2015).
- Filling of low-lying areas, reclamation of land, trenches etc. should be done using C&D wastes.
- Necessary measures to control dust and fugitive emissions must be taken including:
 - Use of water sprinklers
 - Transportation of C&D wastes should be done in covered vehicles to prevent fugitive dust emission

Table 17 Potential uses of C&D waste

C & D waste	Potential use of C & D wastes		
Concrete	The utilization of recycled aggregate is particularly very promising as 75% of concrete is made of aggregates.		
Bricks	If deconstructed properly, bricks can be reused after removal of mortar Broken bricks can be used for refilling or for manufacturing debris pave blocks or debris blocks.		
Stone	Stone can be reused for plinth formation, masonry construction, landscap purpose, ledges, platforms, window sills, coping etc. depending upon th form of available stones.		
Timber	Timber elements from deconstructed building may have aesthetic and antique value. Opportunity: Whole timber arising from construction and demolition		

	works can be utilized easily and directly for reused in other construction projects after cleaning, de-nailing and sizing.			
Plywood and other timber based boards	Plywood and other timber-based boards can be either reused for interior works in new construction or it can be recycled for manufacturing of timber-based boards.			
Gypsum	In India, over 10 about of waste gypsum such as phosphor-gypsum, Flurogypsum etc., are being generated annually. Opportunity: Plaster developed from this waste gypsum has showed improved engineering properties without any harmful effect. Phosphorgypsum and lime sludge can be recycled for manufacture of Portland cement, masonry cement, sand lime bricks, partition walls, flooring tiles, blocks, gypsum plaster, fibrous gypsum boards, and super-sulphate cement.			
Metals & metal alloys-	Ferrous Metals are the most profitable and recyclable material. Scrap steel is almost totally recycled and allowed repeated recycling. Structural steel can be reused as well as 100% steel can be recycled to avoid wastage at construction site. Advantage: Generally sold to a scrap metal dealer at a specified price. Metals like scrap iron can be mixed with the virgin metal in the foundry. In India more than 80% scrap arising is recycled.			
Nonferrous metal	The main nonferrous metal collected from construction and demolition sites are aluminum, copper, lead and zinc. Opportunity: In India aluminum and copper are recycled and are valuable resources			
Debris	Construction debris can be recycled to manufacture paver blocks which can be used in light traffic areas and masonry blocks. Other uses of processed debris include use in lean concrete for leveling purpose, as mortar for masonry, as bedding mortar for pavement tiles and used for land filling materials is comparable with new materials.			
Composite materials	The plastic wastes are best for recycling if these materials are collected separately and cleaned. Recycling is difficult if plastic wastes are mixed with other plastics or contaminants. Plastic may be recycled and used in products specifically designed for the utilization of recycled plastic, such as street furniture, roof and floor, PVC window noise barrier, cable ducting, panel.			

Chapter-7 Shipping Waste

7.1. Applicable laws and rules

The list of international and local legislations applicable to the ports (Port at Kandla and Vadinar) managed by Deendayal Port Authority (DPA) are listed below:

- 1. MARPOL 73/78 Consolidated Edition 2002
- 2. MARPOL 73/78 Consolidated Edition 1997.
- 3. Indian Ports Act 1908 (Act No. 15 of 1908)
- 4. The Merchant Shipping Act 1958 (Act No. 44 of 1958) (2000)
- 5. International Convention on the Control of Harmful Anti-fouling Systems on Ships
- 6. Ballast Water Management Convention
- 7. The Environment (Protection) Act, 1986 and the Environment (Protection) Rules 1986
- 8. Hazardous and Other Wastes (Management & Handling) Rules, 2016
- 9. Annex VI of MARPOL 73/78 Regulation for the Protection of Air Pollution from ships & MOX Technical code.
- 10. Provision concerning the Reporting of incidents involving harmful substances, under MARPOL 73/78 (1999 Edition)
- 11. SOLAS consolidated Edition 2001.
- 12. The Water (Prevention and Control of Pollution) Act, 1974 and Rules 1975
- 13. The Major Port Trust Act

7.2. Definitions

Important terminologies reflecting in MARPOL documents and other related to shipping wastes have been produced below for ready reference:

- 1 Waste from ships means all waste, including cargo residues, which is generated during the service of a ship or during loading, unloading and cleaning operations and which falls within the scope of Annexes I, II, IV, V and VI to MARPOL Convention, International Convention for the Control and Management of Ships Ballast Water and Sediments (BWM Convention), International Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention), as well as waste such as expired medicines, pyrotechnics etc.
- 2 Port Reception Facility, (PRF) means any facility which is fixed, floating or mobile and capable of providing the service of receiving the waste from ships;
- 3 **Port Authority:** Organizations, either public or governmental, that manages the operations of a port, in whole or part.

- **Cargo residues**: remnants of any cargo material which are not covered by Annexes I, II, IV and VI of the MARPOL convention and which remain on the deck or in holds following loading or unloading, including loading and loading excess or spillage, whether in wet or dry conditions or entrained in wash water but not including cargo dust remaining on the deck after sweeping or dust on the external surfaces of the ship. Dry bulk cargo residues may include substances that are harmful to the marine environment.
- **Grey water** means drainage from dishwater, shower, laundry, bath and washbasin drains. It does not include drainage from toilets, urinals, hospitals and animal spaces, as defined in regulation 1.3 of MARPOL Annex IV (sewage) and drainage from cargo spaces. Grey water is not considered garbage in the context of MARPOL Annex V.
- **E-waste**: means electrical and electronic equipment used for the normal operation of the ship or in the accommodation spaces, including all components, subassemblies and consumables, which are part of the equipment at the time of discarding, with the presence of material potentially hazardous to human health and the environment.
- Garbage: means all kinds of food wastes, domestic wastes and operational wastes, all plastics, cargo residues, incinerator ashes, cooking oil, fishing gear, and animal carcasses generated during the normal operation of the ship and liable to be disposed of continuously or periodically except those substances which are defined or listed in other Annexes to the MARPOL Convention. Garbage does not include fresh fish and parts thereof generated as a result of fishing activities undertaken during the voyage, or as a result of aquaculture activities which involve the transport of fish including shellfish for placement in the aquaculture facility and the transport of harvested fish including shellfish from such facilities to shore for processing.
- **Anti-fouling system** means a coating, paint, surface treatment, surface, or device that is used on a ship to control or prevent attachment of unwanted organisms.
- **Ballast Water** means water with its suspended matter taken on board a ship to control trim, list, draught, stability or stresses of the ship.
- **Sediments** means matter settled out of Ballast Water within a ship.

7.3. Responsibility of DPA as per various Conventions, Acts and Rules:

This section details the regulatory requirements for Ports mandated under MARPOL, Anti Fouling Convention, Ballast Water Management Convention and Merchant Shipping Act and Rules.

7.3.1. Regulatory Requirements under MARPOL

- i. <u>Regulation 38 of Annex I</u>: In Annex I, strict requirements are outlined for the storage and discharge of oil from ships. These covers wastes like Oily bilge water, Oil residues, Oil tank washings, Dirty Ballast water, Scale and sludge from tank cleanings. According to Annex I Regulation 38, Parties to the Convention are required to provide facilities for receiving oily mixtures in the following ports:
- All ports and terminals where crude oil is loaded into oil tankers that have completed a ballast voyage of not more than 72 hours or 1,200 nautical miles before arrival.;
- All ports and terminals where oil other than crude oil in bulk is loaded at a rate of more than
 1,000 tonnes per day on average;
- All ports having ship repair yards or tank cleaning facilities which are crucial for conducting
 efficient and safe maritime operations;
- All ports and terminals that are involved in the handling of ships must possess oil residue (sludge) tanks that comply with regulation 12 of Annex I;
- All ports with regard to oily bilge waters and other wastes that cannot be discarded in accordance with Regulations 15 and 34 of Annex I; and
- All bulk cargo loading ports for combination carriers' oil residues that are not permitted to be discharged in accordance with Annex I's regulation 34.
- **ii.** Regulation 12 of Annex IV states that all Party States have to ensure adequate facilities in ports and terminals for receiving wastewater/sewage without causing delays for ships, which are adequate to serve the needs of the ships.
- **Annex V** This section mentions the provision of a port recycling program for separating recyclable from non-recyclable garbage. The segregation practices on ship should match the requirements of the recycling program of the port. Information concerning recycling programs and their requirements should be passed to the ships. This makes the re-use or recycling of the waste streams effective.
- **iv.** Regulation 17 of Annex VI: According to this provision each Party shall undertake to provide facilities for the reception of ODS or equipment containing such substances, washing water from scrubbers and sediment from treatment plants on board. Ports shall provide to meet for:
- Ships utilizing its repair ports are required to receive ODS and equipment containing such substances when they are removed from the ships for repairs

• Ships using its ports, terminals, or repair ports for the purpose of receiving exhaust gas cleaning residues from an exhaust gas cleaning system;

7.3.2. Regulatory requirements under Anti-Fouling Convention

 A party shall take appropriate measures to ensure that wastes from the application or removal of an anti-fouling system are collected, handled, treated and disposed of in a safe and environmentally sound manner to protect human health and the environment.

7.3.3. Regulatory requirements under Ballast Water Management Convention

 Party shall ensure that, in ports and terminals where cleaning or repair of ballast tanks occur, adequate facilities are provided for the reception of Sediments, such reception facilities shall operate without causing undue delay to ships and shall provide for the safe disposal of such Sediments that does not impair or damage their environment, human health, property or resources or those of other States

7.3.4. Regulatory requirements under Merchant Shipping Act, 1958

- i. Section 356-I states that the powers of the port authority shall include the power to provide reception facilities. However, where the Central Government is satisfied that there are no reception facilities at any port in India or that the facilities available at such port are not adequate for enabling ships calling at such port to comply with the requirements of the Convention, the Central Government may, after consultation with the port authority in charge of such port, direct, by order in writing, such authority to provide or arrange for the provision of such reception facilities as may be specified in the order. Chapter VI of Merchant Shipping (Prevention of Pollution by Oil from Ships) Rules, 2010 deals with reception facilities and the requirements related to provision of reception facilities, in line with MARPOL Annex I requirements.
- **ii.** <u>Chapter VIII</u> of Merchant Shipping (Control of Pollution by Noxious Liquid Substances in Bulk) Rules, 2010 deals with reception facilities and the requirements related to provision of reception facilities are in line with MARPOL Annex II requirements.
- **Rule 9 of Merchant Shipping (Control of Anti-fouling System) Rules, 2016** states that the waste from the application or removal of anti-fouling system are collected, handled, treated and disposed of in a safe and environmentally sound manner in accordance with Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008 as notified by the

Central Government in the Ministry of Environment and Forests, vide notification number S.O. 2265 dated the 24th September, 2008".

7.3.5. Regulatory requirements under The Hazardous and Other Wastes Management Rules, 2016

- DPA shall be responsible for safe and environmentally sound management of hazardous and other wastes.
- **II.** The hazardous and other wastes generated and received at DPA Ports shall be sent or sold to an authorized actual user or disposed of in an authorized disposal facility.
- **III.** The hazardous and other wastes shall be transported from DPA Ports to an authorized actual user or to an authorized disposal facility in accordance with the provisions of the rules.
- **IV.** If DPA intends to get its hazardous and other wastes treated and disposed of by the operator of a treatment, storage and disposal facility shall give to the operator of that facility, such specific information as may be needed for safe storage and disposal.
- V. DPA shall take all the steps while managing hazardous and other wastes to
 - a) contain contaminants and prevent accidents and limit their consequences on human beings and the environment; and
 - b) provide persons working in the site with appropriate training, equipment and the information necessary to ensure their safety.

7.3.6. Regulatory Requirement under The Plastic Waste Management Rules, 2016

- I. Take steps to minimize generation of plastic waste and segregate plastic waste at source
- **II.** Not litter the plastic waste and ensure segregated storage of waste at source and handover segregated waste to agencies appointed for collection of waste.

7.4. Handling and Management of Waste

At every port, for provision of waste collection from ships, its storage, treatment and disposal, an authorized official is appointed to whom the captain of the ship could get in touch regarding wastes generated on the ship.

The captains of the ships that embark at the ports intimates the authorized agencies engaged by DPA for collection of Hazardous and Non-hazardous wastes generated by the ships. This communication is facilitated through Swachh Sagar Portal. There are 22 such agencies, 11 for

collection of Non-hazardous wastes and other 11 for collection of Hazardous wastes received at the Kandla and Vadinar ports. These agencies are listed in Table 4 in subsequent section.

7.4.1. Source Identification, Quantification and Inventory of waste at Kandla & Vadinar

The shipping waste being received at the ports of Kandla and Vadinar from the ships have been categorized based on the waste categories identified under below tabulated Law/Rule/Convention.

Table 18 General type and source of wastes generated on ships

Law/ Rule/ Convention	Category	Source and Type of waste		
MARPOL	Annexure I	Oily bilge water, Oil residues (Sludge), Oil tank washings, Dirty ballast water, Scale and sludge from tank cleanings.		
	Annexure II	Category X, Y Z and Other of Noxious Liquid Substances discharged from tank cleaning or de-ballasting operations		
	Annexure IV	Sewage that includes drainage and other wastes from any form of toilets and urinals; drainage from medical premises via wash basins, wash tubs and scuppers located in such premises; drainage from spaces containing living animals; or other waste waters when mixed with the drainages defined above		
	Annexure V	All kinds of garbage like Plastics, Food wastes, Domestic wastes, cooking oil, Incinerator ashes, Operational wastes, Cargo residues, Animal carcass(es), Fishing gear, E-waste		
	Annexure VI	Ozone-depleting substances (ODS) as defined in Montreal Protocol of 1987. Major sources of ODS are refrigeration equipment; air conditioning equipment and fire extinguishing equipment.		
Anti-fouling system	Article 5	coating, paint, surface treatment, surface, or device that is used on a ship to control or prevent attachment of unwanted organisms		
Ballast Water Management Convention	Article 5	Matter settled out of Ballast Water		
HOWM Rules, 2016	Schedule I	Used Spent Oil (Category 5.1) Waste Residue Containing Oil (Category 5.2)		

The inventory of Hazardous as well as Non-hazardous waste generation at Kandla and Vadinar ports for 2022-23 is presented in below Table 19. The generated waste has also been categorized

as per the categorization under MARPOL and applicable national legislation i.e., Hazardous Waste Management Rules, 2016.

Table 19 Type and quantum of waste generated at DPA ports

	Waste Generated	Waste categorization as per		Waste		
Sr.no		HWM Rules	MARPOL	Generated (MT/ year) during FY 2022-23	Disposal	
	Hazardous waste quantum received at Kandla and Vadinar ports					
	Sludge oil, Used					
1.	Spent Oil,	5.2	Annex I		Collected by	
	Slop/Sludge			13,736.37	authorized	
2.	Waste Residue containing Oil	5.1	Annex V		agency	
Non-hazardous waste quantum received at Kandla and Vadinar ports						
3.	Garbage including	-	Annex V	2,473.19	Collected by	
	Soild waste, Mooring				authorized	
	rope, Drums, Wood					
	etc.				agency	

The total quantity of Hazardous waste received at Kandla and Vadinar ports per year is 13736.37 MT/year and DPA has a tie-up with agencies for handling Hazardous waste that collectively have GPCB authorization for handling of more than 20,000 MT of waste. Thus, DPA ports have enough provision to cater to the shipping wastes received at its ports.

Similarly, total quantity of Non-hazardous waste received at Kandla and Vadinar ports per year is 2473.19 MT against which the agencies engaged by DPA have a collective provision to cater 2,00,000 MT of waste, thus there is surplus provision to handle non-hazardous waste as well.

7.4.2. Collection, Transport, Processing and Disposal

DPA has a tie-up with 22 agencies that are responsible for management of shipping waste generated from both, Kandla and Vadinar ports. All these agencies are authorized by GPCB for handling of wastes. 11 agencies deal with non-hazardous waste and rest 11 with hazardous waste. Collection, handling, transport and disposal of wastes is the responsibility of these agencies which are listed below.

Table 20 List of Waste Management Agencies operating at Kandla and Vadinar ports

Sr. no	Name of waste collecting agency	Address/Contact of the Agency	Type of waste collec ted	Name of waste with category	Waste category as per MARPOL	Valid up to
1	M/S. Harish. A.	16, Brahm samaj bldg., Plot No. 106, Sector-8, B/H Oslo Cinema, Gandhidham Kutch Gujarat-370205.	Haz	Waste Residue containing oil (5.1) Used Spent Oil (5.2)	Annexure I	30-05-
1	Pandya*	Mobile- 9426218125, 8000008999 E-mail- info@harishpandya.c om	Non Haz	Garbage	Annexure V	2023
	M/S. Chitrakut	Factory Address: 56 to 63 Survey No. 323/1, 323/2, Ghanshyam Park, Village: Kukma Tal: Bhuj (Kutch) Guj. India. Postal Address: 15, Brahm Samaj	Haz	Waste Residue containing oil (5.1) Used Spent Oil (5.2)	Annexure I	
2	Trading & Industries *	Building, Plot No. 106, Sector No. 8, B/H Oslo Cinema, Gandhidham (Kutch) India. Mobile no- +919426218125 E-Mail - info@chitrakutshipp ingservices.com	Non Haz	Garbage, Waste Scrap, Mooring rope, Empty Drums		
3	Vishwa Trade Link Inc.	Plot No. 170/2/A, T.P3, Anjar (Kutch), Gujarat -370110	Haz	Waste Residue containing	Annexure I	03-11- 2023

				oil, Used Spent Oil		16-11- 2022
			Non Haz	Scrap, Dunnage Wood, Garbage other (Dry, Solid, Ordinary, Non- hazardous) Wet Garbage	Annexure V	
		Office No. C-214, 2nd Floor, Shop no. 234- 235, Kutch Arcade "Platinum",	Haz	Waste Residue containing oil (Haz waste/wast e oil/sludge) Used Spent Oil	Annexure I	
4	"Platinum", Mithirohar, Gandhidham- 370201 Mobile no: 98795955087 E-mail: revolutionpetrochem @gmail.com	Non Haz	1) Container, Scrap, Dunnage Wood, Garbage other (Dry, Solid, Ordinary, Non- hazardous) 2) Wet Garbage	Annexure V	31-03- 2023	
5		Office No. 2, Plot no. 106, Sector 8,	Haz	Used Oil	Annexure I	-

66

	Omega Marine Services	Braham Samaj Building, Gandhidham, Kutch Gujarat 370201 Mobile no: +919537329203, 9727589185 E-mail: operations@omega marineservices.com, omegamrn@hotmail. com, accounts@omegama rineservices.com	Non Haz	1) Dry garbage 2) Wet Garbage	Annexure V	
6	United Shipping Company	Plot no 42, 2nd floor. Opp. Old Court, Sector 1/A. Gandhidham, Kutch T: +912836226555 E-mail: unitedshipping46@g mail.com	Haz	Waste Residue containing oil (5.1 Sludge oil) Used spent oil (5.2) Dry	Annexure I Annexure	
		Office No. 202, Plot No. 578, Ward 12-C, Shakti Avenue, Gandhidham, (Kachchh) GUJARAT -370201 Mobile no: 9537824948 E-mail: operation@greenear thmarine.com	Haz Haz	garbage Used Oil (nil)	Annexure I	
7	Green Earth Marine Solutions*		Non Haz	Dry Garbage, Scrap Dunnage, Wood garbage, Other (nil)	Annexure V	
8	New India Marine Works *	Plot no:16, Sector 10A, Industrial Area OSLO GIDC, Gandhidham KUTCH-370201 Mobile no: +919879072262 E-mail: sludgeoil16@yahoo.i n	Haz	Waste Residue containing oil (5.1 Sludge oil)	Annexure I	19-02- 2024
9	Naaz Shipping Service	Office no-35, 1st Floor GMA building, Plot no-297, Ward no-12/B, Grain	Haz	1) Waste Residue containing oil	Annexure I	31-07- 2023

	Enterpris e *	Merchant Association Building,		2) Used Spent Oil		
		Nr Old Court Gandhidham Mobile no: 9825724120, 9427277088 E-mail: naazshippingservice @yahoo .com nasir.khan685@gmai l.com	Non Haz	1) Dry Garbage- Scrap Dunnage Wood Garbage other 2) Wet Garbage	Annexure V	
	Alicid	207/208, Hanumant Henduva, Opp Gujcomasal, near Khari River Highway, Post- Palavasana,	Haz	1) Waste Residue containing oil 2) Used Spent Oil	Annexure I	
10	Organic Industries Ltd*	Mehsana -02 (Gujarat) Mobile no: 9825604120 E-mail: alicidorganic@gmail. com	Non Haz	1) Dry Garbage- Scrap Dunnage Wood Garbage other(nil) 2) Wet Garbage	Annexure V	05-01- 2024
		New Good Luck Market, nr Aksha Masjid, Chandola	Haz	1) Waste Residue containing oil 2) Used Spent Oil	Annexure I	
11	Shana Oil Process	Lake, Narol Road, Ahmedabad- 3800028 Mobile no: +919824286952, +919879986952 E-mail: shanaoil0891@gmail .com	Non Haz	1) Dry Garbage- Scrap Dunnage Wood Garbage other (Dry, Solid, Ordinary, Non- hazardous) 2) Wet Garbage	Annexure V	05-01- 2024
12		Kidana Nirmal Nagar, Survey no 133, Plot	Haz	1) Waste Residue	Annexure I	30-05- 2023

	Golden Shipping Services*	no 83, Gandhidham- Kutch, Gujarat Mobile no : 9638808551 E-mail : bharat.ahir8686@g mail.com	Non Haz	containing oil (5.1) 2) Used Spent Oil (5.2) 1) Dry Garbage- Scrap Dunnage Wood Garbage other	Annexure V	
		Plot no-13, Sector-8, Near BM Petrol Pump, Opp. Sharma Motors, Gandhidham, Kutch Mobile no:	Haz	1) Waste Residue containing oil 2) Used Spent Oil 1) Dry	Annexure I	
13	K M Enterpris e *	9510514287, 9879986952 or Shop No. 2, Plot No. 16, Sector 1/A, Shakti Nagar Road, Gandhidham-Kutch Mobile no: 8141380555 E-mail: kmenterprisekandla @gmail.com	Non Haz	Garbage- Scrap Dunnage Wood Garbage other (Dry, Solid, Ordinary, Non- hazardous)) Wet Garbage	Annexure V	
	Atlas	Office 204/206, Ellis Bridge Shopping Center, Opp. Town hall, Ashram Road, Ahmedabad - 380006	Non	1) Dry Garbage- Scrap Dunnage	Annexure V	
14	Organics Pvt. Ltd.	Mobile no: +919909723532, +918980989015 Email id: atlasorganics@yaho o.com info@sludgeoilindia. com	Non Haz	Wood Garbage other 2) Wet Garbage	Annexure V	
15	Glorious Marinefue ls Pvt. Ltd.		Haz	1) Used oil 2) Waste oil	Annexure I	

16	Priyansi Corporati on	C1 804-8096, GIDC, BAMANBORE, TA: CHOTILA, DIST- SURENDRANAGAR MOBILE NO: 9825226095, 9825785270 E-mail:: operation.priyansico rporation@gmail.co m	Haz	Sludge oil (5.2)	Annexure I	21/04/ 2024
17	Amar Hydrocar bon Pvt. Ltd *	FF-12, Sahara Complex, B/h, Navajivan Hotel S.G. Highway, Sarkhej, Ahmedabad – 3822210 Mobile no: 9328334205 E-mail: operations@amarhy drocarbon.com amarhydrocarbon@g mail.com	Haz	1) Used oil 2) Waste oil	Annexure I	30/06/ 2024
18	Aditya Marine Ltd	Room no 11,12,13, Dhiraj Chambers, Plot No. 36, Sector 9/A, Gandhidham, Kutch 37020, Gujarat, India email: info@adityamarine.c om Phn no: +912836222053	Haz	1) Used oil 2) Waste oil	Annexure I	-
19	Fine Refiners Pvt. Ltd.	Plot no. 40, Vartej GIDC, Tal. Bhavnagar, Dist. Bhavnagar	Haz	1) Used oil 2) Waste oil	Annexure I	30/09/ 2022
20	Mahalaxm i Asphalt Pvt. Ltd.	Survey no. 343, Village: Bandhadi, Tal. Bhachau, Dist. Kutch	Haz	Waste oil	Annexure I	21/09/ 2027
21	M/s. Kutch Energies Pvt. Ltd.	Plot no. 72, shop no. 1,2,3 and 4, Hotel Bansal Building, Sector- 9/C, Gandhidham, Kutch.	Haz	Sludge	Annexure I	27/03/ 2025

		Email: shree_shree_in2004 @yahoo.com Mob. 9998237716 9879072262				
22	M/s. Bhavya Engineeri ng Works and Multiservi ces	Near Tee Bhanushali nagar, Bhuj-Kutch- 370001 Email: bhavyaengineeringw orks21@gmail.com Mob. 9427704592 9824682718	Non Haz	Garbage	Annexure V	27/05/ 2025

^{*}Waste agencies also operating at Vadinar port

7.4.3.Storage:

The shipping waste of ships calling at DPA ports is directly picked up by Waste Management Agencies in timely manner hence there is no requirement and provision for storage of waste on-site

7.4.4.Intramural transportation

Intramural transportation of any kind of waste is not required as the agency collects the waste from the ships directly, offloads and transfers it through agency's vehicle itself.

7.5. Record keeping

As per HWM Rules, 2016,

- a. DPA Ports shall maintain a record of hazardous and other wastes received at ports and collected from port by WMA in a specified Form 3
- b) Prepare an annual return containing the details specified in a specified Form 4 and submit it to the Gujarat Pollution Control Board on or before the 30th June following the financial year to which that return relates.

The guidelines for filling of Forms as mandated under the HOWM Rules have been covered in detail in Training Manual.

7.6. Procedure adopted for engagement of external agencies/private operators

DPA has appointed 22 Waste Management Agencies for management of its shipping waste management. It yearly renews the contract of these agencies. The selection criteria of the WMA, as followed by DPA includes:

- The agency dealing in Hazardous wastes shall hold a valid authorization from GPCB
- The agency shall obtain No Objection Certificate (NOC) from DPA customs department and Public Health Officer, Kandla
- The agency shall have required equipments and incinerator installed for environmentally sound management of wastes.
- The waste shall be collected, transported and disposed in timely manner
- The agency should be certified as collector, transporter and actual user. Further uploading on Swachh Sagar Portal with be in-line with entries of hazardous waste collected from each ship to be made in relevant Form (3) and to be uploaded on Swachh Sagar Portal. Form 4 maintained by occupier and pages of passbook required to be maintained by actual user to be uploaded on Swachh Sagar portal annually by 30th June every year.

7.7. Obtaining Authorization/Clearance/License

• DPA is required to and has obtained authorization under Hazardous and Other Waste Management Rules, 2016 from the Gujarat Pollution Control Board as an occupier. The details of Authorization obtained by DPA from GPCB are given below:

Consent order no.	Date of Issue	Validity	Hazardous waste (HW) at the ports	Consented quantity of HW MT/year
			Used spent oil	1125
AWH-110594	08/12/2020	21/07/2025	Waste residue	3344.43
			containing oil	3344.43

Table 21 Details of Authorization

7.8. Recommendations and strategies

- Various types of garbage are received at ports from ships. These wastes differ in type, size
 and hazardousness. It is recommended that a port recycling program be developed for
 sustainable management of shipping garbage. The garbage can be segregated into streams
 like:
 - Non-recyclable; Plastics and plastics mixed with non-plastic garbage
 - **Recyclable**: Cooking oil, glass, wood, metal, paper, cardboard, Styrofoam plastic etc.
 - **Potentially Hazardous garbage**: oily rags, light bulbs, acids, batteries, chemicals, medical waste etc.

- **E-waste generated on ships**: electronic cards, gadgets, instruments, equipment, computers, printer cartridges, etc.
- Information of such recycling programs and their requirements should be communicated to the ships. This would enhance the reuse or recycling of the waste streams.
- The quantum of hazardous waste, generated and received at ports, which is subsequently collected by appointed agencies, exceed the quantity specified in DPA's CC&A obtained from GPCB. Hence it is recommended to get the CC&A amended with appropriate waste quantity.
- A procedure for annual assessment should be put in place to assess the need for capacity expansion in terms of employment of various agencies for waste collection, taking into account possible changes in traffic in the upcoming years and data collected from Swachh Sagar portal.
- DPA should formulate and disburse a document describing the procedures for advance notification by ships in accordance with Swachh Sagar requirements and the reception and collection of waste from ships through the Swachh Sagar Portal.
- DPA should have in place the procedure followed for approval and re-approval of agencies for Hazardous waste, taking into account the points mentioned below:
 - i. The waste receipts shall be collected from each agency which should contain particulars regarding the type and quantity of the waste substances, the means of transport and details regarding the producer or generator, carrier and party attending to the disposal. In this manner, the route taken by the waste material becomes evident step by step for the competent authorities and also for the companies involved.
 - ii. A storage facility should be provided at port area as a provision of waste storage on account of untimely waste collection by the agencies. These areas should be such that they do not create unhygienic and insanitary conditions around it. Following criteria shall be taken into account while establishing and maintaining storage facilities, namely:
 - Storage facilities shall be created and established by taking into account quantities of waste generation and densities. A storage facility shall be so placed that it is accessible to users; Its design should be such that the wastes stored are not exposed to open atmosphere and shall be aesthetically acceptable and user-friendly.
 - Storage facilities or bins shall have 'easy to operate' design for handling, transfer and transportation of waste. Bins for storage of bio-degradable wastes shall be painted green,

- those for storage of recyclable wastes shall be printed white and those for storage of other wastes shall be printed black.
- Manual handling of waste shall be prohibited. If unavoidable due to constraints, manual handling shall be carried out under proper precaution with due care for safety of workers.
- The vehicles used by the agencies for transportation of wastes to authorized processing facilities shall be covered. Waste should not be visible to public, nor exposed to open environment preventing their scattering.
- The storage facilities set up shall be daily attended for clearing of wastes. The bins or containers wherever placed shall be cleaned before they start overflowing.
- Transportation vehicles shall be so designed that multiple handling of wastes, prior to final disposal, is avoided.
- In case the agency responsible for disposal do not provide a receipt of waste collected from transporter, a means for tracking transporting vehicle shall be employed.
- In case of oil spill accidents provisions stated in Oil Spill Management Plan shall be strictly adhered to
- Specific recommendations for waste categories defined under MARPOL are as below:

MARPOL Annexures	Recommendations
	Oily-water mixture collected from an incident to be transferred directly
	to Reception Facility Area for storage and disposed through Port
	authorized recycler
	The Waste material containing oil like oil-soaked rags, overalls, sand,
	saw dust, absorbent pads, absorbent booms etc., collected during an
	Incident to be disposed to the authorized recycler for incineration
	The authorized recycler must take the permission from the Port and
Annex I	Custom for the disposal of Waste material containing oil etc. generated
	from an oil spill incident
	The authorized recycler must submit the detailed information on
	authorized GPS vehicle and details of authorized drivers.
	After collecting the material, the authorized recycler must declare to the
	Port and Custom as per category of Hazardous waste management rules
	2016 schedule I along with Quantity
	E-manifest entries and Form-10 will be generated and it shall be given
	to authorized recycler for transportation.

	After the incineration the final disposal certificate and pass book copy
	for the same to be submitted to DPA
	The following documents has to be submitted by the authorized recycler
	Drive, License Number
	Vehicle fitness letter
	Emission certificate
	GPS Number
	Weigh bridge receipt
	Form-10
	Final Disposal Certificate
	Through Swachh Sagar Portal, the master/ steamer agent on behalf of
	vessel to intimate the garbage collecting agency approved by the Port
	for collection of garbage about the category of waste in order to arrange
	necessary receptacles and vehicles for proper collection without undue
	delay.
	On the request from the vessel, the garbage collecting agency has to
	obtain necessary permission from the Port Authority & Customs for
	each vessel in order to board the vessel for collection of garbage in each
	case.
	The garbage should be collected by the designated Agency duly
	following the terms and conditions of the work order issued by the Port
	and Segregation of the garbage to be carried out as per the Municipal
Annex V	Solid Waste Rule, no mixing of garbage is allowed at any point of time.
	The copy of waste delivery receipt to be submitted/forwarded to the
	concerned department after collection of garbage from each and every
	ship.
	Copies of the Waste Delivery Receipt, Permission letter obtained from
	the Port/Customs and any other documents as required at the gate are
	to be produced while going out from the Port.
	The Garbage Collecting Agency of the Port shall provide copies of
	following to the Port:
	Permission letters issued by the port/customs for clearing of
	waste/garbage along with type and quantity.
	Waste Delivery Certificate signed by the Master of the vessel and issued
	to the vessel.
	Through Swachh Sagar Portal the master/ steamer agent on behalf of
A 3.7	the vessel to intimate the collecting agency designated by the Port for
Annex V	collection of wastes such as used cooking oil, expired medicine, Fishing
	Gear, e-waste and used batteries in order to arrange necessary
	receptacles and vehicles for proper collection before vessel berthing.

On the request from the vessel, the collecting agency has to obtain necessary permission from the Port & Customs for each vessel in order to board the vessel for collection of cooking oil, expired medicine, Fishing Gear, e-waste and used batteries.

A standard format of waste delivery receipt provided by the D.G. Shipping to be filled up and signed by the vessel and garbage collecting agency for collection of used cooking oil, fishing gear, expired medicine, e-waste and used batteries.

The copy of waste delivery receipt to be submitted/forwarded to the concerned department by the collecting agency soon after collection for every ship.

Fishing Gear, used cooking oil, E-waste and used batteries has to be declared to the Customs. Collecting agency has to obtain the bill of entry with applicable duty paid if any or otherwise declaration of customs may be submitted to the concerned department.

Copies of the Waste Delivery/ Receipt, Permission letter obtained from the Port/Customs and any other documents required at the port gate are to be produced while going out from the Port.

ANNEXURES

Annexure I: Non-exhaustive list of Organic Waste Convertor (OWC) dealers

Sr. no.	Name	Location	Contact number	Capacity range of available OWC in kg/day	Quantity of Compost produced kg/day
1	Green-era Engineering LLP		8048955688	15-1000	
2	Greenautics Solution		6353318966	50-700	
3	Unique Industries	A la a al a la a al	9998600358	25-225	
4	Aaspa Equipment Pvt. Ltd.	Ahmedabad	9898341024	15-1000	10-15 %
5	Envipure		9998319355	10-1000	10-13 70
6	Envcure Technocrate LLP		7874757199	15-1000	
7	Envicare Solutions Pvt. Ltd.	Kheda	9727678804	5-2000	

Annexure II: List of Single Use Plastic items banned under the Plastic Waste Management Rules, 2016 (and subsequent amendments)

Sr. no	List of banned Plastic items
1	Plastic Sticks for Balloons
2	Plastic Flags
3	Candy Sticks
4	Ice Cream Sticks
5	Polystyrene (Thermocol) for Decoration
6	Plastic Plates, Cups, Glasses
7	Cutlery Such as Forks, Spoons, Knives, Straw, Trays
8	Wrapping or Packing Films Around Sweet Boxes
9	Invitation Cards
10	Cigarette Packets
11	Plastic or PVC Banners Less Than 100 micron
12	Plastic Stirrers.
13	Plastic carry bags having thickness less than 120 micron

Annexure III: Non-exhaustive list of GPCB approved plastic waste management agencies (Recyclers)

Sr No.	Name & Address of recyclers	Name of Product	Quantity (MT/M
1.	Imperial overseas Pvt Ltd. (U-2)Shed No-93-96, Sec-1, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/Granules	300
2.	Add polymer Pvt Ltd, (U-2) Plot No- 3, Sec-2, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/Granules	202
3.	Prasar Enterprises Shed No-335, A-II, MarshalingYard, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/ Granules/ Flakes/ Lumps/ Palltes/ Powder/ Shreddings	500
4.	Harish Processors Ltd., Shed No- A/305, 408, Marshelling Yard, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/Granules	285
5.	Kutch Polymers (U-1), Shed No- A/1, 180, 181, Sec- 1, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/	250
6.	Kutch Polymers (U-2), Shed No- 334, Sec- 2, KASEZ, Ta- Gandhidham, Dist Kutch	Recycled Agglomerates/ Granules	250
7.	Plasto fine Industries (U-1), Plot No- 271, 276, Sec-3, KASEZ, Ta- Gandhidham, Dist- Kutch	Recycled Agglomerates/ Granules	300
8.	Luckystar International Pvt Ltd., Shed No-336, Sec-1, KASEZ, Ta- Gandhidham, Dist- Kutch	Plastic agglomerates /Granules /Grindings/Offcuts/Sheets/Extrude d Product/Blow Film/Molded Articles & plastic products	400
9.	Lucky star International Pvt Ltd., Plot No-23, 24, 33, 34, Sec-1, KASEZ, Ta- Gandhidham, Dist- Kutch	Plastic Agglomerate s/ Granules/ Grindings/ Offcuts/ Sheets/ Extruded product/ Blow Film/ Molded Articles & plastic products	900
10.	Mokshstar International, Shed No-337, 338, Sec-1, KASEZ, Ta-Gandhidham, Dist- Kutch	Plastic Agglomerates/ Granules/ Grindings/ Offcuts/ Sheets/ Extruded Product / Blow Film/ Molded Articles & Plastic Products	850
11.	Shreeji Polymers, Plot No-8A, Sec-2, KASEZ, Ta- Gandhidham, Dist- Kutch	Plastic Agglomerates/ Granules/ Grindings/ Offcuts/ Sheets/ Extruded Product/ Blow Film/ Molded Articles & Plastic Products	750
12.	Polyrec Processors Pvt. Ltd., Plot	Recycled Agglomerates/ Granules	250

Waste Management Plan

	No-278, 279, Sec- 3, KASEZ, Ta-		
	Gandhidham, Dist- Kutch		
	Oswal Polymers, Plot No-4 & 11,		
13.	Sec-2, KASEZ, Ta-Gandhidham, Dist-	Recycled Agglomerates/ Granules	200
	Kutch		
	Balze International, Shed No- 292,		
14.	Sec-2, KASEZ, Ta-Gandhidham, Dist-	Recycled Agglomerates/ Granules	300
	Kutch		

81

Annexure IV: Non-exhaustive list of GPCB approved E-waste Recyclers

Sr.	Details of WMA	Services	Contact details Capacity Validity		Validity
no.		provided		MT/Year	
1	Pruthvi E-recycle Pvt Ltd. Survey No.160/1, Plot no: 12, Tirupati Estate, Lothada-360002, Rajkot- 360002	Collection, Segregation, Transportation, Dismantling, & Primary Processing	9825196768, 9909138598 pruthvirecycle@ymail.com	6600	05/01/2028
2	Galaxy Recycling Sr. no: 36/P1, P2, 37/P2, 38/P2, Plot no: 52 & 53, Near Tirth agro. Pvt. Ltd., At: bharudi, Tal: Gondal, Rajkot	Collection, Segregation, Dismantling, Recycling, transportation	9328259627 galaxyrecyclng@gmail.com	521	25/09/2026
3	Star Recycling, Survey no: 44 P1P1 44P1P2 & 46, Plot no: 45, R K Industrial Zone-09, Kuwadva- Wankaner Road, Ranpur-360023, Tal & Dist: Rajkot	Collection, Transportation, Storage, Dismantling, Recycling	9925116383 Starrecycling2018@gmai l.com	629	10/03/2025
4	GL Recycling LLP, Survey No. 108, Village: Soliya, Ta.:Kotda Sangani, Dist.: Rajkot-360030	Collection, Transportation, Storage, Dismantling, Recycling) Of Items Covered Under Schedule-I Of Except Fluorescent And Other Mercury Containing Lamp	9016864546 info@glrecycling.co.in	14500	27/05/2026
5	Reart Recycling Private Limited., Plot No.365, Survey No.111p1, Golden Green Industrial Park (phase- D), Khambha-360311, Tal:Lodhika, Dist:Rajkot	Collection, Segregation, Transportation, Shredding, Crushing, Grinding Etc. I.E. Primary Processing For PCBs Only	9023566456, 9426320055 cmsavsani@gmail.com	300	23/06/2026

6	Unity E-Recycling Co,	collection,	9726810910	383	31/12/2025
	Sr. No: 310/p, Plot	transportation,	unityerecyclingco@gmail		, ,
	No: 4,	Storage,	.com		
	Danilimda,	Dismantling,			
	Ahmedabad-380028	Recycling) Of			
		Items Except CRT			
		/ LCD / Plasma			
		TV, Fluorescent			
		and Other			
		Mercury			
		Containing Lamp			
7	Mahaarana	Collection,	8866025118	16585	15/05/2026
	Industries Pvt. Ltd.,	Transportation,	ewastemanagemant216@		, ,
	Survey No. 466 &	Storage,	gmail.com		
	475, Village: Timba,	Dismantling,	S		
	Ta: Daskroi, Dist;	Recycling) Of			
	Ahmedabad	Items Except			
		Fluorescent and			
		Other Mercury			
		Containing Lamp			
8	Kalpana E-Recyclers,	Collection,	9998680123	876	22/01/2026
	Plot No. 2486,	Storage,	prakashnagora1822@gm		, ,
	Madhuban Industrial	Segregation,	ail.com		
	Park, Village: Kuha,	Dismantling,			
	Ta: Daskroi, Dist:	Transportation,			
	Ahmedabad	Refurbishing,			
		Repairing,			
		Shredding,			
		Cutting,			
		Recycling			
9	E -Ali Recyclers,	Collection,	7096969252	730	31/12/2027
	(GPCB ID: 89636)	Transportation,	ealirecyclers22@gmail.com		
	Plot No.:730, Survey	Storage,			
	No. 730, Plot No. 3,	Dismantling,			
	Village: Paldi Kankaj,	Recycling) Of			
	C448, Ta. : Daskroi,	Items Except			
	Dist.: Ahmedabad -	Fluorescent and			
	382425	Other Mercury			
		Containing Lamp			
10	Mangalam ECS	Collection,	8980005008	4999.92	30/09/2027
	Environment Pvt.	Transportation,	8980005066		
	Ltd., (Unit -2)	Storage,	hardik.mandora@ecscorp		
	Block No 24 Paiki,	Refurbishing of	oration.com		
	Vautha, Tal	items ITEW1,			
	: Dholka, Dist.:	ITEW2, ITEW3			

Waste Management Plan

Ahmedabad-387810	and ITEW4 as		
	per EPR except		
	Fluorescent and		
	other mercury		
	containing lamps		

Annexure V: List of items to be disposed through GeM portal as on June 2024 $\,$

Sr.	Items / Lot Description	Qty.	UOM
1	M.L. Mrignayani Mooring Launch	1	No
2	M.L. Megha Mooring Launch	1	No
3	ML Parijatham	1	No
4	M.L. Arali Mooring Launch	1	No
5	Tank Lorry GJ 12G 8128	1	No
6	Tata Xenon Pick Up Van GJ-12-1388	1	Nos.
7	Fire Fighting Pumps - Dismantled condition (As per list)	1	Nos.
8	Fire Fighting Pumps - 02 Nos. Dismantled condition (As per list)	1	Lot
9	Water cum foam Monitor (Mobile)	2	Nos.
10	Trolley Mounted DCP Unit	3	Nos.
11	Workshop Machines	1	Lot
12	Hospital Items	1	Lot
13	Old M.S Propeller hollow shaft (Assorted size)	11	Nos.
14	Old S.S Propeller shaft (Assorted size)	51	Nos.
15	Old engine (Assorted)	5	Nos.
16	Old Propeller Brass (Assorted size)	13	Nos.
17	Empty Mobile Grease/Oil Drums (i.e. 39 (Store) & 50 (Elect. division)	89	Nos
18	Waste Oil (Transformer/Hydraulic Oil)	5000	Ltrs
19	Uniform Cloths	1	Lot
20	Unserviceable Ceiling Fan	1600	Nos.
21	Electronic waste	7	MT
22	Aluminium & Die Cast Light Fittings (Assorted Sizes)	8	Ton
23	Assorted Marine Steel Scrap	1.5	Ton
24	Plastic Scrap	3.112	MT
25	Rubber Scrap	31.75	MT
26	U/s A.c and Water Cooler Scrap	2.45	MT
27	MS Scrap Assorted	16	Ton
	i. Stainless Steel Feeder Piller -02 Ton		
	ii. Control Gear Box with Choke - 05 Ton		
	iii. Iron Cable Drum - 03 Ton		
	iv. Operator Cabin -06 Ton		
28	Aluminium Cable Scrap	5	Ton
29	Wooden Cable Drum	5	Ton

Waste Management Plan

30	Brass Scrap	455	Kgs
31	Slew Bearing	3	Ton
32	Wire Rope	4	Ton
33	Tyre	50	Nos.
34	Water Tender No. 1 GJ-12G-8125	1	Nos.
35	Foam Tender No. 1 GJ-12G-8124	1	Nos.
36	Water Tender No. 1 GJ-12G-8126	1	Nos.
37	Distilled Water Plant (SS) Cap: 4 to 5 Ltr	1	Nos.
38	Water Mist and CAF Fire Extinguisher Back Pack	1	Nos.
39	Air Compressor (BA Set Cylinder)	1	Nos.

Annexure VI

Biomedical wastes categories and their segregation, collection, treatment, processing and disposal options as per Schedule I of BMW Rules, 2016

Category	Type of Waste	Type of Bag or Container to be used	Treatment and Disposal options
(1)	(2)	(3)	(4)
Yellow	(a) Human AnatomicalWaste: Human tissues, organs,body parts and fetus below the viability period (as per the Medical Termination of Pregnancy Act 1971, amended from time to time). (b)Animal Anatomical Waste: Experimental animal carcasses, body parts, organs, tissues, including the wastegenerated from animals used in experiments or testing in veterinary hospitals or colleges or animal houses.	Yellow coloured non- chlorinated plastic bags	Incineration or Plasma Pyrolysis or deep burial*
	(c) Soiled Waste: Items contaminated with blood, body fluids like dressings, plaster casts, cotton swabs and bags containing residualor discarded blood and blood components.		Incineration or Plasma Pyrolysis or deep burial* In absence of above facilities, autoclaving or microwaving/ hydroclaving followed by shredding or mutilation or combination of sterilization and shredding. Treated waste to be sent for energy recovery

(d) Expired or Discarded Medicines: Pharmaceutical waste like antibiotics, cytotoxic drugs including all items contaminated with cytotoxic drugs along with glass or plastic ampoules, vials etc.	Yellow colored non- chlorinated plastic bags or containers	Expired 'cytotoxic drugs and items contaminated with cytotoxic drugs to be returned back to the manufacturer or supplier for incineration at temperature >1200 °C or to common bio-medical waste treatment facility or hazardous waste treatment, storage and disposal facility for incineration at >1200°C Or Encapsulation or Plasma Pyrolysis at >1200°C.
		medicines shall be either sent back to manufacturer or disposed by incineration.
(e) Chemical Waste: Chemicals used in production of biological used or discarded disinfectants.	Yellow coloured containers or non- chlorinated plastic bags	Disposed of by incineration or Plasma Pyrolysis or Encapsulation in hazardous waste treatment, storage and disposal facility.
(f) Chemical Liquid Waste: Liquid waste generateddue to use of chemicals in production of biological and used or discarded disinfectants, Silver X-ray film developing liquid, discarded Formalin, infected secretions, aspirated body fluids, liquid from laboratories and floor washings, cleaning, house-keeping and disinfecting activities etc.	Separate collection system leading to effluent treatment system	After resource recovery, the chemical liquid waste shall be pretreated before mixing with other waste water. The combined discharge shall conform to the discharge norms given in Schedule- III.

	(g) Discarded linen, mattresses, beddings contaminated with blood or body fluid, routine mask and gown.	Non-chlorinated yellow plastic bags or suitable packing material	Non-chlorinated chemical disinfection followed by incineration or Plazma Pyrolysis or for energy recovery. In absence of above facilities, shredding or mutilation or combination of sterilization and shredding. Treated waste to be sent for energy recovery or incineration or Plazma Pyrolysis.
	(h) Microbiology, Biotechnology and other clinical laboratory waste: Blood bags, Laboratory cultures, stocks or specimens of micro- organisms, live or attenuated vaccines, human and animal cell cultures used in research, industrial laboratories, production of biological, residualtoxins, dishes and devices used for cultures.	Autoclave or Microwave or Hydroclave safeplastic bags or containers;	Pre-treat to sterilize with non-chlorinated chemicals on-site as per as per World Health Organisation guidelines on Safe management of Waste from healthcare activities and WHO Blue Book,2014 and thereafter sent for incineration;
Red	Contaminated Waste(Recyclable) (a) Wastes generated from disposable items such as tubing, bottles, intravenous tubes and sets, catheters, urine bags, syringes (without needles and fixed needle syringes) andvaccutainers with their needles cut) and gloves.	Red coloured non- chlorinatedplastic bags or containers	Autoclaving or microwaving/ hydroclaving followed by shredding or mutilation or combination of sterilization and shredding. Treated waste to be sent to registered or authorized recyclers or for energy recovery or plastics to diesel or fuel oil or for road making, whichever is possible. Plastic waste should not be sent to landfill sites.

White	Waste sharps including Metals:	Puncture proof,Leak-	Autoclaving or Dry
(Translucent)	Needles, syringes with fixed needles,	proof, tamper-proof	Heat Sterilization
	needles from needle tip cutter or	containers	followed by shredding
	burner, scalpels, blades,or any		or mutilation or
	other contaminated sharp object that		encapsulation in metal
	may cause puncture and cuts. This		container or cement
	includes both used, discarded and		concrete; combination
	contaminated metal sharps		of shredding cum
	Р		autoclaving; and sent
			for final disposal to
			iron foundries (having
			consent to operate
			from the State
			Pollution Control
			Boards or Pollution
			Control Committees)
			or sanitary landfill or
			designated concrete
			waste sharp pit.
Blue	(a) Glassware: Broken or	Puncture proofand	Disinfection (by
	discarded and contaminated	leak proof boxes or	soaking the washed
	glassincluding medicine	containers withblue	glass waste after
	vialsand ampoules except those	colored marking;	cleaning with
	contaminated withcytotoxic wastes.		detergent and Sodium
			Hypochlorite
			treatment) or through
			autoclaving or
			microwaving or
			hydroclaving and then
			sent for recycling.
	(b) Metallic Body Implants	Puncture proof and	Implants
		leak proof boxes or	
		containers with blue	
		colored marking	

Annexure VII

ANNUAL REPORT (Form - IV) of BMW Rules, 2016

Sr.	Particulars		
No.			
1.	Particulars of the Occupier	:	
	(i) Name of the authorised person (occupier	:	
	oroperator of facility)		
	(ii) Name of HCF or CBMWTF	:	
	(iii) Address for Correspondence	:	
	(iv) Address of Facility		
	(v)Tel. No, Fax. No	:	
	(vi) E-mail ID	:	
	(vii) URL of Website		
•	(viii) GPS coordinates of HCF or CBMWTF		
	(ix) Ownership of HCF or CBMWTF	:	(State Government or Private or
			Semi Govt. or any other)
	(x). Status of Authorisation under the Bio-	:	Authorisation No.:
	Medical Waste (Management and Handling)		
	Rules		valid up to
	(xi). Status of Consents under Water Act and	:	Valid up to:
	Air Act		
2.	Type of Health Care Facility	:	
	(i) Bedded Hospital	:	No. of Beds:
	(ii) Non-bedded hospital	:	
	(Clinic or Blood Bank or Clinical		
	Laboratory or Research Institute or		
	Veterinary Hospital or any other)		
	(iii) License number and its date of expiry		
	Details of CBMWTF	:	

3.	(i) Number healthcare facilities covered by CBMWTF	:				
	(ii) No of beds covered by CBMWTF	:				
	(iii) Installed treatment and disposal capacity of CBMWTF:	:	Kg per day			
	(iv) Quantity of biomedical waste treated or disposed by CBMWTF	:	Kg/day			
4.	Quantity of waste generated or disposed in	:	Yellow Category:			
	Kg perannum (on monthly average basis)		Red Category:			
			White:			
			Blue Category:			
			General Solid wast	e:		
5.	Details of the Storage, treatment, transportation,	prod	essing and Disposal	Facility		
	(i) Details of the on-site storagefacility	:	Size :			
	disposal facilities		Capacity:			
			Provision of on-site storage :			
			(cold storage or any other provision)			
			Type of	No of units	Capacity	Quanti
			treatment		kg/day	ty
			Equipment			treate
						d or
						dispos
			Incinerators			ed in
			Plasma Pyrolysis			kg per
			Autoclaves			annum
			Microwave			
			Hydroclave			
			Shredder			
			Needle tip cutter			
			Or Destroyer			
			Sharps			
			Encapsulation or			
			concrete pit			
			Deep burials pit:			
			Chemical			

		Disinfection:			
		Any other			
		treatment			
		equipment:			
	(iii) Quantity of recyclable wastes sold to				
	authorized recyclers aftertreatment in kg per				
	annum.				
	(iv) No of vehicles used for collection				
	and transportation of biomedical waste				
	(v) Details of incineration ash and ETP sludge	Incineration	Quantity	Where	
	generated and disposed during the treatment	Ash ETP Sludge	generated	disposed	l
	of wastes in Kg per annum				
	(vi) Name of the Common Bio- Medical Waste				
	Treatment Facility Operator through which				
	wastes are disposed of				
	(vii) List of members HCF not handed				
	over bio-medical waste.				
6.	Do you have bio-medical waste management				
	committee? If yes, attach minutes of the				
	meetings held during the reporting period				
7.	Details trainings conducted on BMW				
	(i) Number of trainings conducted on BMW				
	Management.				
	(ii) number of personnel trained				
	(iii) number of personnel trained at the time of				
	induction				
	(iv) number of personnel not undergone any				
	training so far				
	(v) whether standard manual for training is				
	available?				
	(vi) any other information)				
8	Details of the accident occurred				
	during the year				

	(i) Number of Accidents occurred		
	(ii) Number of the persons affected		
	(iii) Remedial Action taken (Please		
	attach details if any)		
	(iv) Any Fatality occurred, details.		
9.	Are you meeting the standards of air Pollution		
	from the incinerator? How many times in last		
	year could not met		
	the standards?		
	Details of Continuous online emission		
	monitoring systems installed		
10	Liquid waste generated and treatment		
	methods in place. How many timesyou have		
	not met the standards in a year?		
11	Is the disinfection method or sterilization		
	meeting the log 4 standards? How many times		
	you have not met the standards in a year?		
12	Any other relevant information	:	(Air Pollution Control Devices attached with the
			Incinerator)
Certi	fied that the above report is for the period from		
			Name and Signature of the Head of the Institution
	Date:		
	Place		

Annexure VIII: List of Information related to HCFs to be updated on website

Sr. no.	List of Information to be updated on website			
1.	Contact Address and details of the Healthcare Facility:			
2.	No. of beds:			
3.	Details of: a) Authorisation under BMWM Rules, 2016: b) Consent under Water (Prevention and Control of Pollution) Act, 1974 and Air(Prevention and Control of Pollution) Act, 1981:			
4.	Quantity of bio-medical waste generation (in kg/day):			
5.	Mode of disposal of bio-medical waste (through CBWTF or through captivetreatment facility):			
6.	Name and address of the CBWTF through which waste is disposed off (as applicable)			
7.	In case, HCF is having captive treatment facility, a) bio-medical waste treated (in kg/day) b) Details of treatment equipment c) Total nos. and capacity of each treatment equipment (in kg/day) d) Operating parameters of the treatment equipment as per BMWM Rules, 2016			
8.	8 Monthly records of bio-medical waste generation (category wise):			
9.	No. of trainings conducted on Bio-medical Waste Management in the current year: Stats of immunization of Health Care Workers involved in handling of BMW:			

Annexure IX: Potential Uses of C & D Wates

C & D waste	Potential use of C & D wastes
	The utilization of recycled aggregate is particularly very promising as 75 per cent
	of concrete is made of aggregates.
	Opportunity: The enormous quantities of demolished concrete can easily be
	recycled as aggregate and used in concrete. Research & Development activities
	have been taken up all over the world for proving its feasibility, economic
Concrete	viability and cost effectiveness.
	Work on recycled concrete has been carried out at few places in India by CBRI
	and CRRI, but waste and quality of raw material produced being site specific,
	tremendous inputs are necessary if recycled material has to be used in
	construction for producing high grade concrete.
	If deconstructed properly, bricks can be reused after removal of mortar. Broken
Bricks	bricks can be used for refilling or for manufacturing debris paver blocks or
Difexs	debris blocks.
	Stone can be reused for plinth formation, masonry construction, landscape
Stone	purpose, ledges, platforms, window sills, coping etc. depending upon the form of
Stone	available stones.
	Timber elements from deconstructed building may have aesthetic and antique
	value.
Timber	Opportunity: Whole timber arising from construction and demolition works
	can be utilized easily and directly for reused in other construction projects after
	cleaning, de-nailing and sizing.
Plywood and other	Plywood and other timber-based boards can be either reused for interior
timber	works in new construction or it can be recycled for manufacturing of timber-
based boards	based boards.
	In India, over 10 about of waste gypsum such as phosphor-gypsum, Fluro-
	gypsum etc., are being generated annually.
	Opportunity: Plaster developed from this waste gypsum has showed improved
Gypsum	engineering properties without any harmful effect. Phosphor-gypsum and lime
	sludge can be recycled for manufacture of Portland cement, masonry cement,
	sand lime bricks, partition walls, flooring tiles, blocks, gypsum plaster, fibrous
	gypsum boards, and super-sulphate cement.
	Ferrous Metals are the most profitable and recyclable material. Scrap steel is
	almost totally recycled and allowed repeated recycling. Structural steel can be
	reused as well as 100% steel can be recycled to avoid wastage at construction
Metals & metal alloys-	site.
Metals & metal anoys	Advantage: Generally sold to a scrap metal dealer at a specified price. Metals
	like scrap iron can
	be mixed with the virgin metal in the foundry. In India more than 80% scrap
	arising is recycled.
	The main nonferrous metal collected from construction and demolition sites are
Nonferrous metal	aluminum, copper, lead and zinc.
	Opportunity: In India aluminum and copper are recycled and are valuable
	resources

https://www.researchgate.net/publication/256677141 construction and demolition waste

management with reference to case study of Pune

Annexure X: Proposed responsibility and constitution of the Waste Management Cell (WMC) for DPA

Note: DPA managed premises mentioned herein refers to all residential, commercial and other area under the control of DPA in Gandhidham, Kandla and Vadinar.

The broad scope of work for proposed WMC are as below:

- 1. Develop, implement and manage Waste Management Systems for all types of wastes i.e., Municipal Solid, Plastic, Bio-medical, Construction & Demolition, e-waste and Shipping wastes in accordance with the Waste Management Plan.
- 2. Co-ordinate with all departments of DPA and maintain records pertaining to all generated wastes in designated format.
- 3. Monitor the segregation and storage of all types of wastes generated at all DPA premises.
- 4. Monitor the activities like collection, transport and disposal by all Waste Management Agencies appointed by DPA.
- 5. Maintain all documentation (Waste inventories/Forms/Records/Receipts etc.) as per the requirements mentioned in the Waste Management Plan.
- 6. To coordinate and comply with all applicable statutory requirements.
- 7. Prepare and submit documents (Forms/ Returns/ Compliances etc.) to concerned authority.
- 8. Conduct regular visits, in and surrounding all DPA premises for reviewing implementation and updating of the waste management systems.
- 9. Training and capacity building of waste management staff from time to time.
- 10. Assist concerned DPA officials in legal and regulatory matters pertaining to waste management.
- 11. Remain up to date with any new legal or other requirement pertaining to waste management.
- 12. Organize awareness programs/ campaigns and other IEC activities from time to time, relating to waste management.

Constitution of WMC

Sr. No	Category of professionals	Qualification	Experience	
1.	Manager (Waste): 02 personnel	A Post-graduate in Environmental Sciences/ Environmental Engineering/ Coastal/Marine Environmental Science and Marine Science	Minimum 02-years' experience in waste management and in-depth knowledge about environmental regulations pertaining to all types of wastes i.e., (Municipal Solid, Plastic, Bio-medical, Construction & Demolition, battery, Shipping and E-waste)	
2.	Assistant (Waste) -: 04 personnel	A Graduate in Environmental Sciences/ Environmental Engineering/ Coastal/Marine Environmental Science and Marine Science	Minimum 01-year experience in areas like Inventorization, audit, EPR and awareness programs related to waste management.	

PART-2 TRAINING MANUAL

Table of Contents

Chapte	r-1 Municipal Solid Waste	99
1.1.	Introduction	100
1.2.	Different categories of Wastes	100
1.3.	Training on Municipal Solid Waste Management for various stakeholders	102
1.3.2.	Responsibility and duties of Senior officials	103
1.3.3.	Target audience: Staff involved in collections of MSW	105
1.3.4.	Responsibility of MRF Operating Staff	106
1.3.5.	Sound Practices in operating the MRF	107
1.4.	Other Important Guidelines	112
Chapte	r-2 Plastic Waste	114
2.1.	Introduction	115
2.2.	Environmental impacts of plastic waste	117
2.3.	Responsibility of waste generator (as per PWM Rules, 2022)	117
2.4.	Banned Single Use Plastic (SUP) Items:	118
2.5.	The 3R principle for Plastic Waste	120
2.6.	Compostable Plastic	120
2.6.1.	Background and legal provisions	120
2.6.2.	How to identify compostable plastic?	121
2.7.	Information, Education and Communication (IEC)	122
Chapte	r-3 E-Waste	128
3.1	Introduction	129
3.1.1	What is E- Waste?	129
3.1.2	Characteristics of E-Waste	129
3.1.3	Objective of Module	129
3.2	Background of E-Waste	129
3.2.1	Categories of E-waste according to E-Waste (Management) Rules, 2022	129
3.2.2	Resources embedded in e-waste	134
3.2.3	Hazards Substances in E-waste	135
3.3	Policies for E-Waste Management	141
3.3.1.	Responsibilities of bulk consumer	141
3.3.2.	Formulation of a system	141
3.3.3.	Record keeping	141
3.3.4.	Guideline for storage of e-waste	142
3.3.5.	Questions to Ask	144

3.4.	Battery waste	146
3.4.1.	What is a Battery?	146
3.4.2.	Responsibilities of User	146
3.4.3.	Toxic substances in Batteries	146
3.4.4.	Localization in appliance	146
3.4.5.	Handling Aspect	147
3.4.6.	Requirement for storage and transport	147
Chapte	r-4 Bio-Medical Waste	150
4.1.	Introduction	151
4.2.	Classification of Bio-Medical Waste	152
4.3.	Hazards of Improper Bio-Medical Waste Management	152
4.4.	Training Manual for Bio-Medical Waste (BMW)	155
4.4.1.	Target audience: Nursing and BMW handling staff	155
4.5.	Training manual for HCF Administration	158
Chapte	r-5 Construction and Demolition (C&D) Waste	166
5.1.	Introduction	167
5.1.1	Objective	167
5.2.	Background on Construction and Demolition (C&D) waste	167
5.2.1	Objective of the section	167
5.2.2	What is C&D waste?	167
5.2.3	Why does C&D waste need to be managed?	169
5.2.4	C&D waste management Rules in India	171
5.2.5	How to implement a proper C&D waste management system?	171
5.2.6	What can C&D waste be recycled / reused for?	172
5.2.7	Importance of Recycling of C&D Waste	174
5.3.	C & D Waste Management Rules, 2016	175
5.3.1	Why separate rules for Construction and Demolition (C&D)	175
5.3.2	Definitions in the Rules	175
5.3.3	The Rules promote C & D waste utilization	176
5.3.4	Type of C & D wastes products proposed under Rules	177
5.3.5	Duties of stakeholders	178
5.4.	Inventorization of C&D waste in the DPA	180
5.4.1	Why to do Inventorization of C&D waste?	180
5.4.2	How to estimate the generation of C&D waste in the DPA	180
5.5.	Collection, Transportation and Disposal of C&D waste	181
5.5.1	How to Collect and transport C&D waste?	181

Chapte	r-6 Shipping Waste	184
6.1	Introduction of Shipping waste	185
6.1.1	What is shipping waste	185
6.1.2	Objective of Manual	185
6.2	Legal requirement	185
6.2.1	Maintaining records	185
6.2.2	Annual return	186
6.3	Adequacy of Port Reception Facilities	187
6.4	Segregation of wastes on the ship	189
6.4.1	Segregation of ship generated waste	189
Chapte	r-7 References	192

List of Table

Table 1	Basic Segregation	. 103
Table 2	Checklist for periodic verification of premises of bulk waste generators	.104
Table 3	Categories of dry waste that can be segregated in MRF	.106
Table 4	Safety Practices	.109
Table 5	Banned SUPs items and its alternatives	.118
Table 6	Categories and products of electrical and electronic equipment	. 130
Table 7	Possible hazardous substances in WEEE/E-waste components	. 136
Table 8	Pollutants and their occurrence in WEEE	. 137
Table 9	Hazards from E-waste substances	. 138
Table 10	Typical pathways for the release of pollutants from e-waste	. 139
Table 11	Constituents of E-Waste	. 140
Table 12	2 Space needed for storage	. 143
Table 13	B Classification of Bio-Medical Waste as Per BMW Rules 2016	. 152
Table 14	Hazards From Various Categories of Bio-Medical Waste	. 153
Table 15	5 Color coding and type of containers for BMW	. 156
Table 16	Details of waste	.160
Table 17	Details of treatment equipment	.161
Table 18	Format for Bio Medical Waste Register/Record	.162
Table 19	C&D waste and its potential use	. 173
Table 20	Demand for soil and sand and potential generation from C&D waste	. 174
Table 21	Inventory of waste generated/received at Port	. 186
Table 22	2 Details of waste collection by agency	. 187
Table 23	B Format for waste under storage	. 187
Table 24	Components of waste	. 189
Table 25	Components of waste to be segregated	. 190

List of Figures

Figure 1	Capacity building in MSWM	102
Figure 2	Wet Waste and Dry Waste Segregation	105
Figure 3	Safety Photo Illustration for MRF	112
Figure 4	Type of Plastics and its Uses	116
Figure 5	Types of Plastic	117
Figure 6	3 R's- Refuse, Reduce and Reuse	120
Figure 7	Compostable Plastic Bags	121
Figure 8	E-Waste Categories	130
Figure 9	Resources embedded in e-waste	135
Figure 10	Adverse Impact of e-waste	140
Figure 11	Showing Proportion of Infectious and Hazardous Waste	151
Figure 12	Hazards of Healthcare Waste	154
Figure 13	Typical composition of C&D waste (Source: TIFAC,2001)	168
Figure 14	Components of C&D waste	168
Figure 15	Unauthorized Dumping	169
Figure 17	Schematic of current C&D Waste Management Processes in India	172
Figure18	Segregate waste into 5 streams	178
Figure 19	Effect of shipping waste on Ocean	185

Chapter-1 Municipal Solid Waste

1.1. Introduction

Waste (or wastes) is unwanted or unusable material. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Municipal solid waste (MSW) includes waste from households, non-hazardous solid waste from industrial, commercial and institutional establishments (excluding bio-medical waste in present context), market waste, yard waste, agricultural wastes and street sweepings. Industrial and community hazardous waste and infectious waste, is not considered as MSW and should be collected and processed separately. MSW (Management and Handling) Rules 2000 defines MSW as "commercial and residential wastes generated in municipal or notified areas in either solid or semi-solid form excluding industrial hazardous wastes but including treated bio-medical wastes". MSW management encompasses the functions of collection, transfer & transportation, processing & recycling, and disposal of MSW. Safe and cost-effective management of MSW is a significant environmental challenge for modern society. Inadequately managed waste disposal has the potential to affect the health and environment. Ideally MSW management should incorporate the principles of waste minimization, recycling, resource recovery as well as an integrated processing & disposal facility, leading to effective service delivery in a sustainable manner

1.2. Different categories of Wastes

- Municipal Solid waste: Municipal solid waste includes commercial and domestic wastes
 generated in municipal or notified areas or either solid or semi-solid form excluding
 industrial hazardous wastes but including treated biomedical wastes.
- **Domestic Waste**: Domestic waste is one of the most important components of MSW. Domestic wastes include food waste, paper, glass, metals, plastics, textiles, etc. A large part of domestic waste consists of plant and animal waste such as vegetables, fruit peel, bone and meat waste etc. which are considered wet wastes. Paper, cardboard, old newspapers, books, plastic items, disposable dishes, toys, metal, glass cans obsolete items etc. also make up another large portion of domestic dry waste.
- Commercial Waste: Commercial waste consists of waste from premises used mainly for
 the general purposes of a business or trade or recreation, education, sport, or
 entertainment. It does not include household, agricultural, or industrial waste as a result
 of construction activities. It doesn't matter whether the waste is generated in a residential

or a commercial area. For example, the waste generated by a lawn-mowing company on the premises of the client's home is commercial waste. Commercial waste is nonhazardous

• Industrial solid waste including Hazardous waste: The term industrial waste describes toxic waste from industrial operations including mining, refining the metallic and non-metallic resources and using these resources in the manufacturing processes to produce different intermediates of products. Sectors like food processing industries, metallurgical, crude petroleum refining, chemical and pharmaceutical operations, fertilizer, cement, and breweries among other sectors produce industrial waste. The most affected is the health of people residing nearby the dumping sites. Industrial waste causes harm to the water bodies causing the destruction of fish, pollution of groundwater and release of foul odors.

Hazardous waste: Any waste that poses a threat to human health and the environment if not handled or managed properly. For this reason, many countries have strict regulations on the storage, collection and treatment of hazardous waste. The Basel Convention and the OECD Decision include lists of waste streams, characteristics and components that fall within the definition of hazardous waste. Most hazardous waste originates from industrial production.

- Agricultural Waste: The waste generated by agriculture includes waste from crops and livestock. Some of the waste is produced by agro-based industries viz. rice milling, tobacco etc. Agricultural wastes include rice husk, stubble/parali, degasses, ground nut shells and straws of cereals etc.
- **Biomedical Waste**: It is a form of infectious waste and involves waste from the treatment of diseases in humans and animals. This type of waste usually consists of medicines, sharp objects, bandages, chemicals, pharmaceuticals, body fluids and body parts (from amputations and surgery). Healthcare waste may be infectious, toxic or radioactive.
- Plastic Waste: Plastic is the general common term for a wide range of synthetic or semisynthetic organic amorphous solid materials derived from oil and natural gas. The word 'Plastic' is derived from the Greek word 'Plastikos' meaning fit for moulding & 'Plastos' meaning moulded.
- **E-waste:** E-waste is a generic term for waste originating from out of life electric and electronic equipment, such as computers, televisions mobile phones and home appliances etc. Some component of E-waste is categorized as hazardous waste due to their toxic

- components, such as lead, quicksilver, cadmium, mercury and brominated flame retardants. These materials can cause health damage if not treated properly.
- Construction and Demolition waste: Construction and demolition (C&D) waste is generated from construction, renovation, repair, and demolition of houses, large building structures, roads, bridges, piers, and dams. C&D waste is made up of wood, steel, concrete, gypsum, masonry, plaster, metal, and asphalt. C&D waste is notable because it can contain hazardous materials such as asbestos and lead. Estimates vary, but a commonly accepted estimate is that between 15 per cent and 20 per cent of municipal solid waste comes from construction and demolition projects.

1.3. Training on Municipal Solid Waste Management for various stakeholders

There is an urgent need to train and enhance the capacities of all stakeholders involved in MSW management activities to ensure efficient implementation of MSW management system from handling at the point of generation to its disposal. The following are all stakeholders involved in capacity building in MSWM as shown in figure 1

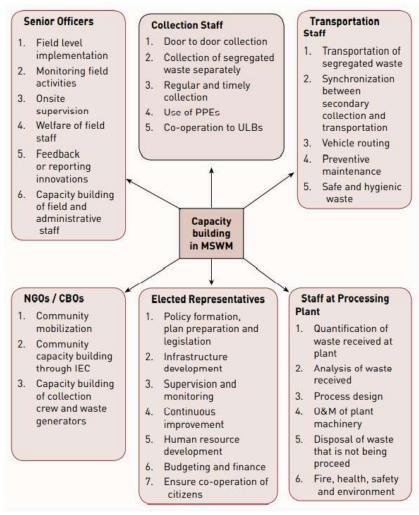


Figure 1 Capacity building in MSWM

Target audience: Citizens (Residents, office and port staff)

Citizen's involvement in MSW management is key to its effective implementation. One of the important role that the citizens can play is minimization and segregation of waste at the source of segregation.

Household-level Storage of Segregated Waste

- At the household level, dry waste, wet waste, and domestic hazardous waste should be stored in separate garbage bins, of appropriate capacity and color. The colour of the garbage bins should be as follows: Wet waste is to be placed in a covered green bin and dry waste in a covered blue bin.
- The general guidelines regarding which waste item to be placed in which bin is shown in Table 1.

BASIC SEGREGATION						
Wet waste (green bin)	Dry waste (Blue bin) With further sub-segregation			Domestic Hazardous ⁷		
Food wastes of all kinds, cooked and uncooked, including eggshells and bones, flower, fruit and waste including juice, vegetable peels and household garden/plant wastes. Soiled tissues, food wrappers, paper towels; fish and meat	Paper cardboard and cartons	Containers & packaging of all kinds excluding those containing hazardous materials Compound packaging [tetrapak, blisters etc.] Plastics	Rags Rubber Wood Discarded clothing Furniture	Metals Glass (all kinds) Inerts House sweepings and inerts (not garden, yard or street sweepings)	E-waste* Hazardous wastes** Household medical waste*** Batteries from flashlights and button cells. Lights bulbs, tube lights and Compact Fluorescent Lamps (CFL) Car batteries, oil filters and car care products and consumables	
 E-waste: Printer & printer cartridges, electronic parts and equipment and others Hazardous wastes: Chemicals and solvents and their empty containers, paints, oil, lubricants, glues, thinners and their empty containers, insecticides, pesticides and herbicides and their empty containers, photographic chemicals, bleaches and household kitchen & drain cleaning agents Household Medical Waste: Thermometers and other mercury containing products, discarded medicines, injection needles and syringes after destroying them both, sanitary wastes and diapers (should be collected daily) 						

Table 1 Basic Segregation

1.3.2. Responsibility and duties of Senior officials

The officials dealing with waste management shall endeavour to create awareness among the citizens regarding adverse impacts of mismanaged MSW along with by implementation and monitoring of the Waste Management Plan.

Rule 4 of Solid Waste Management Rules, 2016 - Duties of waste generator

Segregate and store the waste generated in three separate streams namely bio-

degradable, non-biodegradable and domestic hazardous wastes in suitable bins and handover segregated wastes to authorized waste pickers or waste collectors as per the direction or notification by the local authorities from time to time.

- Wrap securely the used sanitary waste like diapers, sanitary pads etc., in the pouches
 provided by the manufacturers or brand owners of these products or in a suitable
 wrapping material as instructed by the local authorities and shall place the same in the
 bin meant for dry waste or non-bio-degradable waste.
- Store separately construction and demolition waste, as and when generated, in his own premises and shall dispose off as per the Construction and Demolition Waste Management Rules, 2016.
- store horticulture waste and garden waste generated from his premises separately in his own premises and dispose of as per the directions of the local body from time to time.
- No waste generator shall throw, burn or burry the solid waste generated by him, on streets, open public spaces outside his premises or in the drain or water bodies.
- All waste generators shall pay such user fee for solid waste management, as specified in the bye-laws of the local bodies.
- No person shall organize an event or gathering of more than one hundred persons at any
 unlicensed place without intimating the local body, at least three working days in advance
 and such person or the organizer of such event shall ensure segregation of waste at source
 and handing over of segregated waste to waste collector.
- The bio-degradable waste shall be processed, treated and disposed off through composting or bio-methanation within the premises as far as possible. The residual waste shall be given to the waste collectors or agency as directed by the local body. The general dry waste items that can be segregated in MRF are listed in Table 3.

Table 2 Checklist for periodic verification of premises of bulk waste generators

S. No	Activities	
1.	Is segregation done as per SWM Rules, 2016	
2.	Are all the Segregated wastes being stored in separate bins, containers or bags etc.?	
3.	Has a separate space for the segregation, storage of municipal solid waste in society, gated community, offices etc. been demarcated	
4.	Is storing of Construction and Demolition waste practiced separately?	
5.	Is storing of the Garden and Horticulture waste practiced separately?	
6.	6. Is recyclable waste handed over to the authorized waste picker or recycler?	

S. No	Activities			
7.	Is processing bio-degradable (wet) waste done on-site?			
8.	Mention the process of composting or bio-methanation or any other.			
9.	9. Is the residual waste from processes handed over to the waste collector oridentified agency?			
10. Has the bulk waste generator tied up for authorized agency for collection of segregated waste?				

1.3.3. Target audience: Staff involved in collections of MSW

Imparting awareness and training regarding good practices od MSW management will not only build the capacities of workers to perform more effectively and efficiently in the existing conditions, but will also inculcate a sense of responsibility and pride towards their profession.

Figure 2 Wet Waste and Dry Waste Segregation

- The work force involved with door-to-door collection of MSW shall be educated and trained to collect dry and wet waste separately as shown in the figure 2.
- The staff shall be educated regarding ideal MSW storage at various locations

Storage of Municipal Solid Waste in Public Places or Parks

With a view to ensure that streets and public places are not littered with waste, litter bins may be provided at important streets, markets, public places, bus and railway pick up stations, commercial complexes, etc. at a distance ranging from 25m to 250m depending on the local

conditions. The collection from these bins should be segregated into wet and dry waste that has been shown in figure 2.

Storage of Yard Waste or Garden Waste

Horticulture waste from parks and gardens should be collected separately and treated on-site to make optimum use of such wastes and also to minimise the cost of its collection and transportation.

Storage and Processing of Special Wastes Including Domestic Hazardous Waste

Special wastes including domestic hazardous wastes can pose a substantial or potential threat to health and environment because of their constituents which may be hazardous. A municipal waste component is hazardous if it contains one of the following characteristics: (i) ignitability, (ii) corrosivity, (iii) reactivity, and (iv) toxicity.

Care must be taken to not mix special waste including domestic hazardous waste with either the wet waste or dry waste and store such wastes separately and hand-over to the special waste collection centres, established by the urban local bodies or to collection schemes through retail trade.

1.3.4. Responsibility of MRF Operating Staff

Unloading of Incoming Waste

- Unload dry waste in the waste receiving area
- Weigh the incoming dry waste
- Remove wet/inert waste if any

Weighbridge and Weighing Scales:

- Weighing of large quantities of incoming waste
- Weighing of incoming waste and sorted recyclables

Segregation and Sorting:

The staff is responsible for segregating and sorting non-biodegradable or recyclable solid
waste collected from the doorstep into different streams of waste fractions such as paper,
plastic, packaging paper, and bottles.

Table 3 Categories of dry waste that can be segregated in MRF

S	. No	Paper	Plastic Items (non-PVC)	Plastic items (PVC)
1		Glass Items	Rubber Items	Metal Items (Ferrous)

2	Leather Items	Thermocol	Aluminum Coated Paper
3	Wooden Items	X-ray Films	Clothes
4	Cardboards	Jute bags	Electronic Items
5	Aluminum Coated Plastic	Metal Items (Non- ferrous)	Medical Waste/ Tablet Cover

Recovery of Recyclable Waste:

 Recovering various components of recyclable waste from the incoming waste materials for resale to intermediaries who supply bulk material to the recycling industries.

Bundling & Storage of Sorted Waste:

- Bale and pack the sorted waste in large bags or keep it bundled in the waste storage area
- MRF operating staff are responsible for managing large storage spaces to temporarily store sorted recyclables, which can be made available to recyclers in bulk for improved resale value

Weighing of Waste

- Weigh the bundled or packed waste daily and record it
- The sorted waste should be weighed at the MRF only

Maintain Safety and Personal Hygiene

- Wear personal protective equipment before starting the work
- Maintain personal hygiene. Wash your hands and legs with soap before and after your daily work
- Regular maintenance of personal protective equipment
- Proper storage of PPE

Regular Cleaning of Waste Sorting Area

• Clean the MRF area daily

1.3.5. Sound Practices in operating the MRF

Do's

1. A regular check on the working, performance and maintenance etc, of the processing machinery shall be done once in a month.

- 2. Indoor air quality and adequate lighting shall be monitored continuously for healthy working environment
- 3. Provision of suitable exhausts/vents/scrubbers, etc.
- 4. Adequate fire protection measures
- 5. All workers covered under social security and insurance scheme's
- 6. Compulsory use of Protection gears
- 7. Good Hygiene and Sanitation practices including safe drinking water
- 8. MRF kept Clean and Tidy
- 9. Ensure Proper Segregation and Low Rejects
- 10. Periodic Meetings of workers for drills, training
- 11. Keeping detailed logbook of MRF
- 12. Good housekeeping and cleaning all machinery after use
- 13. First Aid

Don'ts

- 1. No Inflammable objects in premise
- 2. No Smoking
- 3. No Child Labor
- 4. Pregnant women to avoid operating machinery
- 5. Avoid Water and Electricity Wastage
- 6. No Discrimination
- 7. No Littering
- 8. No animals allowed
- 9. Do not Burn Waste
- 10. No explosives or firearms in MRF
- 11. Keep hands away from moving parts of machinery
- 12. Do not wear loose clothing around machinery
- 13. Avoid long term storage of RDF

> Safety Practices adopted at MRF

The process of collection, segregation, transportation and recycling involves exposure to contaminants and hazardous waste. The safety aspects to be considered are mentioned below:

Table 4 Safety Practices

Sr.No		Precaution	Cure
1.	Cuts and injuries due to presence of broken glass, sharps, needles which may lead to septic wounds and tetanus	Use of Safety Gloves	Medical help should be immediately sought in case of injury
2.	Exposure to fumes causing irritation of nose, throat and lungs.	Suitable masks should be used by the Safaii Mitra while working at Swachhta	Medical help should be immediately sought
3.	Contact with faecal matter and the risk of contracting gastrointestinal diseases and worm infestations	Along with wearing gloves, sanitizers should always be carried and used	Medical help should be immediately sought
4.	Vulnerable to blood borne diseases if hospital waste is collected	Gloves should be worn and direct contact with any waste (especially faecal matter and hospital waste should be avoided)	Medical help should be immediately sought
5.	Exposure to sun, radiation and rain	Areas with radiation should be avoided.	In case of contact with any radioactive waste, they should immediately contact a doctor
6.	Callosities on the fingers observed		Should immediately contact a doctor
7.	Health problems like body ache, leg ache due to long distances travelled	Can be provided with a garbage truck to pick up waste	

> Hygiene Practices

It is mandatory to provide a safe working environment for staff, working personnel and any other occupants or visitor at the MRF.

- Keep the MRF dry & clean always
- Keep sorting & storage area dry and free from pest & flies
- Regularly spray disinfection liquid as better prevention practices
- All working personnel and any other occupant at the MRF must use reusable safety gloves, boots and mask. It is advisable to wear uniform while working.
- Use disposable mask & gloves for visitors.
- Make provision for hand wash and disinfectant, hands must be washed with soap before

eating/leaving the MRF.

• Monthly cleaning & Pest-Control Treatment routine has to be fixed within the MRF and should be followed without ignorance.

> First Aid Box

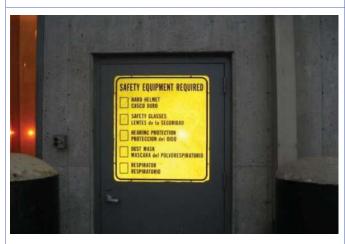
This is only for designing a basic first aid kit and its components and should not be taken as a first aid procedure or training. It is important to have a well- stocked first aid kit at the MRF to deal with minor accidents and injuries. The first aid kit should be kept in a cool and dry place out of the reach of children.

A basic first aid kit should contain:

Emergency telephone numbers for emergency medical services 1092/102/108

- Bandages in a variety of different sizes and shapes
- Small, medium and large sterile gauze dressings
- A box of adhesive bandages
- Crêpe rolled bandages
- Safety pins
- Disposable sterile gloves
- Tweezers, scissors
- Micro-porous, sticky tape
- Thermometer (preferably digital)
- Cream or spray to relieve insect bites and stings
- Antiseptic cream
- Directions for requesting emergency assistance.

> Safety Photo Illustration for MRF


The following photos provide specific comment on safety issues related to those operations.

Training Manual: Municipal Solid Waste

Photo 1

Hand sorting operations may require additional safety attention to include high visibility clothing, training on ergonomics and possibly job rotation.

Photo 2

An example of safety signage indicating required personal protective equipment.

Photo 3

Safe operation of heavy equipment requires constant attention to avoid contact with fixed objects and minimizing personnel foot traffic.

Photo 4

An illustration of labeling on an electrical disconnect identifying the affected equipment.

Photo 5

Fire extinguishers should be located throughout the facility with clear access paths maintained.

The proper type of fire extinguisher should be evaluated based on fire exposures.

Figure 3 Safety Photo Illustration for MRF

1.4. Other Important Guidelines

- The entrance and exit should be kept clear always
- The emergency exits should be kept clear always and should never be used for any temporary/ permanent activity
- A minimum safe distance between two machineries as advised by the manufacturer.
- From maintenance perspective, min 1-metre clearance around each equipment.
- Shed should be constructed with the stipulated structural stability and always keep out rains
- The MRF should be certified by a structural engineer/local ULB engineer and the fire department as per rules.

Training Manual: Municipal Solid Waste

G2

G20

गीटा

कुड़ा

Fallowse 🕜 👩 🔞 🚳 🐧 🥨 www.cpcb.nlc.in

generate wealth

fellow us 🚺 😋 📵 👘 🤌 🚭 www.cpcb.gov.in

Chapter-2 Plastic Waste

2.1. Introduction

The rapid rate of urbanization and development has led to increase in consumption of plastic products vis-à-vis plastic waste generation. It is a fact that plastics waste constitutes a significant portion of the total municipal solid waste (MSW) generated in India. Plastics are non-biodegradable and remains on earth for thousands of years. The burning of plastics waste under uncontrolled conditions lead to generation of different hazardous air pollutants (HAPs), depending upon the type of polymers and additives used. However, the end-of-life plastics can be recycled into a second life application but after every thermal treatment/recycling deterioration in quality of recycled plastic products. Thus, plastic waste can be recycled only 3-4 times. The visibility of huge quantity of plastic waste has been perceived as a serious problem and made plastics a target in the management of solid waste. Different types of plastics and their uses are given in figure 4.

Plastics are generally categorized into two types:

- **Thermoplastics**: Thermoplastics or Thermosoftening plastics are the plastics which soften on heating and can be molded into desired shape such as PET, HDPE, LDPE, PP, PVC, PS, etc.
- **Thermosets**: Thermoset or thermosetting plastics on heating, but cannot be remolded or recycled such as Sheet Molding Compounds (SMC), Fiber Reinforced Plastic (FRP), Bakelite etc. are the examples of the same.
 - For efficient management of plastic waste, the Government of India has superseded with the earlier Plastic Waste (Management & Handling) Rules, 2011 and notified Plastic Waste Management (PWM) Rules, 2016 on 18th March, 2016. These rules shall apply to every Waste Generator, Local Body, Gram Panchayat, Manufacturer, Importer, Producer and Brand Owner throughout India.

Figure 4 Type of Plastics and its Uses

Figure 5 Types of Plastic

2.2. Environmental impacts of plastic waste

- Littering of plastic waste is a major environmental issue. It makes the land infertile, choke the drains, causes death of cattle when ingested, and gives an ugly look to the area. Open burning of plastic waste is a major health and environmental issue, as it emits toxic gases such as dioxin, furan and phthalates
- Leaching impact on soil, underground water, etc. due to improper dumping of plastic waste (contains metals and phthalates).
- Release of harmful gases such as carbon monoxide, formaldehyde, etc. during product manufacturing.
- Leaching of toxic metals into underground water such as lead and cadmium pigments due to indiscriminate dumping of plastic waste on land.
- Sub-standard plastic carry bags, thin packaging films, etc. pose problem in collection, recycling and reuse.

2.3. Responsibility of waste generator (as per PWM Rules, 2022)

• Take steps to minimize generation of plastic waste and segregate plastic waste at source

in accordance with the Solid Waste Management Rules, 2000 or as amended from time to time.

- Not litter the plastic waste and ensure segregated storage of waste at source and handover segregated waste to urban local body or gram panchayat or agencies appointed by them or registered waste pickers', registered recyclers or waste collection agencies.
- All institutional generators of plastic waste, shall segregate and store the waste generated by them in accordance with the Municipal Solid Waste (Management and Handling) Rules, 2000 notified vide S.O 908(E) dated the 25th September, 2000 under the Act or amendments and handover segregated wastes to authorized waste processing or disposal facilities.
- All waste generators shall pay such user fee or charge as may be specified in the bye-laws
 of the local bodies for plastic waste management such as waste collection or operation of
 the facility thereof, etc.

2.4. Banned Single Use Plastic (SUP) Items:

The following identified single use plastic items, which have low utility and high littering potential, have been prohibited, with effect from 1st July, 2022, vide Plastic Waste Management Amendment Rules, 2021:

- Ear buds with plastic sticks, plastic sticks for balloons, plastic flags, candy sticks, icecream sticks, polystyrene [Thermocol] for decoration;
- Plates, cups, glasses, cutlery such as forks, spoons, knives, straw, trays, wrapping or packing films around sweet boxes, invitation cards, and cigarette packets, plastic or PVC banners less than 100 micron, stirrers.
- Carry bags or recycled bags with thickness less than 120 microns. Below table 5 provides list of SUP items banned and their alternatives

Table 5 Banned SUPs items and its alternatives

Sr.	SUPs	Banned SUPs	Alternate to SUPs
no.			
1	Polystyrene [thermocol] for decoration	E P	

2	Packing films around sweet boxes, invitation cards, and cigarette packets	N STRAIT	
3	Ear buds with plastic sticks, plastic sticks for balloons, plastic flags, candy sticks, ice - cream sticks		
4	Plates, cups, glasses, cutlery such as forks, spoons, knives, straw, trays, wrapping, stirrers	STORI	
5	Plastic or PVC banners less than 100 micron	CUSTOM DESIGN BANNER ADD YOUR IMAGE - TEXT-LOSO	PVC FREE
6	Carry bags or recycled bags with thickness less than 120 microns		

2.5. The 3R principle for Plastic Waste

3 Rs- Refuse, Reduce and Reuse should be practiced for plastic waste minimization. It is responsibility of the individuals in colonies and offices of DPA to practice this by limiting the use of plastics in day to day lives like carrying a cloth bag to markets, making use of stainless steel/earthen water bottles, making use of recyclable goods used in day to day lives etc. General Do's and Don'ts regarding plastic usage are as below:

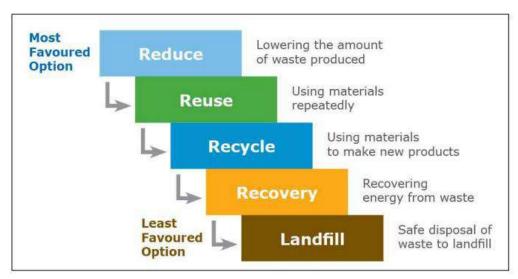


Figure 6 3 R's-Refuse, Reduce and Reuse

2.6. Compostable Plastic

2.6.1. Background and legal provisions

As per the Rule 3(e)(Definitions) of PWM Rules, 2018 "compostable plastics" mean plastic that undergoes degradation by biological processes during composting to yield CO₂, water, inorganic compounds and biomass at a rate consistent with other known compostable materials, excluding conventional Petro-based plastics, and does not leave visible, distinguishable or toxic residue.

As per the Rule 4(h) (Conditions) of PWM Rules, 2018, the manufacturers or sellers of compostable plastic carry bags/products shall obtain a certificate from the CPCB before marketing or selling compostable carry bags/products. Every compostable plastic carry bag manufacturer/seller shall comply following provisions under PWM Rules, 2018:

- Rule 4(h) (Conditions): The provision of minimum thickness of 50 micron shall not be applicable to carry bags made up of compostable plastic. Carry bags made from compostable material or plastics shall conform to the Indian Standard: 1S:17088 (as amended from time to time) titled as 'Specifications for Compostable Plastics'.
- **Rule 10 (Protocols for compostable plastic material):** Determination of the degree of

degradability and degree of disintegration of plastic material shall be as per the protocols of the Indian Standards 1S/ISO: 17088 (as amended time to time).

• Rule 11 (Marking or labelling):1(c): shall have the following information printed in

English and local **languages** namely; name and certificate number in case of carry bags made from compostable plastic. Each carry bag made from compostable plastics shall bear a label "**compostable**" and shall conform to the Indian Standard: 1S/ISO-17088 (as amended from time to time) titled as "Specifications for Compostable Plastics".

2.6.2. How to identify compostable plastic?

- Plastic products or materials meeting all the requirements specified in 1S/1S0:17088
 may be labeled as "compostable" or "biodegradable during composting".
- The labelling shall conform to international, national, regional or local regulations.
- The name of the country where the plastic product or material is to be marketed or recycled by composting shall be indicated.
- Each carry bag made from compostable material or plastic shall bear a label
 "COMPOSTABLE" IS/1SO:17088 titled as Specifications for "Compostable Plastic" in
 English & regional language. Each carry bag shall also have printed code: and
 Certificate Number of "MANUFACTURER/SELLER".

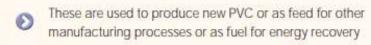
Figure 7 Compostable Plastic Bags

2.7. Information, Education and Communication (IEC)

- DPA should organize awareness campaigns for residents and office staff to educate them
 about environmental pollution, its health effects caused due to littering plastics and
 solutions to these problems. The residents and office staff shall be made aware of Single
 Use Plastics (SUPs), banned SUPs and environmental damage caused by use of SUPs.
- Segregation of PW from MSW at household and office level could substantially streamline the implementation of PW management system. Residents and office staff should make an effort at bringing a behavioral change in dumping wet and dry (plastic) waste separately at its source of generation itself.
- Efforts should be made for use of plastic free day to day items like earthen wares, cotton bags, steel bottles etc.
- Community awareness is the best means to reduce and manage plastic waste. DPA should organize activities and competitions in its school and community gatherings to engage its residents especially children to create "Best out of Waste" items.
- Recyclable plastics: The staff involved with segregation of PW at MRF shed shall be
 educated and trained about the plastics that are recyclable and non-recyclable. The image
 given below shows the various types of recyclable plastics and day to day items made
 from these plastics.

UNDERSTANDING DIFFERENT TYPES OF PLASTIC AND THEIR USES

Converted back to polymer and used for making apparel



Converted to pellets and used to produce new HDPE

Converted to pellets and used to produce new LDPE

Converted to pellets and used to produce new PP

Not recyclable

OTHERS

Not recyclable - However, multilayer packaging could be crushed and turned into sheets and boards for roofing, using adhesives

Awareness posters

Training Manual: Plastic Waste

Chapter-3 E-Waste

3.1 Introduction

3.1.1 What is E- Waste?

The E-Waste (Management) Rules, 2022 defines E-waste as any electrical and electronic equipment, whole or in part discarded as waste by the consumer or bulk consumer as well as rejects from manufacturing, refurbishment and repair processes.

'Bulk consumer' means bulk users of electrical and electronic equipment such as Central Government or State Government Departments, public sector undertakings, banks, educational institutions, multinational organizations, international agencies, partnership and public or private companies that are registered under the Factories Act, 1948 (63 of 1948) and the Companies Act, 2013 (18 of 2013) and health care facilities which have turnover of more than one crore or have more than twenty employees. As per this definition, AO offices and Gopalpuri colony come under bulk e-waste consumers.

This manual covers topic on environmentally sound management of the e-waste at administration, consumer and waste handling levels.

3.1.2 Characteristics of E-Waste

- Electronic waste or e -waste is any broken or unwanted electrical or electronicappliance.
- E-waste includes computers, consumer electronics, phones, medical equipments, toys and other.
- Items that have been discarded by their original users.
- E-Waste also includes waste which is generated during manufacturing or assemblingof such equipments.

3.1.3 Objective of Module

Creating awareness: People residing in colonies and working staff at offices shall be made aware regarding types of e-wastes and the nuisances created by e-waste. Efforts shall be made to educate people about e-waste potential to create positive impact if collected and attended in environmentally sound manner. This will encourage public participation in collection of e-wastes.

3.2 Background of E-Waste

3.2.1 Categories of E-waste according to E-Waste (Management) Rules, 2022

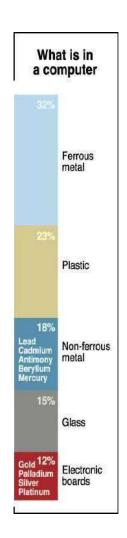
Categories of electrical and electronic equipment including their components, consumables, parts and spares covered under the rules

Figure 8 E-Waste Categories

Table 6 Categories and products of electrical and electronic equipment

Sr. No.	Categories of electrical and electronic equipment	Electrical and electronic equipment code
	Information technology and telecommunication equipment:	
	Centralized data processing: Mainframes, Minicomputers	ITEW1
i.	Personal Computing: Personal Computers (Central Processing unit with input and output devices)	ITEW2
	Personal Computing: Laptop Computers (Central Processing unit with input and output devices)	ITEW3
	Personal Computing: Notebook Computers	ITEW4
	Personal Computing: Notepad Computers	ITEW5
	Printers including cartridges	ITEW6
	Copying Equipment	ITEW7

	Electrical and Electronic Typewriters	ITEW8
	User terminal and Systems	ITEW9
	Facsimile	ITEW10
	Telex	ITEW11
	Telephones	ITEW12
	Pay telephones	ITEW13
	Cordless telephones	ITEW14
	Cellular telephones	ITEW15
	Answering System	ITEW16
	Products or equipment of transmitting sound, images or other information by telecommunications	ITEW17
	BTS (all components excluding structure of tower)	ITEW18
	Tablets, I-PAD	ITEW19
	Phablets	ITEW20
	Scanners	ITEW21
	Routers	ITEW22
	GPS	ITEW23
	UPS	ITEW24
	Inverter	ITEW25
	Modems	ITEW26
	Electronic data storage devices	ITEW27
	Consumer Electrical and Electronics and Photovoltaic Panels:	
	Television sets (including sets based on Liquid Crystal Display and light Emitting Diode Technology)	CEEW1
	Refrigerator	CEEW2
	Washing Machine	CEEW3
	Air- Conditioners excluding centralised air conditioning plants	CEEW4
	Fluorescent and other Mercury containing lamps	CEEW5
ii.	Screen, Electronic Photo frames, Electronic Display Panel, Monitors	CEEW6
	Radio sets	CEEW7
	Set top Boxes	CEEW8
	Video Cameras	CEEW9
	Video Recorders	CEEW10
	Hi-Fi Recorders	CEEW11
	Audio Amplifiers	CEEW12


	Other products or equipment for the purpose of recording or reproducing sound or images including signals and other technologies for the distribution of sound and image by telecommunications	CEEW13
	Solar panels/cells, solar Photovoltaic panels/cells/modules.	CEEW14
	Luminaires for fluorescent lamps with the exception of luminaires in households	CEEW15
	High intensity discharge lamps, including pressure sodium lamps and metal halide lamps	CEEW16
	Low pressure sodium lamps	CEEW17
	Other lighting or equipment for the purpose of spreading or controlling light excluding filament bulbs	CEEW18
	Digital camera	CEEW19
	Large and Small Electrical and Electronic Equipment	
	Large cooling appliances	LSEEW1
	Freezers	LSEEW2
iii.	Other large appliances used for refrigeration, conservation and storage of food	LSEEW3
	Clothes dryers	LSEEW4
	Dish Washing Machines	LSEEW5
	Electric cookers	LSEEW6
	Electric stoves	LSEEW7
	Electric hot plates	LSEEW8
	Microwaves, Microwave Oven	LSEEW9
	Other large appliances used for cooking and other processing of food	LSEEW10
	Electric heating appliances	LSEEW11
	Electric radiators	LSEEW12
	Other large appliances for heating rooms, beds, seating furniture	LSEEW13
	Electric fans	LSEEW14
	Other fanning, exhaust ventilation and conditioning equipment	LSEEW15
	Vacuum cleaners	LSEEW16
	Carpet sweepers	LSEEW17
	Other appliances for cleaning	LSEEW18
	Appliances used for sewing, knitting, weaving and other processing for textiles	LSEEW19
	Iron and other appliances for ironing, mangling and other care of clothing	LSEEW20
		· · · · · · · · · · · · · · · · · · ·

	Grinders, coffee machines and equipment for opening or sealing	
	containers or packages	LSEEW21
	Smoke detector	LSEEW22
	Heating Regulators	LSEEW23
	Thermostats	LSEEW24
	Automatic dispensers for hot drinks	LSEEW25
	Automatic dispensers for hot or cold bottles or cans	LSEEW26
	Automatic dispensers for solid products	LSEEW27
	Automatic dispensers for money	LSEEW28
	All appliances which deliver automatically all kinds of products	LSEEW29
	Indoor air purifier	LSEEW30
	Hair dryer	LSEEW31
	Electric shaver	LSEEW32
	Electric kettle	LSEEW33
	Electronic display panels/board/visual display unit	LSEEW34
	Electrical and Electronic Tools (With the exception of large-	
	Scale Stationary Industrial Tools)	
	Drills	EETW1
	Saws	EETW2
	Sewing Machines	EETW3
iv.	Equipment for turning, milling, sanding, grinding, sawing, cutting, shearing, drilling, making holes, punching, folding, bending or similar processing of wood, metal and other materials	EETW4
	Tools for riveting, nailing or screwing or removing rivets, nails, screws or similar uses	EETW5
	Tools for welding, soldering, or similar use	EETW6
	Equipment for spraying, spreading, dispersing or other treatment of liquid or gaseous substance by other means	EETW7
	Tools for mowing or other gardening activities	EETW8
	Toys, Leisure and Sports Equipment	
		TH CENAM
	Electrical trains or car racing sets	TLSEW1
	Electrical trains or car racing sets Hand-held video games consoles	TLSEW1 TLSEW2
v.	_	
v.	Hand-held video games consoles	TLSEW2
v.	Hand-held video games consoles Video games	TLSEW2 TLSEW3
v.	Hand-held video games consoles Video games Computers for biking, diving, running, rowing, etc.	TLSEW2 TLSEW3 TLSEW4

vi.	Medical Devices (With the Exception of All Implanted and	
VI.	Infected Products)	
	Radiotherapy equipment and accessories	MDW1
	Cardiology equipment and accessories	
	Dialysis equipment and accessories	MDW3
	Pulmonary ventilators and accessories	MDW4
	Nuclear Medicine Equipment and accessories	MDW5
	Laboratory equipment for in vitro diagnosis and accessories	MDW6
	Analysers and accessories	
	Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) Scanner, Computed Tomography (CT) Scanner, & Ultrasound Equipment along with accessories	MDW8
	Fertilization tests equipment and accessories	MDW9
	Other electric appliances/equipment/kits used for preventing, screening, detecting, monitoring, evaluating, reviewing, examining, investigating, probing, treating illness sickness, disease, disorder, affliction, infection, injury, trauma, abuse or disability including the Mobiles, Tablets or any other device with the features having the potential of sex selection and their accessories	MDW10
vii.	Laboratory Instruments	
	Gas analyser	LIW1
	Equipment having electrical and electronic components	LIW2

3.2.2 Resources embedded in e-waste

The electronic and electrical item consists of more than 1000 different substances which can fall under hazardous and non-hazardous categories. The resources embedded in e-waste are very diverse and contains products across different categories. As shown in the below picture, the major constituents are ferrous and non-ferrous metals, plastics, glass and plywood, printed circuit boards, concrete and ceramics, rubber and other items.

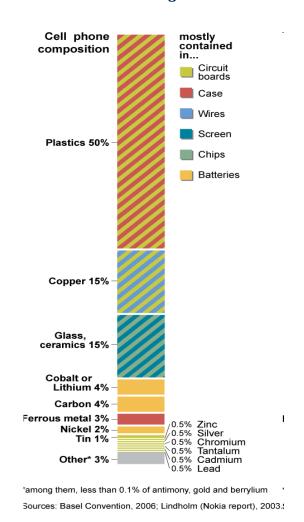


Figure 9 Resources embedded in e-waste

Source: UNEP

3.2.3 Hazards Substances in E-waste

Electronic waste is filled with a variety of toxic materials, which creates a serious risk for human health and the environment if they are released during processing, recycling or disposal. The major constituents are ferrous and non- ferrous metals, plastics, glass and plywood, printed circuit boards, concrete and ceramics, rubber and other items. Iron and steel constitute about 50% of the WEEE followed by plastics (21%), non-ferrous metals (13%) and other constituents. Non-ferrous metals consist of metals like copper, aluminium and precious metals like silver, gold, platinum, palladium etc. Other than these resources heavy metals and organic compounds are also found which contains in e-waste such as lead, cadmium, mercury, arsenic, beryllium, polyvinyl chloride (PVC), Brominated Flame Retardants (BFRs) and phthalates.

Table 7 Possible hazardous substances in WEEE/E-waste components

Component	Possible Hazardous Content	
Metal	-	
Motor/compressor	-	
Cooling	ODS	
Plastic	Phthalate plasticize, BFR	
Insulation	Insulation ODS in foam, Asbestos, refractory ceramic fiber	
Glass	-	
CRT	Lead, antimony, mercury, phosphors	
LCD	Mercury	
Rubber	Phthalate plasticizer, BFR	
Winning/electrical	Phthalate plasticizer, lead, BFR	
Concrete	-	
Transformer	-	
Circuit Board	Lead Beryllium, antimony, BFR	
Fluorescent Lamp	Mercury, Phosphorus, Flame retardants	
Incandescent Lamp	-	
Healing element	-	
Thermostat	Mercury	
BFR – containing plastic	BFRs	
Batteries	Lead, lithium, Cadmium, Mercury	
CFC, HCFC, HFC, HC	Ozone depleting substances	
External electric cables	BFRs, plasticizers	
Electrolyte capacitors (over L/D 25mm)	Glycol, other unknown substances	

Source: Central Pollution Control Board

Among the substances mentioned in the table 7, of most concern are the heavy metals such as lead, mercury, cadmium and chromium (VI), halogenated substances (e.g. CFCs), polychlorinated biphenyls, plastics and circuit boards that contain brominated flame retardants (BFRs). BFR can give rise to dioxins and furans during incineration. Other materials and substances that can be present are arsenic, asbestos, nickel and copper. These substances may act as a catalyst to increase the formation of dioxins during incineration.

Many of these pollutants are embedded in e-waste and are the constituents of complex materials, e.g. flame retardants in plastics, or are hidden inside electrical components, such as

mercury in switches, therefore these materials are difficult to isolate and separate from the other components. The material fusions with equipment's make the recycling of e-waste complicated and costly. Pollutants or toxins in E-waste are concentrated in circuit boards, plastics, batteries and LCDs (Liquid

crystal displays). To avoid serious environmental pollution and human exposure, adequate treatment of e-waste is crucial; particularly considering the huge amounts of e-waste we are producing globally.

Table 8 Pollutants and their occurrence in WEEE

Pollutant Occurrence Occurrence			
Tonutant			
Arsenic	Semiconductors, diodes, microwaves, LEDs (light emitting diodes), solar cells		
Barium	Electron tubes, filler for plastic and rubber, lubricant additives		
Brominated flame –proofing agent	Casing, circuit boards (plastic), cables and PVC cables		
Cadmium	Batteries, pigments solder, alloys, circuit boards, computer batteries, monitor cathode ray tubes (CRTs)		
Chrome	Dyes/pigments, switches, solar		
Cobalt	Insulators		
Copper	Conducted in cables, copper ribbons, coils, circuitry, pigment		
Lead rechargeable batteries, solar, transistors, lithium PVC (polyvinyl chloride) Stabilizers, lasers,LEDs, there elements, circuit boards			
Liquid crystal	Displays		
Lithium	Mobile telephones, photographic equipment, video equipment (batteries)		
Mercury	Components in copper machines and steam irons; batteries in clocks and pocket calculators, switches, LCDs		
Nickel	Alloys, batteries, relays, semiconductors, pigments		
PCBs (Polychlorinated biphenyls)	Transformers, capacitors, softening agent for paint, glue plastic		
Selenium	Photoelectric cells, pigments, photocopiers, fax machine		
Silver	Capacitors, switches (contacts), batteries, resistors		
Zinc	Steel, brass, alloys, disposable and rechargeable batteries, luminous substances.		

Source: Raiya Sabha Secretariat 2011

The major hazards associated with the harmful elements in the composition of WEEE are listed in the table 9. As shown in the table 9, toxic substances are found in components of the electronic or electrical products, which release highly toxic dioxins, furans and acid when burned to retrieve metals from the product. Many of these substances are toxic and carcinogenic. The materials are complex and have been found to be difficult to recycle in an environmentally sustainable manner even in developed countries.

Table 9 Hazards from E-waste substances

Metal	Danger
Lead	A neurotoxin that affects the kidneys and the reproductive system, high quantities can be fatal. It affects mental development in children. Mechanical breaking of CRTs (cathode ray tubes) and removing solder form microchips release lead as powder and fumes.
Plastic	Found in circuit boards, cabinets and cables, they contain carcinogens. BFRs or Brominated flame retardants give out carcinogenic Brominated dioxins andfurans Dioxins can harm reproductive and immune systems. Burning PVC, a component of plastics, also produces dioxins BFR can leach into landfills Even the dust on computer cabinets contains BFR.
Chromium	Used to protect metal housings and plates in a computer from corrosion, inhaling Hexavalent chromium or chromium 6 can damage liver and kidney and cause bronchial maladies including asthmatic bronchitis and lung cancer.
Mercury	Affect the central nervous system, kidneys and immune system. It impairs fetus growth and harms infants through mother's milk. It is released while breaking and burning of circuit boards and switches mercury in water bodies can form methylated mercury through microbial activity. Methylated mercury is toxic and can enter the human food chain through aquatic.
Beryllium	Found in switch boards and printed circuit boards. It is carcinogenic and causes lung diseases.
Cadmium	A carcinogen. Long-term exposure causes Itai-Itai disease, which causes severe pain in the joints and spine. It affects the kidneys and softens bones. Cadmium is released into the environment as powder while crushing and milling of plastics, CRTs and circuit boards. Cadmium may be released with dust, entering surface water and groundwater.
Acid	Sulphuric and hydrochloric acids are used to separate metals from circuit board's furnes contain chlorine and Sulphur dioxide, which cause respiratory problems. They are corrosive to the eye and skin.

E-waste typically contains complex combinations of materials and components down to microscopic levels. The wastes are broken down not just for recycling but for the recoverable materials such as plastic, iron, aluminum, copper and gold. However, since e waste also contains significant concentration of substances that are hazardous to human health and the environment, even a small amount of E-waste entering the residual waste will introduce relatively high number of heavy metals and halogenated substances. Such harmful substances leach into the surrounding soil, water and air during waste treatment or when they are dumped in landfills or left to lie around near it. Sooner or later, they would adversely affect human health and ecology.

Table 10 Typical pathways for the release of pollutants from e-waste

Heavy metals Dioxins and Furans Acids		
neavy metals	Dioxins and Lutans	neius
 Dust generated during mechanical treatment, for example, the dismantling and crushing of WEEE. Flue gas released during 	 Dioxins and furans are emitted during the thermal treatment of WEEE, for example during- 	 Released in the form of vapor when metals are released from compounds. May also get disturbed throughout the surrounding area in the
thermal treatment, for example, the release of metals from compounds during the incineration of plastic.	The combustion of cable insulation containing PVC in order to recycle copper wiring	following waysFactory air and dust being blown into the vicinity
Vaporization where in metals are released from compounds in an acid bath	The incineration of epoxy resin containing flame retardant from circuit boards in order to recycle the metal they contain	 Leaching through waste water and seepage Release of flue gas into the atmosphere as a result of open incineration of furnace combustion

Table 11 Constituents of E-Waste

E-Waste Source E-Waste Environmental Effects on Human				
E-waste source	Component	Hazard	Effects on Human	
CRTs (used in TVs, Monitors, ATM, Video Camera, etc.) Batteries, PBC cables, Paints	Lead, barium & other heavy metals	These metals leaching into the ground water and release of toxic phosphorus	Anemia, Renal Toxicity, Insomnia	
Batteries, Housing & Medical Equipment	Mercury	Air emissions as well as discharge into rivers of glass dust	Renal Toxicity, Muscle tumors, Mental retardation, Cerebral palsy	
Plastic from printers, keyboard, monitors, etc.	Plasticizer bisphenol-A (or BPA), as well DEHP and DBA, plastic compounds known as phthalates	Chlorinated plastics release harmful chemical into the surrounding water resources which cause serious harm to the species that drink this water.	Risk in developing heart problems, obesity, reproductive disease	
PVC & polymer, Paints inks, Electrical transformers & capacitors	Polychlorinated Biphenyls (PCBs)	Include extreme pollution from production, toxic chemical exposure during use, hazards from fires	Suppression of immune system; Damage to the liver, nervous and reproductive systems	

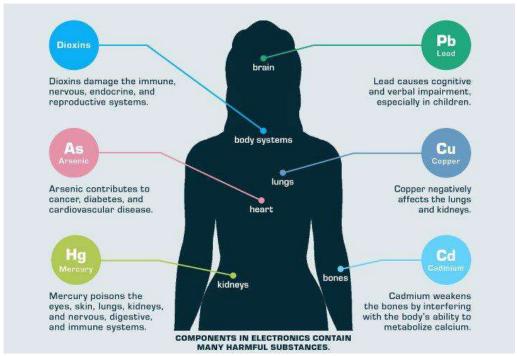


Figure 10 Adverse Impact of e-waste

3.3 Policies for E-Waste Management

3.3.1. Responsibilities of bulk consumer

Bulk consumers of electrical and electronic equipment listed in **Table 12** shall ensure that e-waste generated by them shall be handed over only to the registered producer, refurbished or recycler.

3.3.2. Formulation of a system

For channelization of e-waste from generation source to storage area until collected by authorized agency or GPCB registered e-waste recyclers/refurbishers or dismantlers. DPA shall organize e-waste collection drive once in a year at office and residencies by setting up e-waste collection booths.

The collection points/bins can be at designated places where e-waste can be collected from residential areas, office complexes, commercial complexes and educational institutions.

Mobile collection vans can be used for door-to-door collection of e-waste from and such vans shall be linked to collection booths

During the e-waste collection drive following information shall be communicated to the residents in colonies and office staff:

- Share information pertaining to e-waste collection booths like booth location, timings, etc.
- Toll free number for query resolution to be available during working hours (10 A.M. to 6 P.M.)
- Details of dealers, retailers, collection points/bins/pick up vans linked to collection booths for depositing of e-waste, if they are part of the take-back system.
- Details of any incentive scheme for consumers for returning of e- waste

Collection booth should have weighing equipment for weighing each delivery received by it and maintain a record in this regard.

Collection booths shall store e-waste products category wise.

3.3.3. Record keeping

Since the e-waste generated at Vadinar port and offices is sent to EDP store at AO, Gandhidham office, the concerned official at AO Gandhidham shall keep a record of below listed information to be furnished in Form 2 as per E-waste Management Rules, 2016.

- Name & Address: Producer /Collection Centre/Dismantler/Recycler/ Bulk consumer
- Date of Issue and Validity of Authorization

- Category, description & Quantity of e- waste handled/generated
- Category, description & Quantity of e- waste stored in storage area
- Category, description & Quantity of e- waste handed over to authorized collection center/registered recycler/ dismantler etc.
 - If e-waste is sent to refurbished: Name, address and contact details of the destination of refurbished materials
 - If e-waste is sent to dismantler/recycler or for disposal: Name, address and contact details of the destination (dismantler/recycler/ dismantling/ recycling or disposal facility)
- Category, description & Quantity of e- waste treated & disposed

3.3.4. Guideline for storage of e-waste

Every manufacturer, producer, refurbisher and recycler may store the e-waste for a period not exceeding **one hundred and eighty days (180)** and shall maintain a record of sale, transfer and storage of e-wastes and make these records available for inspection and the storage of the e-waste shall be done as per the applicable rules or guidelines for the time being in force:

Provided that the Central Pollution Control Board may extend the said period up to **three hundred and sixty-five days (365)** in case the e-waste needs to be specifically stored for development of a process for its recycling or reuse.

Storage of end-of-life products may be done in a manner which does not lead to breakage of these products and safe to workers handling such products.

The storage where refrigerator and air conditioners are also stored should have adequate facilities for managing leakage of compressor oils, coolant/refrigerant gases such as CFCs/HCFCs and mercury from end of life fluorescent and other mercury containing lamp etc. Spills involving broken fluorescent lamps, Oils spills should first be contained to prevent spread of the material to other areas. This may involve the use of dry sand, proprietary booms/absorbent pads, stabilizing chemicals etc. for subsequent transfer of hazardous waste to TSDFs.

During storage of e-waste care may be taken:

 To avoid damage to refrigerators and air-conditioner so as to prevent release of refrigerant gases such as CFC, HFS, HCFC etc. and to prevent spillage of oils (mineral or synthetic oil) and other emissions.

- To avoid damage to Cathode Ray Tube
- To avoid damage to fluorescent and other mercury containing lamps
- To avoid damage to equipment containing asbestos or ceramic fibers to avoid release of asbestos or ceramic fibers in the environment.

After collection of fluorescent and other mercury containing lamps, it should be sent only to a recycler or to a TSDF in case no recycler is available.

Loading, transportation, unloading and storage of E-Waste/ end of life products should be carried out in such a way that its end use such as re-use after refurbishing or recycling or recovery is unaffected.

The storage area should have fire protection system in place.

The storage capacity of the collection/storage area should be in accordance with volume of operations (weight and numbers) and category of E-waste. Space needed for storage of different category of e-waste is given in table 12 below:

Table 12 Space needed for storage

Sr. no	Categories of electrical and electronic equipment	EEE Code	Storage area requirement in m³/tonne
1.	Centralized data processing: Mainframe Minicomputer Personal Computing: Personal Computers (Central Processing Unit with input and output devices) Laptop Computers (Central Processing Unit with input and output devices) Notebook Personal/Notepad Computers Printers including cartridges	ITEW1 to ITEW6	4.0
2.	Monitors (CRT)	Monitors (CRT)	5.0
3.	Copying equipment Electrical and electronic type writers, User terminals and systems, Facsimile	ITEW7 to ITEW10	5.0
4.	Telex Telephones Pay telephones Cordless telephones	ITEW11 to ITEW14	3.0
5.	Cellular telephones Feature phones Smart phones	ITEW15	1.0
6.	Answering systems	ITEW16	3.0
7.	Television sets (including sets based on (Liquid Crystal Display and Light Emitting Diodetechnology)	CEEW1	6.5
8.	Refrigerator	CEEW2-	10.0

9.	Washing Machine	CEEW3	7.5
10.	Air-conditioners excluding centralized air conditioning plants	CEEW4	6.0
11.	Fluorescent and other Mercury containing lamps	CEEW5	1.0

3.3.5. Questions to Ask

What questions should you ask the manufacturers when you do bulk procurement of electrical and electronic goods? What conditions can you introduce in your tender specification to enable easy disposal of e- waste?

The questions that can be asked from the manufacturers and conditions that can be introduced in tender are:

- 1. Ask whether 'Extended Producer Responsibility Authorization' is available with the manufacturer. It means a permission given by Central Pollution Control Board to a producer, for managing Extended Producer Responsibility with implementation plans and targets outlined in such authorization including detail of Producer Responsibility Organization and e-waste exchange, if applicable. This can be a mandatory condition in tender.
- 2. Ask if manufacturer has submitted the 'Extended Producer Responsibility Plan' means a plan submitted by a producer to Central Pollution Control Board, at the time of applying for Extended Producer Responsibility Authorization in which a producer shall provide details of e-waste channelization system for targeted collection including detail of Producer Responsibility Organization and e-waste exchange, if applicable. This can be a mandatory condition in tender.
- 3. Ask if manufacturer has 'facility' or any location wherein the process incidental to the collection, reception, storage, segregation, refurbishing, dismantling, recycling, treatment and disposal of e-waste are carried out. This can be a mandatory condition in tender.
- 4. Ask if the manufacturer has set up 'deposit refund scheme' means a scheme whereby the producer charges an additional amount as a deposit at the time of sale of the electrical and electronic equipment and returns it to the consumer along with interest when the end-of life electrical and electronic equipment is returned. This can be a mandatory condition in tender.
- 5. Ask regarding tie up with dismantlers and recyclers. This can be a mandatory condition

in tender.

What questions should you ask the e-waste collector/ dismantler/ recycler when you dispose of your e-waste?

The following questions can be asked from the e-waste collector/dismantler/recycler:

- 1. Does the organization have authorization from the CPCB or SPCB for collecting, dismantling or recycling the e-waste.
- 2. Does it have safe working conditions, tools and equipment to ensure safe treatment and disposal of e-waste.

How can you organize a collection drive for e- waste in your organization? Which agencies can support you in organizing such a collection and awareness drive? How to set up a collection centre?

A collection drive for e-waste can be organized by contacting manufacturer or dealers who would then refer to the authorized collector, dismantler and recycler of e-waste. A record of each item collected in the drive should be maintained and provided to the collector, dismantler and recycler. The local pollution control board officer can be informed about the drive and the e-waste collected during the drive so that they can audit if safe recycling of the collected e-waste has been conducted.

All manufacturers, dealers and government's environment department could support collection and awareness drive. In addition, national, international and local environmental NGOs can be partners for such a drive.

Setting up a collection centre for e-waste:

As per the e-waste management and handling rules to set up a collection center there is a need to apply for authorization from the State Pollution Control Board or Pollution Control Committee as per FORM – 1(a). There is a need to have agreements with producers who are willing to get the e-waste covered under their EPR collected at your center as well as with dismantlers and recyclers who will be taking the e-waste from the collection center for further processing. It should be ensured that systems for record keeping and training for safe handling and storage of e-waste is provided to the people who will be managing the collection center.

Responsibilities of Collection Centres include:

1. Ensure that the facilities are in accordance with the standards or guidelines prescribed by the Central Pollution Control Board from time to time;

- 2. The e-waste collected by them is stored in a secured manner till it is sent to registered dismantler or recycler as the case may be;
- 3. Ensure that no damage is caused to the environment during storage and transportation of ewaste;
- 4. Maintain records of the e-waste handled in Form 2 and make such records available for scrutiny by the State Pollution Control Board or the Pollution Control Committee concerned.

3.4. Battery waste

3.4.1. What is a Battery?

Battery Waste Management Rules, 2022 defines Battery as a new or refurbished cell and/or Battery and/or their component, including accumulator, which is any source of electrical energy generated by direct conversion of chemical energy and includes disposable primary and/or secondary battery.

Many different types and shapes of batteries can occur in IT appliances. Small batteries (i.e. button cells) are used to cover the permanent low energy supply for alarm and computer system (clock, memory backup, etc.). In contrast, bigger batteries (e.g. laptop batteries) allow to run the whole device. Most modern devices do not need the small batteries anymore because the permanent energy demand for the system is reduced on the one hand. On the other hand, the remaining energy demand can be covered by the capacitors.

3.4.2. Responsibilities of User

Under Battery Waste Management Rules, 2022, DPA shall be responsible for the following:

- Ensure that the Waste Battery is collected separately from other waste streams especially from mixed waste and domestic waste streams
- Ensure the disposal of waste batteries in an environment friendly manner by handing it over to an entity engaged in its collection or refurbishment or recycling or under EPR to the entity from which batteries are purchased.

3.4.3. Toxic substances in Batteries

Heavy metals such as cadmium (Cd), nickel, (Ni), and to some extent zinc (Zn). Organic solvents, etc. are some toxins present in batteries.

3.4.4. Localization in appliance

Batteries are very diverse in terms of characteristics, composition, form, size, colour, etc. Almost every IT-equipment contain at least one battery. Rechargeable accumulators can be found in mobile phones, laptops, toothbrush or electrical razors. Appliances like torches, portable CD players, etc. can be operated using rechargeable and non-rechargeable batteries. Small (button) cell batteries are often used as a backup battery to the main battery; it provides an independent energy supply for processors, timers, security backup, etc. in computers. It is commonly located on the PWB.

3.4.5. Handling Aspect

Caution during dismantling

NEVER CRUSH OR OPEN A BATTERY

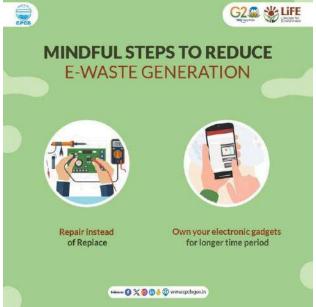
There is usually no difficulty or risk to separate the batteries from their support if they are in good condition. Use gloves, and wash hands and throw the gloves away after contact with substances from defective and leaking batteries.

3.4.6. Requirement for storage and transport

Avoid long time storing. Batteries are subject to corrosion and cell rupture, which could release reactive hazardous substances (heavy metal oxide, organic solvents, sulphuric acid). Lithium-ion batteries can easily rupture, ignite, or explode when exposed to high temperatures, or direct sunlight.

Avoid fire risk and contact with heat sources. All batteries must be stored in acid-resistant barrels. They should be stored in a dry and sheltered place.

Batteries should be treated in an adequate plant for recovery or disposal. In any case, they should not be incinerated in an open fire or with municipal waste.


Training Manual: E-waste

Awareness Posters

Chapter-4
Bio-Medical Waste

4.1. Introduction

The term 'Bio-medical waste' includes any waste which is generated during the diagnosis, treatment or immunization of human beings or animals or research activities pertaining thereon, or in the production or testing of biologicals or in health camps, including the categories mentioned in Schedule 1 of the Biomedical Waste Management Rules, 2016. In addition, biomedical waste includes similar kind of waste that are generated at household level, due to health care offered at household level e.g., dialysis at home, self-administration of insulin injections and restorative care.

General waste or non-hazardous waste constitutes to 75 to 90% of waste generated at health care facilities. Administrative, housekeeping, packaging, kitchen and maintenance activities of the facilities contribute to the general waste or non-hazardous waste. The remaining 10 - 25% of waste is considered hazardous and can pose threat to human and environmental health.

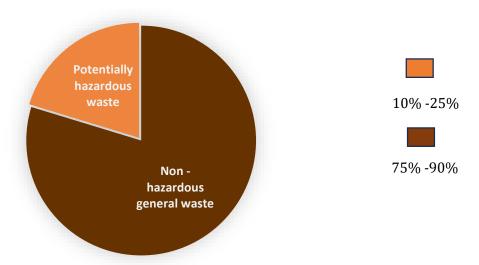


Figure 11 Showing Proportion of Infectious and Hazardous Waste

Bio-medical waste and its management is a comprehensive issue, encompassing occupational health and safety, environmental health and safety, and injury and incident prevention.

Training healthcare personnel to adopt 'Good Work Practices' will go a long way in Promoting the safe management of bio-medical waste so that the environment is protected

4.2. Classification of Bio-Medical Waste

Table 13 Classification of Bio-Medical Waste as Per BMW Rules 2016

Colour Coding	Type Of Waste	Examples			
	. Human anatomical waste	Human tissues, organs, body parts, fetus			
	. Animal anatomical waste	Experimental animal carcasses			
	. Soiled waste	Cotton contaminated with blood and other body fluids, plaster casts			
	. Expired or discarded medicines	Discarded tablets and capsules			
	. Chemical waste	Used or discarded disinfectants, chemicals used in biologicals			
Yellow	Chemical liquid waste	Laboratory reagents, X ray film developer, disinfectants, floor washings, formalin			
	. Discarded linen, mattresses, beddings contaminated with blood or body fluid	Bedsheets, blankets, mattresses contaminated with blood or body fluids			
	Microbiology, biotechnology and other clinical laboratory waste	Culture plates, blood bags, vaccines			
Red	Contaminated waste (recyclable)	Plastic tubing, urine bags, vacutainers, gloves,catheters, Ryle's tube			
White	Waste sharps including metals	Hypodermic needles, auto-disabled syringes, syringes with fixed needles, scalpels, knives, blades, lumbar puncture needles and intravenous needles.			
Blue	Glassware	Used glass bottles			
Diue	Metallic body implants	Body implants, Plates and screws			

4.3. Hazards of Improper Bio-Medical Waste Management

Who are at risk?

Individuals who would be at risk would include anyone working in proximity with biomedical waste, that would be,

Generators - all individuals working in health care facilities who generate biomedical waste **Handlers -** who handle biomedical waste at health care facilities or at treatment and disposal facilities

Exposed group - who are exposed to hazardous biomedical waste due to consequence of careless actions of generators and handlers.

Main groups at risk are:

- Nurses, doctors, allied health care personnel (laboratory technicians)
- Patients receiving care either at hospital or at home

- visitors to health care facilities
- General public if biomedical waste is managed improperly
- Personnel in support services like; cleaners, laundry services,
- Personnel working in waste treatment/management or disposal facilities
- Personnel involved in transporting biomedical waste.

Table 14 Hazards From Various Categories of Bio-Medical Waste

_	Table 14 Hazards From Various Categories of Bio-Medical Waste								
Sr. No	Type Of Waste	Hazard from the Waste	Impact from the Waste						
1.	Infectious waste and sharps	CutsAbrasionsInfections	Percutaneous infections with Hepatitis B, Hepatitis C, HIV						
2.	Chemical and pharmaceutical waste	 Intoxication by acute or Chronic exposure Physical injury Chemical burns Injury to skin Injury to eye Injury to mucous membrane of airways Respiratory disease Skin disease 	 Harmful to wildlife Evolution of antibiotic resistance in bacterial. The chemicals can also cause contamination of water bodies and soil. When large quantities of Disinfectant are released into sewers, they can bring down the efficiency of the sewage treatment plant. 						
3.	Genotoxic waste	IrritantDizzinessNauseaHeadacheDermatitis	Spontaneous abortions						
4.	Radioactive waste	HeadacheDizzinessVomitingFatal	Can expose the public as well as healthcare workers to the risk of loss of fetus in the first three months of pregnancy death						
5.	Healthcare waste- treatment methods	 Flue gases from improperly functioning waste incinerators Physical injuries Leachate release into water Burning leads to heavy metal release 	 Flue gases released Water pollution Air pollution Release of pathogens and toxic pollutants into the environment. 						
6.	Public sensitivity	Sensitivity to vision of anatomical parts	Disposal of anatomical waste inappropriately such as dumping in a landfill is unacceptable.						

Figure 12 Hazards of Healthcare Waste

4.4. Training Manual for Bio-Medical Waste (BMW)

First five steps: Segregation, Collection, Pre-treatment, Intramural Transportation and Storage is the exclusive responsibility of Health Care Facility. To ascertain a systematic implementation of these steps following is recommended for identified target audiences.

4.4.1. Target audience: Nursing and BMW handling staff

• **Mandatory use of PPEs**: The Nursing and BMW staff at DPA HCFs shall make use of below listed PPEs while dealing with or handling BMW.

Personal Protective Equipment (PPE)includes:

- Heavy Duty Gloves (Workman's Gloves)
- Gum Boots or safety shoes for waste collectors
- Face mask
- Head Cap
- Splash Proof Gowns or aprons etc.
- Disposal gloves for waste handlers

Follow Good practices for Segregation of BMW:

Bio- medical waste generated from a HCF is required to be segregated at the point of generation as per the color coding stipulated under Schedule-I of BMWM Rules, 2016 presented in Table 15.

Collection of BMW:

- Bio-medical waste should be collected on daily basis from each ward of the hospital at a fixed interval of time depending upon the waste quantum generated in each ward.
- In an IPD ward where the morning routine begins with the changing of dressings, infectious waste could be collected mid-morning to prevent soiled bandages remaining in the area for longer than necessary
- General waste collection, must be done immediately after the visiting hours of the HCFs, as visitors coming to facility generate a lot of general waste and in order to avoid accumulation of such general waste in the HCF. The collection timings must enable the HCF to minimize or nullify the use of interim storage of waste in the departments

• The collection timeline should be such that the disposal of human anatomical waste, animal anatomical waste, soiled waste and biotechnology waste is done within 48 hours of its generation.

Packaging:

- Bio-medical waste bags and sharps containers should be filled to no more than three quarters full.
- Plastic bags should be tied or sealed with a plastic tag or tie and not stapled.
- Replacement bags or containers should be readily available at each waste-collection location so that full ones could immediately be replaced.

Table 15 Color coding and type of containers for BMW

	Category	Type of waste	Colour & Type of storage container		
No.					
		Human Anatomical	Yellow coloured non-chlorinated Plastic		
	Yellow	Waste	Bags		
		Animal Anatomical Waste			
		Soiled Waste	STEPHEN STEPHE		
1.		Discarded or Expired Medicine	BIOLAZIANO .		
		Microbiology,			
		Biotechnology and other			
		clinical laboratory	Chemical waste (yellow-e)comprising of		
		waste	un-used, residual or expired liquid		
		Chemical Waste	chemicals including spent hypo of X-Ray,		
		Chemical Liquid Waste	should be stored in yellow container		
	Red		Red Colored Non-Chlorinated Plastic Bags		
			(having thickness equal to more than 50 μ)		
			and Containers		
2.		Contaminated Waste (Recyclable)	MIG HIGHER BASE		
3.	White	Waste Sharps including metals	White Coloured translucent, puncture proof, leak proof, Temper Proof containers		

4.	Blue	Glassware Metallic Body Implants	Puncture proof, leak proof boxes or containers with blue colored marking Cardboard Box with Blue marking

Labelling

All the bags/ containers/ bins used for collection and storage of bio-medical waste, must be labelled with the Symbol of Bio Hazard or Cytotoxic Hazard as the case may be in accordance with the BMWM Rules, 2016.



Cyto-Toxic Label

Bio-medical waste bags / containers are required to be provided with bar code labels in accordance with CPCB guidelines for "Guidelines for barcode System for Effective Management of Biomedical Waste".

Intramural transportation:

In house transportation of BMW from wards to central waste collection room, within the premises of the hospital must be done in closed trolleys / containers preferably fitted with wheels for easy maneuverability.

- Patient trolleys must not be used for BMW transportation.
- Size of such waste transport trolleys should be as per the volume of waste generated from the HCFs.

The route selection for intramural transportation should be in accordance with the below listed points:

- Transportation does not occur through high-risk areas.
- Supplies and waste are transported through separate routes.
- Waste is not transported through areas having high traffic of patients and visitors.
- Central Waste collection area can be easy accessed through this route.
- Safe transportation of waste is undertaken to avoid spillage and scattering of waste.

Storage:

- Exhaust fans should be provided in the waste collection room for ventilation.
- It is to be ensured by the health care facility that such central storage room is safety inspected for potential fire hazard and based on such inspection preventive measure has to be taken by the health care facility like installation of fire extinguisher, smoke detector etc.
- There should also be provision for water supply adjacent to central waste storage area for cleaning and washing of this station and the containers. The drainage from the storage and washing area should be routed to the Effluent Treatment Plant.
- Sign boards indicating relevant details such as contact person and the telephone number should be provided.
- The entrance of this station must be labelled with "Entry for Authorized Personal Only".

4.5. Training manual for HCF Administration

Following criteria pertaining to BMW management shall be put in place by the administration of HCFs at Gopalpuri, Gandhidham, Port area, clinic in Adipur and HCF in Vadinar. The nursing and other BMW management staff shall be educated and trained in systematic implementation of BMW management system.

Training of BMW staff and its record keeping:

As per Bio Medical Waste Management Rules, 2016, it is mandatory for all the employee of the healthcare facility to be trained on handling of biomedical waste management and handling.

- The HCF administration shall formulate a Training Plan and a Training calendar comprising of two parts:
- Induction training to new joinees
- Annual training to Nursing and BMW management staff.
- The 'Guidelines for Management of Healthcare Waste as per Biomedical Waste Management Rules, 2016", can be used as a training manual. The guidelines have been attached at Annexure X
- The HCF administration shall maintain training records and furnish them to GPCB on or before 30th June, every FY. The Training records shall mandatorily include following details.
- Total Number of trainings conducted along with the date of imparting the training
- Total number of participants of each training
- Attendance Record
- Total Number of staff trained on BMW Handling
- Total number of staff trained on BMW handling at the time of Induction
- Total number of staff, not undergone any sought of training on BMW Handling

Regulatory requirements

i. Authorization as mandated under BMW rules, 2016 and its timely renewal

The DPA HCFs at Kandla and Vadinar have obtained the authorization from GPCB for operation of HCFs at Kandla, Vadinar and Adipur. Its amendment and renewal from time to time is to be taken under consideration. Also, if any Hospital is converted to a dispensary, its amendment is to be done as per defined procedure under BMW rules.

ii. Information requirements for making a fresh application for amendment

- Particulars of Health Care Facility: Name, Address, Contact Details etc.
- Validity of Consents under Water (Prevention and Control of Pollution) Act, 1974 and Air (Prevention and Control of Pollution) Act, 1981 (in case of bedded HCFs)
- Detail of HCF: Number of beds, Average number of patients treated per month
- Category wise Quantity of Waste Generated or disposed by the health care facility

• Detail of any treatment facility available in the premises of health care facility

iii. Information requirements for making a renewal application

- Name of the Applicant
- Name of the health care facility (HCF)
- Address for correspondence
- Activity for which authorization is sought (Generation, segregation, Collection, Storage packaging Reception Transportation Treatment or processing or conversion Recycling Disposal or destruction use offering for sale, transfer Any other form of handling)
- Previous authorization number and date:
- Address of the health care facility (HCF) mentioning GPS coordinates of the facility
- Number of beds of HCF
- Number of patients treated per month by HCF
- Quantity of Biomedical waste handled, treated or disposed as per below format

Table 16 Details of waste

Type of Waste Quant

Category	Type of Waste	Quantity Generated kg/day	Method of Treatment and Disposal
	(a) Human Anatomical Waste:		
	(b)Animal Anatomical Waste:		
	(c) Soiled Waste:	1	
	(d) Expired or Discarded Medicines:		
	(e) Chemical Solid Waste:		
Yellow	(f) Chemical Liquid Waste:	1	
	(g) Discarded linen, mattresses,		
	beddings contaminated with blood		
	or body fluid.		
	(h) Microbiology, Biotechnology and		
	Other clinical laboratory waste:		
Red	Contaminated Waste (Recyclable)		
White	Waste sharps including Metals:		
(Translucent)	Trace sharps meraanig Fredais.		
_,	Glassware:		
Blue	Metallic Body Implants		

- Brief description of arrangements for handling of biomedical waste
- i. Mode of transportation (if any) of bio-medical waste:
- ii. Details of treatment equipment as per table 17

Table 17 Details of treatment equipment

Treatment equipment	No. of units	Capacity of unit
Incinerators		
Needle tip cutter		
Plasma pyrolysis		
Microwave:		
Autoclaves:		
Hydroclave:		
Shredder:		
Sharps encapsulation or concrete pit:		
Deep burial pits:		
Chemical disinfection		
Any other treatment equipment		

• Details of directions or notices or legal actions if any during the period of earlier authorization

iv. Reporting to Gujarat Pollution Control Board

Annual Reporting as per the Form IV, BMWM, Rules, 2016

HCF is required to submit the Annual Report to the GPCB on or before 30th June every year, for the period from January to December of the preceding calendar year.

- The information list for filling Annual return is detailed below:
- Particulars of HCF
- Quantity of waste generated in kg/annum
- Details of storage, treatment, transportation, processing and disposal facility
- Details of training conducted on Bio Medical Waste Management
- Details of accident Occurred
- Details Emission and Effluent testing
- Training imparted to the Health Care Workers involved in handling of bio-medical waste
- Minutes of Meeting of BMW Management Committee
- Details of Accident Occurred during one year, along with the remedial steps taken
- Records of testing of Emission of DG Sets / boilers
- Records of Effluent generated and its characteristics from health care facility

- Records of pre-treatment of specified waste categories Record of recyclable waste handed over to the authorized recycler in kg/annum (where captive treatment facility is allowed by the GP)
- Records of health status of the Health Care Workers involved in handling of bio- medical waste
- Records of immunization of Health Care Workers involved in handling of bio- medical waste
- Each healthcare facility must also ensure that the annual report submitted to the GPCB is also published in its website

Table 18 Format for Bio Medical Waste Register/Record

	NAME & ADDRESS OF HEALTH CARE FACILITY									
	BIO MEDICAL WASTE REGISTER/ RECORD FORMAT									
Sr.no.	Date of	Quanti	Quantity of BMW Generated (in					Time	Name &	Name &
	Generation	KG) Color Coding and Category				collection	(in	Signature	Signature	
							by Waste	AM/	of Waste	of HCF
							Collection	PM)	Collector	Staff
							Agency			
		Yellow	Yellow Red White Blue Total							
		(1)	(2)	(3)	(4)					
1.										
2.										
3.										
4.										
5.										

Format for Accident reporting as per Form I BMWM, Rules, 2016

HCF shall report major accidents including accidents caused by fire hazards, blasts during handling of biomedical waste and the remedial action taken and the records relevant thereto. In the manner described below

The list of information required for filing Accident reporting form is as below:

- 1. Date and time of accident
- 2. Type of Accident
- 3. Sequence of events leading to accident

Training Manual: Bio-Medical Waste

- 4. Has the Authority been informed immediately
- 5. The type of waste involved in accident
- 6. Assessment of the effects of the accidents on human health and the environment:
- 7. Emergency measures taken
- 8. Steps taken to alleviate the effects of accidents
- 9. Steps taken to prevent the recurrence of such an accident
- 10. Does facility have an Emergency Control policy? If yes give details:

Awareness Posters

Segregate general waste from infectious biomedical waste

Mixing of both can lead to greater spread of infections and epidemics

Segregate the hospital waste in

designated colored dustbins

Metal sharps

Blue bin

Recyclable General waste

Contaminated plastic waste

Black bin

Hazardous and Other waste

Green bin

Biodegradable General waste

Blue bin

Glass waste and metallic implants

Yellow bin

Anatomical waste, chemical waste, soiled waste, chemotherapy waste, discarded linen & medicines and laboratory waste

Chapter-5
Construction and Demolition (C&D) Waste

5.1. Introduction

5.1.1 Objective

The objective of the training manual is to educate and inform the DPA on the severity of problem caused by Construction and Demolition (C&D) waste on the environment and serve as a reference manual providing detailed information towards management of C&D waste in an environmentally sustainable manner. It is intended that the manual be used for the purpose of training various DPA staff involved with civil construction and management of C&D waste. The sections of the training manual can be formed as training modules for providing necessary knowledge that an individual DPA staff will require to effectively and efficiently perform their respective duties with regards to implementation of C & D waste management rules (2016).

5.2. Background on Construction and Demolition (C&D) waste

5.2.1 Objective of the section

Management of Construction and Demolition waste is a relatively new term in India and so is the need for it. The urbanizing trend leading to lack of availability of land and resource shortage in construction sector has led to the notice, importance of C&D waste management in India which has brought about policy changes which specifies that all local governing bodies manage their C&D waste and also all polluters are responsible for the waste they generate.

Upon successful completion of the session, the participants should:

- Have an insight on what is C&D waste and what is it composed of
- Knowledge on estimation of C&D waste quantities in Indian cities
- Understanding on the flow of C&D waste in India
- What C&D waste can be recycled / reused for?
- Be familiar with the process of collection and transport of C&D waste

5.2.2 What is C&D waste?

Construction and demolition (C&D) waste is generated from construction, renovation, repair, and demolition of houses, large building structures, roads, bridges and dams.

C&D waste is made up of:

- Concrete
- Soil
- Steel, Wood and Plastics

Other materials – bricks and mortar

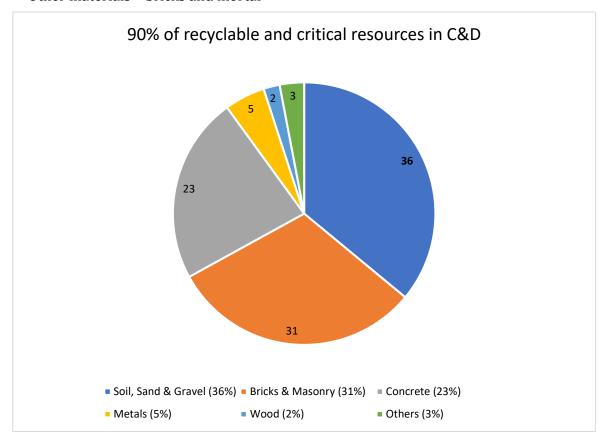


Figure 13 Typical composition of C&D waste (Source: TIFAC,2001)

Figure 14 Components of C&D waste

5.2.3 Why does C&D waste need to be managed?

The importance of C&D waste management is not lost among the stakeholders especially in large cities, where impacts have already been felt. But still effective management of C&D waste is hampered by several challenges and implementation is far from ideal.

The improperly managed and waste heaps impact the system and the environment in multiple aspects which could broadly be classified into the following aspects

Social

- Huge heaps of C&D waste on footpaths, carriage ways, alleys is a common scene in Indian cities turning the surrounding unaesthetic.
- The C&D debris usually could not be removed by normal street sweeping or household waste collection staff as they usually do not carry the equipment neither enough capacity in the collection vehicle nor enough manpower.
- Usually, the polluters tend to dump other municipal solid waste on the heap making it a mix of waste further creating an unsanitary situation.
- The C&D waste is also stealthily dumped in open drains, water channels, and even riverbeds. The debris clog the drains and create water logging. Reports of water logging of drains turning to source for spread of epidemics is common in India
- Clearing drain silts is a major challenging activity for local governing bodies and a major percentage is consisted of by C&D.
- The C&D waste also consists of several kinds of materials which include sharps, broken glasses, boulders, broken wooden logs, rusted metal, broken ceramics etc. which create a hazardous environment when dumped on unfenced open places.

Figure 15 Unauthorized Dumping

Environmental

- C&D waste is also a source of environmental pollution: The C&D debris over course of time forms fine dust creating air pollution, and reducing visibility.
- The leachate and fine chemical particles degrade the soil leading to land pollution and in addition materials like paints, oil and asbestos sheets are common components of C&D waste which are bio-hazardous in nature having potential to endanger health of workers handling the waste, civilians and any living organism
- Formation of silt deposits when dumped in wetlands and water bodies damaging the water ecosystem

Economic

- C&D waste usually gets mixed up with other municipal solid waste also during the process of transfer or at the collection site.
- C&D waste is very difficult to segregate. Separate labor has to be employed for manual segregation or it has to be performed using earth moving machine, in addition the processing efficiency also get reduced due to the presence of C&D waste which is mostly inert.
- The huge mass and volume of C&D waste results in occupying a large volume oflandfills and dump-yards resulting in governing bodies to find alternate space and creation of more landfills, again leading to economic inefficiency in the system.

Figure 16 Mixing with municipal solid waste

Resource shortage - India is witnessing a boom in construction industry due to the urbanization which leads to over exploitation of primary resource to match the demands. For instance, almost 100% in case of cementand bricks, 40-60% of steel, 85% of paint and 70% ofglass produced in India goes into the construction sector. The anticipated growth of the sector in the near future exerts added pressure on limited stocks

Secondary Raw Material

A secondary raw material can be raw material waste from another industry or an alternate building material available in nature that can be used in place of critical primary resources. The material could partially or completely be replaced in a product

of resources especially sand, soil, stone and limestone which have been identified as most critical resources. Therefore, use of secondary materials needs to be promoted to supplement the use of primary materials and recycled C&D waste is one of the best available option available as secondary raw material.

5.2.4 C&D waste management Rules in India

The Ministry for Environment and Forests notified Construction & Demolition waste management rules in 2016 to regulate the handling of C&D waste being generated. According to the new rules, the various stakeholders involved in C&D waste management have been assigned a specific role to be played in the process. Salient features of Construction & Demolition Waste Management Rules, 2016 are covered in detail as separate chapters.

5.2.5 How to implement a proper C&D waste management system?

A cradle to grave approach has to be adopted for proper management of C&D waste according to the national standards (C&D Waste Management Rules, 2016) where a properly implemented system exists. The system should contain proper collection of segregated C&D waste from the polluter, proper transportation of waste, storage of waste occurs at designated transfer stations or collection points followed by proper processing of waste into recycled or reusable products that have market value and where minimal rejects are produced which get deposited in designated landfills. A properly implemented management system also needs to contain proper quantification and classification system for C&D waste at different stages of handling and a properly implemented monitoring system with a neat documentation process.

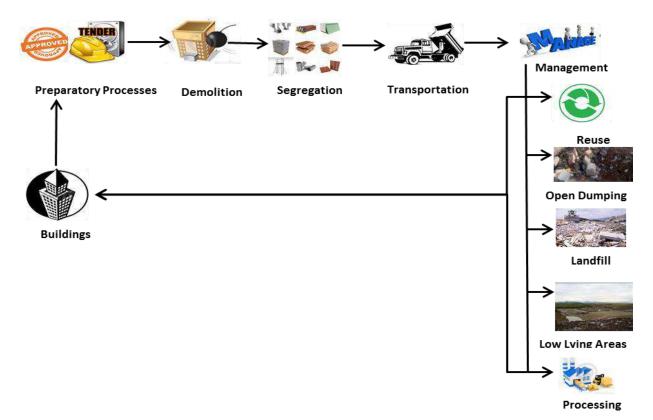


Figure 17 Schematic of current C&D Waste Management Processes in India

5.2.6 What can C&D waste be recycled / reused for?

C&D waste could be recycled and reused for multiple purposes depending on the composition and characteristics of the waste. The major applications of C&D waste which is practiced is listed below:

- Granular Sub Base (GSB) Crushed C&D waste could be used as GSB layer for road constructions, regardless of the type of construction. The granular sub-base layer is formed by piling and compacting C&D aggregates of different sizes one over the other directly below the pavement surface. This acts as the load bearing and strengthening component of the pavement structure, in addition it provides drainage for the pavement structure and protects the structure from frost.
- Recycled Concrete Aggregates (RCA) Concrete waste could be recycled to make aggregates of different standard sizes to replace natural aggregates in construction processes. According to Indian standards RCA could be used in any kind of structural and non-structural applications
- Recycled Aggregates (RA) Crushed aggregates of standard size made from a mix of different C&D waste materials is termed as Recycled Aggregates. RA could be used for partial replacement of natural aggregates for construction of non-load bearing structures.

According to Indian standards, it could replace 20% in plain cement concrete and upto 30% replacement in road construction but only if backed up by proven laboratory test results. RA could also be used for construction of prefabricated molded structures like paver blocks, kerb stones, concrete pots and RCC Sculptures.

Table 19 C&D waste and its potential use

Material	Process	End Use
Plain Concrete	Crushed	Aggregate
Fresh Concrete	Washed to removecement & recover aggregate	Aggregate
Reinforced Concrete	Crushed & Steel bars removed Steel recycled	Crushed Concrete reused as aggregate
Brick	Cleaned & crushed	Aggregate & Filling material

- Manufactured Sand (M-Sand) Manufactured sand is also produced by crushing of C&D waste, but is much finer materials which could replace natural sand in construction activities of non-load bearing structures. According to Indian standards only materials of sieve size between 0.075mm 4.750mm is considered classified as M-sand and much finer particles are classified as dust particles, suitable only for daily cover for MSW.
- Backfilling The most common reuse practice for C&D waste in India is as a backfilling material. The C&D was as such can be dumped in pits, trenches etc and compacted for backfilling or used to increase elevation or to make top layer of surface even for construction
- Reusing Materials of reuse value like wood, unbroken bricks and ceramics are being
 used and could be used in secondary market for construction of temporary structures or
 if treated properly could be used for permanent structures as well
- Other applications C&D waste is also applicable in other minor applications like carrier material in preparing fertilizers, filler material in roofing constructions, wall decorative chips etc.

Table 20 Demand for soil and sand and potential generation from C&D waste

· · · · · · · · · · · · · · · · · · ·			
Soil	Stone (Aggregates)		
Demand for soil in brick making - 884	Demand for stone as coarse aggregates in concrete – 1.1 billion tons/annum		
million tons/annum	Demand for stone as coarse aggregates inroads - 5 million tons/annum		
Soil waste generated from C&D waste - 213 million tons/annum	Aggregates generated from C&D waste - 254 million tons		

5.2.7 Importance of Recycling of C&D Waste

- a. Re-use and recycling 'wastes' has been promoted in all the waste rules.
- b. With the increasing demand for built spaces and scarcity of land, a trend of redevelopment projects is expected. With increased urbanization and increased housing demands, there will be a shortage of aggregates to the extent of 55,000 million cu.m in housing sector, whereas the road sector requires an additional 750 million cu.m. of aggregates. This emphasizes the need of C & D waste management in India. The cost of construction materials is increasing enormously. In India, the cost of cement during 1995 was Rs. 125/kg and in 2012 the price increased to Rs. 330/bag. In case of bricks, the price was Rs. 0.66 per brick in 1995 and the present rate is Rs. 6 per brick in 2012. With the environmental hazards caused by excessive and illegal extraction of river sand, the mining of river sand was banned since April 1, 2012 (Ref. Report (May 2008) report on practices in C & D waste management in some Asian (includes India) by AIT Thailand).
- c. Recycling of C & D waste is important as it helps to reduce the dependence on natural resources and eliminates adverse environmental impacts ex. mining which is energy intensive activity. Recycling of C & D wastes has the additional advantage of controlling the quantum of C & D waste destined for disposal at landfills besides reducing transportation costs.
- d. When opportunities for reuse or salvage are exhausted, recycling is the next level. C & D waste materials that can be recycled include acoustical ceiling tiles, asphalt, asphalt shingles, carpets, concrete, drywall, fluorescent lights, land clearing debris (vegetation, stumpage, dirt), metals and metal alloys, structural steel, plastic film (sheeting, packaging), glass, wood etc.
- e. The list of reuse and salvage materials include appliances, bathroom fixtures, bricks, blocks, masonry stone, structural steel, cabinets, carpeting, ceiling tiles, timber and

timber based boards, door and window frames and shutters, flooring tiles, stone tiles/platforms, insulation, landscaping materials, lighting fixtures, metal framing including for partitions and ceiling, paneling, pipes, antique moldings, accessories and hardware of furniture, PVC water tanks, roofing sheets used for garages, outdoor areas, fabric of tensile structures etc.

- f. From recyclability, building materials can be specified which will encourage recycling of building materials. The list of recycled content building materials include carpet, floor mats, flooring, cellulose insulation, ceiling tile, ceramic/porcelain tile, concrete masonry units, countertop, ductwork, fences/posts, fibre board, fiberglass, insulation, pilings, roofing, structural steel, wallboard, asphalt, concrete, drainage or backfill aggregate.
- g. C & D and other inert waste may be utilized for making bricks, pavement blocks, construction materials such as aggregates etc. There are several plants of various capacities in India to make bricks, paver blocks, aggregates, etc. out of such waste material.
- h. The Hon'ble Court's intervention on the controversy over sand mining in some states has focused the need to explore options for recycle, reuse and substitute naturally sourced building material (example sand) hence the spotlight on C & D waste management.
- i. See ANNEXURE I: Potential uses of C & D wastes

5.3. C & D Waste Management Rules, 2016

5.3.1 Why separate rules for Construction and Demolition (C&D)

Government of India in the erstwhile Ministry of Environment and Forest published Municipal Solid Wastes (Management and Handling) rules, 2000 which was amended from time to time. However, the central government after reviewing the existing rules considered it necessary to make separate rules for management of construction and demolition waste due following reasons,

- To give thrust to segregation, recovery, reuse and recycle
- To emphasis roles and accountability of waste generators and other stakeholdersrelated to waste management

5.3.2 Definitions in the Rules

The rules specifically define terms relevant to implementation of its implementation. The important elements of the definitions are highlighted for better understanding of the reader.

Construction

Process of erecting or alternation of building or built facility or other structure, or building of infrastructure

Construction and Demolition Waste

Waste comprising of building materials, debris and rubble resulting from construction, remodeling, repair and demolition of any civil structure

De-construction

Planned selective demolition in which salvage, re-use and recycling of the demolished structure is maximized.

Demolition

Breaking down or tearing down building and other structures either manually or using mechanical force (by various equipment) or by implosion using explosives

Local Authority

Urban local authority such as municipal corporation, municipality, nagar palika, nagar Nigam, nagar panchayat, municipal council including notified area committee, gram panchayat

Waste Generator

Person or association of persons or institution, residential and commercial establishments including Indian Railway, Airport, Port and Harbour and Defence establishments who undertakes construction or demolition

5.3.3 The Rules promote C & D waste utilization

The Construction and Demolition (C & D) Waste Management Rules, 2016 promotes C & D waste utilization.

Under Rule (6) under Duties of Local Authority, the following sub-rules states:

- i. sub-rule (9) 'shall device appropriate measures in consultation with expert institutions for management of construction and demolition waste generated including processing facility and for using the recycled products in the best possible manner';
- ii. sub-rule (10) 'shall create a sustained system of information, education and communication (IEC) for construction and demolition waste through collaboration with

expert institutions and civil societies and also disseminate through their own website';

iii. sub-rule (11) 'shall make provision for giving incentives for use of material made out of construction and demolition waste in the construction activity including in non-structural concrete, paving blocks, lower layers of road pavements, colony and rural roads.

Under Rule (7) mentions the 'Criteria for storage, processing or recycling facilities for construction and demolition (C & D) waste and application of construction and demolition waste and its products'.

Under Schedule I (Rule (7) (1)): 'Construction and demolition waste shall be utilized in sanitary landfill for municipal solid waste of the city or region as mentioned under Schedule I'.

- a. The Rule (7) sub-rule (3) gives Application of materials made from construction and demolition waste in operation of sanitary landfill shall be as per the criteria given in Schedule II.
- b. The Rule (9) sub-rule (4) mentions that the 'Procurement of materials made from construction and demolition waste shall be made mandatory to a certain percentage (say 10-20%) in municipal and Government contracts subject to strict quality control'.
- c. Rule (11) under Duties of Bureau of Indian Standards (BIS) and Indian Roads Congress (IRC) 'The Bureau of Indian Standards and Indian Roads Congress shall be responsible for preparation of code of practices and standards for use of recycled materials and products of construction and demolition waste in respect of construction activities and the role of Indian Road Congress shall be specific to the standards and practices pertaining to construction of roads.

5.3.4 Type of C & D wastes products proposed under Rules

The C & D wastes products suggested under the Construction and Demolition (C & D) Waste Management Rules, 2016 are as follows:

- i. Under Rule (6) under Duties of Local Authority: sub-rule (11) 'shall make provision for giving incentives for use of material made out of construction and demolition waste in the construction activity including in non-structural concrete, paving blocks, lower layers of road pavements, colony and rural roads.
- ii. Under Schedule I (Rule (7) (1)): 'Construction and demolition waste shall be utilized in sanitary landfill for municipal solid waste of the city or region as mentioned under Schedule I'. The Rule (7) sub-rule (3) gives Application of materials made from

- construction and demolition waste in operation of sanitary landfill shall be as per the criteria given in Schedule II.
- iii. The Rule (9) sub-rule (4) mentions that the 'Procurement of materials made from construction and demolition waste shall be made mandatory to a certain percentage (say 10-20%) in municipal and Government contracts subject to strict quality control'.

5.3.5 Duties of stakeholders

Stakeholders mentioned and defined in the rules are.

- Waste Generator
- Service providers and their contractors
- Local authority

The rules define duties each of the above-mentioned stakeholders.

Duties of waste generator

- Waste generators as defined in the rules are responsible for,
 - Collection
 - Storage of C&D waste generated within their premises
- Ensure Solid waste does not get mixed with C&D waste
- **Deposit C&D waste to collection centers OR processing facilities** as designated and authorized by local body.
- Ensure that there is **no littering or deposition of C&D waste** to prevent obstruction of traffic, public and the drains

1. Concrete

2. Soil

3. Steel

4. Wood and Plastics 5. Bricks & Mortar

Figure 18 Segregate waste into 5 streams

- Waste generators who generate more than 20 tons per day OR 300 tons per project in a month shall,
 - Submit waste management plan and approval from local authority beforestarting construction, demolition or remodeling work.
 - Pay relevant charges for collection transportation, processing and disposal asnotified by local authority.

Duties of service providers and their contractors

- Prepare comprehensive C&D waste management plan for area within their jurisdiction
- Clean C&D waste in the work area every day in a reasonable timeframe depending on the duration of work and quantity and type of waste generated. This should be done in consultation with local authority.
- **Tie up with authorized agencies** for cleaning of C&D waste if logistics support is not available.

Duties of local authority

- Issue direction for management of C&D waste as per the rules within their jurisdiction
 and seek detailed plan or undertaking as applicable from generator of C&D waste.
- Chalk out stages, methodology, equipment required, material involved in the activities required after Construction and Demolition.
- Safely dispose C&D waste contaminated with hazardous, toxic or nuclear material
- after consultation with concerned authority.
- Make arrangement for collection of C&D waste and ensure that clean-up is done at regular intervals.
- Get the collected C&D waste transported to appropriate sites for disposal or processing.
- **Give incentives to generator** for salvaging, processing and or recycling C&D waste preferably in-situ.
- **Examine and sanction waste management plan of generators** within one month or within date of submission and approval of building plan, whichever is earlier.
- Establish C&D waste generation database and update once a year.
- Device appropriate measures for management of C&D waste and use of recycled products in best possible manner.in consultation with expert institutions,
- Create sustained system of IEC activities for C&D waste management through collaboration with expert institutes and civil society organizations and also disseminate through their own website.
- Give incentive for use of products made with recycled C&D waste in construction activities

5.4. Inventorization of C&D waste in the DPA

5.4.1 Why to do Inventorization of C&D waste?

Inventorization of C&D waste is crucial for following purposes:

- Decision making on capacity and technology of C&D waste processing plant that should be installed.
- Decision making on products that can be made from C&D waste
- Decision making on amount of funds that need to allocated for management of C&D waste
- Decision making on management practices to be adopted for C&D waste

5.4.2 How to estimate the generation of C&D waste in the DPA

The first step towards management of Construction and Demolition (C&D) waste is to determine and quantify the amount of C&D waste generated. Waste quantification models which have been utilized all over the world and other models available from literature review are presented here for better understanding and implementation for quantifying C&D waste. However, the accurate estimation of C&D waste depends on the availability and accessibility of data.

Site visit method

This methodology requires investigators to visit the construction or demolition sites for a realistic survey. Measurements are conducted through weighing C&D waste directly on site where onsite interviews are conducted with professionals for fine tuning the estimated generation. Although this method is very practical and suitable for measuring waste produced from all of the waste generation activities, it not appropriates for estimating the C&D waste generation at a regional level because of the high requirement of time, labor and money.

Per-capita multiplier

Per-capita multiplier is one of the earliest methodologies developed from methodologies that were used to quantify municipal solid waste (MSW). Per-capita multiplier is an easy way to quantify C&D waste as this method is based on population statistics of the region. This type of estimation is less reliable as it often leads to more than 10 folds' variation in the quantity estimated.

Waste Generation rate model

Waste generation rate model is widely used by researchers around the world to estimate the quantity of waste generated in the city. In this method, the amount of construction and

demolition activity happening in the sector has to be estimated and an appropriate activity specific waste generation rate has to be multiplied with the quantum of activity to get the total estimate. Statistical data such as number and the area of waste generation has to be collected for estimation in this model.

Estimation based on waste generation model

$$Q = \sum_{k=1}^{m} \sum_{i=1}^{1} \sum_{j=1}^{n} A_{i} * q_{jk} * p_{k}$$

Where,

Q is the total quantity of demolition waste generated in a region (in kg);

 A_i refers to the total amount of demolition activity in the ith part of the region;

l is the number of parts or zones in the region;

 ${f q}_{jk}$ is the waste generation rate of jth type of major material from Kth type of building; ${f m}$ is the number of major materials

 $\mathbf{p_k}$ refers to the proportion of the k^{th} type of building in the region; and

n is the number of different types of building in the region

Quantification of Construction and Demolition waste is regarded as a pre-requisite for successful implementation of C&D waste management in a city. The selection of most appropriate method is recommended based on the quantification objectives and region-specific conditions.

According to the Technology Information, Forecasting and Assessment Council's, or TIFAC's, thumb rule, a new construction generates 40-60 kg of C&D waste per sq m, then taking an average of 50 kg per sq m. The waste produced per sq m of demolition is 10 times that generated during construction and for building repair/renovation TIFAC estimated that it produces 40-50 kg per sq m of waste. Therefore, the estimates of waste generation can be calculated depending on the type of activity such as Construction, Demolition and renovation.

5.5. Collection, Transportation and Disposal of C&D waste

5.5.1 How to Collect and transport C&D waste?

Collection

Existing Practices – C&D waste in most ULBs is not collected or transported in an orderly manner. The waste is either collected by a random transportation contractor and used for backfilling elsewhere or dumped on unfenced land which is mostly illegal. Some municipalities have designated landfills for disposal, where the polluter has to

Weighbridge

Weighbridge is a device in form of a platform used to weigh very heavy objects like trucks. The weight of trucks is mostly weighed on a loaded and unloaded situation in order to measure the load it carried

dump waste at his own arrangements which in most cases is not practiced since it is either far away on outskirts of city or the designated area is not known to the polluter due to improper communication by the ULB. Among the ULBs which have a collection yard a few have a proper tracking system by means of weigh bridges.

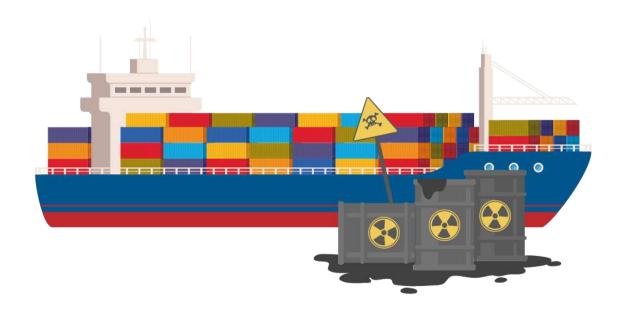
Changes to be adopted - As per the national standards C&D waste need to be kept in the generator's compound and then transported to designated disposal site prescribed by the local governing body.

Transportation

The C&D waste need to be stored in a segregated manner and transported to the designated location on self-arrangements or through local governing bodies system, which ever exist in the ULB. Either way both the generator and the transporting body needs to maintain records of the quantum of waste transported to the dumping area. The local governing body could also provide fenced transfer stations as designated dumping units to facilitate easy transport of waste for the generator. The waste reaching the designated transfer stations of the ULB needs to be recorded and from transfer stations, the waste needs to be transported by the governing body to the dumping site or processing site.

C&D waste is transported from the site by trucks or tractors to disposal sites by paying a minimal fee to the transporters. These transporters can be private or empaneled with the ULB. The ULB transports the waste to the disposal site from these points or contracts with private contractors to do so. The transport of C&D waste needs to be in a covered truck (or any vehicle) to avoid dust, air pollution and spilling of debris on roads. Large scale waste quantum (more than 2 Tons) should be transported only by empaneled trucks which to be registered with the ULB and the registered trucks need to be available to the public to utilize. The trucks empaneled for transportation of generated waste can be enabled with GPS devices for tracking of waste flow from the collection points or demolishing site to the waste processing facilities. The waste needs to be quantified at disposal or processing site also by

proper weighing of trucks.


Disposal

Existing practices – C&D waste is mostly being disposed in on plain land, but it is also used as daily cover in MSW landfills. In many Municipalities it is also filled inside MSW landfill, in which case it occupies huge spaces and reduces capacity of the landfill.

Changes to be adopted – The C&D waste that comes out as a waste product after processing need to dumped into a separate sanitary landfill and should not be mixed with other MSW. The hazardous C&D waste need to be dumped in a hazardous waste landfill.

C&D waste should not be allowed to be dumped in the landfills before recovering useful materials from the waste stream.

Even for cities which do not have dedicated recycling facilities, the C&D waste debris should be disposed at designated dumping sites which provides an opportunity for recycling them in the future.

Chapter-6 Shipping Waste

6.1 Introduction of Shipping waste

6.1.1 What is shipping waste

Shipping waste means all types of waste, including sewage, and residues other than cargo residues, which are generated during the service of a ship, and fall under the scope of Annexes I, IV and V to MARPOL 73/78, and cargo associated waste, which is (not limited to): spillage during loading/ unloading, separation materials, fastening pallets, packing and casing materials, plywood, paper, cardboard, wires and steel bands (as defined in the Guidelines for the implementation of Annex V to MARPOL 73/78);

6.1.2 Objective of Manual

Target audience: Deputy Conservator Office and Marine Department, DPA

1. Creating awareness on Ocean pollution

The awareness shall be made amongst all stakeholders regarding the adverse impacts of oil spills and dumping of other wastes into the ocean. Below image in brief states the type of wastes that pollute oceans and adversely impacts Ocean ecosystems.

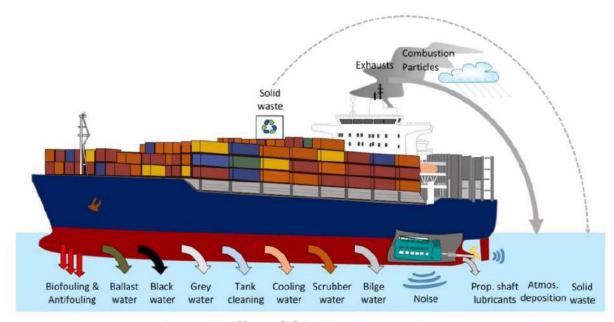


Figure 19 Effect of shipping waste on Ocean

6.2 Legal requirement

As per **Hazardous and Other Wastes (Management and Transboundary) Rules, 2016** DPA shall adhere to the provisions made for waste received from ships calling at the DPA ports as per MARPOL and Hazardous Waste Handling and Management Rules, 2016.

6.2.1 Maintaining records

The standard format for maintaining records of Hazardous and other wastes received at the ports from various ships as per Form 3

List of details required for filling up this format are:

- Name and address of the facility
- Date of issuance of Authorization from GPCB and its reference number
- Description of hazardous and other wastes handled (Generated or Received)

Record keeping format tabulated in Table 21 could be followed for systematic compilation of Waste generated and received from ships calling at the ports.

Table 21 Inventory of waste generated/received at Port

Waste reception date	Received from	Received at (Berth no.)	Waste category as per HWM rules	Waste category as per MARPOL	Total quantity (Metric Tons)	Method of Storage	Destined to
dd/mm/ yy	Name of the ship generatin g waste	Give details of berth receiving the shipping waste	As specified under HWM rules	Whether waste falls under purview of Annex I, II, IV or V		Details of any on-site waste storage if applicable	Details of agency assigned for waste collection

6.2.2 Annual return

Annual return is to be submitted to Gujarat Pollution Control Board by 30th June every year for the preceding period April to March

List of information required for filling the annual return are:

- Name and address of the facility:
- GPCB Authorization No. and Date of issue:
- Name of the authorized person and full address with telephone, fax number and e-mail
- Total quantity of waste generated category wise to be maintained as per format indicated in Table 22
- Date wise description of management of hazardous and other wastes including products sent
 and to whom in case of recyclers or pre-processor or utilizer. The record keeping of the
 movement of waste from port to Waste Managing Agency (WMA) either for processing/reuse
 or disposal shall be facilitated by the record keeping format shown in Table 22

Quantity dispatched

- 1. To disposal facility
- 2. To recycler or co-processors or pre-processor
- 3. Others

based on frequency of collection of waste by the agency

Table 12 Details of waste collection by agency

Date	Type of waste	Total quantity (Metric Tons)	Details of Agency	Method of disposal
Date of waste collection by agency	Details of waste collected: Name of waste Category of waste	Quantity collected by agency	Name, address and contact details of agency collecting the waste	Mention if waste is Recycled or Reused or Reprocessed and used as raw material or Disposed if disposed; mention the method of disposal i.e Landfilled, incinerated etc.

Quantity in storage at the end of the year

Waste quantity if not collected by agencies due to any circumstances has to be placed in a designated storage area that is protected from sunlight, wind or rain and in an environmentally sound manner. The record keeping of wastes under storage could be done as per format tabulated below in Table 23.

Table 23 Format for waste under storage

Name and type of waste	Quantum of waste (per year)	Reason for non- disposal	Method of storage
		Give brief detail on the reason for non- arrangement of disposal of the stated waste	Mention whether stored in storage room or shed or any other provision ensuring environmentally sound conditions

6.3 Adequacy of Port Reception Facilities

Through its Annexes MARPOL states the requirement for a Port Reception Facility (PRF) to be adequate to meet the needs of ships normally visiting the port and cause not any undue delay.

In the Guidelines for ensuring the adequacy of port waste reception facilities (resolution MEPC.83(44)) "adequate" is described as: "To achieve adequacy the port should have regard to the operational needs of users and provide reception facilities for the types and quantities of wastes from ships normally visiting the port".

[&]quot;Adequate facilities" are described as those which:

- Mariner's use;
- Fully meet the need of ships regularly using them;
- Do not provide mariners with a disincentive to use them; and
- Contribute to the improvement of the marine environment.

The provided PRF must meet the needs of the ships normally using the port and allow for the ultimate disposal of ship-generated wastes and residues to take place in an environmentally appropriate way.

According to the 2017 Guidelines for the implementation of MARPOL Annex V (resolution MEPC.295(71)) the methodology for determining the adequacy of a reception facility should be based on:

- The number and types of ship calling at the port,
- The waste management requirements of each type of ship
- As well as the size and location of a port.

When selecting the most appropriate type of reception facility for a particular port, attention should be given to alternative methods available:

- Mobile facilities, such as trucks, can enhance a cost-efficient way of collecting ships' wastes.
- Floating facilities, such as barges, might be considered more effective, in particular where access by road is not practicable.

Timely assessment of the need for updating the Port Waste Management Plan (PWMP) shall be done by following:

- Assessing the demand for expanding Port Reception facility, based on waste categories and its quantities being received and requested by users
- Ensure whether information regarding waste categories for which reception facilities like Name of contact person/contractors/fees to be charged on port web-site/ Swachh Sagar Portal or by any other means are readily available to visiting ships prior their arrival
- Address the complaints registered on IMO GISIS Web-site
- Ensuring that the reception facilities provided fully meet the need of ships visiting the ports
- Ensuring that a fee charged to avail the port reception facilities does not act as a dis-incentive to use the facilities
- Ensure whether categorization and separation of ship waste into hazardous and non-

hazardous waste in accordance with hazardous and other waste rules, 2016 is practiced.

 Ensuring whether disposal of hazardous and non-hazardous waste is in accordance with hazardous waste Rules 2016 and port procedures. Also ensure whether waste not defined under hazardous waste rules is disposed in accordance with relevant rules like Plastic Waste in accordance with Plastic Waste Management Rules, e-waste in accordance with E-waste Management Rules and likewise.

6.4 Segregation of wastes on the ship

Target audience: Staff handling waste

PRF and/or port authorities might promote or (financially) incentivize the onboard separation of wastes for its environmentally sound management. The captain of the ship could be educated for waste segregation of ship generated wastes on the ship itself to avoid undue delay.

Table 24 Components of waste

Table 24 components of waste				
Waste components				
Non-recyclable plastics and plastics mixed with non-plastic garbage	Wood			
Rags	Metal			
Recyclable wastes	Plastics (including extruded polystyrene or other similar plastic material)			
Cooking oil	E-wastes such as electronic cards, equipment, computers, printer cartridges, etc.			
Glass	Garbage that might present a hazard to the ship or crew (e.g. Oily rags, light bulbs, acids, chemicals, batteries, etc.)			
Aluminum cans	Damaged/unwanted fishing gear			
Paper, cardboard, corrugated board				

6.4.1 Segregation of ship generated waste

Segregation of waste generated or received at the ports from the ships calling at ports shall be encouraged as segregation is the building block of waste management system. The wastes shall be segregated into below listed components.

Table 25 Components of waste to be segregated

Waste components	Waste items
Food wastes	E.g. Animal-derived products and by-products
rood wastes	because of risk of animal diseases
Cooking oil	Animal-derived products and by-products because
Cooking on	of risk of animal diseases
Plastics	All typed of day-to day plastics in use like cutlery,
1 lastics	bottles etc.
Domestic waste, operational	
waste and recyclable or	Paper, cardboards etc.
reusable material	
Special items like medical	
waste, outdated pyrotechnics	Medicines, drugs etc.
and fumigation remnants	
Animal wastes, including used	
bedding from the transport of	
live animals (due to risk of	Animal-derived wastes
disease) but excluding drainage	Allillai-uctived wastes
from spaces containing living	
animals	
Cargo residues	Packaging etc.
E-waste	Such as electronic cards, gadgets, equipment,
L Waste	computers, printer cartridges, etc.

Chapter-7 References

- 1. Annual Report of Deendayal Port Authority, 2021-22.
- 2. Solid Waste Management Rules, 2016, Ministry of Environment, Forest and Climate Change, April 2016.
- 3. A step-by-step Guidance for Bulk waste generators for Waste Management, Ministry of Housing and Urban Affairs, November 2017.
- 4. Municipal Solid Waste Management Manual Part II, Central Public Health and Environmental Engineering Organization (CPHEEO), Ministry of Urban Development, Government of India, 2016.
- 5. Overview of Plastic Waste Management, CPCB, June 2013.
- 6. Plastic Waste Management Rules, 2016, Ministry of Environment, Forest and Climate Change, March 2016 and its Amendments.
- 7. Plastic Waste Management (Amendment) Rules, 2022 Ministry of Environment, Forest and Climate Change, February 2022.
- 8. Manual: Plastic Waste Management, July 2021, Department of Drinking Water and Sanitation, Ministry of Jal Shakti.
- 9. Toolkit: Plastic Waste Management, June 2021, Department of Drinking Water and Sanitation, Ministry of Jal Shakti.
- 10. Consolidated Guidelines for Segregation, Collection and Disposal of Plastic Waste, September 2017, Central Pollution Control Board.
- 11. E- Waste Management Rules, 2022.
- 12. Manual: E Waste Awareness for Government Official, 2016, Ministry of Electronics & Information Technology.
- 13. Battery Waste Management Rules, 2022, Ministry of Environment, Forest and Climate Change, August 2022.
- 14. Manual: E Waste Training, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.
- 15. Guidelines on Implementation of E-Waste (Management) Rules, CPCB, 2016.
- 16. Bio-Medical Waste (Management and Handling) Rules and its Amendment thereof, Ministry of Environment, Forest and Climate Change, March 2016.
- 17. Guidelines for Management of Healthcare Waste as per Biomedical Waste Management Rules, 2016.
- 18. Toolkit: Bio-Medical Waste Management Rules, 2016.
- 19. Construction & Demolition Waste Rule, 2016, Ministry of Environment, Forest and Climate Change, March 2016.

- 20. Manual: Construction and Demolition Waste Management in India for Cities and Towns, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.
- 21. Guidelines on Environmental Management of Construction & Demolition (C&D) wastes, CPCB, March 2017.
- 22. Draft circular on Port Reception Facilities, Director General of Shipping, Government of India.
- 23. Consolidated Guidance for Port Reception Facility providers and users, international maritime organization (IMO).
- 24. Draft circular on Port Reception Facilities, Director General of Shipping, Government of India.
- 25. Consolidated Guidance for Port Reception Facility providers and users, international maritime organization (IMO).

Annexure -E

DEENDAYAL PORT AUTHORITY (Erstwhile: DEENDAYAL PORT TRUST)

ISO 9001-2015 & ISO 14001-2015 Certified Port Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch). Gujarat: 370 201.

Fax: (02836) 220050 Ph.: (02836) 220038

www.deendayalport.gov.in

EG/WK/EMC/CCA/ Part(III)/ 91

Date: 19/07/2024

To, The Member Secretary Gujarat Pollution Control Board Paryavaran Bhavan, Sector 10A, Gandhinagar - 382010

Sub: Submission of Annual Return of Hazardous waste in format form IV for the financial year 2023-24 reg. CRCR/CCA-Kutch-812/(5)/ID -

(Detailed Consent Order issued by GPCB vide letter no. GPCB/CCA-Kutch-812/(5)/ID - 28494/581914 dated 22/01/2021 – Consent no. AWH – 110594 & CCA amendment Order – WH-130995).

Ref.: 1) KPT letter no. EG/WK/4660(EC)/549 dated 20/6/2012

2) KPT letter no. MR/GN/1527(Part I)/2012 dated 20/5/2013

3) KPT letter no. MR/GN/1527(Part I)/336 dated 17/05/2014

4) KPT letter no. MR/GN/1527/ (Part I)/dated 27/04/2015

5) KPT letter no. EG/WK/EMC/CCA (Part II)/217 dated 27/6/2016

6) KPT letter no. EG/WK/EMC/CCA (Part II)/213 dated 19/6/2017

7) DPT letter no. EG/WK/EMC/CCA (Part II)/294 dated 13/6/2018

8) DPT letter no. EG/WK/EMC/CCA (Part II) dated 27/5/2019 9) DPT letter no. EG/WK/4751 (CCA Renewal) dated 22/5/2020

10) DPT letter no. EG/WK/4751 (CCA Renewal)/13 dated 30(4)/4(5)/2021

11) DPT letter no. EG/WK/4751 (CCA Renewal)/131 dated 06/07/2022.

12) DPA letter no. EG/WK/EMC/CCA/Part III/325 dated 19/06/2023.

Sir,

It is requested to kindly refer above cited references for the said subject.

In this connection, it is to state that, the Deendayal Port Authority had obtained Renewal of Consolidated Consent & Authorization from the GPCB vide order no. AWH – 110594 dated 22/01/2021 valid up to 21/07/2025 for Port Area of Deendayal Port Authority and subsequently, the GPCB had issued correction in consent vide order dated 09/04/2021. Afterward, DPA has also obtained amendment in Consent Order from the GPCB vide order dated 11/01/2024 (CCA Amendment – WH-130995) (Copy attached as Annexure I).

In this regard, as per statutory requirement, the DPA has regularly submitted Annual Returns (as mentioned in references above) in format Form IV to the GPCB.

Now please find the enclosed herewith Annual Return of Hazardous Waste in Form IV for the year 2023-24, as **Annexure II**.

This is for kind information and record please.

Encl: As above

Yours faithfully,

Dy. Chief Engineer & EMC (I/C)
Deendayal Port Authority

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN, SECTOR 10-A, GANDHINAGAR - 382010, (T) 079-23232152

Date: /01/2024

CCA-Amendment (WH-130995)

No. PC/CCA-KUTCH- 812(6)/ GPCB ID-28494/

Tο,

M/s. Kandla Port Trust,

At Kandla, A.O Building Gandhidham,

Tal: Gandhidham, Dist: Kutch - 370 201.

SUB: Amendment in the consolidated consent & Authorization of the Board.

REF: 1) CCA issued by this office vide order no- AWH- 110594 dated 22/01/2021 valid up to 21/07/2025.

2) Your CCA Amendment Application Inward ID No.277270 dated 23/05/2023.

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(2) of the Hazardous And Other Waste (Management and Transboundary) Rules, 2016 & framed under the Environment (Protection) Act-1986, The Board has granted CCA vide order No. AWH- 110594 issued vide order dated 22/01/2021 valid up to 21/07/2025.

The Board has right to review and amend the conditions of the said CCA and its amendment orders. Now, considering your application for CCA amendment inward ID No.277270 dated 23/05/2023, the said CCA order is amended as below:

1. The order shall be read as CCA amendment Order No.: WH- 130995 Date of Issue: 14/12/2023, valid up to 21/07/2025.

SUBJECT TO THE FOLLOWING SPECIFIC CONDITIONS:

- There shall be no change in existing production and its capacity, raw materials consumption, fuel consumption, flue gas emission & process gas emission, due to CCA Amendment.
- 2. Industry shall not carry out any activity which may attract the applicability of EIA notification-2006 & its amendment.
- No ground water shall be withdrawal without prior permission from CGWA as per Hon'ble NGT order.
- 4. Unit shall obtain fresh water from valid source have permission of the competent authority.
- Industry shall manage Solid Wastes generated from industrial activities as per Solid Waste Management Rules-2016 (solid waste as defined in Rule-3(46)).
- 6. Industry shall renew Public Liability Insurance Policy time to time & submit a copy of the same to this office.
- 7. Industry shall comply with circular of the Board dated 27/08/2021 regarding retrofitting of emission control/ equipment in D.G. Set of capacity 125 KVA and above as per system & procedure for emission compliance testing of Retrofit Emission Control Devices (RECD) for D.G. Set issued by CPCB dated 01/02/2022 at the earliest and submit compliance.

9

Page 1 of 3

Clean Gujarat Green Gujarat

Website: https://gpcb.gujarat.gov.in

2. The condition no. 3 of the said CCA is amended as below:

- 3. CONDITION UNDER THE WATER ACT:
- 3.1 Water Source: GWIL.
- 3.2 There shall be no industrial water consumption & waste water generation from manufacturing process & other ancillary operation.
- 3.3 The quantity of domestic water consumption shall be decreased from 1300 KL/Day to 3000 KL/Day, due to CCA-Amendment.
- 3.4 The quantity of domestic waste water shall not exceed 800 KL/Day.
- 3.5 Sewage shall be treated separately to conform to the following standards as per Hon.ble NGT order in the matter of OA No.1069/2018 dated 30/04/2019

GPCB NORMS
5.5-9.0
10 mg/L
20 mg/L
50 mg/L
10 mg/L
1.0 mg/L
Desirable-100 MPN/100ml Permissible -230 MPN/100 ml

- 3.6 Treated domestic effluent conforming to above standard shall be discharged on land for gardening and plantation purpose within premises.
- 3.7 Industry shall provide fixed pipeline network with flow meter for even distribution of treated domestic effluent and maintain its record.
- 3.8 Disposal system for storm water shall be provided separately. In no circumstances storm water shall be mixed with the industrial effluent.

3. The condition no. 5.1 & 5.2 of the said CCA is amended as below:

- 5.1 Authorization order no. WH-130995 Date of issue: 14/12/2023.
- 5.2 M/s. Kandla Port Trust is hereby granted an authorization based on the enclosed signed inspection report for generation, collection, treatment, storage, transport of hazardous waste on the premises situated at Kandla, A.O Building Gandhidham, Tal: Gandhidham, Dist: Kutch;

Sr.	Waste 0	Quantity	per Annum	Schedule	Facility
No.	102/1	Existing	After CCA- Amendment	&Category	
10	Used or Spent Oil	1125 MT	4250 MT	J-5.1	Collection, storage, transportation and disposal by selling out to registered recycler.

9

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN, SECTOR 10-A, GANDHINAGAR - 382010, (T) 079-23232152

2.	Residue Containing Oil	3444.43 MT	8500 MT	I-5.2	Collection, storage, transportation and disposal by selling out to registered recycler.
----	---------------------------	---------------	---------	-------	---

4. Rest of conditions of Consolidated Consent & Authorization (CC&A) order No: AWH-110594 issued vide this office letter no. GPCB/CCA-KUTCH-812(5)/ID: 28494/581914 dated 22/01/2021 shall remain unchanged and industry shall comply with the same judicially.

For and on behalf of GUJARAT POLLUTION CONTROL BOARD

(T. C. Patel) Unit Head

-

Page 3 of 3

Website: https://gpcb.gujarat.gov.in

[(See rule 6(%), 13(8), 16(6) and 20(21)

(To be submitted to State Pollution Control Board by 30th day of June of every year for the preceding period April 23 to March 24)

Sr.	Particulars	Details
No.		
1.	Name and Address of the Facility	Deendayal Port Authority Administrative Office Building Post Box No. 50 Gandhidham Dist.: Kutch- 370201 Gujarat State Tel. No.: 02836-233192 Fax No.: 02836-220050
2.	Authorization No. and Date of issue	Consent order no. AWH – 110594 granted by the GPCB dated 22/01/2021, correction in consent order issued by the GPCB dated 09/04/2021 and CCA amendment issued by the GPCB dated 11/01/2024.
3.	Name of Authorized Person and full address with telephone, Fax number and E-Mail	Mr. Raveendra Reddy Chief Engineer Deendayal Port Authority Administrative Office Building Post Box No. 50 Gandhidham Dist.: Kutch- 370201 Gujarat State Tel. No.: 02836-233192 Fax No.: 02836-220050
4.	Production during the year (product wise) wherever applicable	NA Deendayal Port Authority has only loading & unloading activities for dry cargo and liquid cargo. During FY 2023-24 Total Cargo Handled is 132.37 MMTPA

PART A. To be filled by Hazardous Waste Generator

1.	Total quantity of waste generated category wise	Used oil/Waste residue containing oil 1. Used Spent Oil: 2431.39 MT 2. Waste residue containing oil: 7294.16 MT
2.	Quantity Dispatched a. To disposal Facility b. To recycler or co- processor or pre- processor c. Others	Used Oil/Waste residue containing oil has been disposed of through CPCB/GPCB authorized vendor (Annexure-A)
3.	Quantity utilized inhouse -if any	NA
4.	Quantity in storage at the end of the year	NA

PART B To be filled Treatment, Storage and Disposal Facility Operator Total Quantity Received 1. Direct Landfill 1. 2. Incineration 3. Land fill after treatment Quantity at stock at the beginning of the year 1. Direct Landfill 2. 2. Incineration 3. Land fill after treatment Quantity treated (Landfill) 3. Land fill after Treatment NA Quantity disposed in landfill as such and after treatment 1. Direct Landfill 2. Land fill after treatment 4. 3. Incineration Ash 4. Salts from Spray Dryer 5. Total Quantity incinerated (if applicable) 5. Quantity processed other than specified above 6. Quantity in storage at the end of the year

PART C To be filled by recyclers or co-processor or other users Quantity of the waste received during the year 1. Domestic sources 1. 2. Imported (if applicable) Quantity in stock at the beginning of the year 2. Quantity recycled or co processed or used 3. NA Quantity of products dispatched (wherever applicable) 4. Quantity of waste generated 5. Quantity of waste disposed 6. Quantity re-exported (wherever Applicable) 7. Quantity in storage at the end of the year 8.

Date: 19/7/2024
Place: Gandhidham

1. Incineration

2. Landfill after treatment

7.

Dy. Chief Engineer & EMC (I/C) Deendayal Port Authority

MARINE DEPARTMENT (ACCOUT SECTION)

Annexure A

Sub: Annual return statement showing the collection and disposal of Hazardous and Non Hazardous Wastes carried out by various parties for the year 04/2023 to 03/2024.

With reference to the above subject, the annual return showing the collection and Disposal of Hazardous and Non Hazardous Wastes carried out by various parties for the period 01.04.2023 to 31.03.2024 of Marine department is enclosed herewith.

Encl: AS above

Dy. Consérvator Deendayal Port Authority

EMC (I/C)

NO: MR/WK/1316/282

Dt. 21.06.2024

Ty

Deendayal Port Authority Marine Department

Statement of Hazardous and Non hazardous Waste disposal from the Vessels at Kandla Port for the Period April 2023 to March 2024 – For the Whole Port Area

(PCB ID 28494)

Sr.No.	Month	Year	Hazardous	Solid Waste Generated in MT		
			Total Quantity	Used Oil	Waste Residue Containing Oil	
-	April	2023	484.45	121.11	363.34	169.57
2.	April May	2023	1065.92	266.48	799.44	307.83
3.	June	2023	671.82	167.96	503.87	155.03
4.	July	2023	743.45	185.86	557.59	207.71
5.	August	2023	814.63	203.66	610.97	221.78
6.	September		758.07	189.52	568.55	318.76
7.	October	2023	1002.51	250.63	751.89	144.20
	November		982.88	245.72	737.16	198.54
8.	A STATE OF THE STA		802.58	200.65	601.94	254.75
9.	December	2023	825.89	206.47	619.41	207.61
10.	January			137.38	412.13	200.38
11.	February	2024	549.50	120-2500 (1706) - 3-9	767.90	186.79
12.	March	2024	1023.87	255.97	THE RESERVE OF THE PARTY OF	2572.94
	Total		9725.56	2431.39	7294.17	2372.34

Deputy Conservator Deendayal Port Authorit

Marine Department

Statement showing the Collection and disposal of Hazardous and Non-Harardous Wastes carried out by

-	Name of Party	Type of Licence	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Total
1	Alicid Organic Industries Limited	Hazardous			-		-	-	-		36.75				36 76
12	Amar Hydrocarbon Pvt Ltd	Hazardous						-		18 42			-	41 48	59 90
3	Atlas Organics Pvt Ltd	Hazardous		-		19 24	7.00		-	70 42			-	-	26 24
4	Aviation Corporation	Hazardous	9 60	18 45	23 97								-		52 02
5	Mahalaxmi Asphalt Pvt Ltd	Hazardous	102 96			138 88		25 23	67 34		73 93	50 19	14 85	43 97	517 65
6	Pnyansi Corporation	Hazardous	16 25	91 36	87 35	-		29 89		35 57	67.03	30 +3	-	-	327 45
7	Revolution Petrochem LLP	Hazardous	379 86	591 26	594 09	622 50	534 20	453 78	589 26	681 93	423 16	383 95	442 62	648 60	6,345 21
8	Shana Oil Process	Hazardous					-	- 100 / 0	333 20	-		-	-	•	
9	United Shipping Company	Hazardous		418.14	-	-	314.16	287.07	396.04	296.10	241 83	432.74	119 51	341 01	2.846.60
10	Chitrakut Trading & Industries	Non-Hazardous	7.24	28.39	14 70	14.98	10.70	6.35	4.78	-	-	0 83			87 97
12		Non-Hazardous	103	61.82	-	56.87	43.26	77.20	36.10	23.64	75.26	42 55	37 33	49 00	504 06
	Golden Shipping Services	Non-Hazardous	18 50	37.68	4 42	18 50	27.60	5.00	30.70	20.34		3 71	6 71		142 46
12	Green Earth Manne Solutions				1.95	1,000	5.02	3.00	6.42	20.07	12.59	7 29		-	52 45
13	Harish A Pandya	Non-Hazardous	12.00	7.18	1.7.5.5	- 04.40	64.00	48.37	36.34	56.74	70.28	64 52	67 04	113 62	820 79
4	K M Enterprise	Non-Hazardous	62 00	99.18	74.30	64.40	64.00	12.40	6.35	5.47	6.35	6 36	- 1		44.49
15	Naaz Shipping Services Ent	Non-Hazardous	•	•	-	7.56	- 22.70	45.15	7.00	11.00	17 80	9.00			128.15
16	New India Manne Works	Non-Hazardous	4 00	-	-	10 50	23.70	68.44	19.51	47.35	46.10	30 31	58.85	-	356 45
. 17	Omega Manne Services	Non-Hazardous	23 81	31.42	30.66		-		18.00	15.00	15.00	15 00	9.00	-	177 00
18	V K Enterprise	Non-Hazardous	24.00	30.00	-	15.00	18.00	18.00	9 70	19.00	11.37	23 74	21 45	24 17	259 13
19	Vishwa Trade-link Inc.	Non-Hazardous	16.99	12.16	29.00	19.90	29.50	37.85				100	576.98	1.075.06	10,211.83
-		Hazardous - Total	508.67	1,119.21	705.41	780.62	855.36	795.97	1,052.64	1,032.02	842.71	867.18	5/6.98		
-	Non-	-Hazardous - Total	169.57	307.83	155.03	207.71	221.78	318.76	144.20	198.54	254.75	207.61	200.38	186.79	2,572.94

Copy to : GPCB, Gandhidham / Harbour Master

Annexure -F

Final Report

on

Greenbelt Development in Deendayal Port Authority and its surrounding areas, Kandla Port

Submitted by

Gujarat-370201

Final Report

on

Greenbelt Development in Deendayal Port Authority and its surrounding areas (Phase-II) Kandla Port

Co-ordinator

Dr. V. Vijay Kumar, Director

Principal Investigator

Dr. Jayesh B. Bhatt, Scientist

Co-Principal Investigator

Mr. Bhagirath Paradva, *Project Fellow* Mr. Rakesh Popatani, *Project Fellow*

Team Member

Mr. Vivek Chauhan, *Project Assistant-I* Mr. Ajay Gohel, *Project Fellow*

Submitted by

Gujarat Institute of Desert Ecology Opp. Changleshwer Temple, Mundra Road Bhuj-370 001, Kachchh, Gujarat www.gujaratdesertecology.com

Content

Title	Page No
Introduction	1
Rationale	3
Project Site	5
Scope of Work	7
Approach and Methodology for Greenbelt Development	7
Plantation techniques	8
Selection of plant species for plantation	9
Number of saplings	9
Management and Monitoring of Greenbelt	9
Time Schedule for Water	11
Annexure-I	12

Introduction

The Greenbelt cover/forest has been the utmost necessity for the survival of human as well as for the wildlife with the current scenario of human explosion, industrial development and climate change. The greenbelt cover provides ecological services such as purifying air, reduce soil erosion, improving ground water table, reduce salinity. In addition, it also caters the services such as food, fodder and medicine, etc. along with playing a very vital role in providing habitats for wildlife and maintaining ecological balance, climate regulation, biodiversity conservation and maintaining pleasant micro climate of the region. Thus, green belt offers a number of benefits for population. Moreover, vegetation absorbs various pollutants from the environment and thus helps in effective pollution control. However, due to the various types and extent of economic development like industrialization, mining, infrastructural development, etc. has exerted pressure in reducing and fragmenting natural vegetation cover day-by day all over the world.

The infrastructural and industrial development leads to influence the life of all the living organisms in two directions: either upwards or downwards. In the upward mode, human being gets opportunities for luxuriant life with easy accessibility to the resources while in downward, the quality of ecosystem services gets affected. Most of the industrial and infra-structural developmental activities generate pollution of one or other types with varying magnitudes, which makes susceptible to all the organisms, nevertheless, the preeminence of resistance of each of the organisms helps themselves to overcome the hazards caused by such pollutants.

Therefore, the general concept of green belt has evolved in recent years to develop vegetations or green spaces alongside of industries, mines, thermal power station, roadsides, and other development units is an effective mechanism to rejuvenate the environment through vital vegetation cover that safeguard the health of human and other living organisms. Green belts in and around urban and industrial areas are important to the ecological health of any given region. Greenbelt is the plantation of trees along the industrial units, mines, roadside for reducing the pollution originating from these operations (Flemming, 1967; Hanson and Throne, 1970; Warren, 1973; Ganguly, 1976). Greenbelt has been developed in view of the following factors; (i) physical characteristics

of the green belt eg. Distance from the source, width, and height and leaf surface area density (ii) aerodynamic properties eg. Wind speed through greenbelt and effective height of the incident air stream (iii) deposition velocity of the pollutant and (iv) atmospheric stability conditions (CPCB, 2000).

As per the National Forest Policy (NFP-1988), it is necessary to encourage the planting of trees alongside of roads, railway lines, rivers and streams and canals, and on other unutilized lands under state/corporate, institutional or private ownership. NFP give emphasis on the green belt developments. It says – Green belts should be raised in urban/industrial areas as well as in arid tracts. Such a programme will help to check erosion and desertification as well as improve the microclimate.

Green infrastructure serves to provide on ecological framework for social, economic and environmental health of the surroundings. The main components of this approach include storm water management, climate adaptation, less heat stress, more biodiversity, food production, better air quality, sustainable energy production, clean water and healthy soils, as well as the more anthropocentric functions such as increased quality of life through recreation and providing shade and shelter in and around infrastructure and industrial areas. Green infrastructure is thought to be effective in such scenarios, where green plants from a surface capable of absorbing air pollutants and act as a sink for pollutants. Leaves with their vast leaf area in the tree canopy, absorbs pollutants on their surface. Thus, effectively reduce their concentrations in the ambient air. Often the absorbed pollutants are incorporated in metallic streams and thus the air is purified. Plants grown in such a way as to function as pollutant sinks are collectively referred to as green infrastructure or green belts. Apart from functioning as a pollutant sink, green belts would also provide other benefits like aesthetic improvement and providing possible habitats for birds and animals along with maintain the soil moisture regime with the soil microorganisms and improve the Soil quality and ground water recharge. The greenbelts have helps in improving the ecology, maintenance of biodiversity, mitigation of dust pollution and fugitive emission, control of noise pollution, provide fresh air, increasing aesthetic values of an area and overall improvement of the landscape.

Rationale

Deendayal Port in Kachchh District of Gujarat State (formerly Kandla Port Trust), operated by Deendayal Port Authority (DPA), is a gateway Port to the hinterland in the western and northern states of India. It is one of the 11 major Ports of India situated at 22°59'39.77" N latitude and; 70°13'20.14" E longitude on Kandla creek at Gulf of Kachchh. The inclusion of Karachi Port in Pakistan after India's partition and heavy traffic congestion at the then Bombay Port gave impetus for promoting Deendayal Port during the year 1950s. In 1955, Deendayal Port acquired the status of a major Port in India. Because of its proximity to the Gulf countries, large quantities of crude petroleum and other assorted cargo are imported through Deendayal Port. The Port presently has 14 jetties, six oil terminals, and several allied facilities for handling dry and liquid cargo. Regular expansion/developmental activities such as the addition of jetties, allied Special Economic Zones (SEZ hereafter), industrial parks and ship bunkering facilities are underway to cope with the increasing cargo handling demands. Shri Mansukh Mandaviya, Minister of State for Ports, Shipping and Waterways (I/C) appreciated the efforts taken by Deendayal Port and added that it is indeed the major achievements in the challenging (COVID) times and it is significant indication that economy is bouncing back to achieve pre-COVID times.

Major commodities handled by the Deendayal Port are Crude Oil, Petroleum product, Coal, Salt, Edible Oil, Fertilizer, Sugar, Timber, Soya bean, Wheat. This major achievement can be attributed to the user-friendly approach of port with the Shipping fraternity / stakeholders and constant consultations with them to improve ease of doing business. An assortment of liquid and dry cargo is being handled at Deendayal Port. The dry cargo includes fertilizers, iron crap, steel, food grain, metal products, ores, cement, coal, machinery, sugar, wooden logs, salt extractions, etc. The liquid cargo includes edible oil, crude oil and other petroleum products. DPA created a new record by handling 127.10 million metric tons of cargo during FY 2021-22 compared to 117.566 MMT in FY 2020-21, with a growth of 8.11%. Incidentally, DPA is the only major Indian Port to handle more than 127 MMT cargo throughput, and it has also registered as the highest cargo throughput in its history. The Port has handled 3151 vessels during FY 2021-22 compared to 3095 vessels in FY 2019-20. While the Port has flagged off several projects related to infrastructure creation, DPA has successfully awarded the work of

augmentation of Liquid cargo handling capacity by revamping the existing pipeline network at the oil jetty area in September 2021. Deendayal Port is a natural harbour located on the eastern bank of North-South trending Kandla creek at an aerial distance of 145 km from the Gulf's mouth.

Being located at the inner end of the Gulf of Kachchh (GoK), Deendayal Port has a marine ecosystem with a vast expanse of mangroves, creek systems and allied biota. The Port location is marked by a network of major and minor mangrove-lined creek systems. The coastal belt in and around the Port has an irregular and dissected configuration.

There are no perennial or seasonal rivers in Gandhidham taluka where the part is located. Total rainy days during the monsoon season is limited to only 15-20 days and used to be erratic. Freshwater input into the near coastal waters is relatively meagre and appears to have less influence on the ambient coastal water quality except during monsoon months, during which freshwater through flash floods get discharged in the near coastal waters. The annual average humidity is 60%, which increases to 80% during the southwest monsoon (June to September) and decreases to 50% during the months of November and December. The drought phenomenon is common with two drought years in a cycle of 5 years.

The coastal belt in and around the Kandla region is characterized by a network of creek systems and covered by sparse halophytic vegetation, creek water and salt-encrusted land mass, which forms the major land forms. The surrounding environment in a radius of 10 km from the Port is mostly built-up areas consisting of salt works, human habitations and Port related structures on the west and north, creek system, mangrove formations on the east and south. The Deendayal Port and its surroundings have mangroves and creek systems as major ecological entities.

DPA is committed towards environment protection since its establishment and has taken many initiatives towards increasing green cover and greenbelt development in various areas under DPA through intensive plantation activities and developing greenbelt around its established port and jetty areas and human habitations.

In order to enhance and strengthen Greenbelt Development, the DPA has approached GUIDE to develop the greenbelt area within the port area in phase wise manner and raised 5000 plants at a suitable site during the first phase (2022-23). In continuation,

10,000 plants have been finalized during the 2^{nd} phase 2023-24 and 800 plants as a deficient of first phase.

GUIDE team has visited the proposed Greenbelt development site at Kandla port with the officials from Kandla Port as part of selection of suitable and available locations for green belt development. Based on the observation of the project site and its landscape, environment and ecology of the area, suitable plant species for such area was worked out in order to improve the local environment and for the Greenbelt development at the port area.

Project Site

Based on observation made by the GUIDE Team and Officials from Deendayal Port Authority, a site at RoB and another site opposite to 15-16th Birth along the wall have been selected on the peripheral boundary of two sites.

Fig. 1 Map of Plantation Area RoB

The area proposed for green development of Deendayal Port is barren land without any vegetation. The soil of the area is black muddy and is high saline soil and with saline ground water. The area is very dry and hot during the summer. The highest temperature in Kandla is used to be recorded in this area.

Fig. 2 Map of Plantation Area 15-16 Birth Opp: Wall

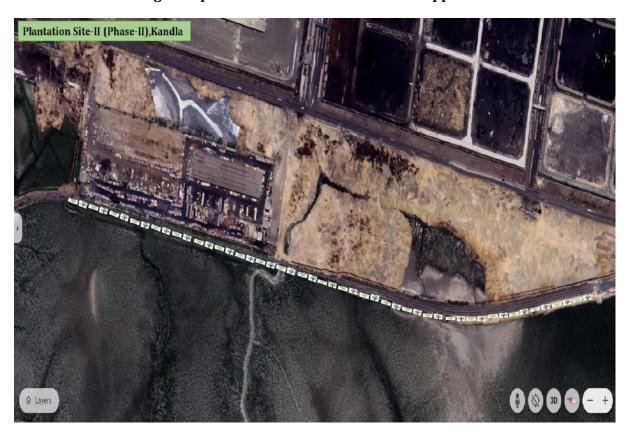


Fig. 3 Map of Plantation Area 15-16 Birth Opp: Wall

Scope of Works

The overall objective is to Development Greenbelt at Deendayal Port. The following activities of the Greenbelt development have been carried out:

- 1. To make an inventory of suitable sites for greenbelt development in and around the Deendayal Port at Kandla.
- 2. To carryout Soil and Moisture Conservation (SMC) of the selected sites.
- 3. Identification of suitable species of plants as per site scenario for the greenbelt plantation.
- 4. Adopting plantation technique and soil/manure amendments.
- 5. Regular monitoring (survival and growth) of the plantation.
- 6. Suggest measures for management and improvement of the greenbelt.

Approach and Methodology for Greenbelt Development

Following steps have been adopted for greenbelt development:

- Removal of exotic/unwanted plants plant species from the entire area demarcated for green belt development: The entire selected site has been cleared by removing unwanted weeds and material such as stones, plastics etc.by JCB and also with the help of labor forces.
- Landscaping of the area and land preparation Trench line of 2.5x 2.5 ft. have been dig out through JCB at RoB site and another site opposite to 15-16th Birth along the wall.
- Soil and moisture conservation work since the port area is highly saline, SMC work was very much essential for better survival of the plants. Agriculture fertile soil have been added in appropriate quantity.
- Identification of native species of plants for plantation in greenbelt as per the site suitability the site was very challenging for greenbelt development since the water and soil is highly saline with the extreme climatic condition, the selection of plant species for plantation has been made very carefully. 40 % of plants have been selected as native species for plantation where as 60% species of *Conocarpus* depends on high salinity level of the soil of the area.

- ➤ Procurement of sapling of identified species or Nursery management or seeding of tree/shrub species all the saplings were procured where of 3-4 ft. in height from reliable nursery. All saplings were of tree species.
- Installation of drip irrigation facilities was not feasible therefore activity was planned preferably through tankers. The watering of the plantation has been scheduled as per the seasons which is given in table. Regular watering as per the scheduled have been provided by the water tanker under the supervision of team expert
- ➤ Use of Manure, preferably organic fertilizer for enhancing soil fertility best quality organic manure have been provided to the saplings for better growth and survival. Weed management and trench repairing have been carried out periodically also as and when it required.
- Regular monitoring and management of the saplings by a qualified team from GUIDE the selected. The regular visit to the site has been made for monitoring and clearing the road for water tanker for irrigation. Gap fillings was also made during the period.

Plantation Techniques:

- ➤ Site development for a plantation includes clearance for weeds and it involves, bush cutting, soil and moisture conservation works and marking of pits for planting of saplings etc.
- After clearing the land sites for digging of pits, plantation have been marked on ground using a measuring tape to ensure the desired spacing.
- ➤ Pits of the size 45 cm x 45 cm and 45 cm depth have been dug for tree plantation. Pits have been deep enough to ensure that the roots of the plants do not curl up once the planting material is placed in it.
- ➤ Since the soil is highly saline, a fertile soil around 10 dumpers have been added for better survival of plants
- Organic manure has been added for better growth and survival.
- > The pit has been filled a little above the ground level so that after the earth settles the upper surface of the pit is level to the ground thus avoiding any water logging.
- ➤ The plantation has been carried out in two phases

- ➤ Around 4000 saplings have been planted during the first phase at available plantation area at RoB site.
- Around 4500 saplings have been planted during the first phase at available plantation area at opposite 15-16th Birth along the wall.
- ➤ The remaining 2500 saplings have been planted at opposite 15-16th Birth along the wall. Thus, a total of 11000 plantations have been completed at the end of the project.
- Along with the above, gap filling of 2500 plants were carried out in both the sites, thus covering a total of 13,500 plants have been planted to achieve the target of 11,000 plants.
- ➤ The assessment on survival of plants have been carried out during the 2nd week of August 2024 which shows the deficient of around 1000 plants hence the gap filling of 1200 plants have been made during 3rd to 7th September 2024.
- ➤ The verification of plantation has been made with the officials of Deendayal Port Authority on 22nd October 2024 and it has been verified and confirmed that 90% survival of plants for the plantation carried out during the 2nd Phase under the project.

Selection of Plant Species for Plantation:

Various indigenous tree species suitable for the area have been identified and selected for plantation in suitable areas based on the assessment of soil quality, available water facility, and other environmental parameters.

Number of Sapling:

Approximate numbers of saplings to be required for the greenbelt are as follows;

Total plantations of 11,000 saplings were planted at RoB & 15-16 Birth (Opposite wall both sides) along with additional gap filling in the areas.

Management and Monitoring of Greenbelt:

The plantation within the identified site have been managed and monitored for a minimum period of one year from June 2023 to September 2024. The management of

plantation includes appropriate irrigation of the plantation in regular intervals, during summer and winter periods along with dry spells during the monsoon.

The plants are growing very well and reached more than 4-6 ft. height. The survival of plants has been noted very high as 90% during September 2024. Watering have been made through tanker service at given schedule during the different seasons. (Table. 1)

Table-1 Time Schedule for Watering

Sr. No.	Month & Year	Number of Time
1	October 2023	7 times/ month
2	November 2023	7 times/ month
3	December 2023	7 times/ month
4	January 2024	7 times/ month
5	February 2024	7 times/ month
6	March 2024	9 times/ month
7	April 2024	10 times/ month
8	May 2024	10 times/ month
9	June 2024	8 times/ month
10	July 2024	8 times/ month
11	August 2024	3 times/ month
12	September 2024	5 times/ month

Annexure I List of Plants for Plantation at site for Greenbelt Development Site: Road Over Bridge

Sr. No.	Scientific Name	Local Name	No. of Plants
1	Conocarpus	Conocarpus	2500
2	Peltophorum pterocarpum	Peltofoum	200
3	Millettia pinnata	Karanj	100
4	Delonix regia	Gulmahor	200
5	Alstromia schollaris	Saptparni	100
6	Terminalia catapa	Badam	100
7	Plumaria obtusa	Chmapo	100
8	Ceaslpinia pulcherima	Galtoro	100
9	Bauhinia racemosa	Kachnar	200
10	Tabubia rosea	tabubia	100
11	Terminalia arjuna	Arjun	100
12	Cassia fistula	Garmalo	200
	Gap Fillings		2050

Site: Opposite 15-16th Berth

Sr. No.	Scientific Name	Local Name	No. of Plants
1	Conocarpus	Conocarpus	4000
2	Peltophorum pterocarpum	Peltofoum	450
3	Millettia pinnata	Karanj	400
4	Delonix regia	Gulmahor	400
5	Mimusops elengi	Borssalii	300
6	Ceaslpinia pulcherima	Galtoro	450
7	Tabubia rosea	tabubia	400
8	Cassia fistula	Garmalo	300
9	Bauhinia racemosa	Kachnar	300
	Gap fillings		1650

Fig. 4 Digging Out Trench for Plantation

Fig. 5 Transportation of Plants to Site

Fig. 6 Fertile Soil for Better Survival of Plants

Fig. 7 Soil Filling in Plantation Pits

Fig. 8 Organic Manure for Better Growth and Survival

Fig. 9 Regular Watering of the Plants by Tanker

Gap Filling (September 2024)

Current Status of plantation at RoB site

Annexure -G

DEENDAYAL PORT AUTHORITY (Erstwhile: DEENDAYAL PORT TRUST)

Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch).

Gujarat: 370 201. Fax: (02836) 220050

Ph.: (02836) 220038

www.deendayalport.gov.in

EG/WK/4751 (CCA Renewal)/ 92

Date: 19/07/2024

To. The Member Secretary Gujarat Pollution Control Board Paryavaran Bhavan, Sector 10A, Gandhinagar - 382010

<u>Sub:</u> Submission of Environmental statement in format form V for the financial year 2022-23 reg. (Detailed Consent Order issued by GPCB vide letter no. GPCB/CCA-Kutch-812/(5)/ID -28494/581914 dated 22/01/2021 - Consent no. AWH - 110594 & CCA amendment Order - WH-130995).

Ref.: 1) KPT letter no. MR/GN/1527(Part I)/535 dated 16/6/2012

- 2) KPT letter no. MR/GN/1527(Part I)/2011 dated 20/5/2013 3) KPT letter no. MR/GN/1527(Part I)/337 dated 17/05/2014
- 4) KPT letter no. MR/GN/1527/ (Part I)/dated 27/04/2015
- 5) KPT letter no. EG/WK/EMC/CCA (Part II)/218 dated 27/6/2016
- 6) KPT letter no. EG/WK/EMC/CCA (Part II)/214 dated 19/6/2017
- 7) DPT letter no. EG/WK/EMC/CCA (Part II)/294 dated 13/6/2018
- 8) DPT letter no. EG/WK/EMC/CCA (Part II) dated 27/5/2019
- 9) DPT letter no. EG/WK/4751 (CCA Renewal) dated 22/5/2020
- 10) DPT letter no. EG/WK/4751 (CCA Renewal)/14 dated (30)04/(4)5/2021 11) DPA letter no. EG/WK/4751 (CCA Renewal)/132 dated 06/07/2022
- 12) DPA letter no. EG/WK/4751 (CCA Renewal)/326 dated 19/06/2023

Sir,

It is requested to kindly refer above cited references for the said subject.

In this connection, it is to state that, the Deendayal Port Authority had obtained Renewal of Consolidated Consent & Authorization from the GPCB vide order no. AWH -110594 dated 22/01/2021 valid up to 21/07/2025 for Port Area of Deendayal Port Authority and subsequently, the GPCB had issued correction in consent vide order dated 09/04/2021. Afterward, DPA has also obtained amendment in Consent Order from the GPCB vide order dated 11/01/2024 (CCA Amendment - WH-130995) (Copy attached as Annexure I).

In this regard, as per statutory requirement, the DPA has regularly submitted Annual Returns (as mentioned in reference above) in format Form V to the GPCB.

Now please find the enclosed herewith Environmental Statement in Form V for the year 2023-24 as Annexure II.

This is for kind information and record please.

Encl : As above

Yours faithfully

Dy. Chief Engineer & EMC (I/C) Deendayal Port Authority

Date: /01/2024

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN, SECTOR 10-A, GANDHINAGAR - 382010, (T) 079-23232152

CCA-Amendment (WH-130995)

No. PC/CCA-KUTCH- 812(6)/ GPCB ID-28494/

Tο,

M/s. Kandla Port Trust.

At Kandla, A.O Building Gandhidham,

Tal: Gandhidham, Dist: Kutch – 370 201.

SUB: Amendment in the consolidated consent & Authorization of the Board.

REF: 1) CCA issued by this office vide order no- AWH- 110594 dated 22/01/2021 valid up to 21/07/2025.

2) Your CCA Amendment Application Inward ID No.277270 dated 23/05/2023.

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(2) of the Hazardous And Other Waste (Management and Transboundary) Rules, 2016 & framed under the Environment (Protection) Act-1986, The Board has granted CCA vide order No. AWH- 110594 issued vide order dated 22/01/2021 valid up to 21/07/2025.

The Board has right to review and amend the conditions of the said CCA and its amendment orders. Now, considering your application for CCA amendment inward ID No.277270 dated 23/05/2023, the said CCA order is amended as below:

1. The order shall be read as CCA amendment Order No.: WH- 130995 Date of Issue: 14/12/2023, valid up to 21/07/2025.

SUBJECT TO THE FOLLOWING SPECIFIC CONDITIONS:

- There shall be no change in existing production and its capacity, raw materials consumption, fuel consumption, flue gas emission & process gas emission, due to CCA Amendment.
- Industry shall not carry out any activity which may attract the applicability of EIA notification-2006 & its amendment.
- No ground water shall be withdrawal without prior permission from CGWA as per Hon'ble NGT order.
- 4. Unit shall obtain fresh water from valid source have permission of the competent authority.
- Industry shall manage Solid Wastes generated from industrial activities as per Solid Waste Management Rules-2016 (solid waste as defined in Rule-3(46)).
- 6. Industry shall renew Public Liability Insurance Policy time to time & submit a copy of the same to this office.
- 7. Industry shall comply with circular of the Board dated 27/08/2021 regarding retrofitting of emission control/ equipment in D.G. Set of capacity 125 KVA and above as per system & procedure for emission compliance testing of Retrofit Emission Control Devices (RECD) for D.G. Set issued by CPCB dated 01/02/2022 at the earliest and submit compliance.

9

Page 1 of 3

Clean Gujarat Green Gujarat

Website: https://gpcb.gujarat.gov.in

2. The condition no. 3 of the said CCA is amended as below:

- 3. CONDITION UNDER THE WATER ACT:
- 3.1 Water Source: GWIL.
- 3.2 There shall be no industrial water consumption & waste water generation from manufacturing process & other ancillary operation.
- 3.3 The quantity of domestic water consumption shall be decreased from 1300 KL/Day to 3000 KL/Day, due to CCA-Amendment.
- 3.4 The quantity of domestic waste water shall not exceed 800 KL/Day.
- 3.5 Sewage shall be treated separately to conform to the following standards as per Hon.ble NGT order in the matter of OA No.1069/2018 dated 30/04/2019

GPCB NORMS
5.5-9.0
10 mg/L
20 mg/L
50 mg/L
10 mg/L
1.0 mg/L
Desirable-100 MPN/100ml Permissible -230 MPN/100 ml

- 3.6 Treated domestic effluent conforming to above standard shall be discharged on land for gardening and plantation purpose within premises.
- 3.7 Industry shall provide fixed pipeline network with flow meter for even distribution of treated domestic effluent and maintain its record.
- 3.8 Disposal system for storm water shall be provided separately. In no circumstances storm water shall be mixed with the industrial effluent.

3. The condition no. 5.1 & 5.2 of the said CCA is amended as below:

- 5.1 Authorization order no. WH-130995 Date of issue: 14/12/2023.
- 5.2 M/s. Kandla Port Trust is hereby granted an authorization based on the enclosed signed inspection report for generation, collection, treatment, storage, transport of hazardous waste on the premises situated at Kandla, A.O Building Gandhidham, Tal: Gandhidham, Dist: Kutch;

Sr. Waste		Quantity	per Annum	Schedule	Facility	
No.	102/1	Existing	After CCA- Amendment	&Category		
10	Used or Spent Oil	1125 MT	4250 MT	J-5.1	Collection, storage, transportation and disposal by selling out to registered recycler.	

9

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN, SECTOR 10-A, GANDHINAGAR - 382010, (T) 079-23232152

2.	Residue Containing Oil	3444.43 MT	8500 MT	I-5.2	Collection, storage, transportation and disposal by selling out to registered recycler.
----	---------------------------	---------------	---------	-------	---

4. Rest of conditions of Consolidated Consent & Authorization (CC&A) order No: AWH-110594 issued vide this office letter no. GPCB/CCA-KUTCH-812(5)/ID: 28494/581914 dated 22/01/2021 shall remain unchanged and industry shall comply with the same judicially.

For and on behalf of GUJARAT POLLUTION CONTROL BOARD

(T. C. Patel) Unit Head

-

Page 3 of 3

Website: https://gpcb.gujarat.gov.in

Annexure II

Environmental Statement (Form V) For Deendayal Port Authority, Kandla For the FY @ 2023-2024

"FORM-V" (See rule -14)

From:

Deendayal Port Authority,

Administrative Office Building, Post Box No.: 50, Gandhidham,

Dist.: Kutch - 370 207. Gujarat State.

Tel No.: O: 02836-220038 Fax No.: 02836-220050

To,

The Member Secretary, **Gujarat Pollution Control Board,**Paryavaran Bhavan, Sector - 10A,

Gandhinagar - 382043

Environmental statement for the financial year ending the 31st March, 2024

"PART-A"

1) Name and Address of the owner/occupier of the industry or process					
> NAME	:	Shree V Raveendra Reddy Chief Engineer			
> ADDRESS	:	Deendayal Port Authority Administrative Office Building, Post Box No.: 50, Gandhidham, Dist.: Kutch – 370 207. Gujarat State. Tel No.: O: 02836-220038 Fax No.: 02836-220050			
Industry Category Primary – (STC code)Secondary – (STC code)	:	Major port Authority under the administrative control of Ministry of Ministry of Ports, Shipping and waterways, GOI			
Year of Establishment	:	8th April 1955			
Date of the last Environment audit report submitted	:	27 th June, 2016			

"PART-B"

WATER AND RAW MATERIAL CONSUMPTION

Sr.No.	WATER CONSUMPTION	KLD					
1.	Process						
2.	Cooling	1573					
3.	Domestic Purpose						
Total water consumption for the period from April 2023 to March 2024 was							
574086 KI	574086 KL hence, average water consumption for per day – 1573 KLD						

I. Water Consumption

Sr. No.	Name of Products	Process Water Consumption per unit of products output					
		During the current financial year 2022-23	During the current financial year 2023-24				
01.	Dry Cargo Handling	427 F MT	122 27 MT				
02.	Liquid Cargo Handling	- 137.5 MT	132.37 MT				

Deendayal Port Authority has only loading & unloading activities for dry cargo and liquid cargo. Hence consumption of process water consumption per unit of output with respective to production is not applicable.

During FY 2023-24 Total Cargo Handled is **132.37** MMTPA

However, Details of the Domestic water consumption for the financial year 2023-24 please refer **Annexure-A**

II. Raw material Consumption

Sr.No.	Name of Raw Material	Name of Products	Consumption of Raw material per unit of output	
			During the current financial year 2022-23	During the current financial year 2023-24
1.	Deendayal Port Authority has only loading & unloading activities for dry cargo and liquid cargo. Hence consumption of raw material per unit of output with respective to production is not applicable			

"PART-C"

POLLUTION DISCHARGED TO ENVIRONMENT/UNIT OF OUTPUT (PARAMETERS AS SPECIFIED IN THE CONSENT)

Pollutar	Quantity of Pollutant Discharged	Concentration of Pollution in Discharge (mass/volume)	% of Variation from prescribed standard with reasons
	(mass/day)		

Please Refer **Annexure -B** for Environmental Monitoring Reports of

- Ambient Air Quality Monitoring
- Drinking Water Quality Monitoring
- Marine Water Monitoring
- Noise Level Monitoring

"PART-D" HAZARDOUS WASTE [AS SPECIFIED UNDER HAZARDOUS WASTE (MANAGEMNET AND HANDLING) RULES -1989 & AMENDMENT RULES -2008]

Sr.No.	Hazardous Waste	Total Quantity in MT/Year			
		During the current	During the current		
		financial year 2022-23	financial year 2023-24		
1.	5.1- Used Spent Oil	4578.79	2431.39		
2.	5.2- Waste Residue	9157.58	7294.17		
	Containing Oil				
Details of Hazardous Waste generated during the financial year 2022-23					
please refer Annexure-C					
a. From Process: NA					
b. From Pollution Control facility: NA					

<u>"PART-E"</u> SOLID WASTE

Sr.No.	Solid Waste	Total Quantity in MT/year		
		During the current financial year 2022-23	During the current financial year 2023-24	
1.	From Process	Nil	Nil	
2.	From pollution Control Facility	Nil	Nil	
a.	Quantity Recycled or Reutilized within the unit	Nil	Nil	
b.	Sold	Nil	Nil	
c.	Disposed Off	2473.19 MT	2572.94	
Detail	s of Solid Waste (Non-Hazar	dous Waste) generated	during the financial	

year 2023-24 please refer **Annexure-C**

"PART-F"

PLEASE SPECIFY THE CHARACTERISTICS (IN TERMS OF CONCENTRATION AND QUANTUM) OF HAZARDOUS AS WELL AS SOLID WASTES AND INDICATE DISPOSAL PRACTICE ADOPTED FOR BOTH THESE CATEGORIES OF WASTES.

Hazardous Waste:

Companies authorized by Central Pollution Control Board (CPCB) and State Pollution Control Board (SPCB) have been awarded the work of collection, transporting and disposal of hazardous Waste by the Deendayal Port Authority. The same will be hand over to authorize parties for further Treatment & disposal.

Solid Waste:

Garbage facility is provided as per MARPOL Act 73/78 to the vessel berthed at Deendayal Port Authority. Companies authorized by Central Pollution Control Board (CPCB) and State Pollution Control Board (SPCB) have been awarded the work of collection, transporting and disposal of solid waste by the Deendayal Port Authority. The same will be hand over to authorize parties for further treatment and disposal.

"PART-G"

IMPACT OF THE POLLUTION ABATEMENT MEASURES TAKEN ON CONSERVATION OF NATURAL RESOURCES AND ON THE COST OF PRODUCTION.

DPA has awarded the work of "Preparing and Monitoring of Environmental monitoring and management plan for Deendayal Port Authority Kandla and Vadinar to Gujarat Environment Management Institute (GEMI), Gandhinagar (An autonomous Institute of Government of Gujarat).

Further for Pollution Abatement measures taken for Conservation of Natural Resources DPA appointed renowned agency i.e M/s. GUIDE, Bhuj for the following work.

- 1. Regular Monitoring of Mangrove Plantation.
- 2. Preparation of detailed marine Biodiversity management plan for the impact of the project activities as per the requirement of EC & CRZ Clearance accorded by the MoEF&CC, GOI for the project "Creation of water front facilities (Oil jetties 8,9,10,11) and development of land of area 554 acres for associated facilities for storage at old Kandla, Gandhidham, kutch, Gujarat by M/s Deendayal Port Authority"
- 3. Regular monitoring of marine ecology in and around the Deendayal Port Authority area and continuous monitoring programme covering all season on various aspects of the coastal environ covering physico-chemical parameters of marine sediments samples coupled with biological indices, as per the requirement of EC & CRZ clearance accorded by the MoEF&CC,GOI to the various projects of the Deendayal port Authority.
- 4. Study on dredged material for presence of contaminant as per EC and CRZ clearance accorded by the MoEF&CC, GOI dated 19/12/2016 specific condition vii

"PART-H"

ADDITIONAL MEASURES / INVESTMENT PROPOSAL FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT OF POLLUTION, PREVENTION OF POLLUTION

The allocation made under the scheme of "Environmental Services & Clearance there of other related Expenditure" during BE 2024-2025 is Rs. 657 Lakhs

"PART-I"

ANY OTHER PARTICULAR FOR IMPROVING THE QUALITY OF THE ENVIRONMENT

- 1. DPA is ISO 14001:2015 certified port for "Providing port facility and related maritime services for vessel and Cargo handling including storage
- 2. DPA has appointed M/s GEMI, Gandhinagar for the work "Making Deendayal Port a Green Port Intended Sustainable Development under the Green Port Initiatives". M/s GEMI, Gandhinagar had submitted the Final Report on 10/03/2021
- 3. DPA has accorded the work of Afforestation project in Deendayal Port Area to Forest Department, GoG which includes plantation and maintenance work of 1100 plants per ha.
- 4. DPA has accorded the work of green belt development in Deendayal port Authority and its Surrounding areas charcoal site to GUIDE for the plantation of 5000 saplings of suitable species.
- 5. DPA has planted 7500 trees in Deendayal port trust area during the year 2014-15 6000 trees during financial year 2016-17 and the same has been regularly maintained.
- 6. DPA has planted 4000 trees at A.O building, Gopalpuri residential colony and along the road side at Kandla. Further, approximately 885 no. of trees have been planted since September 2015 onwards.
- 7. Continuous water sprinkling has been carried out on the top of the heap of coal, at regular intervals to prevent dusting, fire and smoke. DPA already installed sprinkling system inside Cargo Jetty area for coal dust suppression in coal yard (40 Ha. Area) at the cost of Rs. 14.44 crores.
- 8. DPA has installed Mist Canon at the Port area to minimize the coal dust.
- 9. Deendayal port Authority (traffic department) issued a Circular (SOP) to the trade with regard to control of dust pollution arising out of coal handling and ensuring safety in coal handling. In case of any violations of SOP, provision of impose of penalty of Rs. 10000/- has been made and if violation is repeated thrice, the same will lead to ban of concerned party into port area. The DPA is taking all the measures to reduce coal dust by implementing the coal handling guidelines through port users.
- 10.All trucks before leaving the storage yard have been covered with tarpaulin and also trucks are also not over loaded as well as there is no spillage during transportation and there is adequate space for movement of vehicles at the surrounding area.
- 11.DPA has constantly improving the house keeping in the dry cargo storage yard and nearby approved areas leading to roads. Adequate steps under the

- provisions of air prevention and control of pollution Act 1981, Environmental Protection Act 1986 are taken.
- 12.DPA commissioned STP of capacity 1.5 MLD for treatment of domestic waste water for entire DPA area. (Details of domestic waste water generation is attached herewith as **Annexure D**)
- 13.Deendayal Port Authority had carried out mangrove plantation in an area of 1600 ha. through various government agencies like Gujarat Ecology Commission, State Forest Department.
- 14.It is also relevant to mention here that, DPA entrusted work to Forest Department, GoG (Social Forestry Division, Bhuj) during August, 2019 for green belt development in and around port area 31.942 hectares (approx. 35200 plants at various locations) at a cost of Rs. 352.32 lakhs.
- 15.DPA is involved in various CER activities like providing the proper sanitation and development of better roads for connectivity
- 16.DPA is managing its plastic waste as per Plastic Waste Management Rules 2016 and amendments made therein. In order to strictly implement the said rules, DPT had issued a circular regarding plastic waste minimization, source segregation, recycling etc. vide its Circular no. EG/WK/4751/Part 243(A) dated 03/09/2021
- 17.DPA has entrusted the work to GEMI, Gandhinagar for "Preparation of Plan for Management of Plastic Waste, Solid Waste, C&D Waste, E-waste, Hazardous Waste including Bio-medical Waste and Non-hazardous waste in the Deendayal Port Authority Area
- 18.DPA has assigned the work to TERI, New Delhi for "Transition of Business Operations to Water Neutrality Water Neutrality of Deendayal Port, Kandla (Phase I- Study and assessment)
- 19.Recently, DPA has entrusted the work to GEMI, Gandhinagar for "Study of CO₂ Emission Estimation and Reduction Strategy under Maritime India Vision 2030.
- 20.Initiative for Installation of Continuous Ambient Air Quality Monitoring System (CAAQMS) for monitoring of Air quality is under process.

Statement Showing the quantity of water consumed from GWSSB from April 2023 to March 2024

Sr.No.	Month	Total Quantity Consumed in KL			
1.	April 2023	47342.47			
2.	May 2023	48920.55			
3.	June 2023	47342.00			
4.	July 2023	48920.55			
5.	August 2023	48920.55			
6.	September 2023	59980.00			
7.	October 2023	48680.00			
8.	November 2023	57820.00			
9.	December 2023	52100.00			
10.	January 2024	45566.00			
11.	February 2024	30884.00			
12.	March 2024	37610.00			
	Total	574086.12			

XEN (PL)

Annexure B

Environmental Monitoring Annual Report

prepared under

"Preparing and monitoring of environmental monitoring and management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years"

Monitoring Period: April 2023 - March 2024

Submitted to: Deendayal Port Authority (DPA), Kandla

Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

GEMI Bhavan, 246-247, GIDC Electronic Estate, Sector-25, Gandhinagar-382025 "AN ISO 9001:2015, ISO 14001:2015 AND ISO 45001:2018 Certified Institute"

© Gujarat Environment Management Institute (GEMI)

All rights reserved. This "Environment Monitoring Report (April 2023-March 2024)" is prepared as a part of the project "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years". No part of this report may be reproduced, distributed or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Director, Gujarat Environment Management Institute (GEMI).

Disclaimer:

Gujarat Environment Management Institute (GEMI) has taken all reasonable precautions in the preparation of this report. The data presented in this report have been collected as per the relevant Standard Operating Procedures, Protocols and Guidelines. GEMI believes that the information and facts presented in the report are accurate as on the date it was written. However, it is impossible to dismiss absolutely, the possibility of errors or omissions. GEMI therefore specifically disclaims any liability resulting from the use or application of the information contained in this report. The information is not intended to serve as legal advice related to the individual situation.

About this Document

Gujarat Environment Management Institute (GEMI) has been assigned with the work of "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority (DPA) at Kandla and Vadinar for a period of 3 years" by DPA, Kandla. Under the said project the report titled "Environment Monitoring Annual Report (Monitoring Period: April 2023 - March 2024)" is prepared.

• Name of the Report: Environment Monitoring Report (Monitoring Period April 2023-March 2024)

• Date of Issue: 26/06/2024

• **Version:** 1.0

• **Report Ref.:** GEMI/DPA/782(2)(3)/2024-25/103

Table of Contents

CHAPT	TER 1: INTRODUCTION	1
1.1	Introduction	2
1.2	Green Ports Initiative	2
1.3	Importance of Environmental monitoring and management plan (EMMP)	2
1.4	Objectives and scope of the Study	4
CHAPT	TER 2: METHODOLOGY	5
2.1	Study Area	6
a.	Kandla	6
b.	Vadinar	6
2.2	Environmental Monitoring at Kandla and Vadinar	10
CHAPT	TER 3: METEOROLOGY MONITORING	12
3.1	Meteorology Monitoring	13
3.2	Results and discussion	15
3.3	Data Interpretation and Conclusion	17
CHAPT	TER 4: AMBIENT AIR QUALITY MONITORING	21
4.1	Ambient Air Quality	22
4.2	Result and Discussion	28
4.3	Data Interpretation and Conclusion	34
4.4	Remedial Measures:	37
CHAPT	TER 5: DG STACK MONITORING	39
5.1	DG Stack Monitoring	40
5.2	Result and Discussion	43
5.3	Data Interpretation and Conclusion	45
CHAPT	ER 6: NOISE MONITORING	47
6.1	Noise Monitoring	48
6.2	Result and Discussion	52
6.3	Data Interpretation and Conclusion	53
6.4	Remedial Measures	53
CHAPT	TER 7: SOIL MONITORING	54
7.1	Soil Quality Monitoring:	55
7.2	Result and Discussion	
7.3	Data Interpretation and Conclusion	60
CHAPT	ER 8: DRINKING WATER MONITORING	64
8.1	Drinking Water Monitoring	65

8.2	Result and Discussion	70
8.3	Data Interpretation and Conclusion	76
8.4	Remedial Measures	79
СНАРТ	TER 9: SEWAGE TREATMENT PLANT MONITORING	80
9.1	Sewage Treatment Plant (STP) Monitoring:	81
9.2	Result and Discussion	
9.3	Data Interpretation and Conclusion	89
9.4	Remedial Measures:	
СНАРТ	ER 10: MARINE WATER QUALITY MONITORING	91
10.1	Marine Water	
10.2	Result and Discussion	
10.3	Data Interpretation and Conclusion.	
СНАРТ	TER 11: MARINE SEDIMENT QUALITY MONITORING	
11.1	Marine Sediment Monitoring	
11.2	Result and Discussion	
11.3	Data Interpretation and Conclusion	
	TER 12: MARINE ECOLOGY MONITORING	
12.1	Marine Ecological Monitoring	
12.2	Result and Discussion	
	TER 13: SUMMARY AND CONCLUSION	
13.1	Summary and Conclusion	
	are 1: Photographs of the Environmental Monitoring conducted at Kandla	
	are 2: Photographs of the Environmental Monitoring conducted at Vadina	
	ER 14: REFERENCES	
	ences:	
Refer	CICCS	104
Listo	f Tables	
	Details of Automatic Weather Station	13
	Automatic Weather Monitoring Station details	
	: Meteorological data for Kandla and Vadinar	
Table 4	Details of Ambient Air monitoring locations	22
Table 5	Parameters for Ambient Air Quality Monitoring	28
	Summarized results of PM_{10} , $PM_{2.5}$, SO_2 , NO_x , VOC and CO for Ambient Ai	
	nitoring	
	Summarized results of Benzene for Ambient Air quality monitoring	
	Summarized results of Polycyclic Aromatic Hydrocarbons	
	Summarized results of Non-methane VOC	
Table 1	O: Details of DG Stack monitoring locations	∆ ∩

Map 1: Locations of Kandla and Vadinar	7
List of Maps	
-	
Table 43: Species richness Index and Diversity Index in Benthic Organisms	
Table 42: Benthic Fauna variations in abundance and diversity in sub surface sampling	
Table 41: Species richness Index and Diversity Index in Zooplankton	
Table 40: Zooplankton variations in abundance and diversity in sub surface sampling stations	123
Table 39: Species richness Index and Diversity Index in Phytoplankton	122
stations	
Table 38: Phytoplankton variations in abundance and diversity in sub surface sampling	_
(GPP), Pheophytin and Chlorophyll for Kandla and Vadinar	
Table 37: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity (CPP), Physical Strain and Chlorophyll for Kondle and Vadinary	•
Table 36: List of parameters to be monitored for Marine Ecological Monitoring	
Table 35: Details of the sampling locations for Marine Ecological	
Table 34: Comparison of Heavy metals with Standard value in Marine Sediment	
Table 33: Standard Guidelines applicable for heavy metals in sediments	
Table 32: Summarized result of Marine Sediment Quality	
Table 31: List of parameters to be monitored for Sediments at Kandla and Vadinar	
Table 30: Details of the sampling locations for Marine Sediment	
Table 29: Results of Analysis of Marine Water Sample for the sampling period	
Table 28: List of parameters monitored for Marine Water	
Table 27: Details of the sampling locations for Marine water	
Table 26: Water Quality of inlet and outlet of STP of Kandla	
Table 25: List of parameters monitored for STP's at Kandla and Vadinar	
Table 24: Norms of treated effluent as per CC&A of Vadinar STP	
Table 23B: Discharge norms (as per CC&A of Kandla STP)	
Table 23A: Details of the monitoring locations of STP	
Table 22C: Drinking Water Quality for the Monitoring period	
Table 22B: Drinking Water Quality for the Monitoring period	
Table 21: List of parameters for Drinking Water Quality monitoring ⁽³⁾	
Table 20: Details of Drinking Water Sampling Locations	
Table 19: Soil Quality for the Monitoring period	
Table 18: Soil parameters	
Table 17: Details of the Soil quality monitoring	
Table 15: Ambient Air Quality norms in respect of Noise ⁽²⁾	
Table 14: Details of the Noise Monitoring	
Table 13: Details of noise monitoring locations	
Table 12: DG monitoring data	

Map 2: Locations of Kandia Port	8
Map 3: Locations of Vadinar Port	9
Map 4: Locations for Ambient Air Monitoring at Kandla	25
Map 5: Locations for Ambient Air Monitoring at Vadinar	26
Map 6: Locations for DG Stack monitoring at Kandla	41
Map 7: Locations for DG Stack monitoring at Vadinar	42
Map 8: Locations for Noise Monitoring at Kandla	49
Map 9: Locations for Noise Monitoring at Vadinar	50
Map 10: Locations for Soil Quality Monitoring at Kandla	57
Map 11: Locations for Soil Quality Monitoring at Vadinar	58
Map 12: Locations for Drinking Water Monitoring at Kandla	
Map 13: Locations for Drinking Water Monitoring at Vadinar	67
Map 14: Locations for STP Monitoring at Kandla	85
Map 15: Locations for STP Monitoring at Vadinar	86
Map 16: Locations for Marine Water Monitoring at Kandla	93
Map 17: Locations for Marine Water Monitoring at Vadinar	
Map 18: Location of Marine Sediment Monitoring at Kandla	103
Map 19: Locations of Marine Sediment Monitoring at Vadinar	104
Map 20: Locations of Marine Ecological Monitoring at Kandla	
Map 21: Locations of Marine Ecological Monitoring at Vadinar	114
List of Figures	
Figure 1: Methodology flow chart	11
Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar.	
Figure 3: Process flow diagram of STP at Kandla	
Figure 4: Process flow diagram of STP at Gopalpuri	
Figure 5: Process flowchart for the STP at Vadinar	
List of Graphs	
Graph 1 Spatial trend in Ambient PM ₁₀ Concentration	30
Graph 2 Spatial trend in Ambient PM _{2.5} Concentration	
Graph 3 Spatial trend in Ambient SOx Concentration	
Graph 4 Spatial trend in Ambient NOx Concentration	
Graph 5 Spatial trend in Ambient CO Concentration	
Graph 6 Spatial trend in Ambient Total VOCs	
Graph 7 Spatial trend in SPM Concentration	
Graph 8 Spatial trend in NOx Concentration	
Graph 9 Spatial trend in SO _x Concentration	
Graph 10 Spatial trend in CO Concentration	
Graph 11 Spatial trend in CO ₂ Concentration	45

List of Abbreviations

A	Acceptable Limits as per IS: 10500:2012
AAQ	Ambient Air Quality
AWS	Automatic Weather monitoring stations
BIS	Bureau of Indian Standards
BOD	Biochemical Oxygen Demand
BQL	Below Quantification Limit
	Consolidated Consent & Authorization
CCA	
CO	Carbon Monoxide
COD	Chemical Oxygen Demand
СРСВ	Central Pollution Control Board
DO	Dissolved Oxygen
DPA	Deendayal Port Authority
EC	Electrical Conductivity
EMMP	Environmental monitoring and Management Plan
EMP	Environment Management Plan
FPS	Fine Particulate Sampler
FY	Financial Year
GEMI	Gujarat Environment Management Institute
IFFCO	Indian Farmers Fertiliser Cooperative Limited
IMD	India Meteorological Department
IOCL	Indian Oil Corporation Limited
LNG	Liquefied Natural Gas
MGO	Marine Gas Oil
MMTPA	Million Metric Tonnes Per Annum
MoEF	Ministry of Environment & Forests
MoEF&CC	Ministry of Environment, Forest and Climate Change
NAAQS	National Ambient Air Quality Standards
NO _x	Nitrogen oxides
A PET I	AT 1 1 TO 1 1 19 TT 9
NTU	Nephelometric Turbidity Unit
OOT	Nephelometric Turbidity Unit Off Shore Oil Terminal
	1
OOT	Off Shore Oil Terminal
OOT OSR	Off Shore Oil Terminal Oil Spill Response
OOT OSR P	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012
OOT OSR P PAH	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons
OOT OSR P PAH PM	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter
OOT OSR P PAH PM PTFE	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene
OOT OSR P PAH PM PTFE RCC	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler
OOT OSR P PAH PM PTFE RCC RDS	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio
OOT OSR P PAH PM PTFE RCC RDS SAR SBM	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x STP	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x STP TC	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x STP TC TDS	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x STP TC TDS TOC	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids Total organic Carbon
OOT OSR P PAH PM PTFE RCC RDS SAR SBM SO _x STP TC TDS	Off Shore Oil Terminal Oil Spill Response Permissible Limits as per IS: 10500:2012 Poly Aromatic Hydrocarbons Particulate Matter Polytetrafluoroethylene Reinforced Concrete Cement Respirable Dust Sampler Sodium Adsorption Ratio Single Bouy Mooring Sulfur oxides Sewage Treatment Plant Total Coliforms Total Dissolved Solids

CHAPTER 1: INTRODUCTION

1.1 Introduction

Kandla Port, also known as the Deendayal Port is a seaport in Kachchh District near the city of Gandhidham in Gujarat state in western India. Located on the Gulf of Kachchh, it is one of major ports on the western coast, and is located at 256 nautical miles southeast of the Port of Karachi in Pakistan and over 430 nautical miles northnorthwest of the Port of Mumbai (Bombay). It is the largest port of India by volume of cargo handled. Deendayal Port's journey began in 1931 with the construction of RCC Jetty by Maharao Khengarji. Kandla was constructed in the 1950s as the chief seaport serving western India, after the independence of India. On 31st March 2016, Deendayal Port created history by handling 100 MMT cargo in a year and became the first Major Port to achieve this milestone. Deendayal Port Authority (DPA), India's busiest major port in recent years, is gearing up to add substantial cargo handling capacity with private sector participation. DPA has created new record by handling 137 MMTPA (at Kandla and Vadinar) during the financial year 2022-23. The DPA had commissioned the Off-shore Oil Terminal facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. Further, significant Quantum of infrastructural upgradation has been carried out & excellent maritime infrastructure has been created at Vadinar for the 32 MMTPA Essar Oil Refinery in Jamnagar District.

1.2 Green Ports Initiative

DPA is committed to sustainable development and adequate measures are being taken to maintain the Environmental well-being of the Port and its surrounding environs. Weighing in the environmental perspective for sustained growth, the Ministry of Shipping had started, Project Green Ports" which will help in making the Major Ports across India cleaner and greener. "Project Green Ports" will have two verticals - one is "Green Ports Initiatives" related to environmental issues and second is "Swachh Bharat Abhiyaan".

The Green Port Initiatives include twelve initiatives such as preparation and monitoring plan, acquiring equipment required for monitoring environmental pollution, acquiring dust suppression system, setting up of sewage/waste water treatment plants/ garbage disposal plant, setting up Green Cover area, projects for energy generation from renewable energy sources, completion of shortfalls of Oil Spill Response (OSR) facilities (Tier-I), prohibition of disposal of almost all kind of garbage at sea, improving the quality of harbour wastes etc.

DPA had also appointed GEMI as an Advisor for "Making Deendayal Port a Green Port-Intended Sustainable Development under the Green Port Initiatives. DPA has also signed MoU with Gujarat Forest Department in August 2019 for Green Belt Development in an area of 31.942 Ha of land owned by DPA. The plantation is being carried out by the Social Forestry division of Kachchh.

1.3 Importance of Environmental monitoring and management plan (EMMP)

Port activities can cause deterioration of air and marine water quality in the surrounding areas due to multifarious activities. The pollution problems usually caused by port and harbour activities can be categorized as follows:

1. Air pollutant emissions due to ship emissions, loading and unloading activities, construction emission and emissions due to vehicular movement.

- 2. Coastal habitats may be destroyed and navigational channels silted due to causeway construction and land reclamation.
- 3. Deterioration of surface water quality may occur during both the construction and operation phases.
- 4. Harbour operations may produce sewage, bilge wastes, solid waste and leakage of harmful materials both from shore and ships.
- 5. Human and fish health may be affected by contamination of coastal water due to urban effluent discharge.
- 6. Oil pollution is one of the major environmental hazards resulting from port/harbour and shipping operations. This includes bilge oil released from commercial ships handling non-oil cargo as well as the more common threat from oil tankers.
- 7. Unregulated mariculture activities in the port and harbour areas may threaten navigation safety.

Hence, for the determination of levels of pollution, identification of pollution sources, control and disposal of waste from various point and non-point sources and for prediction of pollution levels for future, regular monitoring and assessment are required during the entire construction and operation phase of a major port. As per the Ministry of Environment, Forest and Climate Change (MoEF&CC), The Environmental Management Plan (EMP) is required to ensure sustainable development in the area surrounding the project. Hence, it needs to be an all encompasses plan consist of all mitigation measures for each item wise activity to be undertaken during the construction, operation and the entire life cycle to minimize adverse environmental impacts resulting from the activities of the project. for formulation, implementation and monitoring of environmental protection measures during and after commissioning of projects. The plan should indicate the details of various measures are taken and proposed to be taken for appropriate management of the environment of Deendayal Port Authority.

It identifies the principles, approach, procedures and methods that will be used to control and minimize the environmental and social impacts of operational activities associated with the port. An EMP is a required part of environmental impact assessment of a new port project but could also be evolved for existing ports. It is useful not only during the construction and operational phases of the new port but also for operation of existing ports to ensure the effectiveness of the mitigation measures implemented and to further provide guidance as to the most appropriate way of dealing with any unforeseen impacts.

It is extremely essential that port and harbour projects should have an Environmental Monitoring and Management Plan (EMMP), which incorporates monitoring of Ambient Air, Drinking Water, Noise, Soil, Marine (water, sediment, ecology) quality along with the collection of online meteorological data throughout the duration of the project.

To ensure the effective implementation of the EMP and weigh the efficiency of the mitigation measures, it is essential to undertake environmental monitoring both during construction and operation period. In view of the above, Gujarat Environment Management Institute (GEMI) has been awarded with the work "Preparing and Monitoring of Environmental Monitoring and Management Plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years" vide letter No. EG/WK/EMC/1023/2011/III/239 dated: 15/02/2023 by DPA.

This document presents the Environmental Monitoring Report (EMR) for Kandla and Vadinar for the environmental monitoring done during the period from April 2023-March 2024.

1.4 Objectives and scope of the Study

In line with the work order, the key objective of the study is to carry out the Environmental Monitoring and preparation the Management Plan for Kandla and Vadinar for a period of 3 years". Under the project, Environmental monitoring refers to systematic monthly monitoring and assessment of ambient air, water (drinking and surface), soil, sediment, noise and ecology in order to monitor the performance and implementation of a project in compliance with Environmental quality standards and/or applicable Statutory norms.

The scope of work includes not limited to following:

- 1. To review the locations/stations of Ambient Air, Ambient Noise, drinking water, and Marine Water, Soil and Sediments monitoring within the impacted region in-and-around DPA establishment, in view of the developmental projects.
- 2. To assess the Ambient Air quality, quality at 6 stations at Kandla and 2 at Vadinar in terms of gases and particulate matter.
- 3. To assess the DG stack emissions (gases and particulate matter).
- 4. To assess Drinking water quality at twenty locations (18 at Kandla and 2 at Vadinar) in terms of Physical, Chemical and Biological parameters viz., Color, Odor, turbidity, conductivity, pH, Total Dissolved Solids, chlorides, Hardness, total iron, sulphate, NH₄, PO₄, and bacterial count on a monthly basis.
- 5. To assess the Marine water quality in terms of aquatic Flora and Fauna and Sediment quality in terms of benthic flora and fauna.
- 6. To assess Marine Water Quality and sediment in term of physical and chemical parameter.
- 7. To assess the trends of water quality in terms of Marine ecology by comparing the data collected over a specified time period.
- 8. Weekly sample collection and analysis of inlet & Outlet points of the Sewage Treatment Plant (STP) to check the water quality being discharged by DPA as per the CC&A.
- 9. Carrying out monthly Noise monitoring; twice a day at the representative stations for a period of 24 hours.
- 10. Meteorological parameters are very important from air pollution point of view, hence precise and continuous data collection is of utmost importance. Meteorological data on wind speed, wind direction, temperature, relative humidity, solar radiation and rainfall shall be collected from one permanent station at DPA, Kandla and one permanent station at Vadinar.
- 11. To suggest mitigation measures, based on the findings of this study and also check compliance with Environmental quality standards, Green Port Initiatives, MIV 2030, and any applicable Statutory Compliance.
- 12. To recommend Environment Management Plans based on Monitoring programme and findings of the study.

CHAPTER 2: METHODOLOGY

2.1 Study Area

Under the study, the locations specified by Deendayal Port Authority for the areas of Kandla and Vadinar would be monitored. The details of the study area as follows:

a. Kandla

Deendayal Port (Erstwhile Kandla Port) is one of the twelve major ports in India and is located on the West Coast of India, in the Gulf of Kutch at 23001'N and 70013'E in Gujarat. The Major Port Authorities Act 2021 is the governing statute for Administration of Major Ports, under which, Deendayal Port Trust (DPT) has become Deendayal Port Authority (DPA). At Kandla, DPA has sixteen (16) cargo berths for handling various types of Dry Bulk Cargo viz, fertilizer, food grains, Coal, sulphur, etc.

Climatic conditions of Kandla

Kandla has a semi-desert climate. Temperature varies from 25°C to 44°C during summer and 10°C to 25°C during winter. The average annual temperature is 24.8 °C. The average rainfall is 410 mm, most of which occurs during the monsoon from the months of June-to-September.

b. Vadinar

Vadinar is a small coastal town located in Devbhumi Dwarka district of the Gujarat state in India located at coordinates 22° 27′ 16.20″ N - 069° 40′ 30.01″. DPA had commissioned the Off Shore Oil Terminal (OOT) facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. The OOT of the DPA contributes in a large way to the total earnings of this port. Vadinar is now notable due to the presence of two refineries-one promoted by Reliance Industries and Essar Oil Ltd.

DPA also handled 43.30 MMT at Vadinar (which includes transhipment), the containerized cargo crossed 4.50 lakh TEU, grossing a total of 100 MMT overall. Major commodities handled by the Deendayal Port are Crude Oil, Petroleum product, Coal, Salt, Edible Oil, Fertilizer, etc.

• Climatic conditions of Vadinar

Vadinar has a hot semi-arid climate. The summer season lasts from March-to-May and is extremely hot, humid, but dry. The climatic conditions in Vadinar are quite similar to that recorded in its district head quarter i.e., Jamnagar. The annual mean temperature is 26.7 °C. Rainy season with extremely erratic monsoonal rainfall that averages around 630 millimetres. The winter season is from October-to-February remains hot during the day but has negligible rainfall, low humidity and cool nights.

The Kandla and Vadinar port have been depicted in the Map 1 & 2 as follows:

Map 1: Locations of Kandla and Vadinar Port

Map 2: Locations of Kandla Port

Map 3: Locations of Vadinar Port

2.2 Environmental Monitoring at Kandla and Vadinar

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during project operation. With the knowledge of baseline conditions, the monitoring programme will serve as an indicator for identifying any deterioration in environmental conditions, thereby assist in recommending suitable mitigatory steps in time to safeguard the environment. Monitoring is as important as that of control of pollution since the efficiency of control measures can only be determined by a well-defined monitoring program. Environmental Monitoring is vital for monitoring the environmental status of the port for sustainable development. The list of main elements for which Environmental monitoring is to be carried out have been mentioned below:

- Meteorology
- Ambient Air
- DG Stack
- Noise
- Soil
- Drinking Water
- Sewage Treatment Plant
- Marine (Surface) water
- Marine Sediments
- Marine Ecology

GEMI has been entrusted by DPA to carry out the monitoring of the various aforementioned environmental aspects at the port, so as to verify effectiveness of prevailing Environment Management plan, if it confirms to the statutory and/or legal compliance; and identify any unexpected changes. Standard methods and procedures have been strictly adhered to in the course of this study. QA/QC procedures were strictly followed which covers all aspects of the study, and includes sample collection, handling, laboratory analyses, data coding, statistical analyses, interpretation and communication of results. The analysis was carried out in GEMI's NABL/MoEF accredited/recognized laboratory.

Methodology adopted for the study

Methodology is a strictly defined combination of practices, methods and processes to plan, develop and control a project along the continuous process of its implementation and successful completion. The aim of the project management methodology is to allow the control of whole process of management through effective decision-making and problem solving. The methodology adopted for the present study is shown in **Figure 1** as given below:

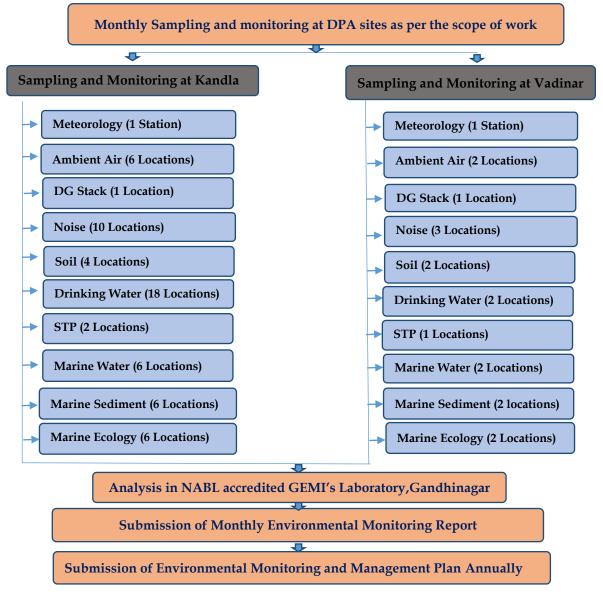


Figure 1: Methodology flow chart

The details of various sectors of Environment monitoring are described in subsequent chapters.

CHAPTER 3: METEOROLOGY MONITORING

3.1 Meteorology Monitoring

Meteorological conditions play a crucial role in dispersion of air pollutants as well as in environmental pollution studies particularly in pollutant transport irrespective of their entry into the environment. The wind speed and direction play a major role in dispersion of environment pollutants. In order to determine the prevailing micro-meteorological conditions at the project site an Automatic Weather Monitoring Stations (AWS) of Envirotech make (Model: WM280) were installed at both the sites of Kandla and Vadinar at 10 m above the ground. The details of the AWS installed have been mentioned in **Table 1** as follows:

Table 1: Details of Automatic Weather Station

Sr. No.	Site	Location Code	Location Name	Latitude Longitude
1.	Kandla	AWS-1	Environment Laboratory (DPA)	23.00996N 70.22175E
2.	Vadinar	AWS-2	Canteen Area	22.39994N 69.716608E

Methodology:

During the study, a continuous automatic weather monitoring station was installed at both the sites to record climatological parameters such as Wind speed, Wind Direction, Relative Humidity, Solar Radiation, Rainfall and Temperature to establish general meteorological regime of the study area. The methodology adopted for monitoring meteorological data shall be as per the standard norms laid down by Bureau of Indian Standards (BIS) and the India Meteorological Department (IMD). The details of Automatic Weather Monitoring Station have been mentioned in **Table 2**.

Table 2: Automatic Weather Monitoring Station details

Sr. No.	Details of Meteorological Data		Instrument	Frequency
1.	Wind Direction	degree	A to ti a	
2.	Wind Speed	Km/hr	Automatic Weather	
3.	Rainfall	mm/hr	Monitoring Station	Hourly
4.	Relative Humidity	% RH	(Envirotech	Average
5.	Temperature	°C	WM280)	
6.	Solar Radiation	W/m ²		

Monitoring Frequency:

The Meteorological parameters were recorded at an interval of 1 hour in a day for the period of April 2023 to March 2024 and the average value for all the Meteorological parameters were summarized for the sampling period of at both the observatory site.

Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar

3.2 Results and discussion

The summary of hourly climatological observations recorded at Kandla and Vadinar during the monitoring period of **April 2023 to March 2024**, with respect to significant parameters has been mentioned in **Table 3** as follows:

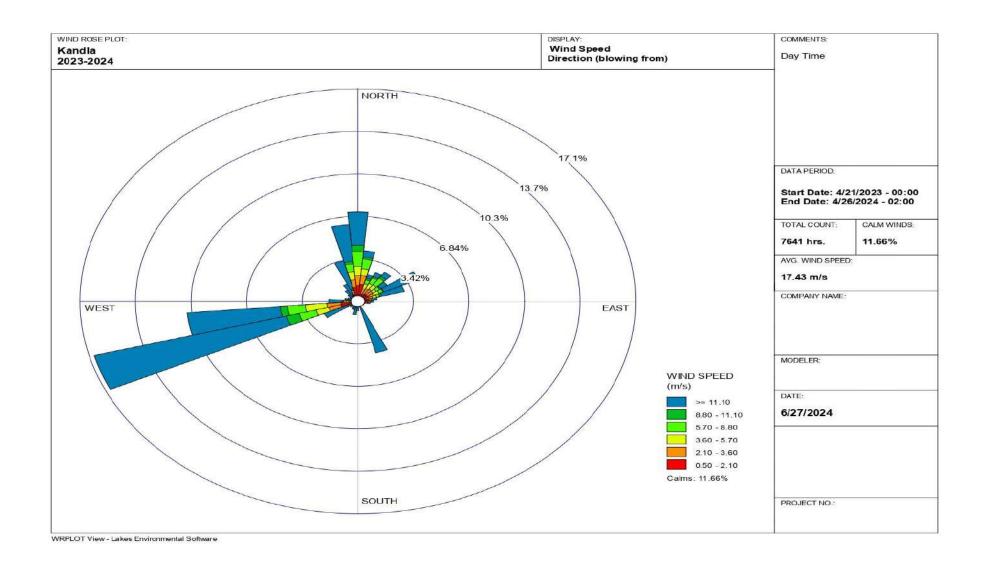
Table 3: Meteorological data for Kandla and Vadinar

Details of Micro-meteorological data at Kandla Observatory												
Monitoring Period	Wind Speed (Km/h)			Temperature (°C)			Relative humidity (%)			Solar Radiation	Wind Direction	Rainfall (mm)
	Max.	Min	Avg.	Max.	Min	Avg.	Max.	Min	Avg.	(W/m²)	(°)	()
April-May 23	27.02	1.54	8.78	32.21	30.4	31.31	64.12	61.07	57.76	105.42	S.S.E	0.05
May-June 23	48.85	3.07	12.94	32.64	31.23	31.93	70.33	65.93	68.17	90.14	N & N.N.W	0.37
June- July 23	38.99	1.23	9.71	31.54	30.27	30.89	76.32	72.43	74.47	67.76	E.W.E & W.S.W	3.56
July-Aug 23	35.4	1.47	7.67	30.51	29.32	29.91	77.72	73.87	75.78	57.4	W.S.W	14.94
Aug-Sep 23	37.52	0.63	6.55	48.44	30.33	38.43	84.57	69.18	75.59	73.28	W.S.W	21.89
Sep- Oct 23	20.36	0.16	4.75	31.01	29.66	30.32	71.62	66.85	69.32	74.08	W.S.W	2.87
Oct- Nov 23	9.85	0.025	1.15	31.24	29.63	30.41	55.4	49.02	52.18	65.11	North	0.012
Nov- Dec 23	14.72	0	2.09	25.76	24.32	25.03	59.69	54.6	57.1	54.28	N.E	0.96
Dec- Jan 24	15.75	0	1.87	23.22	21.68	22.44	56.5	51.11	53.78	60.66	North	0
Jan- Feb 24	15.29	0.131	3.147	24.83	23.18	24	56	50.51	53.19	65.32	North	0
Feb- Mar 24	22.41	0.44	5.12	26.7	25.06	25.86	51.55	45.91	48.64	78.46	North	0.04
Mar- Apr 24	33.09	0.025	5.43	48.44	26.87	30.08	73.25	30.59	55.06	89.43	W.S.W	0

Details of Micro-meteorological data at Vadinar Observatory												
	Wind Speed (Km/h)			Teı	Temperature (°C)			Relative humidity (%)			Wind Direction	
Monitoring Period	Max.	Min	Avg.	Max.	Min	Avg.	Mean	Max.	Min	Radiation (W/m²)	(°)	Rainfall (mm)
April-May 23	26.33	7.78	13.24	28.74	28.04	28.17	73.47	70	71.08	110.76	W & South	0.02
May-June 23	34.08	7.63	16.76	29.96	29.22	29.34	71.77	69.03	69.83	102.95	S.S.E	0.19
June- July 23	12.31	1.62	5.19	29.51	28.86	28.94	77.68	75.42	75.95	78.26	South	0.27
July-Aug 23	31.69	5.39	13.12	28.62	27.99	28.06	79.51	77.31	77.77	60.86	South	0.22
Aug-Sep 23	28.07	5.2	12.96	27.75	27.18	27.22	75.13	72.87	73.42	88.14	South & S.W	0
Sep- Oct 23	21.82	4.64	9.59	28.12	27.5	27.56	77.12	74.66	75.32	87.51	South	0.06
Oct- Nov 23	13.8	1.77	4.17	27.89	27.1	27.28	63.61	59.58	61.15	81.61	N.E	0.18
Nov- Dec 23	19.37	3	4.84	24.79	24.11	24.24	64.12	60.47	61.79	70.68	S.S.E	0.03
Dec- Jan 24	16.76	1	4.18	22.94	22.14	22.34	63.13	59.25	60.71	73.37	South	0
Jan- Feb 24	10.62	1.99	3.94	23.24	22.92	22.7	65.66	64.19	64.9	87.29	South	0
Feb- Mar 24	16.92	5.36	8.55	24.16	23.6	23.82	62.34	60.91	61.51	101.99	N.N.W	0
Mar- Apr 24	29.61	0.31	11.63	29.8	24.96	26.5	82.36	57.41	71.08	114.77	N.N.W	0

3.3 Data Interpretation and Conclusion

1) Kandla:

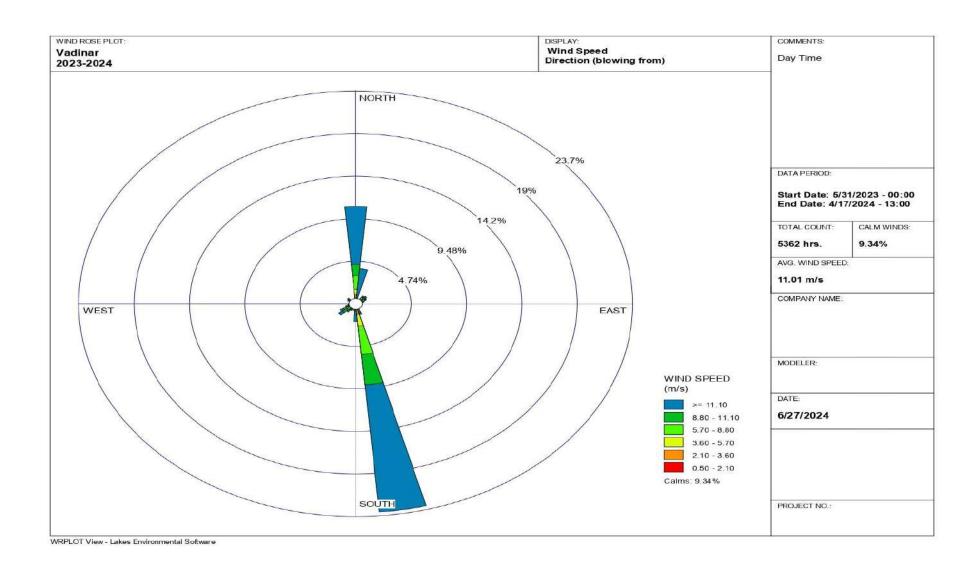

- a. The ambient temperature for the summer season varies in the range of **21.68** to **48.44** °C; in the monsoon season, the temperature varies between **29.32** and **33.38** °C; and in the winter season, the temperature varies between **21.68** and **31.24** °C. The yearly average temperature at Kandla is observed to be around **29.217** °C, with a standard deviation of 4.31.
- b. The relative humidity for the summer season was recorded in the range of 30.59% to 76.32%; in the monsoon season, relative humidity was recorded in the range of 66.85% to 84.57%; and in the winter season, relative humidity was recorded in the range of 49.02 to 59.69%; the yearly average humidity at Kandla was 61.75% with a standard deviation of 10.635.
- c. The maximum rainfall at Kandla was observed at **21.89** mm for the monitoring period of August to September 2023; the yearly average rainfall was found to be **3.72** mm
- d. Wind speed and direction play a significant role in transporting pollutants and thus determining the air quality. In the summer season, wind blew from the North and North North West directions; in the monsoon season, wind blew from the West South West; and in the winter season, wind blew from the North direction.
- e. The wind speed recorded ranges from **0.025** to **48.85** km/h in the summer season; in the monsoon season, the wind speed recorded ranges from **0.16** to **37.52** km/h; and in the winter season, the wind speed recorded ranges from **0** to **15.75** km/h. The yearly average wind speed at Kandla is **5.77** km/h, with a standard deviation of 3.55.
- f. The **maximum** solar radiation at Kandla was observed at **105.42** W/m² during the monitoring period **April to May 2023**; the **minimum** solar radiation at Kandla was observed at 54.28 W/m² for the monitoring period **November to December 2023**; and the yearly average solar radiation was found to be **73.445** W/m² with a standard deviation of 15.19.

Wind rose diagram:

The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data.

This Wind Rose Diagram reveals that at Kandla during the monitoring period, the prevailing winds predominantly blow from the West South West direction at Kandla, whereas, high speed winds were also observed to blow from North direction.

2) Vadinar:


- a. The ambient temperature for the summer season varies between 23.6 and 29.96 °C; in the monsoon season, it varies between 27.18 and 28.62 °C; and in the winter season, it varies between 22.14 and 27.89 °C. The yearly average temperature at Vadinar is 2.347 °C with standard deviation of 2.4.
- b. The relative humidity for the summer season was recorded in the range of 57.41% to 82.36%; in the monsoon season, relative humidity was recorded in the range of 72.87% to 79.51%; and in the winter season, relative humidity was recorded in the range of 59.25% to 65.66%; the yearly average humidity at Vadinar was 68.7% with a standard deviation of 6.38.
- c. The maximum rainfall at Vadinar was observed at 0.27 mm for the monitoring period from June to July 2023; the yearly average rainfall was found to be 0.08 mm.
- d. In Summer Season wind blew from South Direction, in Monsoon season wind blew from South and in Winter Season wind blew from South and South West direction. The recorded wind speed ranges from **0.31** to **34.08** km/hr in the summer season, **4.64** to **31.69** km/hr, and in the monsoon season, the recorded wind speed ranges from **1** to **19.37** km/hr. The yearly average wind speed at Vadinar is 9.014 km/h with a standard deviation of **4.49**.
- e. The maximum solar radiation at Vadinar was observed at 114.77 W/m2 for the monitoring period April to May 2024; the minimum solar radiation at Vadinar was observed at 60.86 W/m2 for the monitoring period July to August 2023; and the yearly average solar radiation was found to be 88.182 W/m2.

Wind rose diagram:

The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data.

At Vadinar, the winds were observed to blow from Souths direction.

CHAPTER 4: AMBIENT AIR QUALITY MONITORING

4.1 Ambient Air Quality

It is necessary to monitor the ambient air quality of the study area, in order to determine the impact of the shipping activities and port operations on the ambient air quality. The prime objective of ambient air quality monitoring is to assess the present air quality and its conformity to National Ambient Air Quality Standards i.e. NAAQS, 2009⁽¹⁾.

Methodology

The study area represents the area occupied by DPA and its associated Port area. The sources of air pollution in the region are mainly vehicular traffic, fuel burning, loading & unloading of dry cargo, fugitive emissions from storage area and dust arising from unpaved village roads. Considering the below factors, under the study, as per the scope specified by DPA eight locations wherein, 6 stations at Kandla and 2 at Vadinar have been finalized within the study area

- Meteorological conditions;
- Topography of the study area;
- Direction of wind;
- Representation of the region for establishing current air quality status
- ➤ Representation with respect to likely impact areas.

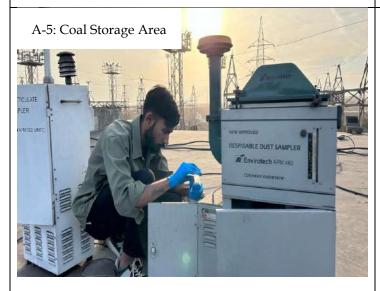
The description of various air quality stations monitored at Kandla and Vadinar have been specified in **Table 4**.

Location **Location Name** Latitude Longitude Significance Code No. 1. 23.029361N 70.22003E A-1 Oil Jetty No. 1 Liquid containers and emission from ship A-2 23.043538N 70.218617E 2. Oil Jetty No. 7 3. A-3 Kandla Port 23.019797N 70.213536E Vehicular activity and dust Colony emission 4. A-4 Marine Bhavan 23.007653N 70.222197E Construction and vehicular activity, road dust emission, 5. A-5 Coal Storage 23.000190N 70.219757E Coal Dust, Vehicular activity Area 6. A-6 Gopalpuri 23.081506N 70.135258E Residential area, dust Hospital emission, vehicular activity A-7 7. Admin Building 22.441806N 69.677056E Vehicular activity 8. A-8 Vadinar Colony 22.401939N 69.716306E Residential Area, burning waste, vehicular activity

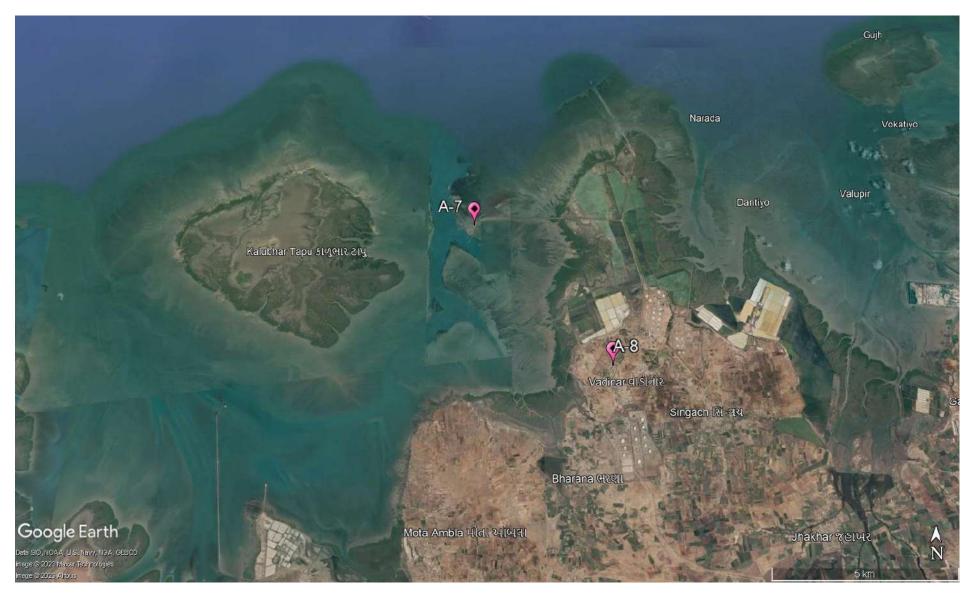
Table 4: Details of Ambient Air monitoring locations

The monitoring locations at Kandla and Vadinar have been depicted in map in **Map 4 and** 5 respectively.

Ambient Air monitoring photos


Kandla

Vadinar



Map 4: Ambient Air Monitoring locations at Kandla

Map 5: Ambient Air Monitoring locations at Vadinar

Monitoring Frequency

The sampling for Particulate matter, i.e., PM_{10} and $PM_{2.5}$, and gaseous components like SO_x , NO_x , and CO, as well as the total VOCs, was monitored twice a week for a period of 24 hours a day. Whereas, the sampling for the components of PAH, benzene, and non-methane VOCs was conducted on a monthly basis. The monitoring period for this study is from April 15, 2023, to April 15, 2024. During this period, 95 air samples were taken from six locations in Kandla, and 97 samples were taken from two locations in Vadinar.

Sampling and Analysis

The Sampling of the Ambient Air Quality parameters and analysis is conducted as per the CPCB guidelines of National Ambient Air Quality Monitoring. The sampling was performed at a height of 3.5 m (approximately) from the ground level. For the sampling of PM_{10} , calibrated 'Respirable Dust Samplers' were used, where Whatman GF/A microfiber filter paper of size 8''x 10'' were utilized, where the Gaseous attachment of the make Envirotech instrument was attached with Respirable Dust Sampler for the measurement of SO_x and NO_x . The Fine Particulate Sampler for collection of $PM_{2.5}$ was utilized for the particulate matter of size <2.5 microns. A known volume of ambient air is passed through the cyclone to the initially pre-processed filter paper. The centrifugal force in cyclone acts on particulate matter to separate them into two parts and collected as following:

- Particles <10 μ size (Respirable): GF/A Filter Paper
- Particles <2.5 μ size (Respirable): Polytetrafluoroethylene (PTFE)

Sampling and analysis of ambient SO_2 was performed by adopting the 'Improved West and Gaeke Method'. The ambient air, drawn through the draft created by the RDS, is passed through an impinger, containing a known volume of absorbing solution of Sodium tetrachloromercurate, at a pre-determined measured flow rate of 1 liter/minute (L/min). Similarly, NO_x was performed by adopting the 'Jacob Hochheister Modified' (Na arsenite) method. The impinger contains known volume of absorbing solution of Sodium Arsenite and Sodium Hydroxide.

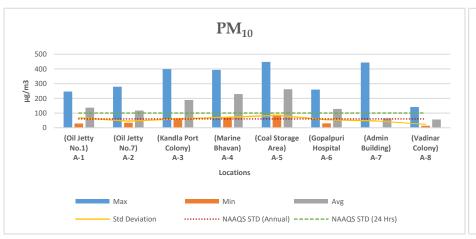
Data has been compiled for PM_{10} , $PM_{2.5}$, SO_x and NO_x samples of 24-hour carried out twice a week. In case of CO, one hourly sample were taken on selected monitoring days using the sensor-based CO Meter. For the parameters Benzene, Methane & Nonmethane and Volatile Organic Carbons (VOCs), the Low Volume Sampler is used, where the charcoal tubes are used as sampling media. The sampling in the Low Volume Sampler (LVS) is carried out as per IS 5182 (Part 11): 2006 RA: 2017, where the ambient air flow rate is maintained at 200 cc/min, the volume of air that passes through the LVS during two hours monitoring is approx. 24 L.

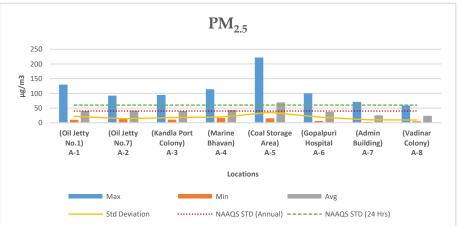
The sampling of PAHs is carried out as per IS: 5182 (Part 12): 2004. Where, the EPM 2000 Filter papers are utilized in the Respirable Dust Sampler (RDS). For the parameters, Benzene, PAH & Non-methane VOC's, monthly monitoring is carried out. The details of the parameters with their frequency monitored are mentioned in **Table 5**:

Table 5: Parameters for Ambient Air Quality Monitoring

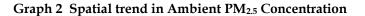
Sr. No.	Parameters	Units	Reference method	Instrument	Frequency
1.	PM ₁₀	μg/m³	IS 5182 (Part 23): 2006	Respirable Dust Sampler (RDS) conforming to	Twice in a week
				IS:5182 (Part-23): 2006	
2.	PM _{2.5}	μg/m³	IS:5182 (Part:24):2019	Fine Particulate Sampler (FPS) conforming to	
				IS:5182 (Part-24): 2019	
3.	Sulphur Dioxide (SO _x)	μg/m³	IS 5182 (Part:2): 2001	Gaseous Attachment conforming to IS:5182	
				Part-2	
4.	Oxides of Nitrogen	μg/m³	IS:5182 (Part-6): 2006	Gaseous Attachment conforming to IS:5182	
	(NO _x)			Part-6	
5.	Carbon Monoxide (CO)	mg/m³	GEMI/SOP/AAQM/11; Issue no 01,	Sensor based Instrument	
			Date 17.01.2019: 2019		
6.	VOC	μg/m³	IS 5182 (Part 17): 2004	Low Flow Air Sampler	
8.	PAH	μg/m³	IS: 5182 (Part 12): 2004	Respirable Dust Sampler (RDS) conforming to	Monthly
				IS:5182 (Part-12): 2004	
7.	Benzene	μg/m³	IS 5182 (Part 11): 2006 RA: 2017	Low Flow Air Sampler	
9.	Non-methane VOC	μg/m³	IS 5182 (Part 11): 2006	Low Volume Sampler	

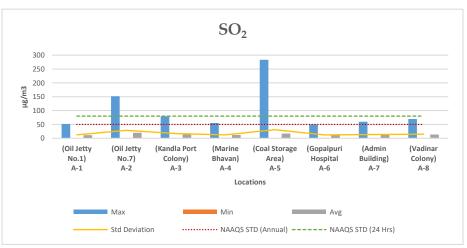
4.2 Result and Discussion

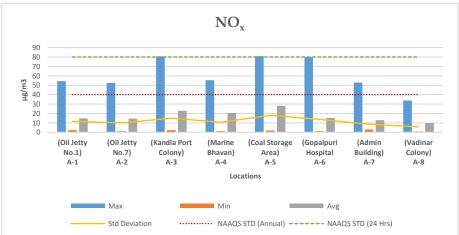

The summarized results of ambient air quality monitoring for the study period are presented in **Table-6 to 9** along with the graphical representation from **Graph 1 to Graph 6.** Various parameters monitored during the study have been presented by their maximum, minimum, average and Standard deviation.



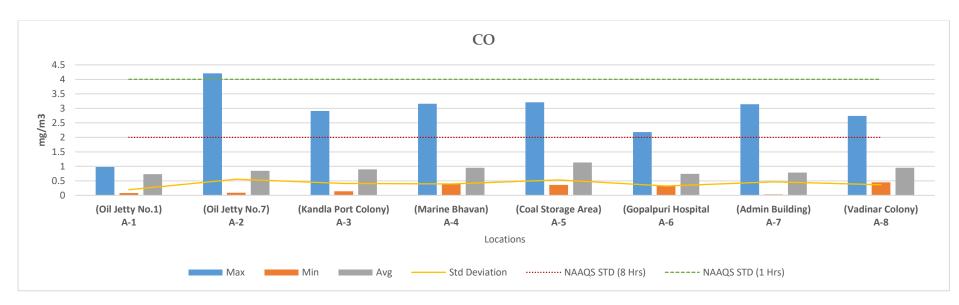
			ımmarized resu	lts of PM ₁₀ , PM _{2.5} ,	SO ₂ , NO _x , VOC	and CO for Ar	nbient Air quali	ty monitoring		
Parameters	NAAQS by CPCB	Locations	(Oil Jetty No.1) A-1	(Oil Jetty No.7) A-2	(Kandla Port Colony) A-3	(Marine Bhavan) A-4	(Coal Storage Area) A-5	(Gopalpuri Hospital A-6	(Admin Building) A-7	(Vadinar Colony) A-8
	by CI CB	Max	247.03	279.33	399.25	393.74	448.12	259.88	443.2	140.7
D3.5 ((a)	-	Min	28.68	34.39	63.28	71.77	89.21	30.3	1.45	13.89
PM ₁₀ (μg/m3)	24 Hours -100	Avg	136.50	116.67	188.36	229.41	262.04	127.95	63.49	56.54
	Annual -60	Std Deviation	68.203	44.97	60.56	71.74	84.18	55.43	46.36	23.15
		Max	129.77	92.24	94.51	114.34	221.9	99.82	71.18	58.73
PM _{2.5} (μg/m3)		Min	10.03	12.85	10.84	15.97	14.85	5.51	2.36	4.7
1112.3 (μg/110)	24 Hours -60	Avg	40.27	41.2	40.26	43.70	69.70	36.95	25.11	23.73
	Annual -40	Std Deviation	22.049	13.87	17.52	19.15	35.36	19.04	10.06	9.33
		Max	51.87	151.58	79.24	55.04	283	49.89	59.69	69.81
SO ₂ (μg/m3)	24 Hours -80	Min	0.65	1.18	1.1	1.19	1.1	1.12	0.52	1.4
3 0 2 (F.g. 22.3)		Avg	11.076	20.01	14.63	11.82	16.82	11.56	12.59	13.69
	Annual -50	Std Deviation	12.142	28.41	17.15	12.25	30.85	12.08	13.35	14.90
		Max	54.33	52.54	80.67	55.39	80.94	79.88	52.76	33.79
NO _χ (μg/m3)		Min	2.29	1.11	2.36	1.29	1.97	1.01	2.89	0.9
A (1 B))	24 Hours -80	Avg	14.75	14.58	22.91	20.52	28.12	15.24	12.84	9.70
	Annual -40	Std Deviation	11.68	9.85	14.98	10.53	17.98	13.59	8.62	5.73
		Max	4.85	5.67	17.43	4.41	3.97	4.12	4.52	6.62
VOC (µg/m3)		Min	0.01	0.01	0.01	0.02	0.04	0.01	0.01	0.01
) (FB/210)		Avg	1.20	1.226	1.52	0.98	0.94	0.96	0.96	0.95
	-	Std Deviation	1.155	1.298	2.275	0.99	0.94	0.99	0.93	1.12
	8 Hours -2	Max	0.98	4.21	2.91	3.16	3.21	2.18	3.14	2.74
CO (mg/m3)		Min	0.08	0.09	0.14	0.39	0.36	0.32	0.03	0.45
co (mg/mo)	1 Hour -4	Avg	0.73	0.848	0.89	0.95	1.13	0.74	0.78	0.94
		Std Deviation	0.194	0.557	0.41	0.39	0.53	0.32	0.46	0.36

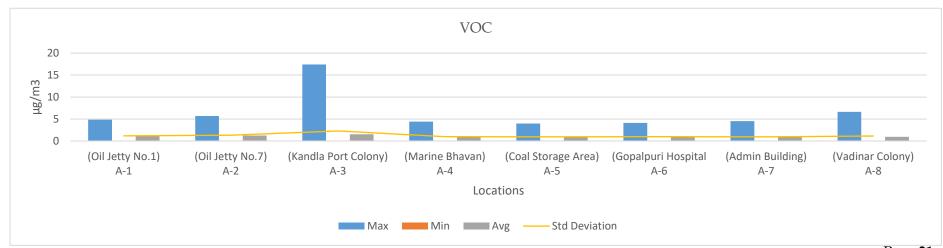



Graphs 1-6 shows spatial trend of ambient air parameter at all the eight-monitoring location (six at Kandla and 2 at Vadinar)



Graph 1 Spatial trend in Ambient PM₁₀ Concentration




Graph 3 Spatial trend in Ambient SOx Concentration

Graph 4 Spatial trend in Ambient NOx Concentration

Graph 5 Spatial trend in Ambient CO Concentration

Page 31

Table 7: Summarized results of Benzene for Ambient Air quality monitoring

Parameters	NAAQS by CPCB	Locations	(Oil Jetty No.1) A-1	(Oil Jetty No.7) A-2	(Kandla Port Colony) A-3	(Marine Bhavan) A-4	(Coal Storage Area) A-5	(Gopalpuri Hospital A-6	(Admin Building) A-7	(Vadinar Colony) A-8
Benzene		Max	3.8	1.84	1.43	1.95	1.11	1.97	1.03	0.95
(µg/m3)	Annual - 5	Min	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.01
(10)		Avg	0.83	0.46	0.42	0.32	0.41	0.49	0.33	0.229

Table 8: Summarized results of Polycyclic Aromatic Hydrocarbons

· -		14616	o. Summanzeu 1	estines of rongey	cire i irominere i i	y dirocuit onio			
Parameters	Locations	(Oil Jetty No.1) A-1	(Oil Jetty No.7) A-2	(Kandla Port Colony) A-3	(Marine Bhavan) A-4	(Coal Storage Area) A-5	(Gopalpuri Hospital A-6	(Admin Building) A-7	(Vadinar Colony) A-8
Napthalene (µg/m3)	Max	1.57	17.31	5.24	5.55	7.8	39.82	1.98	1.84
	Min	0.02	0.21	0.04	0.14	0.37	0.02	0.1	0.13
	Avg	0.40	3.29	0.58	1.05	2.01	4.96	0.45	0.42
Acenaphthylene	Max	0.8	0.67	0.54	0.95	0.53	0.86	0.84	0.65
(µg/m3)	Min	0.01	0.01	0.01	0.02	0.007	0.02	0.005	0.005
(13)	Avg	0.15	0.20	0.17	0.31	0.15	0.18	0.19	0.17
Fluorene (µg/m3)	Max	0.39	0.39	22.99	178.72	10.88	27.22	7.57	11.64
	Min	0.01	0.05	0.04	0.11	0.01	0.06	0.01	0.01
	Avg	0.14	0.19	3.435	19.99	1.25	3.52	0.82	1.18
Anthracene (µg/m3)	Max	0.87	0.91	1.25	5.05	2.02	3.78	0.85	0.57
	Min	0.09	0.09	0.07	0.09	0.03	0.01	0.02	0.02
	Avg	0.3	0.42	0.40	0.94	0.94	0.69	0.23	0.19
Phenanthrene (µg/m3)	Max	0.9	0.82	0.84	0.91	1	0.99	0.82	0.74
	Min	0.01	0.009	0.01	0.01	0.01	0.01	0.07	0.06
	Avg	0.23	0.20	0.15	0.22	0.33	0.20	0.25	0.22
Fluoranthene (µg/m3)	Max	2.65	0.84	1.59	19.54	4.16	20.36	0.68	1.71
	Min	0.06	0.15	0.2	0.24	0.2	0.01	0.01	0.01
	Avg	0.43	0.36	0.74	3.61	1	2.12	0.24	0.30
Pyrene (µg/m3)	Max	3.52	1.13	2.4	42.23	40.25	51.22	0.87	0.74
	Min	0.01	0.14	0.23	0.15	0.02	0.01	0.01	0.01
	Avg	0.54	0.48	0.90	7.46	4.37	7.98	0.16	0.14
Chrycene (µg/m3)	Max	4.59	1.03	3.01	6.27	5.51	5.82	0.61	0.79

	Min	0.08	0.15	0.44	0.42	0.08	0.06	0.05	0.05
	Avg	0.78	0.51	1.01	1.50	1.47	1.22	0.19	0.22
Banz(a)anthracene	Max	5.64	2.84	3.7	15.42	6.57	16.73	1.01	0.97
(μg/m3)	Min	0.17	0.17	0.04	0.14	0.05	0.06	0.01	0.01
(Fg)	Avg	0.89	0.65	0.88	2.66	1.44	2.93	0.25	0.31
Benzo[k]fluoranthene	Max	7.67	1.99	5.98	4.81	4.06	6.89	0.84	0.69
(μg/m3)	Min	0.15	0.38	0.14	0.48	0.05	0.06	0.03	0.03
(18 -)	Avg	1.32	0.99	1.34	1.21	0.89	1.76	0.35	0.21
Benzo[b]fluoranthene	Max	7.89	1.93	6.15	5.12	4.73	7.29	0.59	0.71
(μg/m3)	Min	0.12	0.04	0.21	0.17	0.07	0.01	0.06	0.01
(18)	Avg	1.09	0.62	1.053	1.43	1.06	1.65	0.17	0.20
Benzopyrene (µg/m3)	Max	10.9	2.79	8.42	7.25	8.91	9.19	0.96	0.69
,	Min	0.24	0.08	0.39	0.39	0.01	0.04	0.01	0.01
	Avg	1.64	0.87	1.66	1.75	1.58	1.31	0.30	0.27
Indeno [1,2,3-cd]	Max	2.39	6.67	0.95	2.46	1.68	4.61	0.52	0.98
fluoranthene (µg/m3)	Min	0.13	0.07	0.42	0.26	0.11	0.09	0.07	0.06
,	Avg	0.71	1.02	0.57	0.72	0.70	1.25	0.22	0.42
Dibenz(ah)anthracene	Max	1.82	1.2	0.91	1.25	2.24	0.99	1.34	2.48
(μg/m3)	Min	0.11	0.08	0.16	0.1	0.07	0.04	0.08	0.05
(13)	Avg	0.47	0.32	0.35	0.46	0.54	0.24	0.31	0.4
Benzo[ghi]perylene	Max	16.3	9.7	27.2	13.6	9.4	12.2	8	2.3
(µg/m3)	Min	0.1	0.07	0.04	0.06	0.06	0.17	0.07	0.13
, ,	Avg	2.049	2.63	2.95	2.55	1.61	2.13	0.83	0.47
Acenaphthene (µg/m3)	Max	0.69	0.45	15.1	119.08	2.54	11.8	0.67	2
	Min	0.01	0.05	0.04	0.11	0.01	0.06	0.01	0.01
	Avg	0.14	0.22	2.63	11.34	0.369	1.55	0.14	0.33

Table 9: Summarized results of Non-methane VOC

Parameters	Locations	(Oil Jetty No.1) A-1	(Oil Jetty No.7) A-2	(Kandla Port Colony) A-3	(Marine Bhavan) A-4	(Coal Storage Area) A-5	(Gopalpuri Hospital A-6	(Admin Building) A-7	(Vadinar Colony) A-8
Non- Methane VOC	Max	2.11	2.67	3.54	1.35	1.8	2.01	2.15	1.67
(μg/m3)	Min	0.12	0.09	0.1	0.08	0.13	0.11	0.07	0.1
	Avg	0.73	0.79	0.87	0.79	1.09	0.93	0.91	0.74s

4.3 Data Interpretation and Conclusion

The results were compared with the National Ambient Air Quality Standards (NAAQS), 2009 of Central Pollution Control Board (CPCB).

1) Kandla:

Particulate matter:

- The concentration of PM₁₀ varies very widely and is reported in the range of **28.68** to **448.12** μg/m³, with a yearly average value of **176.83** with standard deviation **64.185** μg/m³. As shown in Graph 1, the highest concentration (value) of PM₁₀ is reported at location A-5 (coal storage area) during the winter. It can be seen that PM₁₀ exceeds the NAAQS annual limit, i.e., 60 μg/m³, in all locations. It can be seen that location A-5 (coal storage area) had the maximum percentage exceedance, and location A-1 (oil jetty No. 1) had the minimum percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., 100 μg/m³.
- The concentration of PM2.5 varies in the range of 5.51 to 221.9 $\mu g/m^3$, with a yearly average value of 45.35 with standard deviation 21.16 $\mu g/m^3$. As shown in Graph 2, the highest concentration of PM_{2.5} is at location A-5 (the coal storage area) in winter. It can be seen that PM_{2.5} exceeds the NAAQS annual limit, i.e., 40 $\mu g/m^3$, on five locations, and location A-6, i.e., Gopalpuri hospital, falls within the NAAQS annual limit. It can be seen that location A-5 (coal storage area) had the maximum percentage exceedance, and location A-6 (Gopalpuri hospital) had the minimum percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., 60 $\mu g/m^3$.
- The highest concentration of Particulate matter at locations A-5, (the coal storage area), could be attributed to the presence of heavy vehicular traffic in upwind areas, which have a higher impact, causing the dispersion of emitted particulate matter in the ambient air. Ther activities observed in the surrounding such as The unloading of coal directly into the truck using grabs, construction in the vicinity causes the dust to disperse in the air as well as coal dust to fall and settle on the ground. This settled coal dust again mixes with the air while trucks travel through it. Also, the coal-loaded trucks are generally not always covered with tarpaulin sheets, and this might result in increased suspension of coal from trucks or dumpers during their transit from vessel to yard or storage site. This might increase the PM in and around the coal storage area and Marine Bhavan.

Gaseous Pollutants:

• The concentration of SOx varies from **0.52** to **283** μg/m³, with a yearly average concentration of **14.029** with standard deviation **18.85** μg/m³. As shown in Graph 3, the highest concentration of SOx is at location **A-5** (the coal storage area) in winter. It can be seen that at all locations, SOx are within the NAAQS annual limit, i.e., 50 μg/m³. It can be seen that location A-2 (Oil Jetty No. 7) had the maximum percentage exceedance, i.e., **7.36**%, which is about 7 days out of 95 days of monitoring, and the other five locations comply with the standards (compliance more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 80 μg/m³. The concentration of NOx varies from **1.01** to **80.94** μg/m³, with a yearly average concentration of **19.35** with standard deviation **13.10**

 $\mu g/m3$. As shown in Graph 4, the highest concentration of NOx is at location A-5 (the coal storage area) in winter. It can be seen that on all locations's NOx within the NAAQS annual limit, i.e., $40~\mu g/m^3$, it can be seen that all locations comply with the standards (complied more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., $80~\mu g/m^3$.

- The concentration of CO varies from **0.08** to **4.21** mg/m³, with a yearly average concentration of **0.884** with standard deviation **0.40** mg/m³. As shown in Graph 5, the highest concentration of CO is at location A-2 (Oil Jetty No. 7) in winter. It can be seen that at all locations, they're complying (more than 98% of the time) with the NAAQS 1 hour limit, i.e., 4 mg/m³. Location A-5 (the coal storage area) had the maximum percentage exceedance, i.e., **7.36**%, which is about 7 days out of 95 days of monitoring, and other locations such as Location A-2 (Oil Jetty No. 7), Location A-3 (Kandla Port Colony), Location A-4 (Marine Bhavan), and Location A-6 (Gopalpuri Hospital) had percentage exceedances of **5.26**, **5.26**, **2.85**, and **2.85**, respectively. And location A-1 (oil jetty no. 1) comply with the standards (compliance more than 98% times) while comparing with the NAAQS 8-hour limit, i.e., 2 mg/m³.
- The concentration of total VOC levels was recorded in the range of **0.01** to **17.43** μg/m3, with a yearly average value of **1.14** with standard deviation 1.21 μg/m3 at Kandla. As shown in graph 6, the highest concentration of VOCs is at location **A-3**, (Kandla port colony); this is the only spike observed in the whole monitoring period for VOCs at this location. The main source of VOCs in the ambient air may be attributed to the burning of gasoline and natural gas in vehicle exhaust, burning fossil fuels, and garbage that releases VOCs into the atmosphere. During the monitoring period, the wind flows in the south direction at Kandla, and hence the wind direction and speed also contribute to increased dispersion of pollutants from the upward areas towards the downward areas.

Polycyclic Aromatic Hydrocarbons (PAHs): are ubiquitous pollutants in urban atmospheres. Anthropogenic sources of total PAHs in ambient air emissions are greater than those that come from natural events. These locations are commercial areas where Vehicular activity and dust emission is common. PAHs are a class of chemicals that occur naturally in coal, crude oil, and gasoline. The higher concentration which results from burning coal, oil, gas, road dust, etc. Other outdoor sources of PAHs may be the industrial plants in-and-around the DPA premises.

- The concentration of Benzene levels was recorded in the range of **0.02** to **3.8** $\mu g/m^3$, with a yearly average value of **0.84** with standard deviation **0.64** $\mu g/m^3$. The highest concentration of Benzene is at location **A-1**, (**Oil Jetty No. 1**) in summer. It can be seen that at all locations, Benzene within the NAAQS annual limit, i.e., $5 \mu g/m^3$.
- The ambient air monitoring location of Kandla recorded the non-methane VOC (NM-VOC) concentration in the range of 0.08 to 3.54 μg/m3, with a yearly average value of 0.86 μg/m3 at Kandla. The highest concentration is at location A-3, (Kandla Port Colony in Winter.

2) Vadinar:

Particulate matter: The concentration of PM10 at Vadinar varies in the range of **1.45 to 443.2** $\mu g/m^3$, with a yearly average value of **63.49** with a standard deviation of **34.76** $\mu g/m^3$. As shown in Graph 1, the highest concentration of PM₁₀ is at location A-7 (Admin Building Vadinar) in the winter. It can be seen that at location A-7 (Admin Building Vadinar), PM₁₀ exceeds the NAAQS annual limit, i.e., 60 $\mu g/m^3$, and at location A-8 (Vadinar Colony), it falls within the annual standards. It can be seen that locations A-7 (Admin Building Vadinar) and A-8 (Vadinar Colony) had a 5.15% percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., 100 $\mu g/m^3$.

• The concentration of PM_{2.5} varies in the range of **2.36** to **71.18** μg/m³, with a yearly average value of **24.42** with a standard deviation **of 9.69** μg/m³. As shown in Graph 2, the highest concentration of PM_{2.5} is at location **A-7** (**Admin Building Vadinar**) in winter. It can be seen that in all two locations, PM_{2.5} is within the NAAQS annual limit, i.e., 40 μg/m³. it can be seen that on both locations, **A-7** (**building Vadinar**) and **A-8** (**Vadinar Colony**) comply with the standards (complimented more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 60 μg/m³.

Gaseous Pollutants:

- The concentration of SOx varies from **0.52** to **69.91** μ g/m3, with a yearly average concentration of 13.146 with a standard deviation of 14.14 μ g/m3. As shown in Graph 3, the highest concentration of SOx is at location A-8 (Vadinar Colony) in the winter. It can be seen that in all locations, SOx are within the NAAQS annual limit, i.e., 50 μ g/m³. It can be seen that both locations comply with the standards (compliance more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 80 μ g/m³.
- The concentration of NOx varies from **0.9** to **52.76** $\mu g/m^3$, with a yearly average concentration of **11.28** with a standard deviation of **7.17** $\mu g/m^3$. As shown in Graph 4, the highest concentration of NOx is at location A-7 (Admin Building Vadinar) in the winter. It can be seen that in all locations, NOx is within the NAAQS annual limit, i.e., $40 \mu g/m^3$. It can be seen that all locations comply with the standards (compliance more than 98% of the time) while comparing with the NAAQS 24-hour limit, i.e., $80 \mu g/m^3$.
- The concentration of CO varies from **0.03** to **3.14** mg/m³, with a yearly average concentration of **0.87** with a standard deviation **0.41** mg/m³. As shown in Graph 5, the highest concentration of CO is at location **A-7**, (**Admin Building Vadinar**) in winter. it can be seen that at all locations they are complying (Complied more than 98% times) with the NAAQS 1 hour limit, i.e., 4 mg/m³. Both **locations A-7**, (**Admin building Vadinar**) and **A-8**,(**Vadinar Colony**) had **5.16**% exceedance, which is about 5 days out of 97 days of monitoring, while comparing with the NAAQS 8-hour limit, i.e., 2 mg/m³.
- The concentration of **Total VOCs** levels was recorded in a range of **0 to 6.62** μ g/m³ with a yearly average value of **0.96** with a standard deviation of **1.051** μ g/m³ at Vadinar. As shown in graph 6, the **highest** concentration of **VOCs** is at

location A-8, (Vadinar Colony), this is the only spike observed in the whole monitoring period for VOCs at this location.

Polycyclic Aromatic Hydrocarbons (PAHs):

- The concentration of **Benzene** levels was recorded in a range of **0.01 to 1.03** μg/m³, with a yearly average value of **0.28** with a standard deviation of 0.36 μg/m³. the **highest** concentration of Benzene is at **location A-7**, (**Admin building Vadinar**) in Winter. It can be seen that in all locations **Benzene** within the NAAQS annual limit, i.e., 5 μg/m³.
- Non-methane VOC (NM-VOC) concentration at Vadinar was observed in the range of 0.07 to 2.15 μg/m³ with a yearly average value of 0.82 with a standard deviation 0.085 μg/m³. the highest concentration is at A-7, (Admin building Vadinar) in Winter.

With reference to the Ambient Air Quality monitoring conducted under the study, it may be concluded that the particulate matter PM_{10} , were reported in higher concentration and apparently exceeds the NAAQS particularly at locations of Kandla., whereas $PM_{2.5}$ complies with the NAAQS at majority of the locations. For both the ambient air monitoring parameters (PM_{10} and $PM_{2.5}$), the major exceedance was observed at location A-5 i.e. Coal Storage Area. The gaseous pollutants (NO_x , SO_x , CO, VOCs etc.) falls within the permissible limit. The probable reasons contributing to these emissions of pollutants into the atmosphere in-and-around the port area are summarized as follows: -

- 1. **Port Machinery:** Port activities involve the use of various machinery and equipment, including cranes, for lifts, tugboats, and cargo handling equipment. These machines often rely on diesel engines, which can emit pollutants such as NO_x, Particulate matter, and CO. Older or poorly maintained equipment tends to generate higher emissions.
- 2. **Port Vehicles:** Trucks and other vehicles operating within port and port area contributes to air pollution. Similar to port machinery, diesel-powered vehicles can emit NO_x, PM, CO, and other pollutants such as PAH, VOCs etc. Vehicle traffic and congestion in and around port areas can exacerbate the air quality issues.
- 3. **Coal Handling:** Resuspension of dust occurs due to the transportation of coal and the handling of coal.
- 4. **Construction Activities:** Another reason for the high particulate matter content in this area is due to high construction activities in the surrounding area.

4.4 Remedial Measures:

Efficient mitigation strategies need to be implementation for substantial environmental and health co-benefits. To improve air quality, DPA has implemented a number of precautionary measures, such as maintaining Green zone, initiated Inter-Terminal Transfer of tractor-trailers, Centralized Parking Plaza, providing shore power supply to tugs and port crafts, the use of LED lights at DPA area helps in lower energy consumption and decreases the carbon foot prints in the environment, time to time cleaning of paved and unpaved roads, use of tarpaulin sheets to cover dumpers at project sites etc. are helping to achieve the cleaner and green future at port. To address air pollution from port shipping activities, various measures that can be implemented are as follows:

- Practice should be initiated for using mask as preventative measure, to avoid Inhalation of dust particle-Mask advised in sensitive areas. Covering vehicles with tarpaulin during transportation will help to reduce the suspension of pollutants in air.
- Ensuring maintenance of engines and machinery to comply with emission standards.
- Frequent water sprinkling on roads to reduce dust suspension due to vehicular movement, this can be use during transporting coal to avoid suspension of coal dust.
- Use of proper transport methods, such as a conveyor belt, for excavated material and screens around the construction site.
- End to End pavement of roads in construction site could considerably reduce dust emission. Prohibition of use of heavy diesel oil as fuel could be possibly reduce pollutants. Encouraging use of low-sulfur fuels (viz. Marine Gas Oil (MGO)/Liquefied Natural Gas (LNG), can significantly reduce sulfur and PM emissions from ships.
- Retrofitting ships with exhaust gas cleaning systems can help reduce sulfur emissions. Engine upgrades, such as optimizing fuel combustion and improving engine efficiency, can reduce overall emissions.
- Investing in infrastructure for cold ironing allows ships to connect to the electrical grid while docked, reducing the need for auxiliary engines and associated emissions.
- Implementing efficient cargo-handling processes, optimizing logistics to reduce congestion and idling times, and encouraging use of cleaner port machinery and vehicles can all contribute to reducing air pollution in port areas.
- Shrouding shall be carried out in the work site enclosing the dock/proposed facility
 area. This will act as dust curtain as well achieving zero dust discharge from the site.
 These curtain or shroud will be immensely effective in restricting disturbance from
 wind in affecting the dry dock operations, preventing waste dispersion, improving
 working conditions through provision of shade for the workers.
- Dust collectors shall be deployed in all areas where blasting (surface cleaning) and painting operations are to be carried out, supplemented by stacks for effective dispersion.
- Periodic vacuum-sweeping mechanisms shall be adopted.

CHAPTER 5: DG STACK MONITORING

5.1 DG Stack Monitoring

A diesel generator is a mechanical-electrical machine that produces electrical energy (electricity) from diesel fuel. They are used by the residential, commercial, charitable and governmental sectors to provide power in the event of interruption to the main power, or as the main power source. Diesel generating (DG) sets are generally used in places without connection to a power grid, or as an emergency power supply if the grid fails. These DG sets utilize diesel as fuel and generate and emit the air pollutants such as Suspended Particulate Matter, SO₂, NO_x, CO, etc. from the stack during its functioning. The purpose of stack sampling is to determine emission levels from plant processes to ensure they are in compliance with any emission limits set by regulatory authorities to prevent macro environmental pollution. The stack is nothing but chimney which is used to disperse the hot air at a great height, emissions & particulate matters that are emitted. Hence, monitoring of these stacks attached to DG Sets is necessary in order to quantify the emissions generated from it.

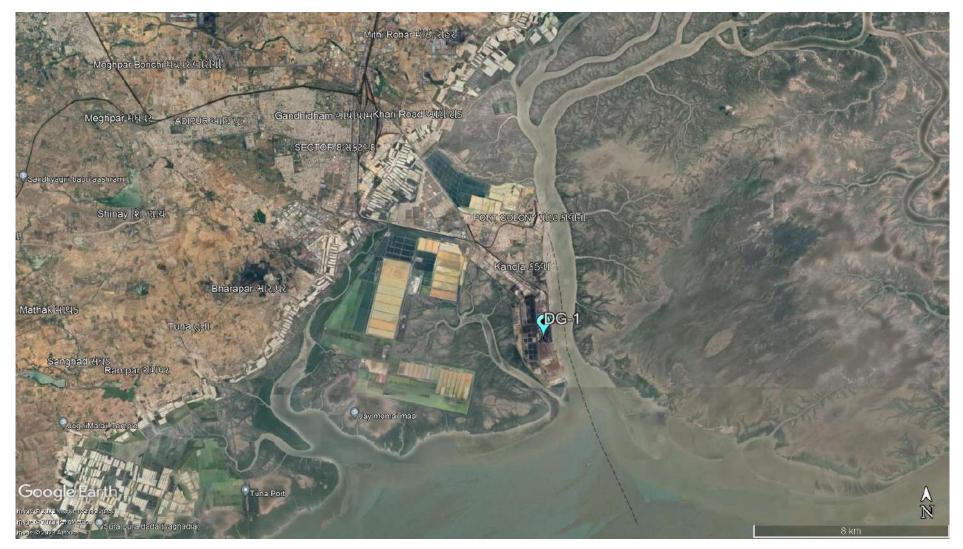

As defined in scope by DPA, the monitoring of DG Stack shall be carried out at two locations, one at Kandla and one at Vadinar. The details of the DG Sets at Kandla and Vadinar have been mentioned in Table 10 as follows:

Table 10: Details of DG Stack monitoring locations

Sr. No.	Location Code	Location Name	Latitude/ Longitude
1.	DG-1	Kandla	22.98916N 70.22083E
2.	DG-2	Vadinar	22.44155N 69.67419E


The map depicting the locations of DG Stack Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 6 and 7** as follows:

Map 6: DG Stack monitoring Locations at Kandla

Map 7: DG Stack monitoring Locations at Vadinar

Methodology:

Under the study, the list of parameters to be monitored under the projects for DG Stack Monitoring has been mentioned in **Table 11** as follows:

Table 11: DG stack parameters

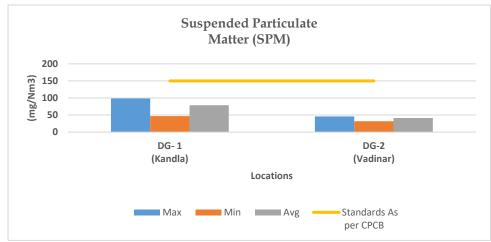
Sr. No.	Parameter	Unit	Instrument
1.	Suspended Particulate Matter	mg/Nm³	Stack Monitoring Kit
2.	Sulphur Dioxide (SO ₂)	PPM	
3.	Oxides of Nitrogen (NO _x)	PPM	Sensor based Flue Gas Analyzer (Make: TESTO,
4.	Carbon Monoxide	%	Model 350)
5.	Carbon Dioxide	%	1120401 000)

The methodology for monitoring of DG Stack has been mentioned as follows:

The monitoring of DG Stack is carried out as per the IS:11255 and USEPA Method. The Stack monitoring kit is used for collecting representative samples from the stack to determine the total amount of pollutants emitted into the atmosphere in a given time. Source sampling is carried out from ventilation stack to determine the emission rates/or characteristics of pollutants. Sample collected must be such that it truly represents the conditions prevailing inside the stack. Whereas the parameters Sulphur Dioxide, Oxides of Nitrogen (NO_x), Carbon Monoxide and Carbon Dioxide, the monitoring is carried out by using the sensor-based Flue Gas Analyzer.

Monitoring Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar for a period of April 2023 to March 2024.


5.2 Result and Discussion

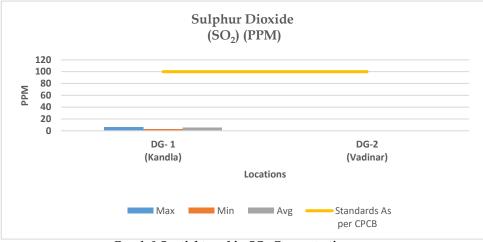
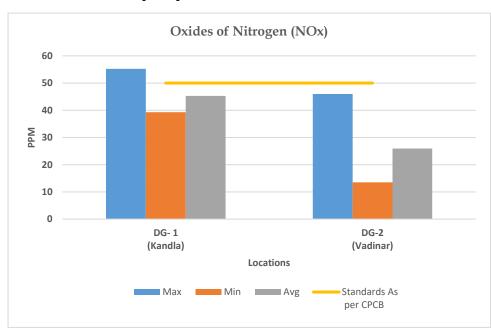
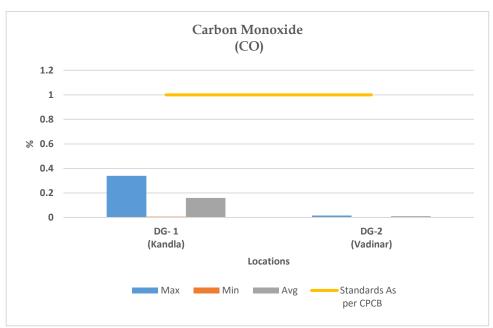

The sampling and monitoring of DG stack emission was carried out for monitoring period at Kandla and Vadinar and its comparison with CPCB or Indian standards for Industrial Stack Monitoring the flue gas emission from DG set has given in **Table 12**.

Table 12: DG monitoring data

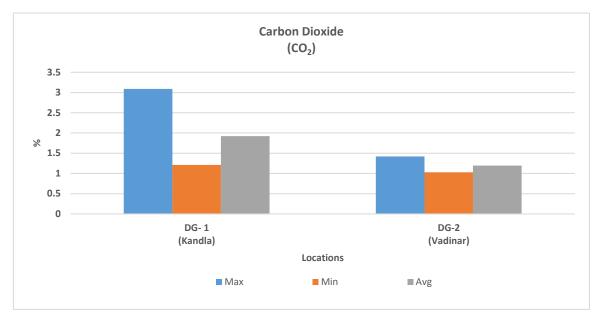
Sr. No.	Stack Monitoring Parameters	for DG Sets	DG-1 (Kandla)	DG-2 (Vadinar)	Stack Monitoring Limits/Standards As per CPCB
1.	Suspended Particulate Matter	Max	98.47	45.32	150
	(SPM) (mg/Nm ³)	Min	46.82	31.85	
		Avg.	78.96	41.33	
2.	Sulphur Dioxide (SO2) (PPM)	Max	6.45	N.D.	100
		Min	3.25	N.D.	
		Avg.	4.95	N.D.	
3.	Oxides of Nitrogen (NO _x)	Max	55.2	46	50
	(PPM)	Min	39.27	13.52	
		Avg.	45.31	25.92	
4.	Carbon Monoxide (CO) (%)	Max	0.34	0.016	1
		Min	0.007	0.002	
		Avg.	0.16	0.01	
5.	Carbon Dioxide (CO ₂) (%)	Max	3.09	1.42	-
		Min	1.21	1.03	
		Avg.	1.92	1.19	





Graph 7 Spatial trend in SPM Concentration

Graph 8 Spatial trend in SO_x Concentration



Graph 9 Spatial trend in NOx Concentration

Graph 10 Spatial trend in CO Concentration

Graph 11 Spatial trend in CO₂ Concentration

5.3 Data Interpretation and Conclusion

1) Kandla:

The Suspended Particulate Matter (SPM) varies in the range of **46.82** to **98.47** mg/m³. The yearly average SPM of D.G stack-1 is **78.96** mg/m³. The maximum concentration for SPM was observed in the monitoring period of October to November 2023. The Sulphur dioxide (SO_x) varies in the range of **3.25** to **6.45** PPM. The yearly average SO_x of D.G stack-1 is **4.95** PPM. The maximum concentration of SO_x observed in the monitoring period of October to November 2023.

The NO_x varies in the range of **39.27** to **55.2** PPM. The yearly average of NO_x of D.G stack-1 at Kandla is **45.31** PPM. The maximum concentration of NO_x observed in the monitoring period of July to August 2023.

The CO at Kandla varies in the range of **0.007** to **0.34** %. The yearly average of CO of D.G stack-1 at Kandla is **0.16** % The maximum concentration of CO observed in the monitoring period of March to April 2024.

The CO₂ at Kandla varies in the range of **1.21** to **3.09** %. The yearly average of CO₂ of D.G stack-1 at Kandla is **1.92** % The maximum concentration of CO₂ observed in the monitoring period of March to April 2024.

The results of all the above parameters of DG stack-1 at Kandla emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters.

2) Vadinar:

The Suspended Particulate Matter (SPM) in the range of **31.85** to **45.32** mg/m 3 . The yearly average SPM of D.G stack-2 at Vadinar is **41.33** mg/m 3 . The maximum concentration of SPM was observed in the monitoring period of March to April 2024. There is no Sulphur dioxide (SO_x) concentration detected at Vadinar.

The NO_x at Vadinar varies in the range of 13.52 to 46 PPM. The yearly average of NO_x of D.G stack-2 at Vadinar is 25.928 PPM. The maximum concentration of NO_x observed in the monitoring period of June to July 2023.

The CO at Vadinar varies in the range of **0.002** to **0.016** %. The yearly average of CO of D.G stack-2 at Vadinar is **0.0106** % The maximum concentration of CO observed in the monitoring period of October to November 2023.

The CO₂ at Vadinar varies in the range of **1.03 to 1.42** %. The yearly average in CO₂ of D.G stack-2 at Vadinar is **1.92** % The maximum concentration of CO₂ observed in the monitoring period of June to July 2024.

The results of all the above parameters of DG stack-2 at Vadinar emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters.

CHAPTER 6: NOISE MONITORING

6.1 Noise Monitoring


Noise can be defined as an unwanted sound, and it is therefore, necessary to measure both the quality as well as the quantity of environmental noise in and around the study area. Noise produced during operation stage and the subsequent activities may affect surrounding environment impacting the fauna and as well as the human population. Under the scope, the noise monitoring is required to be carried out at 10 locations in Kandla and 3 locations in Vadinar. The sampling locations for noise are not only confined to commercial areas of DPA but also the residential areas of DPA.

The details of the noise monitoring stations are mentioned in **Table 13** and locations have been depicted in the **Map 8 and 9** as follow:

Table 13: Details of noise monitoring locations

		Table	13: Details of noise monitoring loc	ations
Sr. No.	Loc	ation Code	Location Name	Latitude/ Longitude
1.	N-1		Oil Jetty 7	23.043527N 70.218456E
2.		N-2	West Gate No.1	23.006771N 70.217340E
3.		N-3	Canteen Area	23.003707N 70.221331E
4.		N-4	Main Gate	23.007980N 70.222525E
5.	dla	N-5	Main Road	23.005194N 70.219944E
6.	Kandla	N-6	Marin Bhavan	23.007618N 70.222087E
7.		N-7	Port & Custom Building	23.009033N 70.222047E
8.		N-8	Nirman Building	23.009642N 70.220623E
9.		N-9	ATM Building	23.009985N 70.221715E
10.		N-10	Wharf Area/ Jetty	22.997833N 70.223042E
11.	ır	N-11	Near Main Gate	22.441544N 69.674495E
12.	N-12		Near Vadinar Jetty	22.441002N 69.673147E
13.	?A	N-13	Port Colony Vadinar	22.399948N 69.716608E

Map 8: Locations for Noise Monitoring at Kandla

Map 9: Locations for Noise Monitoring at Vadinar

Methodology:

The intensity of sound energy in the environment is measured in a logarithmic scale and is expressed in a decibel (dB(A)) scale. The ordinary sound level meter measures the sound energy that reaches the microphone by converting it into electrical energy and then measures the magnitude in dB(A). Whereas, in a sophisticated type of sound level meter, an additional circuit (filters) is provided, which modifies the received signal in such a way that it replicates the sound signal as received by the human ear and the magnitude of sound level in this scale is denoted as dB(A). The sound levels are expressed in dB(A) scale for the purpose of comparison of noise levels, which is universally accepted. Noise levels were measured using an integrated sound level meter of the make Envirotech Sound Level Meter (Class-I) (model No. SLM-109). It has an indicating mode of Lp and Leq. Keeping the mode in Lp for few minutes and setting the corresponding range and the weighting network in "A" weighting set the sound level meter was run for one-hour time and Leq was measured at all locations.

Monitoring Frequency

Monitoring was carried out at each noise monitoring station for Leq. noise level (Day and Night), which was recorded for 24 hours continuously at a monthly frequency with the help of Sound/Noise Level Meter (Class-1). The details of the noise monitoring have been mentioned in **Table 14**.

Table 14: Details of the Noise Monitoring

Sr. No.	Parameters	Units	Reference Method	Instrument
1.	Leq (Day)	dB(A)		Noise Level Meter (Class-
2.	Leq (Night)	dB(A)	IS 9989: 2014	I) model No. SLM-109

Standard for Noise

Ministry of Environment & Forests (MoEF) has notified the noise standards vide the Gazette notification dated February 14, 2000 for different zones under the Environment Protection Act (1986). The day time noise levels have been monitored from 6.00 AM to 10.00 PM and night noise levels were measure from 10.00 PM to 6.00 AM at all the thirteen locations (10 at Kandla and 3 at Vadinar) monthly. The specified standards are as mentioned in **Table 15** as follows:

Table 15: Ambient Air Quality norms in respect of Noise⁽²⁾

		Noise dB(A) Leq			
Area Code	Category of Area	Daytime	Night time		
A	Industrial Area	75	70		
В	Commercial Area	65	55		
С	Residential Area	55	45		
D	Silence Zone	50	40		

6.2 Result and Discussion

The details of the Noise monitoring conducted during the monitoring period April 2023 to March 2024 have been summarized in the **Table 16** as below:

Table 16: The Results of Ambient Noise Quality

Table 16: The Results of Ambient Noise Quality											
Sr.	Station	Station Name	Category of Area	Standard	Day Time in dB(A)			Standard	Night Time in dB(A)		
No.	Code				Max.	Min.	Avg.		Max.	Min.	Avg.
1	N-1	Oil Jetty 7	A	75	65.7	36.5	47.75	70	57.5	33	41.801
2	N-2	West Gate No.1	A	75	68.4	36.5	54.35	70	54.2	36.1	47.02
3	N-3	Canteen Area	В	65	66.2	38	52.61	55	52.1	33	43.46
4	N-4	Main Gate	A	75	61.4	35.3	50.69	70	50.8	36.1	43.33
5	N-5	Main Road	A	75	66.1	33.5	51.67	70	55.5	33.6	43.7
6	N-6	Marin Bhavan	В	65	62.3	38.9	52.52	55	52.3	31.9	43.23
7	N-7	Port & Custom Building	В	65	66.3	37.6	50.89	55	54.3	33.9	38.91
8	N-8	Nirman Building	В	65	60.8	40.9	51	55	58.9	35.2	43.02
9	N-9	ATM Building	В	65	65.1	35.1	49.7	55	53.4	34.1	39.25
10	N-10	Wharf Area/ Jetty	A	75	74.5	36.9	52.9	70	52.7	36	42.3
11	N-11	Near Main Gate	A	75	72.3	34	62.51	70	71.2	34.3	55.71
12	N-12	Near Vadinar Jetty	A	75	76.3	39.2	64.98	70	68.5	34.7	56.38
13	N-13	Port Colony Vadinar	С	55	77.5	37.7	50.05	45	65.9	36.2	49.5

6.3 Data Interpretation and Conclusion

- 1) Kandla: The noise level was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 10 locations at Kandla ranged from 33.5 dB(A) to 74.5 dB(A) while, during Night Time the average Noise Level ranged from 31.9 dB(A) to 58.9 dB(A), of which six locations out of ten locations, noise level were within the permissible limits for the industrial, commercial area and residential zone for Day time and night time. Other Four locations such as i.e., N-3 (Canteen Area), N-7 (Port & Custom Building), N-8 (Nirman Building) and N-9 (ATM building) which are Commercial areas, slightly exceed the standard limits prescribed by NAAQS by CPCB, in the monitoring period of April to May 2023 and May to June 2023.
- 2) Vadinar: The noise level was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 3 locations at Vadinar ranged from 34 dB(A) to 77.5 dB(A) while, during Night Time the average Noise Level ranged from 34.3 dB(A) to 71.2 dB(A) at Vadinar, on location N-11 (Near main gate) noise level was within the permissible limits for the industrial zone for Day time and night time.
 On locations of Vadinar such as i.e., N-12 (Near Vadinar jetty), which are considered as industrial area slightly exceed the standard limits prescribed by NAAQS by CPCB, in the monitoring period of June to July 2023. And on location N-13 (Port Colony Vadinar), most frequently exceed the permissible limit during the day time as well as night time.

6.4 Remedial Measures

The noise levels detected at the locations of Kandla and Vadinar, are found within the prescribed norms. The noise can further be considerably reduced by adoption of low noise equipment or installation of sound insulation fences. Green belt of plants can be a good barrier. If noise exceeds the applicable norms, then the working hours may be altered as a possible means to mitigate the nuisances of construction activities.

CHAPTER 7: SOIL MONITORING

7.1 Soil Quality Monitoring:

The purpose of soil quality monitoring is to track changes in the features and characteristics of the soil, especially the chemical properties of soil occurring at specific time intervals under the influence of human activity. Soil quality assessment helps to determine the status of soil functions and environmental risks associated with various practices prevalent at the location.

As defined in scope by Deendayal Port Authority (DPA), Soil Quality Monitoring shall be carried out at Six locations, four at Kandla and two at Vadinar. The details of the soil monitoring locations within the Port area of DPA are mentioned in **Table 17**:

Table 17: Details of the Soil quality monitoring

Sr. No.	Location Code		Location Name	Latitude Longitude		
1.		S-1	Oil Jetty 7	23.043527N 70.218456E		
2.	dla	S-2 IFFCO Plant		23.040962N 70.216570E		
3.	Kandla S-3		Khori Creek	22.970382N 70.223057E		
4.		S-4	Nakti Creek	23.033476N 70.158461E		
5.	ar	S-5	Near SPM	22.400026N 69.714308E		
6.	Vadinar	S-6	Near Vadinar Jetty	22.440759N 69.675210E		

Methodology

As per the defined scope by Deendayal Port Authority (DPA), the sampling and analysis of Soil quality has been carried out on monthly basis.

The samples of soil collected from the locations of Kandla and Vadinar and analyzed for the various physico-chemical parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures. The samples were analyzed for selected parameters to get the present soil quality status and environmental risks associated with various practices prevalent at the location. GEMI has framed its own guidelines for collection of soil samples titled as 'Soil Sampling Manual'. Soil samples were collected from 30 cm depth below the surface using scrapper, filled in polythene bags, labelled on-site with specific location code and name and sent to GEMI's laboratory, Gandhinagar for further detailed analysis. The samples collected from all locations are homogeneous representative of each location. The list of parameters to be monitored under the projects for the Soil Quality Monitoring been mentioned in **Table 18** as follows:

Monitoring Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. The monitoring was done from April 2023, to March, 2024.

Table 18: Soil parameters

	Table 18: Soil parameters									
Sr. No.	Parameters	Units	Reference method	Instruments						
1.	TOC	%	Methods Manual Soil Testing in India	Titration Apparatus						
2.	Organic Carbon	%	January, 2011, 09. Volumetric method (Walkley and Black, 1934)							
3.	Inorganic Phosphate	Kg/Hectare	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR-Indian Institute of Pulses Research 2017 Determination of Available Phosphorus in Soil	UV-Visible Spectrophotometer						
4.	Texture	-	Methods Manual Soil Testing in India January 2011,01	Hydrometer						
5.	рН	-	IS 2720 (Part 26): 1987	pH Meter						
6.	Conductivity	μS/cm	IS 14767: 2000	Conductivity Meter						
7.	Particle size distribution & Silt content	-	Methods Manual Soil Testing in India January 2011	Sieves Apparatus						
8.	SAR	meq/L	Procedures for Soil Analysis, International Soil Reference and Information Centre, 6 th Edition 2002 13-5.5.3 Sodium Absorption Ratio (SAR), Soluble cations	Flame Photometer						
9.	Water Holding Capacity	%	NCERT, Chapter 9, 2022-23 and Water Resources Department Laboratory Testing Procedure for Soil & Water Sample Analysis	Muffle Furnace						
10.	Aluminium	mg/Kg								
11.		mg/Kg	EPA Method 3051A							
12.	Nickel	mg/Kg								
13.	Copper	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a							
14.	Zinc	mg/Kg	Methods Manual Soil Testing in India January, 2011, 17a	ICP-OES						
15.	Cadmium	mg/Kg								
16.	Lead	mg/Kg	EPA Method 3051A							
17.	Arsenic	mg/Kg								
18.	Mercury	mg/Kg								

The map depicting the locations of Soil Quality Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 10 and 11** as follows:

Map 10: Soil Quality Monitoring Locations at Kandla

Map 11: Soil Quality Monitoring Locations at Vadinar

7.2 Result and Discussion

The analysis results of physical analysis of the soil samples collected during environmental monitoring period during April 2023 to March 2024 mentioned in **Table 19** are shown below:

Table 19: Soil Quality for the Monitoring period

		Location	OUL QUAL	Kai	Perrou	Vadinar		
Sr. No			S-1	S-2	S-3	S-4		S-6
	Parameters		(Oil Jetty 7)	IFFCO Plant)	(Khori Creek)	(Nakti Creek)	S-5 (Near SPM)	(Near Vadinar Jetty)
		Max	9.53	8.8	8.88	9.48	8.69	9.36
1	pН	Min	7.3	6.48	6.52	7.86	7.19	8.16
		Avg.	8.24	8.20	7.96	8.52	8.14	8.55
	Conductivity (µS/cm)	Max	71500	36500	75700	17850	501	625
2		Min	587	526	586	204	63	127
		Avg	26881.17	11442	20646.33	5470	177.13	281.54
		Max	13.32	619.89	20.31	15.87	5.64	8.67
3	Inorganic Phosphate	Min	0.39	0.43	1.24	0.32	0.35	0.26
	(Kg/ha)	Avg	4.21	57.15	5.64	4.71	2.39	2.25
		Max	2.83	2.54	3.83	3.35	0.85	2.48
4	Organic Carbon (%)	Min	0.03	0.08	0.14	0.27	0.06	0.14
		Avg	0.91	0.79	1.06	0.92	0.33	0.59
		Max	4.88	4.38	6.6	5.78	1.47	4.28
5	Organic Matter (%)	Min	0.06	0.14	0.24	0.32	0.09	0.241
		Avg	1.57	1.36	1.82	1.48	0.57	1.01
	SAR (meg/L)	Max	41.45	22.91	31.51	10.01	0.25	0.45
6		Min	0.81	0.36	0.5	0.36	0.05	0.09
		Avg	13.24	6.56	11.71	2.57	0.10	0.17
7	Aluminium (mg/Kg)	Max	8643.04	9065.97	10298.7	9286.91	15921.7	14806.19
		Min	812.75	830.95	840.71	916.4	735.77	754.58
		Avg	2223.8	2322.3	2517.4	2470.4	2848.2	2762.2
	Chromium (mg/Kg)	Max	92.23	90.7	86.18	87.07	106	91.88
8		Min	28.213	28.91	31.57	24.7	71.68	60.93
		Avg	52.28	58.79	59.005	53.30	82.46	70.91
		Max	33.32	36.66	38.1	45.41	41.425	42.68
9	Nickel (mg/Kg)	Min	13.17	11.82	11.91	10.43	27.14	25.52
		Avg	19.17	19.22	22.72	21.72	33.29	32.353
		Max	92.51	88.31	150.7	192.72	123.18	104.64
10	Copper (mg/Kg)	Min	12.42	14.71	14.74	12.8	81.14	60.57
		Avg	49.94	61.10	84.93	56.708	103.06	82.37
		Max	210.35	1755.44	188.29	142.71	88.14	97.36
11	Zinc (mg/Kg)	Min	16.46	42.93	29.9	23.57	37.03	15.33
		Avg	73.75	283.57	99.49	81.77	62.53	49.70
	Cadmium (mg/Kg)	Max	0.397	23.47	0.59	0	3	0
12		Min	0.397	0.5	0.59	0	3	0
		Avg	0.397	6.608	0.59	0	3	0
		Max	50.28	277.82	47.87	26.48	1.58	21.07
13	Lead (mg/Kg)	Min	3.79	2.58	1.29	2.26	0.59	0.89
		Avg	12.09	32.75	15.59	8.88	1.08	6.66

		Location		Ka	Vadinar			
Sr. No	Parameters		S-1 (Oil Jetty 7)	S-2 IFFCO Plant)	S-3 (Khori Creek)	S-4 (Nakti Creek)	S-5 (Near SPM)	S-6 (Near Vadinar Jetty)
	Arsenic (mg/Kg)	Max	4.87	8.4	5.28	6.62	0.4	5.05
14		Min	0.1	0.29	0.88	0.3	0.099	0.59
		Avg	2.38	3.04	2.97	2.26	0.22	2.82
	Mercury (mg/Kg)	Max	0	0	0	0	0	0
15		Min	0	0	0	0	0	0
		Avg	0	0	0	0	0	0
	Water Holding Capacity (%)	Max	54	77.92	61.99	75.84	60	66
16		Min	35.8	34	23.74	15.9	39.85	44
		Avg	42.66	46.48	43.95	48.34	47.70	60.01
17	Sand (%)	Max	77.61	77.7	85.46	82.36	62.4	78.46
		Min	44.4	46.57	48.27	13.39	42.26	42.25
		Avg	59.26	65.74	62.96	65.03	51.61	60.59
		Max	53.28	47.28	41.25	57.98	49.27	53.27
18	Silt (%)	Min	9.77	9.28	9.93	9.28	12.24	12
		Avg	30.41	26.40	28.84	24.13	34.72	29.17
	Clay (%)	Max	19.53	14.32	22.35	28.63	35.92	21.02
19		Min	2.32	0.63	0.64	0.48	1.75	1.74
		Avg	10.29	7.86	8.19	10.83	13.66	10.23
20	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Loam	Sandy Loam

7.3 Data Interpretation and Conclusion

Soil samples were collected from 6 locations (4 at Kandla and 2 at Vadinar) and further analysed for its physical & chemical characteristics. Each of the parameters have been given an interpretation based on the observations as follows:

1) Kandla:

- The value of pH ranges from 6.48 to 9.53, with the highest at location S-1 (Oil Jetty 7) and the lowest at location S-2 (IFFCO plant), while the average pH for Kandla was observed to be 8.23. The pH in Kandla varies from Slightly alkaline to strongly alkaline
- At all monitoring locations, the value of Electrical Conductivity ranges from 204 to 75,700 μs/cm, with the highest at location S-3 (Khori Creek) and the lowest at S-4 (Nakti Creek). The average Electrical Conductivity is 16,109.87 μs/cm.
- The concentration of inorganic phosphate varied from **0.32** to **619.89** kg/ha, with an average of **17.93** kg/ha. The highest concentration of inorganic phosphate was found at **S-2** (**IFFCO plant**) and the lowest concentration was found at **S-4** (**Nakti Creek**). The availability of phosphorus in the soil solution is influenced by several factors, such as organic matter, clay content, pH, temperature, and more.

- The concentration of **Total Organic Carbon** ranges from **0.03% to 3.86%**, with an average TOC of **0.92%** detected. The highest concentration was found at **location S-3** (**Khori Creek**), and the minimum concentration was found at **S-1** (**Oil Jetty 7**).
- The **Sodium Adsorption Ratio** ranges from **0.36** to **41.45** meq/L, with an average value of **8.25** meq/L at Kandla. The highest concentration of SAR is found at **S-1** (**Oil Jetty 7**) and the lowest concentration at **S-4** (**Nakti Creek**).
- The Water Holding Capacity (WHC) in the soil samples of Kandla varies from 15.9% to 77.92%, with an average of 45.36%. The highest concentration of WHC was observed at S-2 (IFFCO plant) and the lowest concentration at S-4 (Nakti Creek).
- The Soil Texture was observed as "Sandy loam" to "loamy sand" at all the monitoring locations in Kandla.

Heavy Metals

- During the sampling period, the concentration of **Aluminium** varied from **812.75** to **10,298.7** mg/kg. The average **Aluminium** concentration was observed to be **2,383.475** mg/kg at the Kandla monitoring station. The **highest concentration** was observed at **S-3** (**Khori Creek**), and the **lowest concentration** was observed at **S-1** (**Oil Jetty 7**).
- The concentration of **Chromium** varied from **24.7 to 92.23** mg/kg, with an average value of **55.848** mg/kg observed at the Kandla monitoring station. The highest concentration was observed at **S-1** (**Oil Jetty 7**), and the lowest concentration was observed at **S-4** (**Nakti Creek**).
- The concentration of **Nickel** varied from **10.43** to **45.41** mg/kg at Kandla, with an average value of **20.71** mg/kg at the Kandla monitoring station. The highest concentration was observed at **S-4** (**Nakti Creek**), while the lowest concentration was also observed at **S-4** (**Nakti Creek**).
- The concentration of **Zinc** varied from **16.46** to **1755.4** mg/kg at Kandla, with an average value of **134.64** mg/kg at the Kandla monitoring station. The highest concentration was observed at **S-2** (**IFFCO plant**), which was the only spike observed during the entire monitoring period at Kandla. The lowest concentration was observed at **S-1** (**Oil Jetty 7**).
- The concentration of **Copper** varied from **12.42** to **192.72** mg/kg, with an average value of **13.667** mg/kg observed at the Kandla monitoring station. The highest concentration was observed at **S-4** (**Nakti Creek**) and the lowest concentration was observed at **S-1** (**Oil Jetty 7**).
- The concentration of Lead varied from **1.29 to 277.82** mg/kg, with an average value of **17.33** mg/kg. The highest concentration was observed at **S-2 (IFFCO plant)**; this was the only spike observed during the entire monitoring period, while the lowest concentration was observed at **S-3 (Khori creek)**.
- The concentration of Arsenic varied from **0.1** to **8.4** mg/kg, with an average value of **2.67** mg/kg. The highest concentration was observed at **S-1** (Oil Jetty 7), and the lowest concentration was observed at **S-3** (Khori Creek).
- The concentration of **Cadmium** varied from **0** to **23.47** mg/kg, with an average value of **1.89** mg/kg. The highest concentration was observed at **S-2** (**IFFCO plant**). During the monitoring period, it was observed that cadmium was mostly found **Below**

Quantification Limit (BQL) at all locations, with only one spike observed at **S-2** (**IFFCO plant**) throughout the entire monitoring period.

• During the monitoring period, it was observed that the concentration of **Mercury** was mostly found **below the quantification limit (BQL)** at all locations.

2) Vadinar:

- The value of **pH** ranges from **7.675** to **9.36**, with the highest at location **S-6** (**Near Vadinar jetty**) and the lowest at **location S-5** (**Near SPM**), while the average **pH** for Vadinar was observed to be **8.34**. **pH** of Soil at Vadinar was found to be **moderately alkaline**.
- At all monitoring locations in Vadinar, the value of **Electrical Conductivity** ranges from **63 to 625** μs/cm, with the highest at **S-6 (Near Vadinar jetty)** and the lowest at **location S-5 (Near SPM).** The average Electrical Conductivity is **229.33** μs/cm.
- The concentration of **inorganic phosphate** varied from **0.26** to **8.67** kg/ha, with an average of **2.32** kg/ha. The highest concentration of inorganic phosphate was found at **S-6** (**Near Vadinar jetty**) and the lowest concentration was found at **location S-5** (**Near SPM**).
- The concentration of **Total Organic Carbon** ranges from **0.06**% **to 2.48**%, with an average TOC of **0.46**% detected at Vadinar. The highest concentration was found at S-6 (Near Vadinar jetty), and the minimum concentration was found at S-5 (Near SPM).
- The **Sodium Adsorption Ratio** ranges from **0.05** to **0.45** meq/L, with an average value of **0.143** meq/L at Vadinar. The highest concentration of SAR is found at **6** (**Near Vadinar jetty**) and the lowest concentration at **S-5** (**Near SPM**).
- The Water Holding Capacity (WHC) in the soil samples of Vadinar varies from 39.85% to 66%, with an average of 53.85%. The highest concentration of WHC was observed at S-6 (Near Vadinar jetty) and the lowest concentration at S-5 (Near SPM).
- The soil texture of Vadinar varies from "loam" to "slit loam".

Heavy Metals

- During the sampling period, the concentration of **Aluminium** varied from 735.77 to 15921.72 mg/kg. The average **Aluminium** concentration was observed to be 2,805.2 mg/kg at the Vadinar monitoring station. The **highest concentration** was observed at S-5 (Near SPM), and the **lowest concentration** was observed at S-5 (Near SPM) but during different months.
- The concentration of **Chromium** varied from **60.93 to 106** mg/kg, with an average value of **76.69** mg/kg observed at the Vadinar monitoring station. The highest concentration was observed at **S-5** (**Near SPM**), and the lowest concentration was observed at **S-6** (**Near Vadinar jetty**).
- The concentration of **Nickel** varied from **25.62** to **42.68** mg/kg, with an average value of **32.825** mg/kg at the Vadinar monitoring station. The highest concentration was observed at **S-6** (**Near Vadinar jetty**), and the lowest concentration was also observed at **S-6** (**Near Vadinar jetty**) but during different months.

- The concentration of **Zinc** varied from **15.33** to **97.36** mg/kg, with an average value of **56.118** mg/kg at the Vadinar monitoring station. The highest concentration was observed at **S-6** (**Near Vadinar jetty**), and the lowest concentration was also observed at **S-6** (**Near Vadinar jetty**) but during different months.
- The concentration of **Copper** varied from **60.57** to **123.18** mg/kg, with an average value of **92.71** mg/kg observed at the Vadinar monitoring station. The highest concentration was observed at **S-5** (**Near SPM**) and the lowest concentration was observed at **S-6** (**Near Vadinar jetty**).
- The concentration of **Lead** varied from **0.59 to 21.07** mg/kg, with an average value of **3.875** mg/kg. The highest concentration was observed at **S-6** (**Near Vadinar jetty**); this was the only spike observed during the entire monitoring period at Kandla, while the lowest concentration was observed at **S-5** (**Near SPM**).
- The concentration of Arsenic varied from 0.099 to 0.59 mg/kg, with an average value of 5.05 mg/kg. The highest concentration was observed at S-6 (Near Vadinar jetty), and the lowest concentration was observed at S-5 (Near SPM).
- The concentration of **Cadmium** varied from **0** to **3** mg/kg, with an average value of **3** mg/kg. The highest concentration was observed at **S-5** (**Near SPM**). During the monitoring period, it was observed that cadmium was mostly found **Below Quantification Limit** (**BQL**) at all locations.
- During the monitoring period, it was observed that the concentration of **Mercury** was mostly found **below the quantification limit (BQL)** at all locations.

CHAPTER 8: DRINKING WATER MONITORING

8.1 Drinking Water Monitoring

It is necessary to check with the drinking water sources regularly so as to know whether water quality conforms to the prescribed standards for drinking. Monitoring the drinking water quality is essential to protect human health and the environment. With reference to the scope specified by DPA, a total of 20 locations (18 at Kandla and 2 at Vadinar) were monitored to assess the Drinking Water quality.

The details of the drinking water sampling stations have been mentioned in **Table 20** and the locations have been depicted through Google map in **Map 12 and 13**.

Table 20: Details of Drinking Water Sampling Locations

Sr. No.		tion Code	Location Name	Latitude/ Longitude
1.		DW-1	Oil Jetty 7	23.043527N 70.218456E
2.		DW-2	Port & Custom Building	23.009033N 70.222047E
3.		DW-3	North Gate	23.007938N 70.222411E
4.		DW-4	Workshop	23.009372N 70.222236E
5.		DW-5	Canteen Area	23.003707N 70.221331E
6.		DW-6	West Gate 1	23.006771N 70.217340E
7.		DW-7	Sewa Sadan -3	23.009779N 70.221838E
8.		DW-8	Nirman Building	23.009642N 70.220623E
9.	Kandla	DW-9	Custom Building	23.018930N 70.214478E
10.	Kan	DW-10	Port Colony Kandla	23.019392N 70.212619E
11.		DW-11	Wharf Area/ Jetty	22.997833N 70.223042E
12.		DW-12	Hospital Kandla	23.018061N 70.212328E
13.		DW-13	A.O. Building	23.061914N 70.144861E
14.		DW-14	School Gopalpuri	23.083619N 70.132061E
15.		DW-15	Guest House	23.078830N 70.131008E
16.		DW-16	E- Type Quarter	23.083306N 70.132422E
17.		DW-17	F- Type Quarter	23.077347N 70.135731E
18.		DW-18	Hospital Gopalpuri	23.081850N 70.135347E
19.	Vadinar	DW-19	Near Vadinar Jetty	22.440759N 69.675210E
20.	Va	DW-20	Near Port Colony	22.401619N 69.716822E

Map 12: Drinking Water Monitoring Locations at Kandla

Map 13: Drinking Water Monitoring Locations at Vadinar

Methodology

The water samples were collected from the finalized sampling locations and analyzed for physico-chemical and microbiological parameter, for which the analysis was carried out as per APHA, 23rd Edition and Indian Standard method in GEMI's NABL Accredited Laboratory, Gandhinagar. GEMI has followed the CPCB guideline as well as framed its own guidelines for the collection of water/wastewater samples, under the provision of Water (Preservation and Control of Pollution) Act 1974, titled as 'Sampling Protocol for Water & Wastewater'; approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014. The samples under the study were collected and preserved as per the said Protocol. The parameters finalized to assess the drinking water quality have been mentioned in Table 21 as follows:

Table 21: List of parameters for Drinking Water Quality monitoring⁽³⁾

Sr. No.	Parameters Parameters	Units	rs for Drinking Water Quality monitoring Reference method	Instrument
1.	рН	-	APHA, 23 rd Edition (Section-4500-H ⁺ B):2017	pH Meter
2.	Colour	Hazen	APHA, 23rd Edition, 2120 B:2017	Color Comparator
3.	EC	μS/cm	APHA, 23 rd Edition (Section-2510 B):2017	Conductivity Meter
4.	Turbidity	NTU	APHA, 23 rd Edition (Section -2130 B):2017	Nephlo Turbidity Meter
5.	TDS	mg/L	APHA, 23 rd Edition (Section-2540 C):2017	Vaccum Pump with filtration assembly
6.	TSS	mg/L	APHA, 23rd Edition, 2540 D: 2017	and Oven
7.	Chloride	mg/L	APHA, 23 rd Edition (Section-4500-Cl-B):2017	Titration Apparatus
8.	Total Hardness	mg/L	APHA, 23 rd Edition (Section-2340 C):2017	
9.	Ca Hardness	mg/L	APHA, 23 rd Edition (Section-3500-Ca B):2017	
10.	Mg Hardness	mg/L	APHA, 23 rd Edition (Section-3500-Mg B):2017	
11.	Free Residual Chlorine	mg/L	APHA 23rd Edition, 4500	
12.	Fluoride	mg/L	APHA, 23 rd Edition (Section-4500-F-D):2017	UV- Visible Spectrophotometer
13.	Sulphate	mg/L	APHA, 23 rd Edition (Section 4500-SO4- 2-E):2017	
14.	Sodium	mg/L	APHA, 23 rd Edition (Section-3500-Na-B):2017	Flame Photometer
15.	Potassium	mg/L	APHA,23 rd Edition, 3500 K-B: 2017	
16.	Salinity	mg/L	APHA, 23rd Edition (section 2520 B, E.C. Method)	Salinity /TDS Meter
17.	Nitrate	mg/L	APHA, 23 rd Edition, 4500 NO3- B: 2017	UV- Visible
18.	Nitrite	mg/L	APHA, 23rd Edition, 4500 NO2-B: 2017	Spectrophotometer
19.	Hexavalent Chromium	mg/L	APHA, 23 rd Edition, 3500 Cr B: 2017	
20.	Manganese	mg/L	APHA,23 rd Edition, ICP Method 3120 B: 2017	ICP-OES

Sr. No.	Parameters	Units	Reference method	Instrument
21.	Mercury	mg/L	EPA 200.7	
22.	Lead	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
23.	Cadmium	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
24.	Iron	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
25.	Total Chromium	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
26.	Copper	mg/L	APHA,23 rd Edition, ICP Method 3120 B: 2017	ICP-OES
27.	Zinc	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
28.	Arsenic	mg/L	APHA ICP 23 rd Edition (Section-3120 B):2017	
29.	Total Coliforms	MPN/ 100ml	IS 15185: 2016	LAF/ Incubator

Monitoring Frequency

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. Sample Collected from this location during the monitoring period April/2023 to March/2024.

8.2 Result and Discussion

The drinking water quality of the locations at Kandla and Vadinar and its comparison with the to the stipulated standard (Drinking Water Specifications i.e., IS: 10500:2012) (4) have been summarized in **Table 22A, 22B, 22C** as follows:

Table 22A: Drinking Water Quality for the Monitoring period

									0	~_			omtom	01									
Parameters		dard ues		DW-1 il Jetty 7	'n		DW-2 & C	ustom	(N	DW-3 Iorth Ga	ta)	CΛ	DW-4 Jorkshop			DW-5 teen Ai	roal	(TA	DW-6 Vest Gate	. 1)	(80	DW-7 wa Sad	
1 diameters	as pe	er IS-	(0	in jetty 7	,	Buildir		ustom	(1)	willi Ga	ie)	(**	orksnop	·)	(Call	teen A	iea)	(*)	est Gate	1)	(36	wa sau	an -3)
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
pН	6.5-8.5		7.9	6.6	7.4	8.4	6.8	7.3	8.0	6.8	7.3	8.1	7.1	7.4	8.2	7.3	7.7	8.4	7.2	7.7	8.2	7.2	7.5
Colour (Hazen)	5	15	5.0	1.0	1.7	5.0	1.0	1.3	5.0	1.0	1.3	5.0	1.0	1.3	5.0	1.0	3.3	5.0	1.0	1.7	5.0	1.0	1.3
EC (μS/ cm)			370	19.4	195.6	600.	36.0	153.8	1653	27.0	259.7	401	12.8	85.6	2200	42.0	1056	1470	28.0	336.3	150	22	57.8
Salinity (PSU)			1.0	0.0	0.2	0.3	0.0	0.1	0.8	0.0	0.1	0.2	0.0	0.0	1.1	0.0	0.5	0.7	0.0	0.2	0.1	0	0.0
Turbidity (NTU)	1	5	1.2	1.1	1.1	2.0	1.5	1.8	1.9	0.7	1.2	3.7	0.9	2.3	3.1	0.9	1.9	1.5	1.0	1.2	5.9	1.1	3.5
Chloride (mg/L)	250	1000	81	5.8	41.6	92	7.5	34.1	354.9	8.0	56.9	110	3	22.9	437.4	10.3	192.0	329.9	9.0	78	42.5	6.5	15.7
Total Hardness (mg/L)	200	600	42	3	13.3	148	3	24.8	320	2.0	33.4	20.0	2	7.5	310	10	181	230	5.0	53.2	10	2	4.1
Ca Hardness (mg/L)			27	2	6.3	92	2	13.9	200	1.0	20.3	8.0	1	3.3	210.0	5	103.9	120.0	2.5	28.9	5.0	1	2.2
Mg Hardness (mg/L)			15	1	6.8	56	1	10.1	120	1.0	13.1	12	1	3.9	120.0	5	76.6	110.0	2.0	24.4	5.0	1	2
Free Residual Chlorine (mg/L)	0.2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TDS (mg/L)	500	2000	184	10	101.7	306	20	81.8	840	14	132.7	204	8.0	44.7	928	22	452.4	752	20.0	171.6	78	14	30.8
TSS (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0
Fluoride (mg/L)	1	1.5	0.4	0.4	0.4	0.5	0.4	0.5	0.7	0.3	0.4	0.0	0.0	0.0	0.9	0.3	0.5	0.9	0.7	0.8	0.4	0.4	0.4
Sulphate (mg/L)	200	400	15.7	15.7	15.7	35.7	35.7	35.7	73.9	73.9	73.9	0.0	0.0	0.0	113.3	2.2	64.0	97.3	2	55.3	0	0	0

Parameters	Stan val as pe	ues	(O	DW-1 Dil Jetty 7)			ustom	(N	DW-3 orth Gat	te)	(N	DW-4 /orkshop)		DW-5 teen A	rea)	(M	DW-6 /est Gate	1)	(Se	DW-7 wa Sada	
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
Nitrate (mg/L)	45		26	3.7	12.5	4.2	0.5	1.8	7.5	1.3	4.6	2.4	2.4	2.4	8.8	3.4	5.8	5.7	1.3	2.8	2.1	2.1	2.1
Nitrite (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.2	0.2	0.2	0	0	0
Sodium (mg/L)			86	5	34.5	38.5	7	21.2	178.6	9.7	38.0	42.6	5.7	18.0	319.6	12.0	118.4	197.5	8.8	44.1	15.1	5.5	9.6
Potassium (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	5.8	5.8	5.8	0	0	0	0	0	0
Hexavalent Chromium (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Odour (TON)	Agre	eable		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Arsenic (mg/L)	0.01	0.05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cadmium (mg/L)	0.003		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Copper (mg/L)	0.05	1.5	17.3	0	5.8	8.4	0.0	2.8	6.2	0.0	3.1	11.1	0.0	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Iron (mg/L)	0.3		0.6	0	0.3	0.2	0.2	0.2	0.2	0.0	0.1	0.2	0.2	0.2	0.2	0.0	0.1	0.2	0.0	0.1	0.1	0.1	0.1
Lead (mg/L)	0.01		3.1	0	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Manganese (mg/L)	0.1	0.3	0.1	0	0.1	0	0	0	0.5	0.5	0.5	0.1	0.1	0.1	0	0	0	0.5	0	0.2	0	0	0
Mercury (mg/L)	0.001		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Chromium (mg/L)	0.05		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc (mg/L)	5	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform* (MPN/ 100ml)	Shall dete		630.0	5.0	118.0	12500.0	5.0	1629. 3	250.0	10.0	100.7	50.0	5.0	24.0	144500	5.0	17137	4350	5.0	1407	23500	2.0	3963.3

Table 22B: Drinking Water Quality for the Monitoring period

						1 abie	e 22 B :	Drink	ing vvat	er Quan	ty for	tne M	onitorin	ig perio	a								
	Stan	dard		DW-8]	DW-9			DW-10			DW-11]	DW-12			DW-13			DW-14	1
Parameters	val	ues	(Nimm	ıan Build	ling)	(Custor	n Ruile	ling)	(Port C	olony Ka	ndla)	(XA/Iba	rf Area/	Totty)	(Hoon	ital Kaı	adla)	()	O. Buildi	ing)	(Saba	ool Gop	almuri)
T atameters	26 D	er IS	(141111	lan Dunc	iiig)	(Custor	n bunc	iiig)	(1011 C	orony Ka	iiiuia)	(VVII	III Aleay	jetty)	(Hosp	Ital Nai	iuiaj	(A.	O. Dullu	ilig)	(SCIIC	or Gob	aipuii
	as P																						
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
pН	6.5-8.5		8	7	7.5	8	6.2	7.3	7.9	6.82	7.31	8.3	6.85	7.71	7.75	6.62	7.224	8.5	7.2	7.61	8.2	7.08	7.56
r																							- 100
Colour (Hazen)	5	15	5.0	1.0	2.3	5.0	1.0	2.0	5.0	1	2	10	1	3.083	5	1	1.67	5	1	1.33	10	1	3.28
EC (μS/ cm)			2000	40.0	403.8	2900.0	48.0	492.9	3100	105.4	554.9	2460	55	980.1	269	47	141.2	1412	23.2	187.2	1467	43.3	412.15
Salinity (PSU)			1.0	0.0	0.2	1.5	0.0	0.2	1.6	0.05	0.283	1.2	0.02	0.42	0.13	0.03	0.072	0.71	0.02	0.151	0.73	0.03	0.22
Turbidity (NTU)	1	5	3.6	1.1	1.8	4.7	1.0	2.8	2.2	0.95	1.575	3.79	1	2.09	2	1.02	1.57	9.9	0.9	3.67	13.9	0.5	5.48
Chloride (mg/L)	250	1000	499.9	10.0	93.1	689.8	12.5	108.7	504.8	21.99	75.52	404.8	13.54	173.9	67.98	12.5	31.79	307.4	7.5	44.28	332.4	11.5	93.83
Total Hardness (mg/L)	200	600	280.0	4.0	61.8	480	6.0	80.2	340.0	3	62.83	320	15	176.4	30	3	17.84	240	1.5	70.3	270	2	82.64
Ca Hardness (mg/L)			140.0	2.0	31.8	240	3.0	38.7	190.0	2	33.5	170	5	91.30	17	2	9.67	120	1	31.12	140	1.5	42.96
Mg Hardness (mg/L)			140.0	2.0	30.1	190	3.0	37.5	150.0	1	29.32	150	10	84.76	14	1	8.167	120	0.5	33.15	130	2	43.6
Free Residual Chlorine (mg/L)	0.2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TDS (mg/L)	500	2000	1012	22.0	205.2	1522	24.0	255.8	1064	54	165.4	872	29	403.8	138	24	73.17	718	14	101.9	742	22	218
TSS (mg/L)			2.0	2.0	2.0	12.0	2.0	7.0	2.0	2	2	2	2	2	0	0	0	0	0	0	12	8	10
Fluoride (mg/L)	1	1.5	0.0	0.0	0.0	1.5	0.6	1.1	0.5	0.416	0.433	1.06	0.367	0.57	1.108	1.108	1.108	0	0	0	0.35	0.15	0.25
Sulphate (mg/L)	200	400	100.8	45.5	73.2	142.0	41.5	80.0	115.6	3.17	59.39	134.7	1.97	59.51	0	0	0	108.7	108.77	108.7	113.4	11.55	56.304
Nitrate (mg/L)	45		4.5	1.1	2.6	5.6	2.4	3.8	7.5	1.04	3.68	8.49	3.78	5.929	2.023	1.42	1.752	3.392	1.524	2.585	4.48	1.382	2.38

Parameters		idard ues er IS	(Nirm	DW-8 ian Build	ling)	(Custor	DW-9 n Build	ding)		DW-10 olony Ka	ındla)	(Wha	DW-11 arf Area/	Jetty)		DW-12 ital Kai	ndla)	(A.0	DW-13 O. Build	ing)	(Scho	DW-1	
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
Nitrite (mg/L)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.201	0.11	0.147	0	0	0	0	0	0	0	0	0
Sodium (mg/L)			109.5	9.2	39.4	396.2	8.0	75.4	105.8	11.98	37.65	356.5	12.8	106.5	31.35	11.59	20.22	83.91	8.66	21.44	173.5	6.24	46.666
Potassium (mg/L)			0	0	0	13.6	13.6	13.6	7.0	2.6	4.8	0	0	0	0	0	0	0	0	0	0	0	0
Hexavalent Chromium (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Odour (TON)	Agre	eable		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Arsenic (mg/L)	0.01	0.05	0	0	0	0	0	0	0	0.007	0.007	0.005	0.0039	0.004	0	0	0	0	0	0	0.015	0.015	0.015
Cadmium (mg/L)	0.003		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.005	0.005	0.005	0.006	0.006	0.006
Copper (mg/L)	0.05	1.5	6.8	0	3.4	0	0	0	10.2	0.005	2.049	0	0	0	9.257	0.005	3.57	0.008	0.0079	0.008	0	0	0
Iron (mg/L)	0.3		0.1	0.1	0.1	0	0	0	0.3	0.0001	0.16	0.17	0.0001	0.092	0	0	0	0.13	0.13	0.13	0.0001	0.0001	0.0001
Lead (mg/L)	0.01		0.2	0	0.1	0	0	0	0	0.0033	0.003	0.004	0.0038	0.004	0.0028	0.003	0.003	0.002	0.002	0.002	4.27	4.27	4.27
Manganese (mg/L)	0.1	0.3	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0.05	0.05	0.05	0	0	0
Mercury (mg/L)	0.001		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Chromium (mg/L)	0.05		0	0	0	0	0	0	0	0	0	0	0	0	0.0122	0.012	0.012	0.006	0.006	0.006	0	0	0
Zinc (mg/L)	5	15	0	0	0	0.6	0.6	0.6	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform* (MPN/ 100ml)		not be ected	240.0	2.0	114.7	12050	4.0	1826	37080	35	5374	25550	5	3329	140	4	47.2	685	20	166.7	4900	15	636.4

Table 22C: Drinking Water Quality for the Monitoring period

					1 able 2	22C. DH	iikiiig v	vater Qi	ianty 10	i tile Mi	OHHUH	ing per	1100							
Parameters	Stand valu as pe	ues	(G	DW-15 uest Hou	ıse)	(Е- Т	DW-16 Type Qua	nrter)		DW-17 7pe Quai	rter)		DW-18 (Hospita Gopalpur		(Nea	OW-19 ir Vadii Jetty)	nar		OW-20 Port Co	lony)
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
рН	6.5-8.5		7.99	6.87	7.35	7.68	6.93	7.28	8.19	6.78	7.46	8.27	7.12	7.6	8.38	7.21	7.685	8.07	7.05	7.435
Colour (Hazen)	5	15	5	1	1.67	5	1	1.67	5	1	1.67	10	1	3.5	5	1	2.333	20	1	6
EC (μS/ cm)			264	34.3	120.22	746	17.79	116.84	1337	15.93	298.6	7930	30.2	1037	537	30	199.7	1736	88.4	427.7
Salinity (PSU)			0.7	0.02	0.113	0.38	0.02	0.06	0.67	0.02	0.16	4.39	0.02	0.55	0.26	0.02	0.100	0.87	0.05	0.235
Turbidity (NTU)	1	5	2.29	0.63	1.27	2.8	0.52	1.50	1.97	1.1	1.66	3.98	0.7	2.03	1.5	1.2	1.35	5.3	0.7	3.25
Chloride (mg/L)	250	1000	60.98	10.5	26.98	124.96	4	24.58	287.41	4	61.99	163.9	9	75.28	66.98	9	27.20	407.37	13	73.15
Total Hardness (mg/L)	200	600	20	2	11.97	180	1.5	22.86	230	2	52.6	195	4	96.25	160	2	44.58	240	20	88.5
Ca Hardness (mg/L)			10	1.5	6.25	80	1	10.77	120	1	28.5	102	2	49.43	80	1.5	21.54	140	10	44.08
Mg Hardness (mg/L)			12.5	1	6.136	100	0.5	13.25	110	1	24.1	100	1	46.79	80	1	25.09	100	8	44.41
Free Residual Chlorine (mg/L)	0.2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TDS (mg/L)	500	2000	138	18	62.75	382	10	60.5	682	8	157.5	448	16	198.8	272	15	100.9	882	46	218.5
TSS (mg/L)			0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	12	4	8
Fluoride (mg/L)	1	1.5	0.34	0.34	0.34	0	0	0	0.5	0.37	0.43	0.51	0.38	0.44	0.35	0.35	0.35	1.06	1.06	1.06
Sulphate (mg/L)	200	400	10.62	10.3	10.46	34.35	34.35	34.35	104.64	8.37	41.20	59.94	1.81	40.82	42.2	13.07	31.87	102.92	25.4	48.22
Nitrate (mg/L)	45		5.63	1.12	2.53	1.97	1.97	1.97	6.06	1.19	3.20	16.51	1.17	5.1	15.79	1.82	5.55	18.54	1.06	6.45
Nitrite (mg/L)			0	0	0	0	0	0	0	0	0	0.20	0.11	0.16	0	0	0	1.89	1.89	1.89

Parameters	Stand valu as pe	ies	(G	DW-15 uest Hou	se)	(E- T	DW-16 Type Qua	arter)		DW-17 ype Quai	rter)		DW-18 (Hospita Gopalpur		(Nea	DW-19 ar Vadi Jetty)	nar		OW-20 Port Co	olony)
	A	P	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
Sodium (mg/L)			40.46	14.3	19.38	74.46	7.06	24.85	82.61	5.75	35.30	185.2	7.08	55.81	58.37	6.08	20.49	204.04	7.18	46.23
Potassium (mg/L)			0	0	0	0	0	0	0	0	0	3.2	3.2	3.2	0	0	0	5.85	5.85	5.85
Hexavalent Chromium (mg/L)			0	0	0	0	0	0	0	0	0	0	0	0	0.041	0.041	0.041	0.01	0.01	0.01
Odour (TON)	Agree	able		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Arsenic (mg/L)	0.01	0.05	0.007	0.007	0.007	0	0	0	0.008	0.008	0.008	0.015	0.01	0.012	0.08	0.08	0.08	0	0	0
Cadmium (mg/L)	0.003		0.007	0.007	0.007	0.006	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0	0	0	0	0	0
Copper (mg/L)	0.05	1.5	7.24	0.006	2.42	0	0	0	0.012	0.012	0.012	7.3	0.006	3.65	16.25	0.006	7.99	15.403	0.01	3.09
Iron (mg/L)	0.3		0.25	0.0002	0.13	0	0	0	0.52	0.0001	0.213	0.11	0.0003	0.055	1.47	1.47	1.47	0	0	0
Lead (mg/L)	0.01		2.21	0.002	1.10	0	0	0	0	0	0	0	0	0	10.53	0.003	5.26	0.002	0.002	0.002
Manganese (mg/L)	0.1	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.13	0	0.08
Mercury (mg/L)	0.001		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Chromium (mg/L)	0.05		0	0	0	0	0	0	0	0	0	0.006	0.006	0.006	0	0	0	0	0	0
Zinc (mg/L)	5	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform* (MPN/ 100ml)	Shall n detec		200	5	57.75	7650	5	1669	57000	9	6635	310	5	131	2850	120	1485	130000	10	16647

A: Acceptable, P:Permissible, BQL: Below Quantification limit Turbidity (QL=0.5 NTU), Free Residual Chlorine (QL=2 mg/L), Total Suspended Solids (QL=2 mg/L), Fluoride (QL=0.3 mg/L), Sulphate (QL=10 mg/L), Nitrate as NO₃ (QL=1 mg/L), Nitrate as NO₂ (QL=0.1mg/L), Sodium as Na (QL=5mg/L), Potassium as K (QL=5mg/L), Hexavalent Chromium (QL=0.01 mg/L), Arsenic (QL=0.005 mg/L), Cadmium (QL=0.002 mg/L), Copper (QL=0.005 mg/L), Iron (QL=0.1mg/L), Lead (QL=0.002 mg/L), Manganese (QL=0.04 mg/L), Mercury (QL=0.0005 mg/L), Total Chromium (QL=0.005 mg/L), Total Coliforms (QL=1 MPN/ 100ml)

Note: For Total Coliform, one MPN is equivalent to one CFU. The use of either method; MPN or CFU for the detection of bacteria are considered valid measurements for bacteria limits.

8.3 Data Interpretation and Conclusion

Drinking water samples were taken from 20 locations (18 at Kandla and 2 at Vadinar), and their physical and chemical properties were analyzed. The analysis's results were compared with standard values as prescribed in IS 10500:2012 Drinking Water Specification.

Physico-Chemical Parameters:

- **pH:** The pH values of drinking water samples in Kandla were reported to be in the range of **6.24 to 8.5**, with an average pH of **7.5**. In Vadinar, its values ranged from **7.05 to 8.38**, with an average pH of **7.36**. Notably, the pH levels at both project sites fall within the acceptable range of 6.5 to 8.5, as specified under IS:10500:2012.
- Colour: The colour varies from 1 to 10 at the monitoring locations in Kandla. Locations DW-11, DW-14 and DW-10 showed the value of 10 Hazen at Kandla. At Vadinar, the color was observed within the range of 1 to 20 Hazen. the Colour levels at both project sites fall within the acceptable range of 1 to 15, as specified under IS:10500:2012, except of one location DW-20 within the monitoring period of April to May 2023
- Electrical Conductivity (EC): It is a measure of the ability of a solution to conduct electric current, and it is often used as an indicator of the concentration of dissolved solids in water. During the monitoring period, the EC values for samples collected in Kandla were observed to range from 12.83 to 7930 μS/cm, with an average value of 708.65 μS/cm. In Vadinar, the EC values showed variation from 30 to 1736 μS/cm, with an average value of 503.14 μS/cm. It's important to regularly monitor EC levels in drinking water as it can provide valuable information about water quality and presence of dissolved substances.
- **Salinity:** Salinity at Kandla varies from **0.02 to 4.39 PSU** with an average of **0.396** PSU, while at Vadinar, salinity was observed within the range of **0.02** to **0.87 PSU**.
- Turbidity: The Turbidity values of drinking water samples in Kandla were reported to be in the range of **0.5 to 13.9 NTU**, with an average of **2.32**. In Vadinar, its values ranged from **0 to 5.3**, with an average **2.21**. Notably, the Turbidity levels at both project sites fall within the acceptable range of 1 to 5 NTU, as specified under IS:10500:2012, except DW-7, in the monitoring period of July to August 2023, DW-13 in the monitoring period of May to June 2023 and DW-14 in the monitoring period of September to October and October to November 2023. On all this location most of the time Turbidity observed Below Quantification Limit
- Chlorides: The chloride concentrations in Kandla varied from 3 to 689.78 mg/L, with an average value of 116.85 mg/L. At Vadinar the chloride concentration was observed within the range of 9 mg/L to 407.37 mg/L, with an average value of 99.45 mg/L. Thus, the chloride levels at both project sites fall within the Permissible limit of 1000 mg/L, as specified under IS:10500:2012.
- Total Hardness (TH): The concentration of Total Hardness varies from 1.5 to 480 mg/L, with an average concentration of 88.68 mg/L. While at Vadinar, the observed values were within range of 2 to 240 mg/L. at both study areas Total Hardness found

to be within the Permissible limit norm of 600 mg/L as specified by IS:10500:2012 and is not harmful for local inhabitants.

- Total Dissolved Solids (TDS): Monitoring TDS is crucial because it provides an indication of overall quality of the water. During the monitoring period, the TDS concentrations in Kandla were observed to vary in a wide range i.e., between 8 to 1522 mg/L, with an average concentration of 264.4 mg/L. which is within the permissible limit. while in Vadinar, it ranged from 6 to 882 mg/L, with an average of 255.75 mg/L. It is important to note that the TDS concentrations in both Kandla and Vadinar fall well within the Permissible limit of 2000 mg/L.
- Fluoride: The concentration Fluoride varies from 0 to 1.477 mg/L, with an average concentration of 0.44 mg/L. While at Vadinar Fluoride concentration was varies within range of 0 to 1.06 mg/L, with an average concentration of 0.708 mg/L. The Fluoride concentration was found to be BQL in majority of the monitoring location at Kandla and Vadinar. at both study areas Fluoride found to be within the Permissible limit norm of 1.5 mg/L as specified by IS:10500:2012
- **Sulphate:** The concentration Sulphate varies from **0** to **141.99** mg/L, with an average concentration of **45.67** mg/L. While at Vadinar Sulphate concentration was varies within range of **13.07** to **102.92** mg/L, with an average concentration of **43.94** mg/L. During monitoring period in Kandla and Vadinar, the sulphate concentrations were found to be within the acceptable limits i.e., 200 mg/L as per the specified norms.
- **Nitrate:** The concentration Nitrate varies from **0** to **25.96** mg/L, with an average concentration of **4.08** mg/L. While at Vadinar Nitrate concentration was varies within range of **0** to **18.54** mg/L, with an average concentration of **8.20** mg/L. The Nitrate concentration was found to be **BQL** in majority of the monitoring location at Kandla and Vadinar. at both study areas Nitrate found to be within the Acceptable limit norm of 45 mg/L as specified by IS: 10500:2012.
- **Nitrite:** The concentration Nitrite varies from **0** to **0.2** mg/L. While at Vadinar Nitrite concentration was varies within range of **0** to **1.89** mg/L, with an average concentration of **0.945** mg/L. The Nitrite concentration was found to be **BQL** in majority of the monitoring location at Kandla and Vadinar.
- Sodium: During the monitoring period, at Kandla variation in the concentration of Sodium was observed to be in the range of **5.01 to 396.2 mg/L**, with the average concentration of **63.71** mg/L. While at Vadinar, the concentration recorded between **6.08** to **204.4** mg/L, with the average concentration of **57.067** mg/L.
- Odour: Odour values recorded 1 TON at all monitoring locations of Kandla and Vadinar.

Metals:

• Arsenic: The Arsenic concentrations in Kandla varied from 0 to 0.042 mg/L. At Vadinar the Arsenic concentration was observed within the range of 0 mg/L to 0.08 mg/L. Thus, the Arsenic levels at both project sites fall within the Permissible limit of 0.05 mg/L, as specified under IS:10500:2012, except on one location at Vadinar DW-19 where Arsenic Concentration found 0.08 mg/L in the monitoring period of November to December 2023. In Kandla and Vadinar, the Arsenic concentrations were recorded

BQL for majority of the locations except the locations DW-2, DW-12, and DW-18 in Kandla and DW-20 In Vadinar.

- Copper: The Copper concentrations in Kandla varied from 0 to 17.3 mg/L. At Vadinar the Copper concentration was observed within the range of 0 mg/L to 16.25 mg/L. Thus, the Copper levels at both project sites fall within the Permissible limit of 1.5 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-2, DW-4, DW-8, DW-10, DW-12, DW-15, DW-18 in Kandla and on both Locations DW-19 and DW-20 of Vadinar for some samples taken during whole monitoring period. The Copper concentrations were recorded BQL for majority of the locations in Kandla and Vadinar.
- Iron: The Iron concentrations in Kandla varied from **0 to 0.64 mg/L**, with an average concentration of **0.10** mg/L. At Vadinar the Iron concentration was observed within the range of **0** mg/L to **1.478** mg/L. Thus, the Iron levels at both project sites fall within the Acceptable limit of 0.3 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-10, and DW-17 in Kandla and on Location DW-19 of Vadinar for some samples taken during the whole monitoring period. The Iron concentrations were recorded by BQL for the majority of the locations in Kandla and Vadinar.
- Lead: The Lead concentrations in Kandla varied from 0 to 4.279 mg/L, with an average concentration of 0.37 mg/L. While at Vadinar the Lead concentration was observed within the range of 0 mg/L to 10.53 mg/L, with an average concentration of 2.6344. Thus, the Lead levels at both project sites fall within the Acceptable limit of 0.01 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-8, DW-14 and DW-15 in Kandla and on Location DW-19 of Vadinar for some samples taken during the whole monitoring period. The Lead concentrations were recorded in BQL for the majority of the locations in Kandla and Vadinar.
- Manganese: The Manganese concentrations in Kandla varied from 0 to 0.51 mg/L, with an average concentration of 0.1 mg/L. While at Vadinar, the Manganese concentration was observed within the range of 0 mg/L to 0.13 mg/L. Thus, the Manganese levels at both project sites fall within the Acceptable limit of 0.3 mg/L, as specified under IS:10500:2012, except for locations DW-3, and DW-6 in Kandla and on Location DW-20 of Vadinar for some samples taken during the whole monitoring period. The Manganese concentrations were recorded BQL for the majority of the locations in Kandla and Vadinar.
- The concentrations of parameters such as Free Residual Chlorine, Total Suspended Solid, Potassium Hexavalent Chromium and the metals (Cadmium, Mercury, Total Chromium and Zinc) were observed to fall within the Permissible limit at both project sites. Observed "Below the Quantification Limit (BQL)" at majority of the locations during the monitoring period.
- Bacteriological Analysis of the drinking water reveals that Total Coliforms (TC) were detected in the range of 0 to 144500 MPN/100ml, with the average of 6964.8 MPN/100ml. While at Vadinar the observed within the range of 0 MPN/100ml to 1,30,000 MPN/100ml, with the average concentration of 25,185 MPN/100ml. And for the rest of the monitoring locations of Kandla and Vadinar were detected "Below the Quantification Limit (BQL)". Reporting such concentration of Coliforms indicates

certain external influx may contaminate the source. Hence, it should be checked at every distribution point. The higher concentration of total coliforms were observed on locations DW-2, DW-5, DW-7, DW-10, DW-11, and DW-17 in Kandla and DW-20 location in Vadinar.

8.4 Remedial Measures

Appropriate water treatment processes should be administered to eradicate coliform bacteria. The methods of disinfection such as **chlorination**, **ultraviolet** (UV), or ozone etc, apart from that, filtration systems can also be implemented to remove bacteria, sediment, and other impurities.

The following steps can be implemented to ensure that the water being supplied is safe for consumption:

- Regular monitoring should be carried out to assess the quality of drinking water at various stages, including the source, purification plants, distribution network, and consumer endpoints would help in early detection of coliform bacteria or other contaminants in the drinking water.
- It is necessary to carry out a system assessment to determine whether the drinkingwater supply chain (up to the point of consumption) as a whole can deliver water of a quality that meets identified targets. This also includes the assessment of design criteria of the treatment systems employed.
- Identifying control measures in a drinking-water system that will collectively control
 identified risks and ensure that the health-based targets are met. For each control
 measure identified, an appropriate means of operational monitoring should be
 defined that will ensure that any deviation from required performance (water
 quality) is rapidly detected in a timely manner.
- Management and communication plan should be formulated describing actions to be taken during normal operation as well as during incident conditions (such as drinking water contamination) and documenting the same.

CHAPTER 9: SEWAGE TREATMENT PLANT MONITORING

9.1 Sewage Treatment Plant (STP) Monitoring:

The principal objective of STP is to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. As defined in the scope by Deendayal Port Authority (DPA), Kandla, the STP Monitoring is to be carried out weekly at three locations, one at Kandla, one at Gopalpuri and one STP at Vadinar. The samples from the inlet and outlet of the STP have been collected weekly. The details of the locations of STP to be monitored for Kandla and Vadinar have been mentioned in **Table 23A** as follows:

Frequency of monitoring: weekly

Table 23A: Details of the monitoring locations of STP

Sr. No.	Locatio	n Code	Location Name	Latitude Longitude
1.	Kandla	STP-1	STP Kandla	23.021017N 70.215594E
2.	Kandia	STP-2	STP Gopalpuri	23.077783N 70.136759E
3.	Vadinar	STP-3	STP at Vadinar	22.406289N 69.714689E

The Consolidated Consent and Authorization (CC&A) issued by the GPCB were referred for the details of the STP for Kandla and Gopalpuri. The CC&A of Kandla and Gopalpuri entails that the treated domestic sewage should conform to the norms specified in **Table 23B**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

Table 22B: Discharge norms (as per CC&A of Kandla STP)

Sr. No.	Parameters	Prescribed limits
1.	pН	6.5-8.5
2.	BOD (3 days at 27°C)	30 mg/L
3.	Suspended Solids	100 mg/L
4.	Fecal Coliform	< 1000 MPN/100 ml

The detailed process flow diagram of the Kandla and Gopalpuri STP have been mentioned in **Figure 3 and 4** as follows:

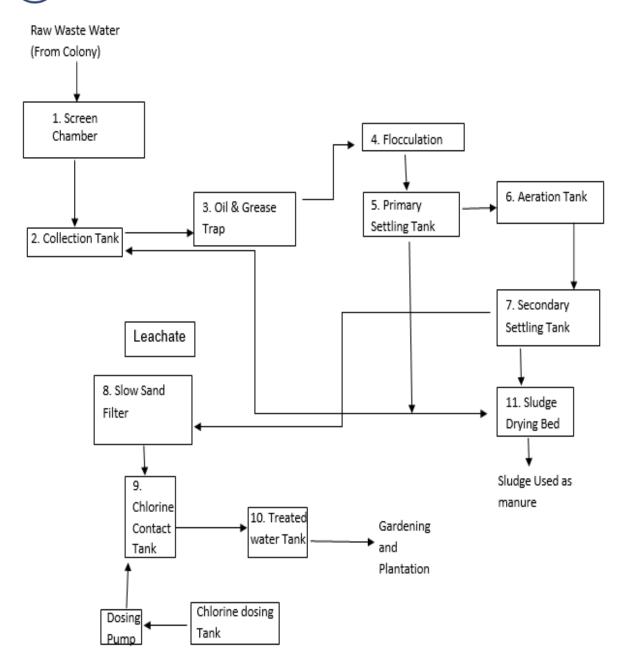


Figure 3: Process flow diagram of STP at Kandla

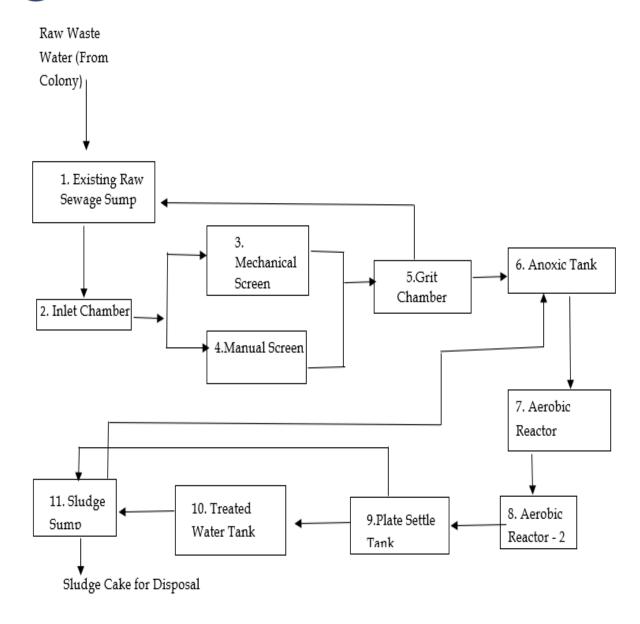


Figure 4: Process flow diagram of STP at Gopalpuri, Kandla

STP at Vadinar

The STP at Vadinar has been built with a treatment capacity of 450 KLD/day. The Consolidated Consent and Authorization (CC&A) issued by the GPCB has been referred for the details of the said STP. The CC&A of the Vadinar STP suggests that the domestic effluent generated shall be treated as per the norms specified in **Table 24**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner.

Table 23: Norms of treated effluent as per CC&A of Vadinar STP

Sr. No.	Parameters	Prescribed limits
1.	pН	5.5-9
2.	BOD (3 days at 27°C)	10 mg/L
3.	Suspended Solids	20 mg/L
4.	Fecal Coliform	Desirable 100 MPN/100 ml
		Permissible 230 MPN/100 ml

Sr. No.	Parameters	Prescribed limits
5.	COD	50 mg/L

The detailed process flow diagram of the Vadinar STP have been mentioned in **Figure 5** as follows:

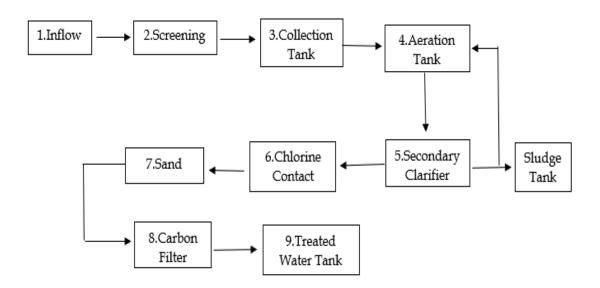
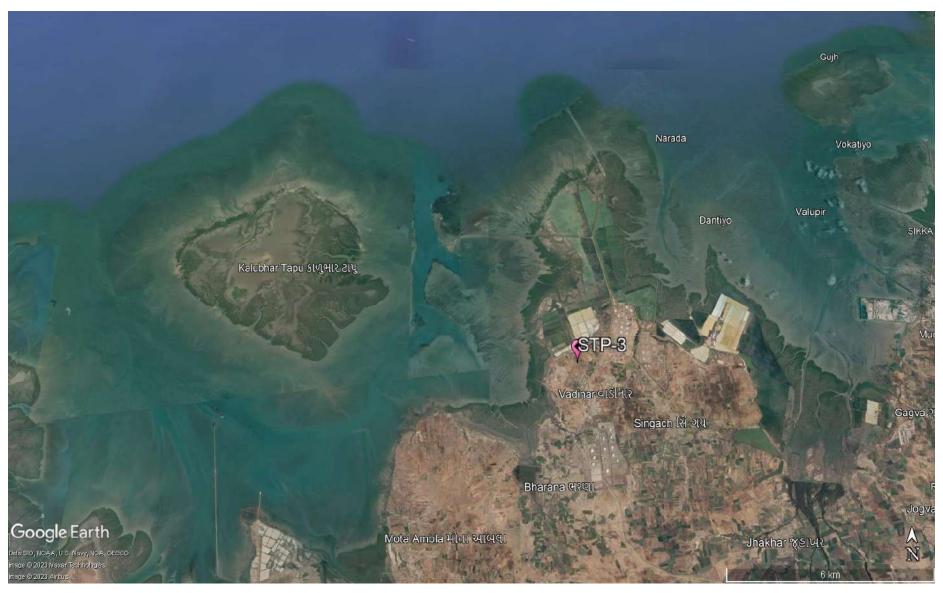


Figure 5: Process flowchart for the STP at Vadinar


The map depicting the locations of STP to be monitored in Kandla and Vadinar have been shown in **Map 14 and 15** as follows:

Map 14: STP Monitoring Locations at Kandla

Map 15: STP Monitoring Locations at Vadinar

Methodology

As per the defined scope by DPA, the sampling and analysis of water samples from the inlet and outlet of the STP's of Kandla and Vadinar are carried out once a week, i.e., four times a month.

The water samples were collected from inlet and the outlet of the STP's and analyzed for physico-chemical and microbiological parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures for the examination of water. The samples were analyzed for selected parameters to establish the existing water quality of the inlet and outlet points of the STP. GEMI has framed its own guidelines for collection of water/wastewater samples titled as 'Sampling Protocol for Water & Wastewater'; which has been approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014 under the provision of Water (Preservation and Control of Pollution) Act 1974. The sample collection and preservation are done as per the said Protocol. Under the project, the list of parameters to be monitored for the STP have been mentioned in **Table 26** as follows:

Monitoring Frequency

Monitoring is required to be carried out once a week for monitoring location of Kandla and Vadinar i.e., two STP station at Kandla and one STP station at Vadinar. Sample Collected from this location during the monitoring period April 2023 to March 2024.

Table 24: List of parameters monitored for STP's at Kandla and Vadinar

Tuble 21. Else of parameters instituted for 511 5 at Randia and 7 admin													
Sr. No.	Parameters	Units	Reference method	Instruments									
1.	рН	-	APHA, 23 rd edition, 4500- H ⁺ B, 2017	pH Meter									
2.	TDS	mg/L	APHA, 23 rd Edition,	Vacuum Pump with									
3.	TSS	mg/L	2540 C: 2017	filtration assembly and Oven									
4.	DO	mg/L	APHA, 23 rd Edition, 4500 C: 2017	Titration Apparatus									
5.	COD	mg/L	APHA, 23 rd Edition, 5220 B: 2017	Titration Apparatus plus Digester									
6.	BOD	mg/L	IS-3025, Part 44, 1993	BOD Incubator plus Titration Apparatus									
7.	SAR	meq/L	IS 11624: 2019	Flame Photometer									
8.	Total Coliforms	MPN/100ml	IS 1622: 2019	LAF/ Incubator									

9.2 Result and Discussion

Analytical results of the STP samples collected from the inlet and the outlet of the STP's of Kandla and Vadinar have been summarized in **Table 26**. Further it was compared with the standard norms specified in the CC&A of the respective STPs.

Table 25: Water Quality of inlet and outlet of STP of Kandla

Sr No.	Parameter	Units		Kandla Vadinar												
51 140.	1 arameter	Onits	GPCB		STP-1	andia		STP-2		GPCB	STP-3					
			Norms	Inlet Outlet		Inlet	Outl	et	Norms	Inlet	Ou	ıtlet				
			(Kandla)	Avg	Avg	Max	Avg	Avg	Max	(Vadinar)	Avg	Avg	Max			
1.	pН	-	6.5-8.5	7.17	7.302	7.65	6.99	7.48	8.88	5.5-9	7.19	7.41	8.46			
2.	TDS	mg/L	-	3065.7	2069.28	6228	1099.40	1003.3	1814	-	471.61	402.67	482			
3.	TSS	mg/L	100	183.4	20.97	88	115.17	16.45	46	20	38.78	8.42	36			
4.	COD	mg/L	-	184.7	32.57	133.1	213.54	25.98	88.4	50	138.27	16.18	40.2			
5.	DO	mg/L	-	145.91	37.780	277.09	162.29	21.98	76.92	-	115.12	18.69	54.5			
6.	BOD	mg/L	30	56.82	11.937	52.4	61.75	8.40	18.45	10	44.62	6.053	11			
7.	SAR	meq/L	-	12.06	9.318	21.04	5.75	5.43	13.1	-	2.71	2.12	3.2			
8.	Total															
	Coliform	MPN/	<1000	1565.95	1530.66	1600	1537.02	1500.51	1600	100-230	1551	1492.3	1600			
	s	100ml														

BQL: Below Quantification limit; Total Suspended Solids (QL=2), Dissolved Oxygen (QL=0.5), Biochemical Oxygen Demand (QL=3 mg/L)

9.3 Data Interpretation and Conclusion

For physicochemical analysis, the treated sewage water was gathered from the Kandla STP, Gopalpuri STP, and Vadinar STP and the analytical results were compared with the standards mentioned in the Consolidated Consent and Authorization (CC&A) by GPCB.

- The average pH at the inlet of STP-1, STP-2, and STP-3 is, respectively, **7.17**, **6.99**, **and 7.19**. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum pH of **7.65**, **8.88**, **and 8.46** and an average pH of **7.302**, **7.48**, **and 7.41**, respectively. Which conform to their respective stipulated norms of 6.5–8.5 at Kandla and 5.5–9 at Vadinar, respectively.
- The average TDS concentrations at the inlet of STP-1, STP-2, and STP-3 are, respectively, 3065.8, 1099.4, and 471.33 mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum TDS concentration of 6228, 1814, and 482 mg/L, and an average TDS concentration of 2069.3, 1003.3, and 402.67 mg/L, respectively.
- The average TSS at the inlet of STP-1, STP-2, and STP-3 is respectively **183.43**, **115.17**, **and 38.78** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum TSS of **88**, **46**, and **36** mg/L, and an average TSS of **20.974**, **16.452**, **and 8.41** mg/L, respectively. Which conform to their respective stipulated norms of 100 mg/L at Kandla and 20 mg/L at Vadinar, respectively, as mentioned in their respective CCA, except in STP-3 at Vadinar, which exceeds norms in the 3rd and 4th weeks of April 2023.
- The average COD at the inlet of STP-1, STP-2, and STP-3 is respectively **184.7**, **213.54**, **and 138.27** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had maximum COD concentrations of **133.1**, **88.4**, **and 40.2** mg/L, and average COD concentrations of **32.576**, **25.97**, **and 16.18** mg/L, respectively. There are no discharge norms for the COD parameter in STP-1 and STP-2 at Kandla, and they conform to their respective stipulated norms of 50 mg/L at Vadinar as mentioned in their respective CCA.
- The average DO concentrations at the inlet of STP-1, STP-2, and STP-3 are, respectively, **145.91**, **162.29**, **and 115.12** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum DO concentration of **277.09**, **76.92**, **and 54.5** mg/L, and an average DO concentration of **37.78**, **21.98**, **and 18.68**, mg/L respectively.
- The average BOD at the inlet of STP-1, STP-2, and STP-3 is respectively **56.82**, **61.76**, **and 44.62** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum BOD of **52.4**, **18.45**, **and 11** mg/L, and an average BOD of **11.93**, **8.40**, **and 6.05** mg/L, respectively. Which conform to their respective stipulated norms of 30 mg/L at Kandla and 10 mg/L at Vadinar, respectively, as mentioned in their respective CCA, except in STP-3 at Vadinar, which exceeds norms in the 3rd and 4th weeks of April 2023.
- The average SAR concentrations at the inlet of STP-1, STP-2 and STP-3 are respectively **12.068**, **5.75** and **2.71** meq/L. After treatment, the treated effluent from

STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) having maximum SAR concentration **21.04**, **13.1** and **3.2** meq/L, and having Average SAR concentration **9.31**, **5.46** and **2.12** meq/L respectively.

• The **Total Coliforms** was observed to exceed the norms at the locations of the STP-1 & STP-2 for the treated effluent at Kandla and STP-3 at Vadinar.

During the monitoring period, only Total Coliforms were observed to be exceeding the limits at STPs of Kandla and Vadinar while rest of the treated sewage parameters for STP outlet were within norms as specified under the CCA at both the monitoring sites. Regular monitoring of the STP performance should be conducted on regular basis to ensure adequate treatment as per the norms.

9.4 Remedial Measures:

- The quantum of raw sewage (influent) entering the STP should be monitored by installation of the flow meter. If the quantity of the sewage exceeds the treatment capacity of the treatment plant, then provision of additional capacity of collection sump should be provided.
- The adequacy and efficacy of the stages of Sewage treatment units shall be conducted.
- The results show the presence of total coliforms; hence the method of disinfection (Chlorination) sodium or calcium Hypochlorite can be used.
- Effectiveness of any technology depends on factors such as the specific pollutants in the wastewater, plant size, local regulations, and available resources. There are several processes that may be implemented such as Advanced oxidation process involve using strong oxidants to break down complex organic compounds. Methods like Fenton's reagent (hydrogen peroxide and iron catalyst) and UV/H₂O₂ treatment can help in reducing COD through oxidation.
- Electrochemical processes like Electrocoagulation (EC) and Electrooxidation (EO) that involve the application of an electric current to facilitate the removal of pollutants through coagulation, flocculation, and oxidation. These methods can be useful for treating sewage containing various pollutants.

CHAPTER 10: MARINE WATER QUALITY MONITORING

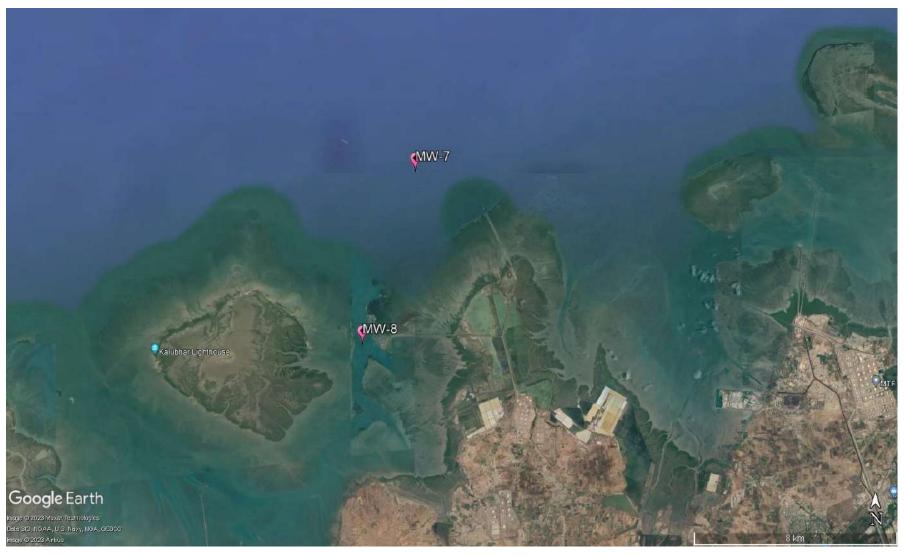
10.1 Marine Water

Deendayal Port is one of the largest ports of the country and thus, is engaged in wide variety of activities such as movement of large vessels, oil tankers and its allied small and medium vessels and handling of dry cargo several such activities whose waste if spills in water, can cause harmful effects to marine water quality.

Major water quality concerns at ports include wastewater and leakage of toxic substances from ships, stormwater runoff, etc. This discharge of wastewater, combined with other ship wastes which includes sewage and wastewater from other on-board uses, is a serious threat to the water quality as well as to the marine life. As defined in the scope by DPA, the Marine Water sampling and analysis has to be carried out at a total of eight locations, six at Kandla and two at Vadinar. The marine water sampling has been carried out with the help of Niskin Sampler with a capacity of 5L. The Niskin Sampler is a device used to take water samples at a desired depth without the danger of mixing with water from other depths. Details of the locations to be monitored have been mentioned in **Table 27**:

Table 26: Details of the sampling locations for Marine water

Sr. No.		ocation Code	Location Name	Latitude Longitude					
1.		MW-1	Near Passenger Jetty One	23.017729N 70.224306E					
2.		MW-2	Kandla Creek (nr KPT Colony)	23.001313N 70.226263E					
3.	dla	MW-3	Near Coal Berth	22.987752N70.227923E					
4.	Kandla	MW-4	Khori Creek	22.977544N 70.207831E					
5.		MW-5	Nakti Creek (nr Tuna Port)	22.962588N 70.116863E					
6.		MW-6	Nakti Creek (nr NH-8A)	23.033113N 70.158528E					
7.	nar	MW-7	Near SPM	22.500391N 69.688089E					
8.	Vadinar	MW-8	Near Vadinar Jetty	22.440538N 69.667941E					


The map depicting the locations of Marine Water to be sampled and analysed for Kandla and Vadinar have been mentioned in **Map 16 and 17** as follows:

Map 16: Marine Water Monitoring Locations at Kandla

Map 17: Marine Water Monitoring Locations at Vadinar

Methodology

The methodology adopted for the sampling and monitoring of Marine Water was carried out as per the 'Sampling Protocol for Water & Wastewater' developed by GEMI. The water samples collected through the Niskin Sampler are collected in a clean bucket to reduce the heterogeneity. The list of parameters to be monitored under the project for the Marine Water quality have been mentioned in Table 28 along with the analysis method and instrument.

Monitoring Frequency

As defined in the scope by DPA, the sampling and analysis of Marine Water has to be carried out once in a month at the eight locations (i.e., six at Kandla and two at Vadinar). For the period April 2023 to March 2024.

Table 27: List of parameters monitored for Marine Water

Sr. No	Parameters	Units	Reference method	Instrument
1.	Electrical Conductivity	μS/cm	APHA, 23 rd Edition (Section- 2510 B):2017	Conductivity Meter
2.	Dissolved Oxygen (DO)	mg/L	APHA, 23 rd Edition, 4500 O C, 2017	Titration Apparatus
3.	рН	1	APHA, 23 rd Edition (Section- 4500-H+B):2017	pH meter
4.	Color	Hazen	APHA, 23 rd Edition, 2120 B: 2017	Color comparator
5.	Odour	1	IS 3025 Part 5: 2018	Heating mantle & odour bottle
6.	Turbidity	NTU	IS 3025 Part 10: 1984	Nephlo Turbidity Meter
7.	Total Dissolved Solids (TDS)	mg/L	APHA, 23 rd Edition (Section- 2540 C):2017	Vaccum Pump with Filtration Assembly and
8.	Total Suspended Solids (TSS)	mg/L	APHA, 23 rd Edition, 2540 D: 2017	Oven
9.	Particulate Organic Carbon	mg/L	APHA, 23 rd Edition, 2540 D and E	TOC analyser
10.	Chemical Oxygen Demand (COD)	mg/L	IS-3025, Part- 58: 2006	Titration Apparatus plus Digester
11.	Biochemical Oxygen Demand (BOD)	mg/L	IS-3025, Part 44,1993,	BOD Incubator plus Titration apparatus
12.	Silica	mg/L	APHA, 23 rd Edition, 4500 C, 2017	
13.	Phosphate	mg/L	APHA, 23 rd Edition, 4500 P-D: 2017	
14.	Sulphate	mg/L	APHA, 23 rd Edition, 4500 SO4-2 E: 2017	UV- Visible Spectrophotometer
15.	Nitrate	mg/L	APHA, 23 rd Edition, 4500 NO3-B: 2017	
16.	Nitrite	mg/L	APHA, 23 rd Edition, 4500 NO2- B: 2017	
17.	Sodium	mg/L	APHA, 23 rd Edition, 3500 Na- B: 2017	Flame photometer

Sr. No	Parameters	Units	Reference method	Instrument				
18.	Potassium	mg/L	APHA, 23 rd Edition, 3500 K-B: 2017					
19.	Manganese	μg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017					
20.	Iron	mg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017	ICP-OES				
21.	Total Chromium	μg/L	APHA, 23 rd Edition, 3500 Cr					
22.	Hexavalent Chromium	μg/L	B: 2017	UV- Visible Spectrophotometer				
23.	Copper	μg/L						
24.	Cadmium	μg/L						
25.	Arsenic	μg/L	APHA, 23 rd Edition, ICP Method 3120 B: 2017	ICP-OES				
26.	Lead	μg/L		ICF-OES				
27.	Zinc	mg/L						
28.	Mercury	μg/L	EPA 200.7					
29.	Floating Material (Oil grease scum, petroleum products)	mg/L	APHA, 23 rd Edition, 5520 C: 2017	Soxhlet Assembly				
30.	Total Coliforms (MPN)	MPN/ 100ml	IS 1622: 2019	LAF/ Incubator				

10.2 Result and Discussion

The quality of the Marine water samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 29**. The said water quality has been represented in comparison with the standard values as stipulated by CPCB for Class SW-IV Waters.

Table 28: Results of Analysis of Marine Water Sample for the sampling period

	Primary	Kandla											Vadinar												
	Water Quality		MW-1			MW-2	2		MW-3	}		MW-4	1		MW-5	5		MW-6	5		MW-7	7		MW-8	
Parameters	Criteria for																								
	Class SW-IV	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Density (kg/m³)	Waters	1.02	1.03	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.021	1.02	1.02	1.02	1.02	1.02	1.02
pH	6.5-9.0	6.12	8.32	7.89	7.04	8.36	7.99	7.83	8.33	8.11	7.69	8.31	8.05	7.19	8.48	8.03	6.01	8.31	7.94	7.98	8.2	8.11	7.07	8.22	8.06
Colour (Hazen)	No Noticeable	1	10	5.41	1	20	7.83	1	15	7.16	5	20	9	5	15	7.41	5	20	8.27	1	10	5.66	1	10	5.08
EC (µS/ cm)	-	49700	63600	54282.5	49800	61700	54490.91	50200	60600	53767.75	50400	75300	55689.91	50100	65100	55115.58	15950	61528	50873.17	52200	56900	54239.2	52.119	57500	50312.6
Turbidity (NTU)	-	56.4	310	188.26	33.9	314	206.76	61.8	317	203.81	69	300	216.66	94.5	379	202.5	70.1	346	209.23	3.15	12.5	5.36	3.42	13.8	6.39
TDS (mg/L)	-	24800	44466	36356.3	24900	41922	36679.5	25100	41624	35690.92	25200	64721	38189.5	25000	47159	36938.58	9970	41436	32927.91	25784	38620	35400.16	26882	41790	35965.75
TSS (mg/L)	-	44	436	342.42	26	563	374.58	52	478	340.75	58	924	402.33	80	682	427.66	58	852	387.72	78	341	255.08	151	346	282.33
COD (mg/L)	-	29.2	79.37	49.62	11.98	79.37	47.81	25.41	81	47.68	22.65	81	52.12	31.56	79.37	53.76	22.97	88.8	49.34	21.28	75	50.98	17.92	75	47.63
DO (mg/L)	3.0 mg/L	4.7	6.4	5.76	5.3	6.4	6.07	4.5	6.7	5.87	3.4	6.5	5.85	5	6.6	6.07	5.6	8.4	6.49	4.3	7.6	6.25	4.4	7.9	6.48
BOD (mg/L)	5.0 mg/L	5.24	8.54	7.56	8.4	8.9	8.57	3.74	8.45	6.81	5	8.78	7.755	9.32	9.87	9.57	3.6	11.1	8.64	3.91	7.5	6.51	4.2	7.16	6.16
Oil & Grease		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(mg/L)							-	· ·		Ü	-	,	-		·	-			Ů					Ŭ	-
Sulphate (mg/L)	=	2056	2937.5	2529.7	2156.32	2897.7	2544.18	2083.7	2925.2	2530.85	2239	3704.9	2879.88	2334.9	2916.8	2652.42	632.62	3612.8	2561.07	1846.3	3225.8	2472.195	2039.9	3236.8	2664.27
Nitrate (mg/L)	-	1.89	5.40	4.28	1.12	5.16	3.75	3.21	5.68	4.17	3.41	5.85	4.64	3.17	6.92	4.21	3.06	6.84	4.06	2.225	5.17	3.56	1.759	5.1	3.39
Nitrite (mg/L)	-	0.12	0.12	0.12	0	0	0	0	0	0	0	0	0	0.11	0.11	0.11	0.13	0.16	0.14	0	0	0	0	0	0!
Phosphate (mg/L)		0.25	1.59	0.82	0.09	1.34	0.69	0.57	1.46	0.96	0.61	2.01	0.92	0.29	1.34	0.76	0.54	1.61	0.81	0.64	0.94	0.79	1.43	1.43	1.43
Silica (mg/L)	-	0.29	3.24	2.12	0.22	4.04	2.24	0.2	3.73	2.19	1.12	3.69	2.54	1.26	4	2.64	0.33	3.74	1.92	0.11	0.96	0.56	0.09	1.86	0.76
Sodium (mg/L)	-	7686	10625	9475.57	7811	10341	9242.42	7763	10308	9347.33	9101	10323	9724.14	8789	10278	9403.67	2086	10722	8042.71	2149.6	9485	6743.97	2349.4	9542	7244.66
Potassium (mg/L)	-	68.35	451.9	318.57	69.27	446.5	303.94	68.57	421	290.60	71.73	543.96	342.71	69.63	423.34	324.92	68.34	442.63	272.9	10.86	421.7	259.6	76.31	518	327.43
Hexavalent																									i
Chromium	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	321	321	321	333	333	333
(mg/L) Odour		-	-		-	-			-	-		-	-	-	-	-		-	-	-	- 1	-	-	4	
Arsenic (mg/L)	-	5.13	5.13	5.13	1 5.25	5.25	1 5.25	5.4	1 5.4	5.4	0	0	0	0	0	0	9.44	1 12.94	1 11.19	0.11	1	0.41	0.08	1	0.38
Cadmium (mg/L)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.11	0	0.41	0.08	0	0.38
Copper (mg/L)		5.1	6.99	5.8175	0.006	10.9	5.79	0.005	7.7	3.85	5.34	12.01	8.224	0.0067	7.6	5.13	8.07	10.2	9.49	3.4	3.4	3.4	0	0	0
Iron (mg/L)	-	0.69	4.11	1.38	0.21	4.07	1.76	0.37	3.92	1.79	1.02	7.93	2.49	0.98	5.45	2.09	0.43	5.3	2.005	0.01	0.25	0.145	0.08	0.66	0.21
Lead (mg/L)	-	0.002	3.44	2.067	0.0029	3.44	2.29	0.0026	3.06	1.98	0.002	9.68	4.32	0.002	4.65	2.39	0.0029	3.65	2.47	0.0023	2.26	1.035	0.002	2.75	0.96
Manganese		0.000	400.04	54.45	0.40	450 50	00.00	0.400=	105.66	=+0	0.006	20101	00.54	0.054	242.44		0.44	456.44	00.07	2.00	440.00	20.42	4.05	00.0	24.64
(mg/L)	-	0.082	129.91	71.47	0.12	159.78	83.88	0.1085	125.66	74.0	0.096	294.91	93.56	0.074	213.14	74.7	0.11	156.41	80.27	2.39	113.93	39.62	1.97	98.8	34.64
Total Chromium (mg/L)	-	0	0	0	5.62	7.8	6.71	5.67	5.67	5.67	5.14	15.99	12.28	5.11	9.65	7.207	0	0	0	0	0	0	45.75	45.75	45.75
Zinc (mg/L)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury (mg/L)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Particulate	-	0.51	900	76.22	0.51	35	3.98	0.42	10	1.94	0.58	55	6.03	0.92	30	3.89	0.85	44	5.01	0.47	4.67	1.62	0.32	4.76	1.51
Organic																									

Parameters	Primary									Kaı	ndla											Vad	inar		
Carbon (mg/L)																									
Total Coliform*	500/100 ml	0.32	1600	159.61	0.16	120	29.76	0.56	108	31.55	0.25	47	14.02	0.35	170	37.19	0.29	50	21.86	0.36	240	39.76	0.39	240	35.28
(MPN/100ml)	300/ 100 Hii	0.32	1600	139.61	0.16	120	29.76	0.56	108	31.33	0.23	4/	14.02	0.33	170	37.19	0.29	30	21.00	0.36	240	39.76	0.39	240	33.26
Floating Material																									
(Oil grease scum,																									
petroleum		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	23	23
products)	10 mg/L																								
(mg/L)																									

10.3 Data Interpretation and Conclusion

The Marine water quality of Deendayal Port Harbor waters at Kandla and Vadinar has been monitored for various physico-chemical and biological parameters during the monitoring 2023 at high tide. The detailed interpretation of the parameters in comparison to the Class SW-IV for Harbour Waters is as follows:

- **Density** at Kandla was observed in the range of **1.02 to 1.03 kg/m³**, with the average of **1.022 kg/m³**. Whereas for the location of Vadinar, it was observed in the range of **1.021 to 1.026 kg/m³**, with the average of **1.022 kg/m³**.
- **pH** at Kandla was observed in the range of **6.01 to 8.48**, with the average pH as **7.78**. Whereas for the locations of Vadinar, it was observed in the range of be **7.07** to **8.22**, with the average pH as **7.94**. For the monitoring location of both the study areas, pH was found to comply with the norms of 6.5-8.5.
- Color range varied from 1 to 20 Hazen at all the monitoring locations in Kandla, and for Vadinar, it varied from 1 to 10 Hazen.
- Electrical conductivity (EC) was observed in the range of 15,950 to 75,300 μ S/cm, with the average EC as 54,344.32 μ S/cm for the locations of Kandla, whereas for the locations of Vadinar, it was observed in the range of 52,199 to 57,500 μ S/cm, with the average EC as 45,200.67 μ S/cm.
- For all monitoring locations of Kandla the value of **Turbidity** was observed in the range of **33.9 to 379 NTU**, with average value of **198.83** NTU. For Vadinar it ranges from **3.15 to 13.8 NTU**, with average of **7.43** NTU. Materials that cause water to be turbid include clay, silt, finely divided organic and inorganic matter, soluble coloured organic compounds, plankton and microscopic organisms. Turbidity affects the amount of light penetrating to the plants for photosynthesis.
- For the monitoring locations at Kandla the value of **Total Dissolved Solids (TDS)** ranged from **9,970 to 64,721 mg/L**, with an average value of **35,171** mg/L. Similarly, at Vadinar, the TDS values ranged from **25,784 to 41,790 mg/L**, with an average value of **34,073** mg/L.

- TSS values in the studied area varied between 26 to 924 mg/L at Kandla and 78 to 346 mg/L at Vadinar, with the average value of 362.69 mg/L and 242.23 mg/L respectively for Kandla and Vadinar.
- COD varied between 11.98 to 88.8 mg/L at Kandla and 17.92 to 75 mg/L at Vadinar, with the average value as 51.83 mg/L and 47.86 mg/L respectively for Kandla and Vadinar.
- DO level in the studied area varied between 3.4 to 8.4 mg/L at Kandla and 4.3 to 7.9 mg/L at Vadinar, with the average value of 5.86 mg/L and 6.15 mg/L respectively for Kandla and Vadinar. Which represents that the marine water is suitable for marine life.
- BOD observed was observed in the range of 3.6 to 11.1 mg/L, with average of 7.76 mg/L for the location of Kandla and for the locations of Vadinar, it was observed in the range of 3.91 to 7.5 mg/L, with an average value of 5.9 mg/L.
- Sulphate concentration in the studied area varied between 632.92 to 3704.9 mg/L at Kandla and 1846.3 to 3236.8 mg/L at Vadinar. The average value observed at Kandla was 2566.45 mg/L, whereas 2580.87 mg/L was the average value of Vadinar. Sulphate is naturally formed in inland waters by mineral weathering or the decomposition and combustion of organic matter.
- **Nitrate** in the study area was observed in the range of **1.12 to 6.92 mg/L**, with the average of **4.26** mg/L. Whereas for the Vadinar the concentration of Nitrate was observed in the range of **1.759 to 5.17** mg/L, with the average **3.53** mg/L.
- Nitrite in the study area was observed in the range of 0 to 0.16 mg/L, with the average of 0.625 mg/L. Whereas for the Vadinar the concentration of Nitrite was observed Below Quantification Limit During whole monitoring period.
- **Phosphate** in the study area was observed in the range of **0.09 to 2.01 mg/L**, with the average of **0.92** mg/L. Whereas for the Vadinar the concentration of Phosphate was observed in the range of **0.64 to 1.43** mg/L, with the average **1.11** mg/L.
- Silica in the study area was observed in the range of 0.2 to 4.04 mg/L, with the average of 2.19 mg/L. Whereas for the Vadinar the concentration of silica was observed in the range of 0.09 to 1.86 mg/L, with the average 0.724 mg/L.
- In the study area of Kandla the concentration of **Potassium** varied between **68.34 to 543.68 mg/L** and **10.86 to 518 mg/L** at Vadinar, with the average value as **277.71** mg/L and **268.99** mg/L respectively for Kandla and Vadinar.
- Sodium in the study area varied between 2,086 to 10,722 mg/L, with average of 8948.26 mg/L, at Kandla whereas at Vadinar its value recorded within range of 2149.6 to 9542 mg/L, with the average of 6252.43 mg/L.
- **Odour** was observed 1 for all locations of Kandla and Vadinar.
- **Arsenic** concentration observed to be BQL for majority of location for Kandla and Vadinar except locations MW-1, MW-2, MW-3, MW-6, MA-7 and MW-8 for some instant of time during whole monitoring period.
- Copper in the study area varied between 0.005 to 12.01 mg/L, with average of 6.23 mg/L, at Kandla whereas at Vadinar its value recorded within range of 0 to 3.4 mg/L,

with the average of **2.04** mg/L, on both project sites during monitoring majority of time Copper found Below Quantification Limit.

- **Iron** in the studied area varied between **0.21 to 7.93 mg/L**, with the average of **2.55** mg/L, at Kandla, and for Vadinar value were recorded within range of **0.01** to **0.66** mg/L, with average value of **0.22** mg/L.
- Lead concentration varied 0.002 to 9.68 mg/L, with an average of 2.41 mg/L at Kandla. At Vadinar location within range of 0.002 to 2.753 mg/L with an average 1.17 mg/L
- Manganese in the studied area varied between 0.0748 to 294.91 mg/L, with the average of 86.57 mg/L, at Kandla and for Vadinar, recorded value were observed within the range of 1.97 to 113.93 mg/L, with the average of 48.56 mg/L.
- Total Chromium in the study area varied between 0 to 15.99 mg/L, with average of 5.13 mg/L, at Kandla whereas at Vadinar its value recorded 45.76 mg/L at MW-8 in the monitoring period of January to February 2024, While on both project sites during monitoring majority of time Total Chromium found Below Quantification Limit
- Particulate Organic Carbon in the study area was observed in the range of **0.42 to 900**, with the average value of **65.27**. the maximum spike of 900 is only observed once in the period of April to May 2023 during whole monitoring period. Whereas for the Vadinar, the value observed was Within the range of **0.32** to **4.76**, with the average of **2.22**.
- Oil & Grease, Nitrite, Phosphate, Hexavalent Chromium, Arsenic, Cadmium, Total Chromium, Zinc, Mercury and Floating Material (Oil grease scum, petroleum products) were observed to have concentrations "Below the Quantification Limits (BQL)" for most of the locations of Kandla and Vadinar, majority of time during whole monitoring period.
- **Total Coliforms** were detected complying with the specified norm of 500 MPN/100ml for all the locations of Kandla and Vadinar, except on location MW-1 in the month of May to June 2023.

During the Monitoring period, marine water samples were analysed and found in line with Primary Water Quality criteria for class-IV Waters (For Harbour Waters).

However, as a safeguard towards marine water pollution prevention, appropriate regulations on ship discharges and provision of reception facilities are indispensable for proper control of emissions and effluent from ships. Detection of spills is also important for regulating ship discharges. Since accidental spills are unavoidable, recovery vessels, oil fences, and treatment chemicals should be prepared with a view to minimizing dispersal. Proper contingency plans and a prompt reporting system are keys to prevention of oil dispersal. Periodical clean-up of floating wastes is also necessary for preservation of port water quality.

CHAPTER 11: MARINE SEDIMENT QUALITY MONITORING

11.1 Marine Sediment Monitoring

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind. The unconsolidated materials derived from pre-existing rocks or similar other sources by the process of denudation are deposited in water medium are known as sediment. For a system, like a port, where large varieties of raw materials and finished products are handled, expected sediment contamination is obvious.

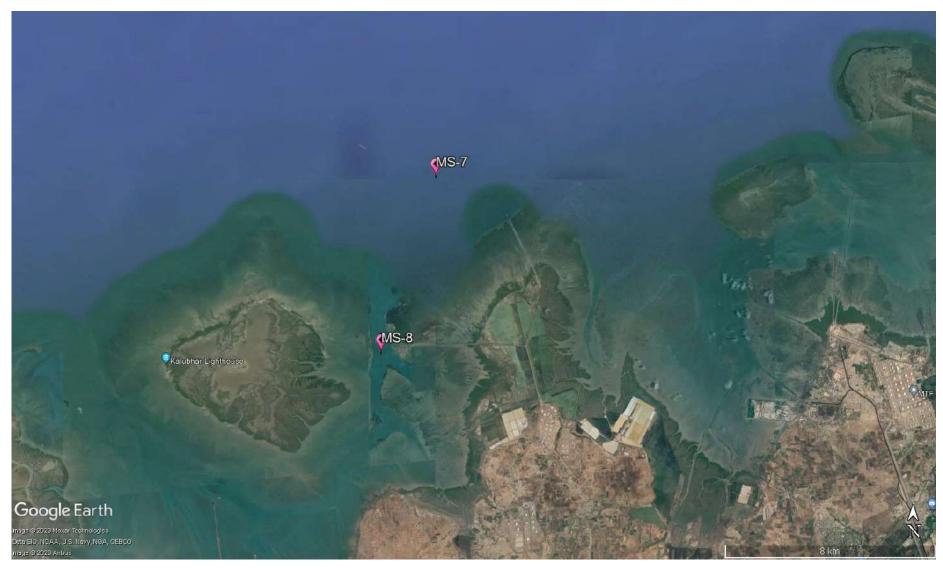
The materials or part of materials spilled over the water during loading and unloading operations lead to the deposition in the harbour water along with sediment and thus collected as harbour sediment sample. These materials, serve as receptor of many trace elements, which are prone to environment impact. In this connection it is pertinent to study the concentration and distribution of environmentally sensitive elements in the harbour sediment. However, human activities result in accumulation of toxic substances such as heavy metals in marine sediments. Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulation. Metals affect the ecosystem because they are not removed from water by self-purification, but accumulate in sediments and enter the food chain.

Methodology

As defined in the scope by DPA, the Marine Sediment sampling is required to be carried out once in a month at total eight locations, i.e., six at Kandla and two at Vadinar. The sampling of the Marine Sediment is carried out using the Van Veen Grab Sampler (make Holy Scientific Instruments Pvt. Ltd). The Van Veen Grab sampler is an instrument to sample (disturbed) sediment up to a depth of 20-30 cm into the sea bed. While letting the instrument down on the seafloor, sediment can be extracted. The details of locations of Marine Sediment to be monitored under the study are mentioned in **Table 30** as follows:

Table 29: Details of the sampling locations for Marine Sediment

C. No	I		Location Name	
Sr. No	Loc	ation Code	Location Name	Latitude Longitude
1.		MS-1	Near Passenger Jetty One	23.017729N 70.224306E
2.	lla	MS-2	Kandla Creek	23.001313N 70.226263E
3.	Kandla	MS-3	Near Coal Berth	22.987752N 70.227923E
4.	Ka	MS-4	Khori Creek	22.977544N 70.207831E
5.		MS-5	Nakti Creek (near Tuna Port)	22.962588N 70.116863E
6.		MS-6	Nakti Creek (near NH-8A)	23.033113N 70.158528E
7.	inar	MS-7	Near SPM	22.500391N 69.688089E
8.	Vadin	MS-8	Near Vadinar Jetty	22.440538N 69.667941E


The map depicting the locations of Marine Sediment sampling at Kandla and Vadinar have been mentioned in **Map 18 and 19** as follows:

Map 18: Marine Sediment Monitoring Location at Kandla

Map 19: Marine Sediment Monitoring Locations at Vadinar

The list of parameters to be monitored under the projects for the Marine Sediment sampling been mentioned in **Table 31** as follows:

Table 30: List of parameters to be monitored for Sediments at Kandla and Vadinar

Sr. No.	Parameters	Units	Reference method	Instruments
1.	Texture		Methods Manual Soil Testing in India January 2011,01	Hydrometer
2.	Organic Matter	%	Methods Manual Soil Testing in India January, 2011, 09. Volumetric method (Walkley and Black, 1934)	Titration apparatus
3.	Inorganic Phosphates	mg/Kg	Practical Manual Chemical Analysis of Soil and Plant Samples, ICAR-Indian Institute of Pulses Research 2017	UV- Visible Spectrophotometer
4.	Silica	mg/Kg	EPA METHOD 6010 C & IS: 3025 (Part 35) - 1888, part B	
5.	Phosphate	mg/Kg	EPA Method 365.1	
6.	Sulphate as SO ⁴⁻	mg/Kg	IS: 2720 (Part 27) - 1977	
7.	Nitrite	mg/Kg	ISO 14256:2005	
8.	Nitrate	mg/Kg	Methods Manual Soil Testing in India January, 2011, 12	
9.	Calcium as Ca	mg/Kg	Methods Manual Soil Testing in India January 2011, 16.	Titration
10.	Magnesium as Mg	mg/Kg	Method Manual Soil Testing in India January 2011	Apparatus
11.	Sodium	mg/Kg	EPA Method 3051A	
12.	Potassium	mg/Kg	Methods Manual Soil Testing in India January, 2011	Flame Photometer
13.	Aluminium	mg/Kg		
14.	Chromium	mg/Kg		
15.	Nickel	mg/Kg		
16.	Zinc	mg/Kg		
17.	Cadmium	mg/Kg	EPA Method 3051A	ICP-OES
18.	Lead	mg/Kg		
19.	Arsenic	mg/Kg		
20.	Mercury	mg/Kg		

11.2 Result and Discussion

The quality of Marine Sediment samples collected from the locations of Kandla and Vadinar during the monitoring period of April 2023 to March 2024 has been

summarized in the Table 32.

Table 31: Summarized result of Marine Sediment Quality

Parameters							Tubi	<u>c 51. 5</u>	Kand		csuit d	i wiai	ine see	ATTITICITY	Quali	<u> </u>					V	adinar		
		MS-1			MS-2			MS-3			MS-4			MS-5			MS-6			MS-	7		MS-8	
	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
Inorganic Phosphate (kg/ ha)	16.85	0.86	6.6042	14.37	0.67	8.81	41.2	0.8	16.98	19.44	0.81	9.532	45.1	0.72	14.48	34.6	0.66	15.24	14.5	1.24	5.65	18.51	0.82	5.7325
Phosphate (mg/Kg)	3247.8	290.8	1280.63	2514.7	258.3	1304	3736	226.6	1515	3871	353.7	1287	3741	306.8	1442	14076	578.3	2793.9	3002	152.5	770.24	3477.29	167.93	940.70
Organic Matter (%)	1.42	0.21	0.7875	2.17	0.29	1.13	1.01	0.17	0.593	2.1	0.33	0.975	1.24	0.67	0.911	2.06	0.21	0.915	2.29	0.15	1.04	1.65	0.17	0.89
Sulphate as SO4 (mg/Kg)	905.25	110.2	366.8	1022.25	98.2	370.03	571.64	95.33	275.09	650.25	97.45	268.51	768	87.28	294.27	732	96.38	249.1	296	74.07	126.31	213.4	80.06	132.03
Calcium as Ca (mg/Kg)	13800	1612	3464.3	5800	1259	2836	4200	962	2163	4200	1102	2669	10500	1089	3102	3800	1047	2274.6	3700	2200	2930.9	3974.2	2100	2805.45
Magnesium as Mg (mg/Kg)	1952	1225	1538.53	3050	826.46	1810.84	2136	764	1592.59	3172	866.94	1810.6	2440	1032	1622.80	2745	906.98	1581.95	1952	854	1385.18	14640	1167	2920.83
Silica (g/Kg)	671.25	261.3	479.11	612.51	289.4	481.7	571.5	329.1	444.8	555.2	245.7	392.1	597.1	179.2	418.6	580.4	245.3	436.12	529.8	220.9	377.71	546.08	264.92	426.66
Nitrite (mg/Kg)	0.75	0.12	0.41	0.92	0.13	0.50	0.81	0.08	0.41	0.91	0.01	0.43	0.71	0.11	0.375	0.89	0.07	0.489	0.22	0.07	0.159	0.37	0.04	0.23
Nitrate (mg/Kg)	22.34	5.86	16.58	37.12	7.59	18.29	36.47	4.51	15.50	25.94	4.31	13.99	10.34	5.24	13.17	20.38	6.34	14.52	25.33	9.54	15.36	25.21	4.75	10.52
Sodium (mg/Kg)	7860	3194	4512.43	14688	2453	5318	8612	2072	4550	18308	2612	6435	10520	2063	4665	14076	2072	5639.6	11944	3971	7904.6	13660	2719.42	9536.63
Potassium (mg/Kg)	2610.7	241	1525.98	11580	276	2320	3479	260.7	2126	4208	294	2424	3152	205	1790	3479	236.9	2233.4	3372	699	1876.1	4377	1028	2025.66
Aluminium (mg/Kg)	8371.7	2116	3827.74	10641	1237.1	4465.9	10363.1	1278.5	4370.2	12008.4	1971.2	5025.2	10361.1	1264.58	3891.23	12314.1	1273.22	4384.20	14179.7	358.3	4028.56	19356.55	479.16	4883.52
Mercury (mg/Kg)	4.71	4.71	4.71	10.74	10.74	10.74	41.29	41.29	41.29	6.44	6.44	6.44	15.21	15.21	15.21	34.69	34.69	34.69	0	0	0	0	0	0
Texture	Sandy loam	Sand y loam	Silt loam	Sandy loam	Silt loam	Sand y loam	Sandy loam	Sand y loam	Sand y loam	Sandy loam	Loam	Loam	Loam											

11.3 Data Interpretation and Conclusion

The Marine sediment quality at Kandla and Vadinar has been monitored for various physico-chemical parameters during the monitoring April 2023 to March 2024. The detailed interpretation of the parameters is given below:

- Inorganic Phosphate for the sampling period was observed in range of **0.66 to 45.12** Kg/ha for Kandla. Whereas for Vadinar the value observed Within range of **0.82** to **18.51** Kg/ha. For Kandla and Vadinar the average value of Inorganic Phosphate was observed **13.77** and **7.74** Kg/ha respectively.
- The concentration of **Phosphate** was observed in range of **226.6 to 3871.15 mg/Kg** for Kandla and for Vadinar the value observed within the range of **152.53** to **3477.29** mg/Kg. For Kandla and Vadinar the average concentration of Phosphate was observed **1616.78** and **1418.5** mg/Kg respectively.
- The **Organic Matter** for the sampling period was observed in the range of **0.17 to 2.17** % for Kandla with the average value of **0.95**% and for Vadinar the value recorded Within range of **0.15 to 2.29**%, with average concentration as **1.03** %.
- The concentration of Sulphate was observed in the range of 87.28 to 1022 mg/Kg for Kandla and for Vadinar the value observed Within range of 74.07 to 296 mg/Kg. For Kandla and Vadinar the average value of Sulphate was observed 392.10 and 153.64 mg/Kg respectively.
- The value of Calcium was observed in the range of 962 to 13800 mg/Kg for Kandla and for Vadinar the value observed within the range of 2100 to 3974.5 mg/Kg. The average value of Calcium for the monitoring period was observed 3660.21 mg/Kg and 2951.76 mg/Kg at Kandla and Vadinar, respectively.
- The value of Magnesium for the sampling period was observed in the range of 764 to 3172 mg/Kg for Kandla and for Vadinar the value observed Within the range of 854 to 1952 mg/Kg. For Kandla and Vadinar the average value of Magnesium was observed 1726.35 mg/Kg and 1440.69 mg/Kg respectively.
- For the sampling period **Silica** was observed in the range of **179.25 to 671.25 mg/Kg** for Kandla with average value **432.83** mg/Kg and for Vadinar the value observed within the range of **220.98** and **546.5** mg/Kg with average **394.35** mg/Kg.
- The value of **Nitrate** was observed in the range of **4.31 to 37.12 mg/Kg** for Kandla with average value **15.47** mg/Kg and for Vadinar the value observed within the range of **4.75** to **25.33** mg/Kg. with average **15.12** mg/Kg.
- The value of Nitrite was observed in the range of 0.01 to 0.92 mg/Kg for Kandla with average value 0.45 mg/Kg and for Vadinar the value observed to be within the range of 0.04 to 0.37 mg/Kg, with average 0.1828 mg/Kg.
- The value of **Sodium** was observed in the range of **2063.3 to 18308 mg/Kg** for Kandla with average value **6647.43** mg/Kg and for Vadinar the value observed within the range of **2719.42** and **13660** mg/Kg, with average **8289** mg/Kg.
- The value of **Potassium** was observed in the range of **205.08 to 11580 mg/Kg** for Kandla with average value **2357.95** mg/Kg and for Vadinar the value observed within range of **699.09** to **4377** mg/Kg, with average **2229.65** mg/Kg.

- The value of **Aluminium**, was observed in the range of **1237.13 to 12314.13 mg/Kg** for Kandla with average value **5509.23** mg/Kg and for Vadinar the value observed within the range of **358.3** to **19356** mg/Kg, with average **7214.30** mg/Kg.
- The value of **Mercury**, was observed in the range of **4.71 to 41.29 mg/Kg** for Kandla with average value **18.84** mg/Kg and for Vadinar the value of **Mercury** was observed "Below the Quantification Limit" at both two locations. During monitoring period majority of time Mercury was observed Below Quantification limit.
- Texture was observed to be "Sandy Loam" at location MS-1, MS-2, MS-4 and MS-6 "Silt loam" at location MS-3 & MS-5 in Kandla. "Sandy Loam" at location MS-7 & "Silt loam" at location MS-8 in Vadinar during sampling period.

Heavy Metals

The sediment quality of Kandla and Vadinar has been compared with respect to the Average Standard guideline applicable for heavy metals in marine sediment specified by EPA have been mentioned in **Table 33**.

Table 32: Standard Guidelines applicable for heavy metals in sediments

	Tubic 02	i standara sarat	mics upplicable for near	y mictais in scaimer						
Sr.	Metals		Sediment quality (mg/k	g)	Source					
No.	ivietais	Not polluted	Moderately polluted	Heavily polluted						
1.	As	<3	3-8	>8						
2.	Cu	<25	25-50	>50						
3.	Cr	<25	25-75	>75						
4.	Ni	<20	20-50	>50	EPA					
5.	Pb	<40	40-60	>60						
6.	Zn	<90	90-200	>200						
7.	Cd	-	<6	>6						
ND =	ND = Not Detected									

(Source: G Perin et al. 1997)

Table 33: Comparison of Heavy metals with Standard value in Marine Sediment

Parameters									Kaı	ndla											Vad	linar		
		MS-1			MS-2			MS-3	;		MS-4			MS-5			MS-6	;		MS-7			MS-8	
	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
Arsenic (mg/Kg)	5.13	1.09	3.527	4.43	2.11	3.264	6.17	2.06	3.92	5.86	1.28	3.75	5.2	1.75	3.458	5.78	1.98	3.67	5.36	2.04	2.84	5.17	2.5	3.69
Copper (mg/Kg)	5.6	2.13	3.282	11.4	2.14	5.013	8.1	2.08	4.49	9.8	3.48	5.71	12	2.14	5.97	8.9	2.98	4.97	6.13	2.19	4.567	412	2.1	39.05
Chromium (mg/Kg)	64.1	42.12	53.94	67.45	32.74	47.04	73.02	32.41	48.31	83.23	41.08	55.17	59.95	41.87	51.50	104.2	36.71	59.71	59.27	23.18	44.01	104.1	29.7	61.12
Nickel (mg/Kg)	51.4	16.8	31.76	38.9	10.21	23.87	36.41	4.54	22.77	40.87	7.61	27.45	31.86	21.72	25.881	50.78	4.54	25.058	36.21	12.23	22.84	43.66	12.47	29.282
Lead (mg/Kg)	7.05	1.25	5.3	7.45	4.21	5.76	28.73	2.36	6.683	8.25	3.46	5.9	14.22	1.21	6.055	5.01	2.81	7.88	7.94	2.85	4.90	10.58	2.97	5.65
Zinc (mg/Kg)	63.2	35.88	54.63	65.69	32.11	50.455	301.32	23.63	69.545	82.9	18.15	50.86	159.42	19.54	60.65	157.82	23.63	57.7	52.13	11.47	34.6	104.87	13.65	53.8595
Cadmium (mg/Kg)	1.08	0.88	0.98	0.6	0.6	0.6	1.25	0.87	1.1	1.12	0.78	1.022	1.08	0.91	0.995	7.53	0.15	2.302	0	0	0	0	0	0

- Arsenic was observed in the range of **1.09 to 6.17 mg/Kg** for Kandla with average value **3.58** mg/Kg and for Vadinar the value observed within range of **2.04** to **5.36** mg/Kg, with average of **3.6** mg/Kg. during monitoring period majority of time arsenic concentration found within moderately polluted class on both study area.
- Copper was observed in the range of 2.08 to 12 mg/Kg for Kandla with average value 5.6 mg/Kg and for Vadinar the value observed within the range of be 2.1 to 8.33 mg/Kg, with average 4.72 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to copper falls in non-polluted class.
- **Chromium** was observed in the range of **32.41 to 104.24 mg/Kg** for Kandla with average value **55.25** mg/Kg and for Vadinar the value observed within the range of **23.18** to **104.16** mg/Kg, with average **53.57** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to chromium falls majority of time in moderately polluted and for some instance it location MS-4, MS-6, and MS-8 fall in Heavily polluted class.
- **Nickel** was observed in the range of **4.54 to 51.47 mg/Kg** for Kandla with average value **26.25** mg/Kg and for Vadinar the value observed within range of **12.23** to **43.66** mg/Kg, with average **26.115** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to nickel falls in moderately polluted class and for some instance it location MS-1, and MS-6 fall in heavily polluted class.

- Lead was observed in the range of 1.21 to 28.73 mg/Kg for Kandla with average value 5.63 mg/Kg and for Vadinar the value observed within the range of 2.85 and 10.58 mg/Kg, with average 5.81 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to lead falls in not polluted class.
- **Zinc** was observed in the range of **18.15 to 301.32 mg/Kg** for Kandla with average value **73.73** mg/Kg and for Vadinar the value observed within the range of **11.47** to **104.87** mg/Kg, with average **46.997** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to zinc falls in non-polluted class and for some instance its location MS-1, MS-3, MS-6 and MS-8 fall in Moderately polluted class.
- Cadmium was observed in the range of 0.15 to 7.53 mg/Kg for Kandla with average value 1.325 mg/Kg. During the monitoring period majority of time Cadmium found BQL, which falls in non-polluted. While exception on one location MS-6 fall within moderately polluted for the duration of July to August 2023. Cadmium was observed BQL for all locations at Vadinar during sampling period. With reference to the guidelines mentioned in table 35, the sediment quality with respect to cadmium falls in non-polluted class.

Analysis of the sediments indicates moderate pollution. However, it may be noted that, the sediments are highly dynamic being constantly deposited and carried away by water currents. Hence maintaining the quality of sediments is necessary as it plays a significant role in regulating the quality of the marine water and the marine ecology.

The presence of anthropic activity in the coastal areas has an effect upon the marine water and sediment. One of the primary risks associated with contaminated sediments is bioaccumulation in benthic organisms, which is a route of entry into the food chain. Generally adopted sediment remediation approaches include dredging, capping of contaminated areas, and monitored natural recovery (MNR). Dredging can remove contaminated sediments, but it requires large areas of land for sediment disposal. It is expensive and may cause secondary contamination of the water column during resuspension. MNR relies on ongoing naturally occurring processes to decrease the bioavailability or toxicity of contaminants in sediment. These processes may include physical, biological, and chemical mechanisms that act together to reduce the environmental risks posed by contaminated sediments. MNR require longer monitoring time and can be even more expensive than for dredging and capping. Capping consists of in situ covering of clean or suitable isolating material over contaminated sediments layer to limit leaching of contaminants, and to minimize their re-suspension and transport. Hence appropriate remedial measures for the polluted sediment sites may be implemented, to reduce the concentration of the heavy metals.

CHAPTER 12: MARINE ECOLOGY MONITORING

12.1 Marine Ecological Monitoring

The monitoring of the biological and ecological parameters is important in order to assess the marine environment. A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval. Deendayal Port and its surroundings have mangroves, mudflats and creek systems as major ecological entities.


As defined in the scope by DPA, the Marine Ecological Monitoring is required to be carried out once a month specifically at eight locations, six at Kandla and two at Vadinar. The sampling of the Benthic Invertebrates has been carried out with the help of D-frame nets, whereas the sampling of zooplankton and phytoplankton has been carried out with the help of Plankton Nets (60 micron and 20 micron). The details of the locations of Marine Ecological Monitoring have been mentioned in **Table 35** as follows:

Table 34: Details of the sampling locations for Marine Ecological

Sr. No.	Locat	ion Code	Location Name	Latitude Longitude
1.		ME-1	Near Passenger Jetty One	23.017729N 70.224306E
2.	æ	ME-2	Kandla Creek (near KPT Colony)	23.001313N 70.226263E
3.	Kandla	ME-3	Near Coal Berth	22.987752N 70.227923E
4.	X	ME-4	Khori Creek	22.977544N 70.207831E
5.		ME-5	Nakti Creek (near Tuna Port)	22.962588N 70.116863E
6.		ME-6	Nakti Creek (near NH - 8A)	23.033113N 70.158528E
7.	nar	ME-7	Near SPM	22.500391N 69.688089E
8.	Vadinar	ME-8	Near Vadinar Jetty	22.440538N 69.667941E

The map depicting the locations of Marine Ecological monitoring in Kandla and Vadinar have been mentioned in **Map 20 and 21** as follows:

Map 20 Marine Ecological Monitoring: Locations at Kandla

Map 21: Marine Ecological Monitoring Locations at Vadinar

The various parameters to be monitored under the study for Marine Ecological Monitoring are mentioned in **Table 36** as follows:

Table 35: List of parameters to be monitored for Marine Ecological Monitoring

Sr. No.	Parameters
1.	Productivity (Net and Gross)
2.	Chlorophyll-a
3.	Pheophytin
4.	Biomass
5.	Relative Abundance, species composition and diversity of phytoplankton
6.	Relative Abundance, species composition and diversity of zooplankton
7.	Relative Abundance, species composition and diversity of benthic invertebrates (Meio, Micro and macro benthos)
8.	Particulate Oxidisable Organic Carbon
9.	Secchi Depth

Methodology

• Processing for chlorophyll estimation:

Samples for chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm.

• Phytoplankton Estimation

Phytoplankton are free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio-purifier and bio-indicators of the aquatic ecosystems of which diverse array of the life depends. They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem. The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are Diatoms (Bacillariophyceae) and Dinoflagellates (Dinophyceae). Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro

flagellates (naked flagellates) as well as Cyanophytes (Bluegreen algae). Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts. Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

• Zooplankton Estimation

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes. Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of 'biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior. The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

• Diversity Index

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

1. Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index (H), which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species. Shannon-Wiener's index (H) reproduces community parameters to a single number by using an equation are as follow:

$$H' = \sum p_i * \ln (p_i)$$

Where, Σ = Summation symbol,

pi = Relative abundance of the species,

In = Natural logarithm

More diverse ecosystems are considered healthier and more resilient. Higher diversity ecosystems typically exhibit better stability and greater tolerance to fluctuations. e.g., The Shannon diversity index values between 2.19 and 2.56 indicate relatively high diversity within the community compared to communities with lower values. It suggests that the community likely consists of a variety of species, and the species are distributed somewhat evenly in terms of their abundance.

2. Simpson's index:

A reasonably high level of dominance by one or a small number of species is indicated by the range of **0.89 to 0.91**. The general health and stability of the ecosystem may be impacted by this dominance. Community disturbances or modifications that affect the dominant species may be more likely to have an impact. The dominating species determined by the Simpson's index can have big consequences on how the community is organised and how ecological interactions take place.

The formula for calculating D is presented as:

$$D=1-\sum (p_i\hat{2})$$

Where, Σ = Summation symbol, pi = Relative abundance of the species

3. Margalef's diversity index:

The number of species is significantly related to the port's vegetation cover surface, depth, and photosynthetic zone. The habitat heterogeneity is a result of these three elements. Species richness is related to the number of distinct species present in the analysed area. Margalef's index has a lower correlation with sample size. Small species losses in the community over time are likely to result in inconsistent changes.

Margalef's index D_{Mg} , which is also a measure of species richness and is based on the presumed linear relation between the number of species and the logarithm of the number of individuals. It is given by the formula:

$$D_{Mg} = \frac{S-1}{\ln N}$$

Where, N = total number of individuals collected

S = No. of taxa or species or genera

4. Berger-Parker index:

This is a useful tool for tracking the biodiversity of deteriorated ecosystems. Environmental factors have a considerable impact on this index, which accounts for the

dominance of the most abundant species over the total abundance of all species in the assemblage. The preservation of their biodiversity and the identification of the fundamental elements influencing community patterns are thus critical for management and conservation. Successful colonising species will dominate the assemblage, causing the Berger-Parker index to rise, corresponding to well-documented successional processes. The environmental and ecological features of the system after disturbance may therefore simply but significantly determine the identity of the opportunistic and colonising species through niche selection processes.

The Berger-Parker index is a biodiversity metric that focuses on the dominance or relative abundance of a single species within a community. It provides a measure of the most abundant species compared to the total abundance of all species present in the community. Mathematically, it can be represented as follows:

$$d = \frac{N_{max}}{N_i}$$

Where, N_{max} = Max no of individuals of particular genera or species

 $\sum N_i$ = Total no of individuals obtained.

The resulting value of the Berger-Parker index ranges between 0 and 1. A higher index value indicates a greater dominance of a single species within the community. Conversely, a lower index value suggests a more even distribution of abundance among different species, indicating higher species diversity. The range of the Berger-Parker index can be interpreted as when the index value is close to 0, it signifies a high diversity with a more even distribution of abundances among different species. In such cases, no single species dominates the community, and there is a balanced representation of various species.

5. Evenness index-

Evenness index determines the homogeneity (and heterogeneity) of the species' abundance. Intermediate values between 0 and 1 represent varying degrees of evenness or unevenness in the distribution of individuals among species. Value of species evenness represents the degree of redundancy and resilience in an ecosystem. High species evenness = All species of a community can perform similar ecological activities or functions= even utilization of available ecological niches = food web more stable = ecosystem is robust (resistant to disturbances or environmental changes). Intermediate values between 0 and 1 represent variable degrees of evenness or unevenness.

$$EI = \frac{H}{\ln{(S)}}$$

Where, H= Shannon value

ln(S) = the natural logarithm of the number of different species in the community

Relative Abundance: The species abundance distribution (SAD) from disturbed ecosystems follows even/ uneven pattern. E.g., If relative abundance is 0.15, then the found species are neither highly dominant nor rare.

$$RA = \frac{No.\,of\,Individuals\,of\,Sp.}{Total\,no.\,of\,Individual}*100\%$$

The basic idea of index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time. Biodiversity is commonly expressed through indices based on species richness and species abundances. Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

Monitoring Frequency:

Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. Sample Collected from this location during the monitoring period April 2023 to March 2024.

12.2 Result and Discussion

The details of Marine Ecological Monitoring conducted for the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 37**.

Table 36: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity (GPP),
Pheophytin and Chlorophyll for Kandla and Vadinar

	Parameters			Kandla				Va	dinar
Sr. No.		ME-1 (Near Passenger Jetty One)	ME-2 (Kandla Creek)	ME-3 (Near Coal Berth)	ME-4 (Khori Creek)	ME-5 (Nakti Creek- near Tuna Port)	ME-6 (Nakti Creek near NH - 8A)	ME-7 (Near SPM)	ME-8 (Near Vadinar Jetty)
		Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.
1.	Biomass	115	115	96	142	102	121	78	111
2.	Net Primary Productivity	2.91	3.77	3.08	2.99	5.47	2.49	4.16	2.64
3.	Gross Primary Productivity	2.95	3.04	3.73	3.26	2.44	2.85	3.67	3.09
4.	Pheophytin	1.10	1.28	0.80	1.35	0.82	5.81	2.66	2.43
5.	Chlorophyll-a	2.40	1.61	1.72	1.72	2.04	12.43	2.37	3.24
6.	Particulate Oxidisable Organic Carbon	1.34	1.12	1.18	1.51	1.45	1.40	1.26	1.20
7.	Secchi Depth	0.61	0.63	0.56	0.60	0.56	0.62	3.93	2.61

Biomass:

With reference to **Table 37**, the average concentration of biomass during the monitoring period, for locations ME-1 to ME-6 was reported within the range of **96–142** mg/L, with the lowest biomass present in **ME-3** (**near coal berth**) and the highest biomass present in **ME-4** (**Khori Creek**) during the sampling period. In Vadinar, the value of biomass was observed at **78** mg/L at ME-7 (near SPM) and **111** mg/L at ME-8 (near Vadinar Jetty) monitoring station.

• Productivity (Net and Gross)

Gross primary productivity (GPP) is the rate at which organic matter is synthesised by producers per unit area and time (GPP). The amount of carbon fixed during photosynthesis by all producers in an ecosystem is referred to as gross primary productivity. During the Monitoring Period, the monitoring location of Kandla reported GPP value in range between 2.44 to 3.73 mg/L/48 Hr where the highest value recorded

for ME-3 (Near Coal Bearth) and lowest recorded at ME-5 (Nakti creek-near tuna port). In Vadinar, the value of **GPP** was observed **3.67** at ME-7 (Near SPM) and **3.09** mg/L/48 Hr at ME-8 (Near Vadinar Jetty) monitoring station.

Net primary productivity, is the amount of fixed carbon that is not consumed by plants, and it is this remaining fixed carbon that is made available to various consumers in the ecosystem. During the monitoring period of 2023 to 2024 the Net primary productivity of the monitoring location at Kandla from (ME-1 to ME-6) has been estimated to be between **2.49 to 5.47 mg/L/48 Hr**. While in Vadinar, the value of **NPP** was observed **4.16** at ME-7 (Near SPM) and **2.64** mg/L/48 Hr at ME-8 (Near Vadinar Jetty) monitoring station.

Pheophytin

The level of Pheophytin was detected in the range from **0.8 to 5.81 mg/m³** where the highest value observed at ME-6 (Nakti Creek (Near NH-8A)) and the lowest value observed at ME-3(Near Coral Breth), While in Vadinar, the value of Pheophytin was observed **2.66** mg/m³ at ME-7 and **2.43** mg/m³ at ME-8 monitoring station.

• Chlorophyll-a

In the sub surface water, the value of Chlorophyll-a reported in range from **1.61 to 12.43 mg/m**³. The highest value observed at ME-6 (Nakti Creek (Near NH-8A)), while the lowest value observed at ME-2 (Kandla Creek). In Vadinar, the value of chlorophyll-a was observed **2.37** mg/m³ at ME-7 (Near SPM) and **3.24** mg/m³ in ME-8 (Near Vadinar Jetty) monitoring station.

• Particulate Oxidisable Organic Carbon

During the sampling period, the particulate oxidisable organic carbon falls within the range of **1.12 to 1.51 mg/L** from monitoring location ME-1 to ME-6 at Kandla, whereas for Vadinar, the value of POC observed **1.26** mg/L at ME-7 (Near SPM) and **1.20** mg/L in ME-8 (Near Vadinar Jetty) monitoring station.

Secchi Depth

In monitoring station of Kandla (ME-1 to ME-6) the level of Secchi Depth was observed between **0.56 to 0.63 ft** whereas at Vadinar, the value recorded at ME-7 i.e. Near SPM is **3.93** ft and in Near Vadinar Jetty is **2.61** ft.

Ecological Diversity

Phytoplankton: For the evaluation of the Phytoplankton population in DPA Kandla and Vadinar within the immediate surroundings of the port, sampling was conducted during the study period. Total 8 sampling locations were studied i.es. sampling locations (6 from Kandla and two from Vadinar).

The details of variation in abundance and diversity in phytoplankton communities is mentioned in **Table 38**.

Table 37: Phytoplankton variations in abundance and diversity in sub surface sampling stations

Genera	ME-1 (Near Passenger Jetty One)	ME-2 (Kandla Creek)	ME-3 (Near Coal Berth)	ME-4 (Khori Creek)	ME-5 (Nakti Creek- near Tuna Port)	ME-6 (Nakti Creek near NH - 8A)	ME-7 (Near SPM)	ME-8 (Near Vadinar Jetty)
	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg
Bacillaria sp.	360	391	271	404	374	521	390	347
Biddulphia sp.	492	340	73	542	315	434	402	274
Chaetoceros sp.	279	379	316	258	627	322	462	394
Chlamydomonas sp.	286	312	147	329	478	456	325	503
Cyclotella sp.	367	443	284	418	454	609	303	378
Coscinodiscus sp.	455	412	290	206	330	376	370	244
Ditylum sp	342	322	124	241	225	205	227	294
Fragilaria sp.	395	381	336	300	355	0	350	360
Bacteriastrum sp.	178	96	52	166	111	252	162	252
Pleurosigma sp.	236	236	129	565	276	675	352	219
Navicula sp.	366	488	472	393	420	332	375	856
Nitzschia sp.	309	272	249	295	366	284	418	435
Synedra sp.	479	328	82	322	144	541	192	327
Skeletonema sp.	270	566	130	0	488	536	521	495
Oscillatoria sp.	341	351	176	251	493	423.5	144	306
Thallassiosira	147	134	64	132	170	224	235	161
Gomphonema sp.	550	495	128	360	600	310	564	500
Planktothrix sp.	140	302	123	411	393	495	272	353
Gyrosigma sp.	410	560	130	750	0	685	400	667
Actinestrum sp.	0	0	0	0	0	500	0	0
Cymbella	500	500	0	550	0	685	700	500
Limnothrix sp.	0	700	0	650	0	800	750	0
Scendesmus sp.	0	0	0	485	0	630	0	0
Mougeotia sp.	0	0	0	8	0	20	0	4
Chlorella sp.	0	0	0	0	0	850	0	0
Density-Units/L	3107.1	3525	3177.3	2918	3073	3704	3357	3576
No. of genera	20	21	19	22	18	24	21	21

The phytoplankton community of the sub surface water in the Kandla and Vadinar was represented by, Diatoms, green algae and filamentous Cynobacteria. Diatoms were

represented by 15 genera; green algae were represented by 1 genera and filamentous Cynobacteria were represented by 1 genera during the sampling period.

The density of phytoplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **2918** to **3704** units/L, while for Vadinar its density of phytoplankton observed **3357** units/L at ME-7 and **3576** units/L at ME-8. During the sampling, all communities were contributing in phytoplankton on both location of Kandla & Vadinar except *Gyrosigma sp*, *Actinestrum sp*, *cymbella*, *Limnothrix sp*, *Scendesmus sp*, *Mougeotia sp* and *cholera sp*.

The details of Species richness Index and Diversity Index in Phytoplankton is mentioned in **Table 39**.

Table 38: Species richness Index and Diversity Index in Phytoplankton

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
	(Near	(Kandla	(Near	(Khori	(Nakti	(Nakti	(Near	(Near
	Passenger	Creek)	Coal	Creek)	Creek-	Creek	SPM)	Vadinar
	Jetty		Berth)		near	near NH		Jetty)
	One)				Tuna	- 8A)		
					Port)			
	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg
Taxa S	13	14	13	14	13	15	14	13
Individuals	3099	3408	3202	2926	3094	3768	3357	3597
Shannon diversity	2.09	2.12	2.05	1.97	1.94	2.02	2.10	1.95
Simpson 1-D	0.86	0.86	0.85	0.83	0.83	0.84	0.86	0.80
Species Evenness	0.92	0.91	0.90	0.89	0.90	0.87	0.90	0.85
Margalef richness	1.03	1.09	1.02	1.00	0.93	1.01	1.07	1.01
Berger-Parker	0.20	0.21	0.22	0.24	0.25	0.24	0.22	0.28
Relative abundance	0.41	0.44	0.38	0.44	0.38	0.41	0.40	0.41

- Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon-Wierner's index of phytoplankton communities was in the range of **1.94 to 2.12** between selected sampling stations from ME-1 to ME-6. While for Vadinar, Average Shannon Wiener's index of phytoplankton communities recorded to be **2.10** at ME-7 and **1.95** at ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar.
- Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of phytoplankton communities was ranged between 0.83 to 0.86 at all sampling stations in the Kandla creek and nearby creeks. Similarly, for Vadinar average Simpson diversity index (1-D) of phytoplankton communities was 0.86 at ME-7 and 0.80 at ME-8.
- Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of phytoplankton communities in Kandla and nearby creeks sampling stations was varying from 0.93 to 1.09. While for Vadinar, average Margalef's diversity index (Species Richness) of phytoplankton communities observed 1.07 at ME-7 and 1.01 at ME-8.
- Berger-Parker Index (d): During the monitoring period 2023 to 2024, average Berger-Parker Index (d) of phytoplankton communities was in the range of 0.20 to 0.25 between selected sampling stations from ME-1 to ME-6. at Kandla creek and nearby creeks.

Average Berger-Parker Index (d) of phytoplankton communities in the sampling stations of Vadinar, was in the range of **0.22** to **0.28**. All the monitoring station signifies a low diversity with an even distribution among the different species.

- The Average **Species Evenness** is observed in the range of **0.87** to **0.92** for all the six-monitoring station of Kandla and for the Vadinar the average species evenness is observed in the range of **0.85** to **0.90**.
- During the sampling period, average **Relative Abundance** of phytoplankton communities was in range of **0.38 to 0.44** between selected sampling stations from ME-1 to ME-6 at Kandla creek and nearby creeks. Whereas for Vadinar the Average relative Abundance value **0.40** at ME-7 and **0.41** at ME-8. thus, it is concluded that the studied species can be stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in zooplankton communities is mentioned in **Table 40**.

Table 39: Zooplankton variations in abundance and diversity in sub surface sampling stations

Genera	ME-1 (Near Passenger Jetty One)	ME-2 (Kandla Creek)	ME-3 (Near Coal Berth)	ME-4 (Khori Creek)	ME-5 (Nakti Creek- near Tuna Port)	ME-6 (Nakti Creek near NH - 8A)	ME-7 (Near SPM)	ME-8 (Near Vadinar Jetty)
	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg
Acartia sp.	2	2	2	2	2	2	3	2
Acrocalanus	2	2	2	2	2	2	2	4
Amoeba	3	2	3	3	4	2	3	2
Brachionus sp.	3	2	2	2	2	3	4	2
Calanus sp.	2	3	3	2	2	3	2	3
Cladocera sp.	2	3	5	2	3	2	3	3
Cyclopoid sp.	5	4	4	4	2	2	4	2
Copepod larvae	2	3	2	3	2	4	2	2
Diaptomus sp.	5	2	4	2	3	2	3	3
Eucalanus sp.	3	2	2	4	3	6	3	4
Mysis sp.	3	9	7	5	1	6	6	8
Oithona sp.	1	2	4	2	1	4	4	9
Paracalanus sp.	8	7	4	8	11	8	9	10
Density Unit/L	24.45	24.91	25.82	26.00	22.91	26.45	27.64	27.36
No. of genera	13	13	13	13	13	13	13	13

A total of 13 groups/taxa of zooplankton were recorded in Kandla and Vadinar during the study period which mainly constituted by *diaptomus, copepods, brachionus, cladocera,* fish and shrimp larval forms. *Amoeba* and *Cyclopoida* had the largest representation at all stations from (ME-1 to ME-8). The average density of Zooplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **22.91** to **26.45** units/L, while for Vadinar its average density of zooplankton observed **27.64** units/L at ME-7 and **27.36** units/L at ME-8. During

the sampling, all communities were contributing in zooplankton except *Oithana sp.* in Kandla and Vadinar.

The details of Species richness Index and Diversity Index in Zooplankton communities is mentioned in **Table 41**.

Table 40: Species richness Index and Diversity Index in Zooplankton

Indices	ME-1 (Near Passenger Jetty One)	ME-2 (Kandla Creek)	ME-3 (Near Coal Berth)	ME-4 (Khori Creek)	ME-5 (Nakti Creek- near Tuna Port)	ME-6 (Nakti Creek near NH - 8A)	ME-7 (Near SPM)	ME-8 (Near Vadinar Jetty)		
	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg		
Taxa S	11	13	10	13	10	12	13	10		
Individuals	24	57	26	26	23	26	28	27		
Shannon diversity	1.77	1.74	1.76	1.79	1.67	1.76	1.79	1.72		
Simpson (1-D)	0.79	0.75	0.79	0.79	0.76	0.77	0.79	0.77		
Species Evenness	0.78	0.61	0.78	0.79	0.79	0.73	0.82	0.76		
Margalef	2.15	2.21	2.07	2.21	2.06	2.34	2.22	2.16		
Berger-Parker	0.34	0.42	0.32	0.34	0.35	0.37	0.31	0.35		
Relative abundance	34.93	40.08	31.95	37.76	39.98	38.18	39.18	37.27		

- Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon- Wierner's index of zooplankton communities was in the range of 1.67 to 1.79 between selected sampling stations from ME-1 to ME-6, at Kandla creek and its nearby creeks. While for Vadinar, average Shannon Wiener's index of zooplankton communities recorded to be 1.79 at ME-7 and 1.72 at ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Near SPM (Vadinar).
- Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of zooplankton communities was ranged between 0.75 to 0.79 at all sampling stations in the Kandla creek and nearby creeks, for Vadinar average Simpson diversity index (1-D) of zooplankton communities was 0.79 at ME-7 and 0.77 at ME-8.
- Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of zooplankton communities in Kandla and nearby creeks sampling stations was varying from 2.06 to 2.34, during the sampling period. While for Vadinar, average Margalef's diversity index (Species Richness) of zooplankton communities observed 2.2 at ME-7 and 2.16 at ME-8.
- Berger-Parker Index (d): During the monitoring period 2023 to 2024, average Berger-Parker Index (d) of zooplankton communities was in the range of 0.32 to 0.42 between selected sampling stations from ME-1 to ME-6, at Kandla creek and nearby creeks. Average Berger-Parker Index (d) of zooplankton communities in the sampling stations of Vadinar, was in the range of 0.31 to 0.35. All the monitoring station signifies a low diversity with an even distribution among the different species.

- The average **Species Evenness** is observed in the range of **0.61 to 0.79** for all the six-monitoring station of Kandla whereas, for the Vadinar the average species evenness was observed in the range of **0.76** to **0.82**, during the monitoring period.
- During the sampling period, average Relative Abundance of zooplankton communities
 was in range of 31.95 to 40.08 between selected sampling stations from ME-1 to ME-6. at
 Kandla creek and nearby creeks. Whereas for Vadinar the average relative abundance
 value 39.18 at ME-7 and 37.27 at ME-8, thus it can be concluded that the studied species
 is stated as neither highly dominant nor rare.

The details of variation in abundance and diversity in **Benthic organism** is mentioned in **Table 42.**

Table 41: Benthic Fauna variations in abundance and diversity in sub surface sampling

Genera	ME-1 (Near Passenger Jetty One)	ME-2 (Kandla Creek)	ME-3 (Near Coal Berth)	ME-4 (Khori Creek)	ME-5 (Nakti Creek- near Tuna Port) Avg	ME-6 (Nakti Creek near NH - 8A)	ME-7 (Near SPM)	ME-8 (Near Vadinar Jetty)
Thiaridae			Ŭ			Ŭ		J
	2	1	2	2	2	2	1	3
Mollusca sp.	2	1	2	2	3	2	2	3
Odonata sp.	2		2	3	2	2	2	3
Lymnidae	2	1	5	2	2	2	3	2
Planorbidae	1	1	2	1	2	2	2	1
Atydae	2	1	2	2	1	2	2	2
Gammaridae	2	1	1	2	1	2	2	3
Portunidae	1	1	1	1	0	1	1	1
Turbinidae	2	1	3	1	1	2	2	2
Palaemonidae	1	1	2	3	3	1	2	2
Diapatra sp.	2	1	3	4	2	4	2	3
Coleoptera sp.	2	1	3	3	0	1	3	2
Crustacea sp.	3	1	3	3	3	3	2	1
Hemiptera sp.	2	1	0	2	2	2	3	2
Tricoptera sp.	2	1	3	4	3	5	2	1
Hydrobidae	1	1	1	2	1	3	0	3
Viviparidae	3	1	0	1	2	2	3	3
Neridae	2	1	2	0	4	2	1	2
Density-m ³	10.18	8.82	9.64	10.09	8.5	9.73	9.73	9.55
No of genera	18	18	16	5.00	16	18	17	18

Few Benthic organisms were observed in the collected sample by using the Van-Veen grabs during the sampling conducted for DPA Kandla and Vadinar. Majority of the species were found under the Macro-benthic organisms during the sampling period were represented by *Atyde, Palaemonidae, Mollusca sp.*, etc. The average density of benthic fauna was varying from **8.55** to **10.18** m³.

The details of Species richness Index and Diversity Index in Benthic Organisms is mentioned in **Table 43**.

Table 42: Species richness Index and Diversity Index in Benthic Organisms

Indices	ME-1	ME-2	ME-3	ME-4	ME-5	ME-6	ME-7	ME-8
	(Near	(Kandla	(Near	(Khori	(Nakti	(Nakti	(Near	(Near
	Passenger	Creek)	Coal	Creek)	Creek-	Creek	SPM)	Vadinar
	Jetty One)		Berth)		near Tuna	near NH -		Jetty)
					Port)	8A)		
	Avg.	Avg	Avg	Avg	Avg	Avg	Avg	Avg
Taxa S	6	7	6	6	7	6	6	6
Individuals	10	9	10	10	9	10	9	10
Shannon diversity	1.55	1.42	1.47	1.50	1.43	1.48	1.43	1.43
Simpson 1-D	0.76	0.73	0.75	0.75	0.73	0.75	0.73	0.74
Species Evenness	0.89	0.89	0.92	0.92	0.90	0.91	0.90	0.89
Margalef	1.92	1.77	1.73	1.81	1.83	1.79	1.76	1.68
Berger-Parker	0.33	0.37	0.33	0.34	0.37	0.34	0.38	0.36
Relative abundance	55.92	57.66	53.67	56.55	60.63	56.18	57.46	51.58

- Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon- Wierner's index of benthic organism was in the range of **1.42 to 1.55** between selected sampling stations from ME-1 to ME-6, at Kandla creek and its nearby creeks. While for Vadinar, average Shannon Wiener's index of benthic organism recorded to be **1.43** at ME-7 and ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar.
- Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of benthic organism was ranged between 0.73 to 0.76 at all sampling stations in the Kandla creek and nearby creeks, Similarly, for Vadinar average Simpson diversity index (1-D) of benthic organism was 0.73 at ME-7 and 0.74 at ME-8.
- Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of benthic organism in Kandla and nearby creeks sampling stations was varying from 1.73 to 1.92. While for Vadinar, average Margalef's diversity index (Species Richness) of benthic organism observed to be 1.76 at ME-7 and 1.68 at ME-8.
- Berger-Parker Index (d): During the monitoring period 2023 to 2024, average Berger-Parker Index (d) of benthic organism was in the range of 0.33 to 0.37 between selected sampling stations from ME-1 to ME-6, at Kandla creek and nearby creeks. average Berger-Parker Index (d) of benthic organism in the sampling stations of Vadinar, was in the range of 0.36 to 0.38. All the monitoring station signifies a low diversity with an even distribution among the different species.

- The average **Species Evenness** is observed in the range of **0.89** to **0.92** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed in the range of **0.89** to **0.90**.
- During the sampling period, average Relative Abundance of Benthic organisms was in range of 53.67 to 60.63 between selected sampling stations from ME-1 to ME-6 at Kandla creek and nearby creeks. Whereas for Vadinar the Average relative abundance value 57.46 at ME-7 and 51.58 at ME-8, thus it is concluded that the studied species can be stated as neither highly dominant nor rare.

CHAPTER 13: SUMMARY AND CONCLUSION

13.1 Summary and Conclusion

The report, prepared by the Gujarat Environment Management Institute (GEMI), details the environmental monitoring and management plan for the Deendayal Port Authority (DPA) at Kandla and Vadinar. The monitoring covers the period from April 2023 to March 2024.

The primary objective is to systematically assess and monitor environmental parameters including ambient air, water (drinking and surface), soil, sediment, noise, and ecology to ensure compliance with environmental standards and statutory norms.

Methodology

Environmental monitoring was conducted using standard operating procedures, protocols, and guidelines to ensure accurate data collection. Various parameters were measured, including air quality, water quality, soil characteristics, noise levels, and meteorological data.

Based on the results obtained for both study areas, Kandla and Vadinar, during the monitoring period from April 2023 to March 2024, the following observations are concluded.

• Ambient Air Quality Monitoring

Particulate matter (PM₁₀ and PM_{2.5}) levels exceeded the national ambient air quality standards (NAAQS) at most monitoring locations, especially at the coal storage area. The high particulate matter levels were attributed to heavy vehicular traffic, loading/unloading of cargo, and dust from unpaved roads. For Gaseous monitoring, sulfur dioxide (SO₂), nitrogen oxides (NO_x), volatile organic compounds (VOCs), and carbon monoxide (CO) were generally within the NAAQS limits.

The noise level was within the permissible limits for the industrial, commercial, and residential zones for daytime and nighttime.

• DG Stack Monitoring

Monitoring of the diesel generator (DG) stacks was conducted at one location each in Kandla and Vadinar. Parameters like suspended particulate matter, SO_2 , NO_x , CO, and CO_2 were measured and found to be within the prescribed emission limits.

Soil Monitoring

The pH in Kandla varies from slightly alkaline to strongly alkaline, while the soil at Vadinar was found to be moderately alkaline. The soil texture was observed as "sandy loam" to "loamy sand" at all the monitoring locations in Kandla, and the soil texture of Vadinar varies from "loam" to "slit loam. Kandla displays higher salinity and nutrient levels, while Vadinar exhibits lower nutrient levels. Vadinar generally shows moderate conditions with higher water holding capacity and more consistent soil composition. The presence of heavy metals such as aluminium, chromium, nickel, copper, zinc, lead, arsenic, and cadmium vary considerably at both study area.

• STP Monitoring

After the effluent treatment in both the study areas, the treated water followed the GPCB discharge norms except for total coliform.

• Drinking Water Quality Monitoring

Drinking water samples were collected from 20 locations across Kandla and Vadinar. Most water quality parameters like pH, color, turbidity, chloride, and total hardness were within the drinking water standards (IS 10500:2012). A few locations showed slightly elevated levels of electrical conductivity, salinity, and total dissolved solids, likely due to the coastal location.

• Marine Water and Sediment Quality Monitoring

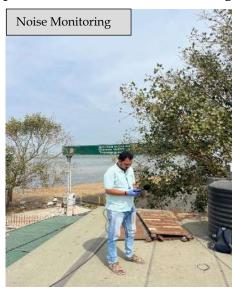
Marine water and sediment samples were collected from 6 locations in Kandla and 2 locations in Vadinar. The water quality parameters like pH, salinity, dissolved oxygen, and nutrients were within the acceptable limits for coastal waters. The sediment quality in terms of heavy metals and organic contaminants was also found to be within the prescribed standards.

• Marine Ecology Monitoring

Monitoring of marine ecology was conducted at 6 locations in Kandla and 2 locations in Vadinar. The analysis indicates that both regions exhibit low diversity with an even distribution among species, as evidenced by the Berger-Parker Index and Simpson Diversity Index values. These indices suggest a stable ecosystem where no single species overwhelmingly dominates, nor are any species exceedingly rare. The even distribution of species, coupled with moderate levels of biomass and primary productivity, highlights the resilience of these ecosystems.

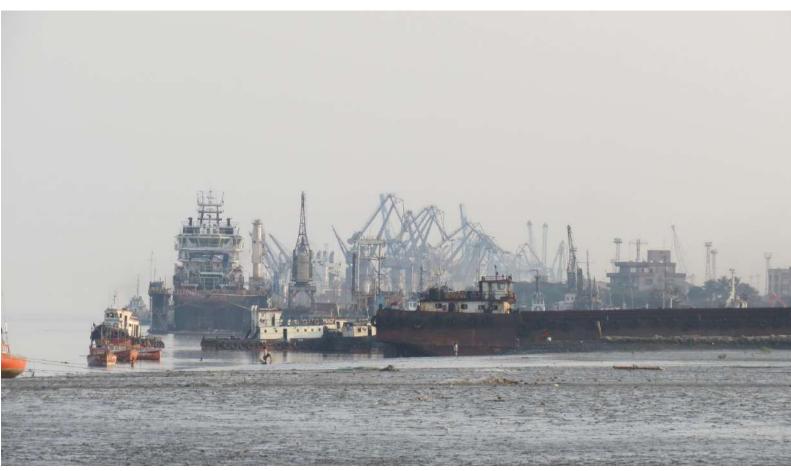
Overall, the report concludes that the environmental monitoring conducted by the DPA during the period of April 2023 to March 2024 indicates compliance with the applicable environmental regulations, with some exceptions related to particulate matter levels in the ambient air.

Annexure 1: Photographs of the Environmental Monitoring conducted at Kandla



Annexure 2: Photographs of the Environmental Monitoring conducted at Vadinar

Source: GEMI



CHAPTER 14: REFERENCES

References:

- (1) National ambient air quality standards central pollution control board, 2009
- (2) Ambient Air Quality Standards in respect of Noise,2000.
- (3) American Public Health Association 23rd Addition, Standard Methods for Water and Waste water analysis, 2017.s
- (4) Indian Standard DRINKING WATER SPECIFICATION (Second Revision), 2012.

Gujarat Environment Management Institute (GEMI)

(An Autonomous Institute of Government of Gujarat)

'An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Institute

Head Office

Plot No. B 246 & 247, G.I.D.C. Electronic Estate, Sector-25, Gandhinagar-382024

Laboratory

Plot No. B-64, G.I.D.C. Electronic Estate, Opp. I.P.R., Sector-25, Gandhinagar-382025

Tel: (+91) 79-23240964 (O), T: (+91) 79-23287758 (Lab), F: (+91) 79-23240965 E-mail: info-gemi@gujarat.gov.in | Website: www.gemi.gujarat.gov.in

"We Provide Environmental Solutions"

MARINE DEPARTMENT (ACCOUT SECTION)

Sub: Annual return statement showing the collection and disposal of Hazardous and Non Hazardous Wastes carried out by various parties for the year 04/2023 to 03/2024.

With reference to the above subject, the annual return showing the collection and Disposal of Hazardous and Non Hazardous Wastes carried out by various parties for the period 01.04.2023 to 31.03.2024 of Marine department is enclosed herewith.

Encl: AS above

Dy. Consérvator Deendayal Port Authority

EMC (I/C)

NO: MR/WK/1316/282

Dt. 21.06.2024

reg

Deendayal Port Authority Marine Department

Statement of Hazardous and Non hazardous Waste disposal from the Vessels at Kandla Port for the Period April 2023 to March 2024 – For the Whole Port Area

(PCB ID 28494)

Sr.No.	Month	Year	Hazardous	Solid Waste Generated in MT		
			Total Quantity	Used Oil	Waste Residue Containing Oil	
-	April	2023	484.45	121.11	363.34	169.57
2.	April May	2023	1065.92	266.48	799.44	307.83
3.	June	2023	671.82	167.96	503.87	155.03
4.	July	2023	743.45	185.86	557.59	207.71
5.	August	2023	814.63	203.66	610.97	221.78
6.	September		758.07	189.52	568.55	318.76
7.	October	2023	1002.51	250.63	751.89	144.20
	November		982.88	245.72	737.16	198.54
8.	A STATE OF THE STA		802.58	200.65	601.94	254.75
9.	December	2023	825.89	206.47	619.41	207.61
10.	January			137.38	412.13	200.38
11.	February	2024	549.50	120-2500 (1706) - 3-9	767.90	186.79
12.	March	2024	1023.87	255.97		2572.94
	Total		9725.56	2431.39	7294.17	2372.34

Deputy Conservator Deendayal Port Authorit

Marine Department

Statement showing the Collection and disposal of Hazardous and Non-Harardous Wastes carried out by

1	Name of Party	Type of Licence	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Total
7	Alicid Organic Industries Limited	Hazardous			-		-	-	-		36.75		-		36 76
12	Amar Hydrocarbon Pvt Ltd	Hazardous						-		18 42				41 48	59 90
3	Atlas Organics Pvt Ltd	Hazardous		-		19 24	7.00		-	70 42			-		26 24
4	Aviation Corporation	Hazardous	9 60	18 45	23 97								-		52 02
5	Mahalaxmi Asphalt Pvt Ltd	Hazardous	102 96			138 88		25 23	67 34		73 93	50 19	14 85	43 97	517 65
6	Pnyansi Corporation	Hazardous	16 25	91 36	87 35	-		29 89		35 57	67.03	30 +3	-	-	327 45
7	Revolution Petrochem LLP	Hazardous	379 86	591 26	594 09	622 50	534 20	453 78	589 26	681 93	423 16	383 95	442 62	648 60	6,345 21
8	Shana Oil Process	Hazardous					-		333 20	-		-	-	•	
9	United Shipping Company	Hazardous	-	418.14	-	-	314.16	287.07	396.04	296.10	241 83	432.74	119 51	341 01	2.846.60
10	Chitrakut Trading & Industries	Non-Hazardous	7.24	28.39	14 70	14.98	10.70	6.35	4.78	-	-	0 83		•	87 97
12	Golden Shipping Services	Non-Hazardous	1 03	61.82	-	56.87	43.26	77.20	36.10	23.64	75.26	42 55	37 33	49 00	504 06
	Green Earth Manne Solutions	Non-Hazardous	18 50	37.68	4 42	18 50	27.60	5.00		20.34		371	6 71		142.46
12			12 00	7.18	1.95	-	5.02	3.00	6.42	-	12.59	7 29	-		52.45
13	Harish A Pandya	Non-Hazardous		99.18	74.30	64.40	64.00	48.37	36.34	56.74	70.28	64 52	67 04	113 62	820 79
4	K M Enterprise	Non-Hazardous	62 00	170,000,000,000	7.075.500	7.56	04.00	12.40	6.35	5.47	6.35	6 36	-		44.49
15	Naaz Shipping Services Ent	Non-Hazardous	-	•	-	10 50	23.70	45.15	7.00	11.00	17 80	9 00			128 15
16	New India Manne Works	Non-Hazardous	4 00			1,200	23.70	68.44	19.51	47.35	46.10	30 31	58.85	-	356 45
. 17	Omega Manne Services	Non-Hazardous	23 81	31.42	30.66	-	18.00	18.00	18.00	15.00	15.00	15 00	9.00	-	177 00
18	V K Enterprise	Non-Hazardous	24.00	30.00	-	15.00		A A C C C C C C	9 70	19.00	11.37	23 74	21 45	24 17	259 13
19	Vishwa Trade-link Inc.	Non-Hazardous	16.99	12.16	29.00	19.90	29.50	37.85			842.71	867.18	576.98	1.075.06	10,211.83
1		Hazardous - Total	508.67	1,119.21	705.41	780.62	855.36	795.97	1,052.64	1,032.02			+		2,572.94
H	Non-	Hazardous - Total	169.57	307.83	155.03	207.71	221.78	318.76	144.20	198.54	254.75	207.61	200.38	186.79	2,37 2.34

Copy to : GPCB, Gandhidham / Harbour Master

Statement Showing the quantity of Domestic Waste Water Generation (STP - Kandla) for the period from April 2023 to March 2024

Sr. No.	Month	Average Quantity of Domes Waste Water Generation (KLD)					
1.	April 2023	225					
2.	May 2023	200					
3.	June 2023	210					
4.	July 2023	220					
5.	August 2023	230					
6.	September 2023	225					
7.	October 2023	230					
8.	November 2023	210					
9.	December 2023	235					
10.	January 2024	255					
11.	February 2024	230					
12.	March 2024	220					
Average		224.16					

XEN (Road)

DEENDAYAL PORT AUTHORITY