DEENDAYAL PORT AUTHORITY (Erstwhile: DEENDAYAL PORT TRUST) Tel(O): (02836) 220038, : (02836) 220050 Fax E Mail : kptdesignsection@gmail.com Website: www.deendayalport.gov.in Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch). Gujarat: 370 201. Fax: (02836) 220050 Ph.: (02836) 220038 www.deendayalport.gov.in Ref: - EG/WK/4684(EC)/Part VII/ ///4 Date: 12/08/2024 To, Shri T. C. Patel, Kutch Unit Head, Gujarat Pollution Control Board, Paryavaran Bhavan, Sector 10A, Gandhinagar- 382 010 Email-kut-uh-gpcb@gujarat.gov.in Sub: "Creation of water front facilities (Oil Jetties 8, 9, 10 & 11) and development of land of area 554 acres for associated facilities for storage at Old Kandla, Gandhidham, Kutch, Gujarat by M/s Deendayal Port Authority (Erstwhile: Deendayal Port Trust)- Submission of Point-wise Compliance of Conditions stipulated in the NOC/CTE reg. Ref.: - 1) NOC No. 94118 received vide letter no. PC/CCA-Kutch-1524/GPCB ID 56985 Dated 23/07/2018. - 2) Extension and Correction to CTE issued by GPCB vide PC/CCA-Kutch-1524/GPCB ID 56985 Dated 30/09/2023 valid upto 19/11/2030 - 3) DPT Letter No. EG/WK/4684(EC)/PartVII/29 dated 29/06/2021 - 4) DPT Letter No. EG/WK/4684(EC)/PartVII/141 dated 08/02/2022 - 5) DPA letter No. EG/WK/4684(EC)/PartVII/129 dated 30/06/2022 - 6) DPA letter No. EG/WK/4684(EC)/PartVII/297 dated 05/05/2023 - 7) DPA letter No. EG/WK/4684(EC)/PartVII/362 dated 18/09/2023 - 8) DPA letter No. EG/WK/4684(EC)/PartVII/45 dated 27/03/2024 Sir, It is requested to kindly refer above cited references for the said subject. In this connection, it is to state that, vide above referred Letter No- PC/CCA-Kutch-1524/GPCB ID 56985 Dated 23/07/2018 had granted NOC/CTE with validity up to 03/04/2023. And further issued extension to the CTE vide PC/CCA-Kutch-1524/GPCB 56985 dated 30/09/2023 valid upto 19/11/2030. DPA vide above mentioned letters had submitted the compliance report of condition stipulated in CTE/NOC to the GPCB. Now, please find enclosed herewith, compliance report of conditions stipulated in CTE order (period upto May, 2024) along with necessary enclosures as Annexure I, for your kind perusal & record please. Further, as per the MoEF&CC, Notification S.O.5845 (E) dated 26.11.2018, stated that "In the said notification, in paragraph 10, in sub-paragraph (ii), for the words "hard and soft copies" the words "soft copy" shall be substituted". Accordingly, we are submitting herewith soft copy of the same via e-mail ID kut-uh-gpcb@qujarat.gov.in. This has approval of the Chief Engineer, Deendayal Port Authority. Yours faithfully, Dy. Chief Engineer & EMC (I/C) Deendayal Fort Authority Copy to: Regional Officer, (Kutch East) Gujarat Pollution Control Board, Room No. 215 – 217, Regional Office, 2nd Floor, A.O Building, Deendayal Port Trust, Gandhidham (Kutch) – 370 201 Email Id. ro-qpcb-kute@qujarat.gov.in #### **CURRENT STATUS OF WORK PROGRESS (Up to May, 2024)** | Sr.
No | Name of Project | Status | | | | |-----------|---|---|--|--|--| | 1 | Oil Jetty No. 8 (Jetty & allied facilities) | Construction work is completed | | | | | 2 | Oil Jetties no. 9, 10 & 11 to be implemented on BOT/PPP Mode. | The SFC recommendation and the MoPSW, GoI approval for Oil Jetties 9, 10 & 11, under PPP mode, has been received on 19/04/2021. | | | | | | | a) The bid for OJ – 09 is invited fourth time. In the meeting with MoPSW, GoI, it was decided that project may be restructured, if bids are not received. | | | | | | | b) Restructured project proposal for OJ 9, 10 & 11 are under consideration of the SFC for their final approval. | | | | | | | c) No construction activity started yet on project site. | | | | | 3 | · · · · · · · · · · · · · · · · · · · | Initially, partial development of embankment for road network along with reclamation of Land is undertaken. | | | | Note: The construction activity has been carried out as per EC & CRZ Clearance accorded by the MoEF&CC, GoI vide file no. 10-1/2017-IA-III dated 20/11/2020. #### **Annexure 1** #### Compliance Report (for the period upto May, 2024) **Subject:** Point wise compliance report of conditions stipulated in the NOC/CTE issued by GPCB for the project "Creation of water front facilities (Oil Jetties 8, 9, 10 & 11) and development of land of area 554 acres for associated facilities for storage at Old Kandla, Gandhidham, Kutch, Gujarat by M/s Deendayal Port Authority." **Reference:** NOC No. 94118 received vide letter no. PC/CCA-Kutch-1524/GPCB ID 56985 dated 23/07/2018 and its extension and correction issued by GPCB vide PC/CCA-Kutch-1524/GPCB ID 56985 dated 30/09/2023 valid upto 19/11/2030. | Sr. | Con | ditions | Compliance Status | | | | |-----|---|---|--|--|--|--| | No | Con | uitions | Compliance Status | | | | | 1 | Specific Conditions | | | | | | | 1 | Proposed jetties shall be | e handled of 3.5 MMTPA of
Fertilizers & food grains etc. | As per Environmental Clearance granted by MoEF&CC dated 20.11.2020, "the capacity of each jetty is 3.5 MMTPA for handling all types of Liquid Cargo". (Correction in CTE order issued by GPCB vide PC/CCA-Kutch-1524/GPCB ID 56985 dated 30/09/2023) the same has already been submitted along with compliance report submitted on 27/03/2024. | | | | | 2. | issued by MoEF&CC. Dell
not carry out any constru
EC and CRZ from compet | · | DPA has already received the EC and CRZ clearance from MoEF&CC vide file no. 10-1/2017-1A-111 dated 20/11/2020 and CRZ recommendation from GCZMA vide letter no. ENV-10-2018-24-T cell dated 30/07/2020. Copy also submitted in the compliance report submitted on 05/05/2023. | | | | | 3. | | be withdrawn without prior | DPA is not using ground water for any of | | | | | | approval from competent | | the purpose. | | | | | 2 | Conditions Under Wate | | | | | | | 2.1 | hence there shall b | trial water consumption and
be no generation from
nd other ancillary industrial | It is here by assured that Water is used only for the domestic purpose and there is no Industrial water consumption and no waste water generation from the Industrial purpose. | | | | | 2.2 | Domestic water Consum
KL/day | nption shall not exceed 20 | Point noted for the compliance. | | | | | 2.3 | | waste water (sewage) shall | Point noted for the compliance. | | | | | 2.4 | The quality of the sev following standards Parameters pH BOD (5 days at 20 ° C) Suspended Solid Fecal Coliform | Permissible Limit 6.5-9.0 30 mg/lit 20 mg/lit 1000 MPN/100 ml | Point noted for the compliance. | | | | | 2.5 | The domestic sewage s
treatment plant and tre
standard mentioned in 2 | shall be treated in sewage
eated sewage confirming to
.4 shall be reused in various
used for gardening and | Generated waste water from the oil jetty no. 8 will be treated in septic tank/soak pit. However, after completion of entire project facility (Oil Jetties 8 to 11 & associated area for storage), possibility may be explored to treat the waste water generation (about 16 KLD) through existing STP of DPA | | | | | 3 | Conditions under air ac | ct 1981: | 1 KLD / Gillough Chlothig Off Of DITA | | | | 2 | | I | | | | | | | |------|---|--------------------|--|--|--|--|--| | 3.1 | There shall be no use of | | | No fuel is being used; hence there is no flue gas emission from manufacturing activities | | | | | | gas emission from manu ancillary operations. | iacturing ac | tivities and other | and other ancillary operations. | | | | | 3.2 | There shall be no pi | ncess das | emission from | No manufacturing process is involved and | | | | | 3.2 | manufacturing and other | | | hence there is no process gas emission | | | | | | J | , , , | | from manufacturing and other ancillary | | | | | | | | | activities. | | | | | 3.3 | The concentration of the | | DPA appointed NABL Accredited laboratory | | | | | | | ambient air within the p | | for regular Monitoring of environmental parameters since the year 2016 in continuation of this DPA appointed M/s | | | | | | | not exceed the limits | specified he | | | | | | | | National Ambient Air (
issued by Ministry of | | | continuation of this DPA appointed Management Institut | | | | | | Climate Change dated 16 | th November | r 2009. | (GEMI), Gandhinagar (NABL Accredited | | | | | | | | 000. | laboratory) for regular Monitoring of | | | | | | Parameters | Time | Concentration | environmental parameters vide work order | | | | | | | Weighted | in Ambient air | dated 15/02/2023. The work is in progress | | | | | | | Average | in µg/m³ | & DPA is submitting the monitoring data | | | | | | Sulphur Dioxide (SO ₂) | Annual | 50 | regularly to all the concerned authorities | | | | | | | 24 Hours | 80 | along with compliance reports submitted. | | | | | | Nitrogen Dioxide | Annual | 40 | Copy of annual monitoring report is | | | | | | (NO ₂) Particulate Matter | 24 Hours
Annual | 80 | attached herewith as Annexure A | | | | | | (Size less than 10µm) | 24 Hours | 100 |
attached herewith as Alliexare A | | | | | | Particulate Matter | Annual | 40 | | | | | | | (Size less than 2.5µm) | 24 Hours | 60 | | | | | | | or PM _{2.5} | | | | | | | | 3.4 | The level of Noise in am | bient air wit | thin the premises | DPA appointed NABL Accredited laboratory | | | | | | of industrial unit shall not | | | for regular Monitoring of environmental | | | | | | Between 6 A.M and 10 P. | • | • | parameters since the year 2016 in continuation of this DPA appointed M/s | | | | | | Between 10 A.M and 6 P. | M: /0 dB(A | () | | | | | | | | | | Gujarat Environment Management Institute (GEMI), Gandhinagar (NABL Accredited | | | | | | | | laboratory) for regular Monitoring of environmental parameters vide work order dated 15/02/2023. The work is in progress | & DPA is submitting the monitoring data | | | | | | | | | regularly to all the concerned authorities | | | | | | | | along with compliance reports submitted. | | | | | | | | | Copy of annual monitoring report is | | | | | | | | | | attached herewith as Annexure A | | | | | 4 | Conditions under Haza | rdous was | | | | | | | 4.1 | The applicant shall p | rovide ten | nporary storage | Point Noted for the Compliance. | | | | | | facilities for each type | | | · | | | | | | | lanagement, | | DPA has a contract with the GPCB/CPCB | | | | | | Transboundary Movemer | nt) Rules, 2 | U16 as amended | authorized Recycler for disposal of Haz. | | | | | 4.2 | from time to time. The applicant shall be ob | tain membe | archin of common | Waste. Not applicable | | | | | 4.2 | TSDF site for disposa | | | Not арріісаріе
 | | | | | | Categorized in Hazard | | | | | | | | | Handling & Transboundar | | | | | | | | | amended from time to tir | - | · , | | | | | | 5 | General Conditions | | | | | | | | 5.1 | Any change in the perso | | | Point noted for the compliance. | | | | | | conditions as mentioned | | • | | | | | | F 2 | should immediately be in | | | Daink maked familie | | | | | 5.2 | The waste generator sha | | | Point noted for the compliance. | | | | | | (i.e Collection, Storage, disposal) of the wastes g | | ion and uitimate | | | | | | 5.3 | Record of Waste gener | | nanagement and | Point noted for the compliance. | | | | | ر. ي | annual return shall be s | | | Traine noted for the compliance. | | | | | 1 | | | lanuary of every | | | | | | 1 | Control Board III Forms | | | | | | | | | year. | | | | | | | | 5.4 | In case of any accident, details of the same shall be | Point noted for the compliance. | |-----|---|---| | | submitted in Form-5 to Gujrat pollution Control Board | , | | 5.5 | Applicant shall comply relevant provision of "Public | Point noted for the compliance. | | | Liability Insurance Act-91" | · | | 5.6 | Unit shall take all concrete measures to show tangible | Point noted for the compliance. | | | results in waste generation, reduction, avoidance, | | | | reuse and recycle. Action taken in this regard shall be | | | | submitted within three months and also along with Form-4. | | | 5.7 | Industry shall have to display on-line data outside the | Point noted for the compliance. | | | main factory gate with regard to quantity and nature | | | | of hazardous chemicals being handled in the plant, | | | | including waste water and air emissions and solid hazardous waste generated within the factory | | | | premises. | | | 5.8 | Adequate plantation shall be carried out all the | Point noted for the compliance. | | | periphery of the industrial premises in such a way | · | | | that the density of plantation is at least 1000 trees | | | | per acre of land and a green belt of 10 meters width | | | F 0 | shall be developed | Only Construction would of Oil 1sthy as O | | 5.9 | The applicant shall have to submit the returns in prescribed form regarding water consumption and | Only Construction work of Oil Jetty no.8 | | | shall have to make payment of water cess to the | and land development (area 554 acres) | | | Board under the water (Prevention and Control of | is completed. Point noted for compliance | | | Pollution) Cess Act - 1977 | for the operation phase | | | | No construction activity has been started | | | | yet for oil jetty 9,10 and 11 | | | | | # Annexure -A ## **Environmental Monitoring Annual Report**prepared under "Preparing and monitoring of environmental monitoring and management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years" Monitoring Period: April 2023 - March 2024 Submitted to: Deendayal Port Authority (DPA), Kandla ## **Gujarat Environment Management Institute (GEMI)** (An Autonomous Institute of Government of Gujarat) GEMI Bhavan, 246-247, GIDC Electronic Estate, Sector-25, Gandhinagar-382025 "AN ISO 9001:2015, ISO 14001:2015 AND ISO 45001:2018 Certified Institute" #### © Gujarat Environment Management Institute (GEMI) All rights reserved. This "Environment Monitoring Report (April 2023-March 2024)" is prepared as a part of the project "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years". No part of this report may be reproduced, distributed or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Director, Gujarat Environment Management Institute (GEMI). #### Disclaimer: Gujarat Environment Management Institute (GEMI) has taken all reasonable precautions in the preparation of this report. The data presented in this report have been collected as per the relevant Standard Operating Procedures, Protocols and Guidelines. GEMI believes that the information and facts presented in the report are accurate as on the date it was written. However, it is impossible to dismiss absolutely, the possibility of errors or omissions. GEMI therefore specifically disclaims any liability resulting from the use or application of the information contained in this report. The information is not intended to serve as legal advice related to the individual situation. ### **About this Document** Gujarat Environment Management Institute (GEMI) has been assigned with the work of "Preparing and monitoring of Environmental monitoring and Management plan for Deendayal Port Authority (DPA) at Kandla and Vadinar for a period of 3 years" by DPA, Kandla. Under the said project the report titled "Environment Monitoring Annual Report (Monitoring Period: April 2023 - March 2024)" is prepared. • Name of the Report: Environment Monitoring Report (Monitoring Period April 2023-March 2024) • Date of Issue: 26/06/2024 • **Version:** 1.0 • **Report Ref.:** GEMI/DPA/782(2)(3)/2024-25/103 ### **Table of Contents** | CHAPT | TER 1: INTRODUCTION | 1 | |-------|---|----| | 1.1 | Introduction | 2 | | 1.2 | Green Ports Initiative | 2 | | 1.3 | Importance of Environmental monitoring and management plan (EMMP) | 2 | | 1.4 | Objectives and scope of the Study | 4 | | CHAPT | TER 2: METHODOLOGY | 5 | | 2.1 | Study Area | 6 | | a. | Kandla | 6 | | b. | Vadinar | 6 | | 2.2 | Environmental Monitoring at Kandla and Vadinar | 10 | | CHAPT | TER 3: METEOROLOGY MONITORING | 12 | | 3.1 | Meteorology Monitoring | 13 | | 3.2 | Results and discussion | 15 | | 3.3 | Data Interpretation and Conclusion | 17 | | CHAPT | TER 4: AMBIENT AIR QUALITY MONITORING | 21 | | 4.1 | Ambient Air Quality | 22 | | 4.2 | Result and Discussion | 28 | | 4.3 | Data Interpretation and Conclusion | 34 | | 4.4 | Remedial Measures: | 37 | | CHAPT | TER 5: DG STACK MONITORING | 39 | | 5.1 | DG Stack Monitoring | 40 | | 5.2 | Result and Discussion | 43 | | 5.3 | Data Interpretation and Conclusion | 45 | | CHAPT | ER 6: NOISE MONITORING | 47 | | 6.1 | Noise Monitoring | 48 | | 6.2 | Result and Discussion | 52 | | 6.3 | Data Interpretation and Conclusion | 53 | | 6.4 | Remedial Measures | 53 | | CHAPT | TER 7: SOIL MONITORING | 54 | | 7.1 | Soil Quality Monitoring: | 55 | | 7.2 | Result and Discussion | | | 7.3 | Data Interpretation and Conclusion | 60 | | CHAPT | ER 8: DRINKING WATER MONITORING | 64 | | 8.1 | Drinking Water Monitoring | 65 | | 8.2 | Result and Discussion | 70 | |---------|--|------------| | 8.3 | Data Interpretation and Conclusion | 76 | | 8.4 | Remedial Measures | 79 | | СНАРТ | TER 9: SEWAGE TREATMENT PLANT MONITORING | 80 | | 9.1 | Sewage Treatment Plant (STP) Monitoring: | 81 | | 9.2 | Result and Discussion | | | 9.3 | Data Interpretation and Conclusion | 89 | | 9.4 | Remedial Measures: | | | СНАРТ | ER 10: MARINE WATER QUALITY MONITORING | 91 | | 10.1 | Marine Water | | | 10.2 | Result and Discussion | | | 10.3 | Data Interpretation and Conclusion. | | | СНАРТ | TER 11: MARINE SEDIMENT QUALITY MONITORING | | | 11.1 | Marine Sediment Monitoring | | | 11.2 | Result and Discussion | | | 11.3 | Data Interpretation and Conclusion | | | | TER 12: MARINE ECOLOGY MONITORING | | | 12.1 | Marine Ecological Monitoring | | | 12.2 | Result and Discussion | | | | ER 13: SUMMARY AND CONCLUSION | | | 13.1 | Summary and Conclusion | | | | are 1: Photographs of the Environmental Monitoring conducted at Kandla | | | | are 2: Photographs of the Environmental Monitoring conducted at Vadina | | | | ER 14: REFERENCES | | | | ences: | | | Refer | CICCS | 104 | | Listo | f Tables | | | | Details of Automatic Weather Station | 13 | | | Automatic Weather Monitoring Station details | | | | : Meteorological data for Kandla and Vadinar | | | Table 4 | Details of Ambient Air monitoring locations | 22 | | Table 5 | Parameters for Ambient Air Quality Monitoring | 28 | | | Summarized results of PM_{10} , $PM_{2.5}$, SO_2 , NO_x , VOC and CO for
Ambient Ai | | | | nitoring | | | | Summarized results of Benzene for Ambient Air quality monitoring | | | | Summarized results of Polycyclic Aromatic Hydrocarbons | | | | Summarized results of Non-methane VOC | | | Table 1 | O: Details of DG Stack monitoring locations | ∆ ∩ | | Table 41: Species richness Index and Diversity Index in Zooplankton | 112
115
119
121
122
123
124
125 | |--|--| | Table 41: Species richness Index and Diversity Index in Zooplankton | 112
115
119
121
122
123
124
125 | | Table 41: Species richness Index and Diversity Index in Zooplankton | 112
115
119
121
122
123
124
125 | | Table 41: Species richness Index and Diversity Index in Zooplankton1 | 112
115
119
121
122
123
124 | | | 112
115
,
119
121
122 | | 5tati015l | 112
115
,
119
121
122 | | Table 40: Zooplankton variations in abundance and diversity in sub surface sampling stations | 112
115
,
119 | | Table 39: Species richness Index and Diversity Index in Phytoplankton | 112
115
,
119 | | stations | l12
l15
,
l19 | | Table 38: Phytoplankton variations in abundance and diversity in sub surface sampling | l12
l15 | | (GPP), Pheophytin and Chlorophyll for Kandla and Vadinar | 112
115 | | Table 37: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity | l12
l15 | | Table 36: List of parameters to be monitored for Marine Ecological Monitoring | 112 | | Table 35: Details of the sampling locations for Marine Ecological | | | Table 34: Comparison of Heavy metals with Standard value in Marine Sediment | 1119 | | Table 33: Standard Guidelines applicable for heavy metals in sediments | | | Table 32: Summarized result of Marine Sediment Quality | | | Table 31: List of parameters to be monitored for Sediments at Kandla and Vadinar | | | Table 30: Details of the sampling locations for Marine Sediment | | | Table 29: Results of Analysis of Marine Water Sample for the sampling period | | | | | | Table 28: List of parameters monitored for Marine Water | | | Table 27: Details of the sampling locations for Marine water | | | Table 26: Water Quality of inlet and outlet of STP of Kandla | | | Table 25: List of parameters monitored for STP's at Kandla and Vadinar | | | Table 24: Norms of treated effluent as per CC&A of Vadinar STP | | | Table 23B: Discharge norms (as per CC&A of Kandla STP) | | | Table 23A: Details of the monitoring locations of STP | | | Table 22C: Drinking Water Quality for the Monitoring period | | | Table 22B: Drinking Water Quality for the Monitoring period | | | Table 21: List of parameters for Drinking Water Quality monitoring ⁽³⁾ | | | Table 20: Details of Drinking Water Sampling Locations | | | | | | Table 19: Soil Quality for the Monitoring period | | | Table 18: Soil parameters | | | Table 17: Details of the Soil quality monitoring | | | Table 15: Ambient Air Quality norms in respect of Noise ⁽²⁾ | | | Table 14: Details of the Noise Monitoring | | | Table 13: Details of noise monitoring locations | | | Table 12: DG monitoring data | | | Map 2: Locations of Kandla Port | 8 | |---|-------| | Map 3: Locations of Vadinar Port | 9 | | Map 4: Locations for Ambient Air Monitoring at Kandla | 25 | | Map 5: Locations for Ambient Air Monitoring at Vadinar | 26 | | Map 6: Locations for DG Stack monitoring at Kandla | 41 | | Map 7: Locations for DG Stack monitoring at Vadinar | 42 | | Map 8: Locations for Noise Monitoring at Kandla | 49 | | Map 9: Locations for Noise Monitoring at Vadinar | 50 | | Map 10: Locations for Soil Quality Monitoring at Kandla | 57 | | Map 11: Locations for Soil Quality Monitoring at Vadinar | 58 | | Map 12: Locations for Drinking Water Monitoring at Kandla | | | Map 13: Locations for Drinking Water Monitoring at Vadinar | 67 | | Map 14: Locations for STP Monitoring at Kandla | | | Map 15: Locations for STP Monitoring at Vadinar | | | Map 16: Locations for Marine Water Monitoring at Kandla | | | Map 17: Locations for Marine Water Monitoring at Vadinar | | | Map 18: Location of Marine Sediment Monitoring at Kandla | | | Map 19: Locations of Marine Sediment Monitoring at Vadinar | | | Map 20: Locations of Marine Ecological Monitoring at Kandla | | | Map 21: Locations of Marine Ecological Monitoring at Vadinar | 114 | | List of Figures | | | Figure 1: Methodology flow chart | 11 | | Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadir | nar14 | | Figure 3: Process flow diagram of STP at Kandla | 82 | | Figure 4: Process flow diagram of STP at Gopalpuri | 83 | | Figure 5: Process flowchart for the STP at Vadinar | 84 | | List of Graphs | | | Graph 1 Spatial trend in Ambient PM ₁₀ Concentration | 30 | | Graph 2 Spatial trend in Ambient PM _{2.5} Concentration | 30 | | Graph 3 Spatial trend in Ambient SOx Concentration | 30 | | Graph 4 Spatial trend in Ambient NOx Concentration | | | Graph 5 Spatial trend in Ambient CO Concentration | | | Graph 6 Spatial trend in Ambient Total VOCs | 31 | | Graph 7 Spatial trend in SPM Concentration | 44 | | Graph 8 Spatial trend in NOx Concentration | 44 | | Graph 9 Spatial trend in SO _x Concentration | 44 | | Graph 10 Spatial trend in CO Concentration | 44 | | Graph 11 Spatial trend in CO ₂ Concentration | 45 | ## **List of Abbreviations** | Α | Acceptable Limits as per IS: 10500:2012 | |-----------------|--| | AAQ | Ambient Air Quality | | AWS | Automatic Weather monitoring stations | | BIS | Bureau of Indian Standards | | BOD | Biochemical Oxygen Demand | | BQL | Below Quantification Limit | | CCA | Consolidated Consent & Authorization | | | Carbon Monoxide | | COD | | | COD | Chemical Oxygen Demand | | СРСВ | Central Pollution Control Board | | DO | Dissolved Oxygen | | DPA | Deendayal Port Authority | | EC | Electrical Conductivity | | EMMP | Environmental monitoring and Management Plan | | EMP | Environment Management Plan | | FPS | Fine Particulate Sampler | | FY | Financial Year | | GEMI | Gujarat Environment Management Institute | | IFFCO | Indian Farmers Fertiliser Cooperative Limited | | IMD | India Meteorological Department | | IOCL | Indian Oil Corporation Limited | | LNG | Liquefied Natural Gas | | MGO | Marine Gas Oil | | MMTPA | Million Metric Tonnes Per Annum | | MoEF | Ministry of Environment & Forests | | MoEF&CC | Ministry of Environment, Forest and Climate Change | | NAAQS | National Ambient Air Quality Standards | | NO _x | Nitrogen oxides | | NTU | Nephelometric Turbidity Unit | | OOT | Off Shore Oil Terminal | | OSR | Oil Spill Response | | P | Permissible Limits as per IS: 10500:2012 | | PAH | Poly Aromatic Hydrocarbons | | PM | Particulate Matter | | PTFE | Polytetrafluoroethylene | | RCC | Reinforced Concrete Cement | | RDS | Respirable Dust Sampler | | SAR | Sodium Adsorption Ratio | | SBM | Single Bouy Mooring | | SO _x | Sulfur oxides | | STP | Sewage Treatment Plant | | TC | Total Coliforms | | TDS | Total Dissolved Solids | | TOC | Total organic Carbon | | TSS | Total Suspended Solids | | | Volatile Organic Compounds | | VOC | | ## **CHAPTER 1: INTRODUCTION** #### 1.1 Introduction Kandla Port, also known as the Deendayal Port is a seaport in Kachchh District near the city of Gandhidham in Gujarat state in western India. Located on the Gulf of Kachchh, it is one of major ports on the western coast, and is located at 256 nautical miles southeast of the Port of Karachi in Pakistan and over 430 nautical miles northnorthwest of the Port of Mumbai (Bombay). It is the largest port of India by volume of cargo handled. Deendayal Port's journey began in 1931 with the construction of RCC Jetty by Maharao Khengarji. Kandla was constructed in the 1950s as the chief seaport serving western India, after the independence of India. On 31st March 2016, Deendayal Port created history by handling 100 MMT cargo in a year and became the first Major Port to achieve this milestone. Deendayal Port Authority (DPA), India's busiest major port in recent years, is gearing up to add substantial cargo handling capacity with private sector participation. DPA has created new record by handling 137 MMTPA (at Kandla and Vadinar) during the financial year 2022-23. The DPA had commissioned the Off-shore Oil Terminal facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. Further, significant Quantum of infrastructural upgradation has been carried out & excellent maritime infrastructure has been created at Vadinar for the 32 MMTPA Essar Oil Refinery in Jamnagar District. #### 1.2 Green Ports Initiative DPA is committed to sustainable development and adequate measures are being taken to maintain the Environmental well-being of the Port and its surrounding environs. Weighing in the environmental perspective for sustained growth, the Ministry of Shipping had started, Project Green Ports" which will help in making the Major Ports across India cleaner and greener. "Project Green Ports" will have two verticals - one is "Green Ports Initiatives" related to environmental issues and second is "Swachh Bharat Abhiyaan". The Green Port Initiatives include twelve initiatives such as preparation and monitoring plan, acquiring equipment required for monitoring environmental pollution, acquiring dust suppression system, setting up of sewage/waste water treatment plants/ garbage disposal plant, setting up Green Cover area, projects for energy generation from renewable energy sources, completion of shortfalls of Oil Spill Response (OSR) facilities (Tier-I), prohibition of disposal of almost all kind of garbage at sea, improving
the quality of harbour wastes etc. DPA had also appointed GEMI as an Advisor for "Making Deendayal Port a Green Port-Intended Sustainable Development under the Green Port Initiatives. DPA has also signed MoU with Gujarat Forest Department in August 2019 for Green Belt Development in an area of 31.942 Ha of land owned by DPA. The plantation is being carried out by the Social Forestry division of Kachchh. #### 1.3 Importance of Environmental monitoring and management plan (EMMP) Port activities can cause deterioration of air and marine water quality in the surrounding areas due to multifarious activities. The pollution problems usually caused by port and harbour activities can be categorized as follows: 1. Air pollutant emissions due to ship emissions, loading and unloading activities, construction emission and emissions due to vehicular movement. - 2. Coastal habitats may be destroyed and navigational channels silted due to causeway construction and land reclamation. - 3. Deterioration of surface water quality may occur during both the construction and operation phases. - 4. Harbour operations may produce sewage, bilge wastes, solid waste and leakage of harmful materials both from shore and ships. - 5. Human and fish health may be affected by contamination of coastal water due to urban effluent discharge. - 6. Oil pollution is one of the major environmental hazards resulting from port/harbour and shipping operations. This includes bilge oil released from commercial ships handling non-oil cargo as well as the more common threat from oil tankers. - 7. Unregulated mariculture activities in the port and harbour areas may threaten navigation safety. Hence, for the determination of levels of pollution, identification of pollution sources, control and disposal of waste from various point and non-point sources and for prediction of pollution levels for future, regular monitoring and assessment are required during the entire construction and operation phase of a major port. As per the Ministry of Environment, Forest and Climate Change (MoEF&CC), The Environmental Management Plan (EMP) is required to ensure sustainable development in the area surrounding the project. Hence, it needs to be an all encompasses plan consist of all mitigation measures for each item wise activity to be undertaken during the construction, operation and the entire life cycle to minimize adverse environmental impacts resulting from the activities of the project. for formulation, implementation and monitoring of environmental protection measures during and after commissioning of projects. The plan should indicate the details of various measures are taken and proposed to be taken for appropriate management of the environment of Deendayal Port Authority. It identifies the principles, approach, procedures and methods that will be used to control and minimize the environmental and social impacts of operational activities associated with the port. An EMP is a required part of environmental impact assessment of a new port project but could also be evolved for existing ports. It is useful not only during the construction and operational phases of the new port but also for operation of existing ports to ensure the effectiveness of the mitigation measures implemented and to further provide guidance as to the most appropriate way of dealing with any unforeseen impacts. It is extremely essential that port and harbour projects should have an Environmental Monitoring and Management Plan (EMMP), which incorporates monitoring of Ambient Air, Drinking Water, Noise, Soil, Marine (water, sediment, ecology) quality along with the collection of online meteorological data throughout the duration of the project. To ensure the effective implementation of the EMP and weigh the efficiency of the mitigation measures, it is essential to undertake environmental monitoring both during construction and operation period. In view of the above, Gujarat Environment Management Institute (GEMI) has been awarded with the work "Preparing and Monitoring of Environmental Monitoring and Management Plan for Deendayal Port Authority at Kandla and Vadinar for a period of 3 years" vide letter No. EG/WK/EMC/1023/2011/III/239 dated: 15/02/2023 by DPA. This document presents the Environmental Monitoring Report (EMR) for Kandla and Vadinar for the environmental monitoring done during the period from April 2023-March 2024. #### 1.4 Objectives and scope of the Study In line with the work order, the key objective of the study is to carry out the Environmental Monitoring and preparation the Management Plan for Kandla and Vadinar for a period of 3 years". Under the project, Environmental monitoring refers to systematic monthly monitoring and assessment of ambient air, water (drinking and surface), soil, sediment, noise and ecology in order to monitor the performance and implementation of a project in compliance with Environmental quality standards and/or applicable Statutory norms. The scope of work includes not limited to following: - 1. To review the locations/stations of Ambient Air, Ambient Noise, drinking water, and Marine Water, Soil and Sediments monitoring within the impacted region in-and-around DPA establishment, in view of the developmental projects. - 2. To assess the Ambient Air quality, quality at 6 stations at Kandla and 2 at Vadinar in terms of gases and particulate matter. - 3. To assess the DG stack emissions (gases and particulate matter). - 4. To assess Drinking water quality at twenty locations (18 at Kandla and 2 at Vadinar) in terms of Physical, Chemical and Biological parameters viz., Color, Odor, turbidity, conductivity, pH, Total Dissolved Solids, chlorides, Hardness, total iron, sulphate, NH₄, PO₄, and bacterial count on a monthly basis. - 5. To assess the Marine water quality in terms of aquatic Flora and Fauna and Sediment quality in terms of benthic flora and fauna. - 6. To assess Marine Water Quality and sediment in term of physical and chemical parameter. - 7. To assess the trends of water quality in terms of Marine ecology by comparing the data collected over a specified time period. - 8. Weekly sample collection and analysis of inlet & Outlet points of the Sewage Treatment Plant (STP) to check the water quality being discharged by DPA as per the CC&A. - 9. Carrying out monthly Noise monitoring; twice a day at the representative stations for a period of 24 hours. - 10. Meteorological parameters are very important from air pollution point of view, hence precise and continuous data collection is of utmost importance. Meteorological data on wind speed, wind direction, temperature, relative humidity, solar radiation and rainfall shall be collected from one permanent station at DPA, Kandla and one permanent station at Vadinar. - 11. To suggest mitigation measures, based on the findings of this study and also check compliance with Environmental quality standards, Green Port Initiatives, MIV 2030, and any applicable Statutory Compliance. - 12. To recommend Environment Management Plans based on Monitoring programme and findings of the study. **CHAPTER 2: METHODOLOGY** #### 2.1 Study Area Under the study, the locations specified by Deendayal Port Authority for the areas of Kandla and Vadinar would be monitored. The details of the study area as follows: #### a. Kandla Deendayal Port (Erstwhile Kandla Port) is one of the twelve major ports in India and is located on the West Coast of India, in the Gulf of Kutch at 23001'N and 70013'E in Gujarat. The Major Port Authorities Act 2021 is the governing statute for Administration of Major Ports, under which, Deendayal Port Trust (DPT) has become Deendayal Port Authority (DPA). At Kandla, DPA has sixteen (16) cargo berths for handling various types of Dry Bulk Cargo viz, fertilizer, food grains, Coal, sulphur, etc. #### Climatic conditions of Kandla Kandla has a semi-desert climate. Temperature varies from 25°C to 44°C during summer and 10°C to 25°C during winter. The average annual temperature is 24.8 °C. The average rainfall is 410 mm, most of which occurs during the monsoon from the months of June-to-September. #### b. Vadinar **Vadinar** is a small coastal town located in Devbhumi Dwarka district of the Gujarat state in India located at coordinates 22° 27′ 16.20″ N - 069° 40′ 30.01″. DPA had commissioned the Off Shore Oil Terminal (OOT) facilities at Vadinar in the year 1978, for which M/s. Indian Oil Corporation Limited (IOCL) provided Single Bouy Mooring (SBM) system, with a capacity of 54 MMTPA. The OOT of the DPA contributes in a large way to the total earnings of this port. Vadinar is now notable due to the presence of two refineries-one promoted by Reliance Industries and Essar Oil Ltd. DPA also handled 43.30 MMT at Vadinar (which includes transhipment), the containerized cargo crossed 4.50 lakh TEU, grossing a total of 100 MMT overall. Major commodities handled by the Deendayal Port are Crude Oil, Petroleum product, Coal, Salt, Edible Oil, Fertilizer, etc. #### • Climatic conditions of Vadinar Vadinar has a hot semi-arid climate. The summer season lasts from March-to-May and is extremely hot, humid, but dry. The climatic conditions in Vadinar are quite similar to that recorded in its district head quarter i.e., Jamnagar. The annual mean temperature is 26.7 °C. Rainy season with extremely erratic monsoonal rainfall that averages around 630 millimetres. The winter season is from October-to-February remains hot during the day but has negligible rainfall, low humidity and cool nights. The Kandla and Vadinar port have been depicted in the Map 1 & 2 as follows: フ'' Map 1: Locations of Kandla and Vadinar Port Map 2: Locations of Kandla Port **Map 3: Locations of Vadinar Port** #### 2.2 Environmental Monitoring at Kandla and Vadinar Regular monitoring of environmental parameters is of immense importance to assess the status of environment during project operation. With the knowledge of baseline conditions, the monitoring programme
will serve as an indicator for identifying any deterioration in environmental conditions, thereby assist in recommending suitable mitigatory steps in time to safeguard the environment. Monitoring is as important as that of control of pollution since the efficiency of control measures can only be determined by a well-defined monitoring program. Environmental Monitoring is vital for monitoring the environmental status of the port for sustainable development. The list of main elements for which Environmental monitoring is to be carried out have been mentioned below: - Meteorology - Ambient Air - DG Stack - Noise - Soil - Drinking Water - Sewage Treatment Plant - Marine (Surface) water - Marine Sediments - Marine Ecology GEMI has been entrusted by DPA to carry out the monitoring of the various aforementioned environmental aspects at the port, so as to verify effectiveness of prevailing Environment Management plan, if it confirms to the statutory and/or legal compliance; and identify any unexpected changes. Standard methods and procedures have been strictly adhered to in the course of this study. QA/QC procedures were strictly followed which covers all aspects of the study, and includes sample collection, handling, laboratory analyses, data coding, statistical analyses, interpretation and communication of results. The analysis was carried out in GEMI's NABL/MoEF accredited/recognized laboratory. #### Methodology adopted for the study Methodology is a strictly defined combination of practices, methods and processes to plan, develop and control a project along the continuous process of its implementation and successful completion. The aim of the project management methodology is to allow the control of whole process of management through effective decision-making and problem solving. The methodology adopted for the present study is shown in **Figure 1** as given below: Figure 1: Methodology flow chart The details of various sectors of Environment monitoring are described in subsequent chapters. ## **CHAPTER 3: METEOROLOGY MONITORING** #### 3.1 Meteorology Monitoring Meteorological conditions play a crucial role in dispersion of air pollutants as well as in environmental pollution studies particularly in pollutant transport irrespective of their entry into the environment. The wind speed and direction play a major role in dispersion of environment pollutants. In order to determine the prevailing micro-meteorological conditions at the project site an Automatic Weather Monitoring Stations (AWS) of Envirotech make (Model: WM280) were installed at both the sites of Kandla and Vadinar at 10 m above the ground. The details of the AWS installed have been mentioned in **Table 1** as follows: **Table 1: Details of Automatic Weather Station** | Sr. No. | Site | Location
Code | Location Name | Latitude Longitude | |---------|---------|------------------|---------------------------------|----------------------| | 1. | Kandla | AWS-1 | Environment
Laboratory (DPA) | 23.00996N 70.22175E | | 2. | Vadinar | AWS-2 | Canteen Area | 22.39994N 69.716608E | #### Methodology: During the study, a continuous automatic weather monitoring station was installed at both the sites to record climatological parameters such as Wind speed, Wind Direction, Relative Humidity, Solar Radiation, Rainfall and Temperature to establish general meteorological regime of the study area. The methodology adopted for monitoring meteorological data shall be as per the standard norms laid down by Bureau of Indian Standards (BIS) and the India Meteorological Department (IMD). The details of Automatic Weather Monitoring Station have been mentioned in **Table 2**. **Table 2: Automatic Weather Monitoring Station details** | Sr.
No. | Details of Meteorological
Data | Unit of
Measurement | Instrument | Frequency | |------------|-----------------------------------|------------------------|-----------------------|-----------| | 1. | Wind Direction | degree | A (() - | | | 2. | Wind Speed | Km/hr | Automatic
Weather | | | 3. | Rainfall | mm/hr | Monitoring
Station | Hourly | | 4. | Relative Humidity | % RH | (Envirotech | Average | | 5. | Temperature | °C | WM280) | | | 6. | Solar Radiation | W/m ² | | | #### **Monitoring Frequency:** The Meteorological parameters were recorded at an interval of 1 hour in a day for the period of April 2023 to March 2024 and the average value for all the Meteorological parameters were summarized for the sampling period of at both the observatory site. Figure 2: Photographs of Automatic Weather Monitoring Station at Kandla and Vadinar #### 3.2 Results and discussion The summary of hourly climatological observations recorded at Kandla and Vadinar during the monitoring period of **April 2023 to March 2024**, with respect to significant parameters has been mentioned in **Table 3** as follows: Table 3: Meteorological data for Kandla and Vadinar | Details of Micro-meteorological data at Kandla Observatory | | | | | | | | | | | | | |--|-------------------|-------|-------|------------------|-------|-----------------------|-------|--------------------|----------------|---------------|---------------|-------| | Monitoring Period | Wind Speed (Km/h) | | | Temperature (°C) | | Relative humidity (%) | | Solar
Radiation | Wind Direction | Rainfall (mm) | | | | Worldoning Ferrod | Max. | Min | Avg. | Max. | Min | Avg. | Max. | Min | Avg. | (W/m²) | (°) | | | April-May 23 | 27.02 | 1.54 | 8.78 | 32.21 | 30.4 | 31.31 | 64.12 | 61.07 | 57.76 | 105.42 | S.S.E | 0.05 | | May-June 23 | 48.85 | 3.07 | 12.94 | 32.64 | 31.23 | 31.93 | 70.33 | 65.93 | 68.17 | 90.14 | N & N.N.W | 0.37 | | June- July 23 | 38.99 | 1.23 | 9.71 | 31.54 | 30.27 | 30.89 | 76.32 | 72.43 | 74.47 | 67.76 | E.W.E & W.S.W | 3.56 | | July-Aug 23 | 35.4 | 1.47 | 7.67 | 30.51 | 29.32 | 29.91 | 77.72 | 73.87 | 75.78 | 57.4 | W.S.W | 14.94 | | Aug-Sep 23 | 37.52 | 0.63 | 6.55 | 48.44 | 30.33 | 38.43 | 84.57 | 69.18 | 75.59 | 73.28 | W.S.W | 21.89 | | Sep- Oct 23 | 20.36 | 0.16 | 4.75 | 31.01 | 29.66 | 30.32 | 71.62 | 66.85 | 69.32 | 74.08 | W.S.W | 2.87 | | Oct- Nov 23 | 9.85 | 0.025 | 1.15 | 31.24 | 29.63 | 30.41 | 55.4 | 49.02 | 52.18 | 65.11 | North | 0.012 | | Nov- Dec 23 | 14.72 | 0 | 2.09 | 25.76 | 24.32 | 25.03 | 59.69 | 54.6 | 57.1 | 54.28 | N.E | 0.96 | | Dec- Jan 24 | 15.75 | 0 | 1.87 | 23.22 | 21.68 | 22.44 | 56.5 | 51.11 | 53.78 | 60.66 | North | 0 | | Jan- Feb 24 | 15.29 | 0.131 | 3.147 | 24.83 | 23.18 | 24 | 56 | 50.51 | 53.19 | 65.32 | North | 0 | | Feb- Mar 24 | 22.41 | 0.44 | 5.12 | 26.7 | 25.06 | 25.86 | 51.55 | 45.91 | 48.64 | 78.46 | North | 0.04 | | Mar- Apr 24 | 33.09 | 0.025 | 5.43 | 48.44 | 26.87 | 30.08 | 73.25 | 30.59 | 55.06 | 89.43 | W.S.W | 0 | | Details of Micro-meteorological data at Vadinar Observatory | | | | | | | | | | | | | |---|-------------------|------|-------|------------------|-------|-------|-----------------------|-------|-------|---------------------|----------------|---------------| | Monitoring Period | Wind Speed (Km/h) | | | Temperature (°C) | | | Relative humidity (%) | | | Solar | Wind Direction | | | | Max. | Min | Avg. | Max. | Min | Avg. | Mean | Max. | Min | Radiation
(W/m²) | (°) | Rainfall (mm) | | April-May 23 | 26.33 | 7.78 | 13.24 | 28.74 | 28.04 | 28.17 | 73.47 | 70 | 71.08 | 110.76 | W & South | 0.02 | | May-June 23 | 34.08 | 7.63 | 16.76 | 29.96 | 29.22 | 29.34 | 71.77 | 69.03 | 69.83 | 102.95 | S.S.E | 0.19 | | June- July 23 | 12.31 | 1.62 | 5.19 | 29.51 | 28.86 | 28.94 | 77.68 | 75.42 | 75.95 | 78.26 | South | 0.27 | | July-Aug 23 | 31.69 | 5.39 | 13.12 | 28.62 | 27.99 | 28.06 | 79.51 | 77.31 | 77.77 | 60.86 | South | 0.22 | | Aug-Sep 23 | 28.07 | 5.2 | 12.96 | 27.75 | 27.18 | 27.22 | 75.13 | 72.87 | 73.42 | 88.14 | South & S.W | 0 | | Sep- Oct 23 | 21.82 | 4.64 | 9.59 | 28.12 | 27.5 | 27.56 | 77.12 | 74.66 | 75.32 | 87.51 | South | 0.06 | | Oct- Nov 23 | 13.8 | 1.77 | 4.17 | 27.89 | 27.1 | 27.28 | 63.61 | 59.58 | 61.15 | 81.61 | N.E | 0.18 | | Nov- Dec 23 | 19.37 | 3 | 4.84 | 24.79 | 24.11 | 24.24 | 64.12 | 60.47 | 61.79 | 70.68 | S.S.E | 0.03 | | Dec- Jan 24 | 16.76 | 1 | 4.18 | 22.94 | 22.14 | 22.34 | 63.13 | 59.25 | 60.71 | 73.37 | South | 0 | | Jan- Feb 24 | 10.62 | 1.99 | 3.94 | 23.24 | 22.92 | 22.7 | 65.66 | 64.19 | 64.9 | 87.29 | South | 0 | | Feb- Mar 24 | 16.92 | 5.36 | 8.55 | 24.16 | 23.6 | 23.82 | 62.34 | 60.91 | 61.51 | 101.99 | N.N.W | 0 | | Mar- Apr 24 | 29.61 | 0.31 | 11.63 | 29.8 | 24.96 | 26.5 | 82.36 | 57.41 | 71.08 | 114.77 | N.N.W | 0 | #### 3.3 Data Interpretation and Conclusion #### 1) Kandla: - a. The ambient temperature for the summer season varies in the range of **21.68** to **48.44** °C; in the monsoon season, the temperature varies between **29.32** and **33.38** °C; and in the winter season, the temperature varies between **21.68** and **31.24** °C. The yearly average temperature at Kandla is observed to be around **29.217** °C, with a standard deviation of 4.31. - b. The relative humidity for the summer season was recorded in the range of 30.59% to 76.32%; in the monsoon season, relative humidity was recorded in the range of 66.85% to 84.57%; and in the winter season, relative humidity was recorded in the range of 49.02 to 59.69%; the yearly average humidity at Kandla was 61.75% with a standard deviation of 10.635. - c. The maximum rainfall at Kandla was observed at **21.89** mm for the monitoring period of August to September 2023; the yearly average rainfall was found to be **3.72** mm - d. Wind speed and direction play a significant role in transporting pollutants and thus determining the air quality. In the summer season, wind blew from the North and North North West directions; in the monsoon season, wind blew from the West South West; and in the winter season, wind blew from the North direction. - e. The wind speed recorded ranges from **0.025** to
48.85 km/h in the summer season; in the monsoon season, the wind speed recorded ranges from **0.16** to **37.52** km/h; and in the winter season, the wind speed recorded ranges from **0** to **15.75** km/h. The yearly average wind speed at Kandla is **5.77** km/h, with a standard deviation of 3.55. - f. The **maximum** solar radiation at Kandla was observed at **105.42** W/m² during the monitoring period **April to May 2023**; the **minimum** solar radiation at Kandla was observed at 54.28 W/m² for the monitoring period **November to December 2023**; and the yearly average solar radiation was found to be **73.445** W/m² with a standard deviation of 15.19. #### Wind rose diagram: The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data. This Wind Rose Diagram reveals that at Kandla during the monitoring period, the prevailing winds predominantly blow from the West South West direction at Kandla, whereas, high speed winds were also observed to blow from North direction. #### 2) Vadinar: - a. The ambient temperature for the summer season varies between 23.6 and 29.96 °C; in the monsoon season, it varies between 27.18 and 28.62 °C; and in the winter season, it varies between 22.14 and 27.89 °C. The yearly average temperature at Vadinar is 2.347 °C with standard deviation of 2.4. - b. The relative humidity for the summer season was recorded in the range of 57.41% to 82.36%; in the monsoon season, relative humidity was recorded in the range of 72.87% to 79.51%; and in the winter season, relative humidity was recorded in the range of 59.25% to 65.66%; the yearly average humidity at Vadinar was 68.7% with a standard deviation of 6.38. - c. The maximum rainfall at Vadinar was observed at 0.27 mm for the monitoring period from June to July 2023; the yearly average rainfall was found to be 0.08 mm. - d. In Summer Season wind blew from South Direction, in Monsoon season wind blew from South and in Winter Season wind blew from South and South West direction. The recorded wind speed ranges from **0.31** to **34.08** km/hr in the summer season, **4.64** to **31.69** km/hr, and in the monsoon season, the recorded wind speed ranges from **1** to **19.37** km/hr. The yearly average wind speed at Vadinar is 9.014 km/h with a standard deviation of **4.49**. - e. The maximum solar radiation at Vadinar was observed at **114.77** W/m2 for the monitoring period April to May 2024; the minimum solar radiation at Vadinar was observed at **60.86** W/m2 for the monitoring period July to August 2023; and the yearly average solar radiation was found to be **88.182** W/m2. #### Wind rose diagram: The wind-rose diagram for the monitoring period has been drawn on the basis of hourly wind speed and direction data. At Vadinar, the winds were observed to blow from Souths direction. ## CHAPTER 4: AMBIENT AIR QUALITY MONITORING # 4.1 Ambient Air Quality It is necessary to monitor the ambient air quality of the study area, in order to determine the impact of the shipping activities and port operations on the ambient air quality. The prime objective of ambient air quality monitoring is to assess the present air quality and its conformity to National Ambient Air Quality Standards i.e. NAAQS, 2009⁽¹⁾. #### Methodology The study area represents the area occupied by DPA and its associated Port area. The sources of air pollution in the region are mainly vehicular traffic, fuel burning, loading & unloading of dry cargo, fugitive emissions from storage area and dust arising from unpaved village roads. Considering the below factors, under the study, as per the scope specified by DPA eight locations wherein, 6 stations at Kandla and 2 at Vadinar have been finalized within the study area - Meteorological conditions; - Topography of the study area; - Direction of wind; - Representation of the region for establishing current air quality status - Representation with respect to likely impact areas. The description of various air quality stations monitored at Kandla and Vadinar have been specified in **Table 4**. Location **Location Name** Latitude Longitude Significance Code No. 1. 23.029361N 70.22003E A-1 Oil Jetty No. 1 Liquid containers and emission from ship A-2 23.043538N 70.218617E 2. Oil Jetty No. 7 3. A-3 Kandla Port 23.019797N 70.213536E Vehicular activity and dust Colony emission 4. A-4 Marine Bhavan 23.007653N 70.222197E Construction and vehicular activity, road dust emission, 5. A-5 Coal Storage 23.000190N 70.219757E Coal Dust, Vehicular activity Area 6. A-6 Gopalpuri 23.081506N 70.135258E Residential area, dust Hospital emission, vehicular activity A-7 7. Admin Building 22.441806N 69.677056E Vehicular activity 8. A-8 Vadinar Colony 22.401939N 69.716306E Residential Area, burning waste, vehicular activity Table 4: Details of Ambient Air monitoring locations The monitoring locations at Kandla and Vadinar have been depicted in map in **Map 4 and** 5 respectively. # Ambient Air monitoring photos # Kandla # Vadinar Map 4: Ambient Air Monitoring locations at Kandla Map 5: Ambient Air Monitoring locations at Vadinar # **Monitoring Frequency** The sampling for Particulate matter, i.e., PM_{10} and $PM_{2.5}$, and gaseous components like SO_x , NO_x , and CO, as well as the total VOCs, was monitored twice a week for a period of 24 hours a day. Whereas, the sampling for the components of PAH, benzene, and non-methane VOCs was conducted on a monthly basis. The monitoring period for this study is from April 15, 2023, to April 15, 2024. During this period, 95 air samples were taken from six locations in Kandla, and 97 samples were taken from two locations in Vadinar. #### Sampling and Analysis The Sampling of the Ambient Air Quality parameters and analysis is conducted as per the CPCB guidelines of National Ambient Air Quality Monitoring. The sampling was performed at a height of 3.5 m (approximately) from the ground level. For the sampling of PM_{10} , calibrated 'Respirable Dust Samplers' were used, where Whatman GF/A microfiber filter paper of size 8''x 10'' were utilized, where the Gaseous attachment of the make Envirotech instrument was attached with Respirable Dust Sampler for the measurement of SO_x and NO_x . The Fine Particulate Sampler for collection of $PM_{2.5}$ was utilized for the particulate matter of size <2.5 microns. A known volume of ambient air is passed through the cyclone to the initially pre-processed filter paper. The centrifugal force in cyclone acts on particulate matter to separate them into two parts and collected as following: - Particles <10 μ size (Respirable): GF/A Filter Paper - Particles <2.5 μ size (Respirable): Polytetrafluoroethylene (PTFE) Sampling and analysis of ambient SO_2 was performed by adopting the 'Improved West and Gaeke Method'. The ambient air, drawn through the draft created by the RDS, is passed through an impinger, containing a known volume of absorbing solution of Sodium tetrachloromercurate, at a pre-determined measured flow rate of 1 liter/minute (L/min). Similarly, NO_x was performed by adopting the 'Jacob Hochheister Modified' (Na arsenite) method. The impinger contains known volume of absorbing solution of Sodium Arsenite and Sodium Hydroxide. Data has been compiled for PM_{10} , $PM_{2.5}$, SO_x and NO_x samples of 24-hour carried out twice a week. In case of CO, one hourly sample were taken on selected monitoring days using the sensor-based CO Meter. For the parameters Benzene, Methane & Nonmethane and Volatile Organic Carbons (VOCs), the Low Volume Sampler is used, where the charcoal tubes are used as sampling media. The sampling in the Low Volume Sampler (LVS) is carried out as per IS 5182 (Part 11): 2006 RA: 2017, where the ambient air flow rate is maintained at 200 cc/min, the volume of air that passes through the LVS during two hours monitoring is approx. 24 L. The sampling of PAHs is carried out as per IS: 5182 (Part 12): 2004. Where, the EPM 2000 Filter papers are utilized in the Respirable Dust Sampler (RDS). For the parameters, Benzene, PAH & Non-methane VOC's, monthly monitoring is carried out. The details of the parameters with their frequency monitored are mentioned in **Table 5**: Table 5: Parameters for Ambient Air Quality Monitoring | Sr. No. | Parameters | Units | Reference method | Instrument | Frequency | |---------|------------------------------------|-------|----------------------------------|--|-----------------| | 1. | PM ₁₀ | μg/m³ | IS 5182 (Part 23): 2006 | Respirable Dust Sampler (RDS) conforming to | Twice in a week | | | | | | IS:5182 (Part-23): 2006 | | | 2. | PM _{2.5} | μg/m³ | IS:5182 (Part:24):2019 | Fine Particulate Sampler (FPS) conforming to | | | | | | | IS:5182 (Part-24): 2019 | | | 3. | Sulphur Dioxide (SO _x) | μg/m³ | IS 5182 (Part:2): 2001 | Gaseous Attachment conforming to IS:5182 | | | | | | | Part-2 | | | 4. | Oxides of Nitrogen | μg/m³ | IS:5182 (Part-6): 2006 | Gaseous Attachment conforming to IS:5182 | | | | (NO _x) | | | Part-6 | | | 5. | Carbon Monoxide (CO) | mg/m³ | GEMI/SOP/AAQM/11; Issue no 01, | Sensor based Instrument | | | | | | Date 17.01.2019: 2019 | | | | 6. | VOC | μg/m³ | IS 5182 (Part 17): 2004 | Low Flow Air Sampler | | | 8. | PAH | μg/m³ | IS: 5182 (Part 12): 2004 | Respirable Dust Sampler (RDS) conforming to | Monthly | | | | 10/ | , 332 | IS:5182 (Part-12): 2004 | , i i | | 7. | Benzene | μg/m³ | IS 5182 (Part 11): 2006 RA: 2017 | Low Flow Air Sampler | | | 9. | Non-methane VOC | μg/m³ | IS 5182 (Part 11): 2006 | Low Volume Sampler | | # 4.2 Result and Discussion The summarized results of ambient air quality monitoring for the study period are presented in **Table-6 to 9** along with the graphical representation from **Graph 1 to Graph 6.** Various parameters monitored during the study have been presented by their maximum, minimum, average and Standard deviation. Table 6: Summarized results of PM₁₀,
PM_{2.5}, SO₂, NO_x, VOC and CO for Ambient Air quality monitoring | | | Table 6: Si | ımmarized resu | ılts of PM ₁₀ , PM _{2.5} , | SO_2 , NO_x , VOC | and CO for Ar | nbient Air quali | ty monitoring | | | |---------------------------|---------------|------------------|----------------------------|--|--------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------| | Parameters | NAAQS | Locations | (Oil Jetty
No.1)
A-1 | (Oil Jetty No.7)
A-2 | (Kandla Port
Colony)
A-3 | (Marine
Bhavan)
A-4 | (Coal Storage
Area)
A-5 | (Gopalpuri
Hospital
A-6 | (Admin
Building)
A-7 | (Vadinar
Colony)
A-8 | | | by CPCB | | | | | | | | | | | | | Max | 247.03 | 279.33 | 399.25 | 393.74 | 448.12 | 259.88 | 443.2 | 140.7 | | PM ₁₀ (µg/m3) | | Min | 28.68 | 34.39 | 63.28 | 71.77 | 89.21 | 30.3 | 1.45 | 13.89 | | 10 ([-8) | 24 Hours -100 | Avg | 136.50 | 116.67 | 188.36 | 229.41 | 262.04 | 127.95 | 63.49 | 56.54 | | | Annual -60 | Std
Deviation | 68.203 | 44.97 | 60.56 | 71.74 | 84.18 | 55.43 | 46.36 | 23.15 | | | | Max | 129.77 | 92.24 | 94.51 | 114.34 | 221.9 | 99.82 | 71.18 | 58.73 | | PM _{2.5} (μg/m3) | | Min | 10.03 | 12.85 | 10.84 | 15.97 | 14.85 | 5.51 | 2.36 | 4.7 | | ·-2.5 (P-8/2.10) | 24 Hours -60 | Avg | 40.27 | 41.2 | 40.26 | 43.70 | 69.70 | 36.95 | 25.11 | 23.73 | | | Annual -40 | Std
Deviation | 22.049 | 13.87 | 17.52 | 19.15 | 35.36 | 19.04 | 10.06 | 9.33 | | | | Max | 51.87 | 151.58 | 79.24 | 55.04 | 283 | 49.89 | 59.69 | 69.81 | | SO ₂ (μg/m3) | 24 Hours -80 | Min | 0.65 | 1.18 | 1.1 | 1.19 | 1.1 | 1.12 | 0.52 | 1.4 | | 002 (Fg 110) | | Avg | 11.076 | 20.01 | 14.63 | 11.82 | 16.82 | 11.56 | 12.59 | 13.69 | | | Annual -50 | Std
Deviation | 12.142 | 28.41 | 17.15 | 12.25 | 30.85 | 12.08 | 13.35 | 14.90 | | | | Max | 54.33 | 52.54 | 80.67 | 55.39 | 80.94 | 79.88 | 52.76 | 33.79 | | NO _χ (μg/m3) | | Min | 2.29 | 1.11 | 2.36 | 1.29 | 1.97 | 1.01 | 2.89 | 0.9 | | 110% (Fg/ 1110) | 24 Hours -80 | Avg | 14.75 | 14.58 | 22.91 | 20.52 | 28.12 | 15.24 | 12.84 | 9.70 | | | Annual -40 | Std
Deviation | 11.68 | 9.85 | 14.98 | 10.53 | 17.98 | 13.59 | 8.62 | 5.73 | | | | Max | 4.85 | 5.67 | 17.43 | 4.41 | 3.97 | 4.12 | 4.52 | 6.62 | | VOC (µg/m3) | | Min | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | | (FB/110) | | Avg | 1.20 | 1.226 | 1.52 | 0.98 | 0.94 | 0.96 | 0.96 | 0.95 | | | - | Std
Deviation | 1.155 | 1.298 | 2.275 | 0.99 | 0.94 | 0.99 | 0.93 | 1.12 | | | 8 Hours -2 | Max | 0.98 | 4.21 | 2.91 | 3.16 | 3.21 | 2.18 | 3.14 | 2.74 | | CO (mg/m3) | | Min | 0.08 | 0.09 | 0.14 | 0.39 | 0.36 | 0.32 | 0.03 | 0.45 | | co (mg/mo) | 1 Hour -4 | Avg | 0.73 | 0.848 | 0.89 | 0.95 | 1.13 | 0.74 | 0.78 | 0.94 | | | | Std
Deviation | 0.194 | 0.557 | 0.41 | 0.39 | 0.53 | 0.32 | 0.46 | 0.36 | **Graphs 1-6** shows spatial trend of ambient air parameter at all the eight-monitoring location (six at Kandla and 2 at Vadinar) Graph 1 Spatial trend in Ambient PM₁₀ Concentration Graph 3 Spatial trend in Ambient SOx Concentration Graph 4 Spatial trend in Ambient NOx Concentration Graph 5 Spatial trend in Ambient CO Concentration Page 31 Table 7: Summarized results of Benzene for Ambient Air quality monitoring | Parameters | NAAQS by
CPCB | Locations | (Oil Jetty
No.1)
A-1 | (Oil Jetty No.7)
A-2 | (Kandla Port
Colony)
A-3 | (Marine
Bhavan)
A-4 | (Coal Storage
Area)
A-5 | (Gopalpuri
Hospital
A-6 | (Admin
Building)
A-7 | (Vadinar
Colony)
A-8 | |------------|------------------|-----------|----------------------------|-------------------------|--------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------| | Benzene | | Max | 3.8 | 1.84 | 1.43 | 1.95 | 1.11 | 1.97 | 1.03 | 0.95 | | (µg/m3) | Annual - 5 | Min | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | | (10) | | Avg | 0.83 | 0.46 | 0.42 | 0.32 | 0.41 | 0.49 | 0.33 | 0.229 | **Table 8: Summarized results of Polycyclic Aromatic Hydrocarbons** | | | Table | 8: Summarized re | esuits of 1 office | che Aromatic H | ydiocarbons | | | | |----------------------|-----------|----------------------------|-------------------------|--------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------| | Parameters | Locations | (Oil Jetty
No.1)
A-1 | (Oil Jetty No.7)
A-2 | (Kandla Port
Colony)
A-3 | (Marine
Bhavan)
A-4 | (Coal Storage
Area)
A-5 | (Gopalpuri
Hospital
A-6 | (Admin
Building)
A-7 | (Vadinar
Colony)
A-8 | | Napthalene (µg/m3) | Max | 1.57 | 17.31 | 5.24 | 5.55 | 7.8 | 39.82 | 1.98 | 1.84 | | | Min | 0.02 | 0.21 | 0.04 | 0.14 | 0.37 | 0.02 | 0.1 | 0.13 | | | Avg | 0.40 | 3.29 | 0.58 | 1.05 | 2.01 | 4.96 | 0.45 | 0.42 | | Acenaphthylene | Max | 0.8 | 0.67 | 0.54 | 0.95 | 0.53 | 0.86 | 0.84 | 0.65 | | (μg/m3) | Min | 0.01 | 0.01 | 0.01 | 0.02 | 0.007 | 0.02 | 0.005 | 0.005 | | (18) | Avg | 0.15 | 0.20 | 0.17 | 0.31 | 0.15 | 0.18 | 0.19 | 0.17 | | Fluorene (µg/m3) | Max | 0.39 | 0.39 | 22.99 | 178.72 | 10.88 | 27.22 | 7.57 | 11.64 | | (10) | Min | 0.01 | 0.05 | 0.04 | 0.11 | 0.01 | 0.06 | 0.01 | 0.01 | | | Avg | 0.14 | 0.19 | 3.435 | 19.99 | 1.25 | 3.52 | 0.82 | 1.18 | | Anthracene (µg/m3) | Max | 0.87 | 0.91 | 1.25 | 5.05 | 2.02 | 3.78 | 0.85 | 0.57 | | 0 | Min | 0.09 | 0.09 | 0.07 | 0.09 | 0.03 | 0.01 | 0.02 | 0.02 | | | Avg | 0.3 | 0.42 | 0.40 | 0.94 | 0.94 | 0.69 | 0.23 | 0.19 | | Phenanthrene (µg/m3) | Max | 0.9 | 0.82 | 0.84 | 0.91 | 1 | 0.99 | 0.82 | 0.74 | | 0 | Min | 0.01 | 0.009 | 0.01 | 0.01 | 0.01 | 0.01 | 0.07 | 0.06 | | | Avg | 0.23 | 0.20 | 0.15 | 0.22 | 0.33 | 0.20 | 0.25 | 0.22 | | Fluoranthene (µg/m3) | Max | 2.65 | 0.84 | 1.59 | 19.54 | 4.16 | 20.36 | 0.68 | 1.71 | | | Min | 0.06 | 0.15 | 0.2 | 0.24 | 0.2 | 0.01 | 0.01 | 0.01 | | | Avg | 0.43 | 0.36 | 0.74 | 3.61 | 1 | 2.12 | 0.24 | 0.30 | | Pyrene (µg/m3) | Max | 3.52 | 1.13 | 2.4 | 42.23 | 40.25 | 51.22 | 0.87 | 0.74 | | , , , | Min | 0.01 | 0.14 | 0.23 | 0.15 | 0.02 | 0.01 | 0.01 | 0.01 | | | Avg | 0.54 | 0.48 | 0.90 | 7.46 | 4.37 | 7.98 | 0.16 | 0.14 | | Chrycene (µg/m3) | Max | 4.59 | 1.03 | 3.01 | 6.27 | 5.51 | 5.82 | 0.61 | 0.79 | | | Min | 0.08 | 0.15 | 0.44 | 0.42 | 0.08 | 0.06 | 0.05 | 0.05 | |----------------------|-----|-------|------|-------|--------|-------|-------|------|------| | | Avg | 0.78 | 0.51 | 1.01 | 1.50 | 1.47 | 1.22 | 0.19 | 0.22 | | Banz(a)anthracene | Max | 5.64 | 2.84 | 3.7 | 15.42 | 6.57 | 16.73 | 1.01 | 0.97 | | (µg/m3) | Min | 0.17 | 0.17 | 0.04 | 0.14 | 0.05 | 0.06 | 0.01 | 0.01 | | (18) | Avg | 0.89 | 0.65 | 0.88 | 2.66 | 1.44 | 2.93 | 0.25 | 0.31 | | Benzo[k]fluoranthene | Max | 7.67 | 1.99 | 5.98 | 4.81 | 4.06 | 6.89 | 0.84 | 0.69 | | (µg/m3) | Min | 0.15 | 0.38 | 0.14 | 0.48 | 0.05 | 0.06 | 0.03 | 0.03 | | (18) | Avg | 1.32 | 0.99 | 1.34 | 1.21 | 0.89 | 1.76 | 0.35 | 0.21 | | Benzo[b]fluoranthene | Max | 7.89 | 1.93 | 6.15 | 5.12 | 4.73 | 7.29 | 0.59 | 0.71 | | (µg/m3) | Min | 0.12 | 0.04 | 0.21 | 0.17 | 0.07 | 0.01 | 0.06 | 0.01 | | (18) | Avg | 1.09 | 0.62 | 1.053 | 1.43 | 1.06 | 1.65 | 0.17 | 0.20 | | Benzopyrene (µg/m3) | Max | 10.9 | 2.79 | 8.42 | 7.25 | 8.91 | 9.19 | 0.96 | 0.69 | | , | Min | 0.24 | 0.08 | 0.39 | 0.39 | 0.01 | 0.04 | 0.01 | 0.01 | | | Avg | 1.64 | 0.87 | 1.66 | 1.75 | 1.58 | 1.31 | 0.30 | 0.27 | | Indeno [1,2,3-cd] | Max | 2.39 | 6.67 | 0.95 | 2.46 | 1.68 | 4.61 | 0.52 | 0.98 | | fluoranthene (µg/m3) | Min | 0.13 | 0.07 | 0.42 | 0.26 | 0.11 | 0.09 | 0.07 | 0.06 | | , | Avg | 0.71 | 1.02 | 0.57 | 0.72 | 0.70 | 1.25 | 0.22 | 0.42 | | Dibenz(ah)anthracene | Max | 1.82 | 1.2 | 0.91 | 1.25 | 2.24 | 0.99 | 1.34 | 2.48 | | (μg/m3) | Min | 0.11 | 0.08 | 0.16 | 0.1 | 0.07 | 0.04 | 0.08 | 0.05 | | (10) | Avg | 0.47 | 0.32 | 0.35 | 0.46 | 0.54 | 0.24 | 0.31 | 0.4 | | Benzo[ghi]perylene | Max | 16.3 | 9.7 | 27.2 | 13.6 | 9.4 | 12.2 | 8 | 2.3 | | (µg/m3) | Min | 0.1 | 0.07 | 0.04 | 0.06 | 0.06 | 0.17 | 0.07 | 0.13 | | , , | Avg | 2.049 | 2.63 | 2.95 | 2.55 | 1.61 | 2.13 | 0.83 | 0.47 | | Acenaphthene (µg/m3) | Max | 0.69 | 0.45 | 15.1 | 119.08 | 2.54 | 11.8 | 0.67 | 2 | | | Min | 0.01 | 0.05 | 0.04 | 0.11 | 0.01 | 0.06 | 0.01 | 0.01 | | | Avg | 0.14 | 0.22 | 2.63 | 11.34 | 0.369 | 1.55 | 0.14 | 0.33 | Table 9: Summarized results of Non-methane VOC | Parameters | Locations | (Oil Jetty
No.1)
A-1 | (Oil Jetty No.7)
A-2 | (Kandla Port
Colony)
A-3 | (Marine
Bhavan)
A-4 | (Coal Storage
Area)
A-5 | (Gopalpuri
Hospital
A-6 | (Admin
Building)
A-7 | (Vadinar
Colony)
A-8 | |------------------|-----------|----------------------------|-------------------------|--------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------| | Non- Methane VOC | Max | 2.11 | 2.67 | 3.54 | 1.35 | 1.8 | 2.01 | 2.15 | 1.67 | | (μg/m3) | Min | 0.12 | 0.09 | 0.1 | 0.08 | 0.13 | 0.11 | 0.07 | 0.1 | | | Avg | 0.73 | 0.79 | 0.87 | 0.79 | 1.09 | 0.93 | 0.91 | 0.74s | #### 4.3 Data Interpretation and Conclusion The results were compared with the National Ambient Air Quality Standards (NAAQS), 2009 of Central Pollution Control Board (CPCB). ### 1) Kandla: #### Particulate matter: - The concentration of PM₁₀ varies very widely and is reported in the range of **28.68** to **448.12** μg/m³, with a yearly average value of **176.83** with standard deviation **64.185** μg/m³. As shown in Graph 1, the highest concentration (value) of PM₁₀ is reported at location A-5 (coal storage area) during the winter. It can be seen that PM₁₀ exceeds the NAAQS annual limit, i.e., 60 μg/m³, in
all locations. It can be seen that location A-5 (coal storage area) had the maximum percentage exceedance, and location A-1 (oil jetty No. 1) had the minimum percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., 100 μg/m³. - The concentration of PM2.5 varies in the range of 5.51 to 221.9 $\mu g/m^3$, with a yearly average value of 45.35 with standard deviation 21.16 $\mu g/m^3$. As shown in Graph 2, the highest concentration of PM_{2.5} is at location A-5 (the coal storage area) in winter. It can be seen that PM_{2.5} exceeds the NAAQS annual limit, i.e., 40 $\mu g/m^3$, on five locations, and location A-6, i.e., Gopalpuri hospital, falls within the NAAQS annual limit. It can be seen that location A-5 (coal storage area) had the maximum percentage exceedance, and location A-6 (Gopalpuri hospital) had the minimum percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., $60 \ \mu g/m^3$. - The highest concentration of Particulate matter at locations A-5, (the coal storage area), could be attributed to the presence of heavy vehicular traffic in upwind areas, which have a higher impact, causing the dispersion of emitted particulate matter in the ambient air. Ther activities observed in the surrounding such as The unloading of coal directly into the truck using grabs, construction in the vicinity causes the dust to disperse in the air as well as coal dust to fall and settle on the ground. This settled coal dust again mixes with the air while trucks travel through it. Also, the coal-loaded trucks are generally not always covered with tarpaulin sheets, and this might result in increased suspension of coal from trucks or dumpers during their transit from vessel to yard or storage site. This might increase the PM in and around the coal storage area and Marine Bhavan. #### **Gaseous Pollutants:** • The concentration of SOx varies from **0.52** to **283** μg/m³, with a yearly average concentration of **14.029** with standard deviation **18.85** μg/m³. As shown in Graph 3, the highest concentration of SOx is at location **A-5** (the coal storage area) in winter. It can be seen that at all locations, SOx are within the NAAQS annual limit, i.e., 50 μg/m³. It can be seen that location A-2 (Oil Jetty No. 7) had the maximum percentage exceedance, i.e., **7.36**%, which is about 7 days out of 95 days of monitoring, and the other five locations comply with the standards (compliance more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 80 μg/m³. The concentration of NOx varies from **1.01** to **80.94** μg/m³, with a yearly average concentration of **19.35** with standard deviation **13.10** $\mu g/m3$. As shown in Graph 4, the highest concentration of NOx is at location A-5 (the coal storage area) in winter. It can be seen that on all locations's NOx within the NAAQS annual limit, i.e., $40~\mu g/m^3$, it can be seen that all locations comply with the standards (complied more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., $80~\mu g/m^3$. - The concentration of CO varies from **0.08** to **4.21** mg/m³, with a yearly average concentration of **0.884** with standard deviation **0.40** mg/m³. As shown in Graph 5, the highest concentration of CO is at location A-2 (Oil Jetty No. 7) in winter. It can be seen that at all locations, they're complying (more than 98% of the time) with the NAAQS 1 hour limit, i.e., 4 mg/m³. Location A-5 (the coal storage area) had the maximum percentage exceedance, i.e., **7.36**%, which is about 7 days out of 95 days of monitoring, and other locations such as Location A-2 (Oil Jetty No. 7), Location A-3 (Kandla Port Colony), Location A-4 (Marine Bhavan), and Location A-6 (Gopalpuri Hospital) had percentage exceedances of **5.26**, **5.26**, **2.85**, and **2.85**, respectively. And location A-1 (oil jetty no. 1) comply with the standards (compliance more than 98% times) while comparing with the NAAQS 8-hour limit, i.e., 2 mg/m³. - The concentration of total VOC levels was recorded in the range of **0.01** to **17.43** µg/m3, with a yearly average value of **1.14** with standard deviation 1.21 µg/m3 at Kandla. As shown in graph 6, the highest concentration of VOCs is at location **A-3**, (Kandla port colony); this is the only spike observed in the whole monitoring period for VOCs at this location. The main source of VOCs in the ambient air may be attributed to the burning of gasoline and natural gas in vehicle exhaust, burning fossil fuels, and garbage that releases VOCs into the atmosphere. During the monitoring period, the wind flows in the south direction at Kandla, and hence the wind direction and speed also contribute to increased dispersion of pollutants from the upward areas towards the downward areas. **Polycyclic Aromatic Hydrocarbons (PAHs):** are ubiquitous pollutants in urban atmospheres. Anthropogenic sources of total PAHs in ambient air emissions are greater than those that come from natural events. These locations are commercial areas where Vehicular activity and dust emission is common. PAHs are a class of chemicals that occur naturally in coal, crude oil, and gasoline. The higher concentration which results from burning coal, oil, gas, road dust, etc. Other outdoor sources of PAHs may be the industrial plants in-and-around the DPA premises. - The concentration of Benzene levels was recorded in the range of **0.02** to **3.8** $\mu g/m^3$, with a yearly average value of **0.84** with standard deviation **0.64** $\mu g/m^3$. The highest concentration of Benzene is at location **A-1**, (**Oil Jetty No. 1**) in summer. It can be seen that at all locations, Benzene within the NAAQS annual limit, i.e., $5 \mu g/m^3$. - The ambient air monitoring location of Kandla recorded the non-methane VOC (NM-VOC) concentration in the range of 0.08 to 3.54 μg/m3, with a yearly average value of 0.86 μg/m3 at Kandla. The highest concentration is at location A-3, (Kandla Port Colony in Winter. #### 2) Vadinar: **Particulate matter:** The concentration of PM10 at Vadinar varies in the range of **1.45 to 443.2** $\mu g/m^3$, with a yearly average value of **63.49** with a standard deviation of **34.76** $\mu g/m^3$. As shown in Graph 1, the highest concentration of PM₁₀ is at location A-7 (Admin Building Vadinar) in the winter. It can be seen that at location A-7 (Admin Building Vadinar), PM₁₀ exceeds the NAAQS annual limit, i.e., 60 $\mu g/m^3$, and at location A-8 (Vadinar Colony), it falls within the annual standards. It can be seen that locations A-7 (Admin Building Vadinar) and A-8 (Vadinar Colony) had a 5.15% percentage exceedance while comparing with the NAAQS 24-hour limit, i.e., 100 $\mu g/m^3$. • The concentration of PM_{2.5} varies in the range of **2.36** to **71.18** μg/m³, with a yearly average value of **24.42** with a standard deviation **of 9.69** μg/m³. As shown in Graph 2, the highest concentration of PM_{2.5} is at location **A-7** (**Admin Building Vadinar**) in winter. It can be seen that in all two locations, PM_{2.5} is within the NAAQS annual limit, i.e., 40 μg/m³. it can be seen that on both locations, **A-7** (**building Vadinar**) and **A-8** (**Vadinar Colony**) comply with the standards (complimented more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 60 μg/m³. #### **Gaseous Pollutants:** - The concentration of SOx varies from **0.52** to **69.91** μ g/m3, with a yearly average concentration of 13.146 with a standard deviation of 14.14 μ g/m3. As shown in Graph 3, the highest concentration of SOx is at location A-8 (Vadinar Colony) in the winter. It can be seen that in all locations, SOx are within the NAAQS annual limit, i.e., 50 μ g/m³. It can be seen that both locations comply with the standards (compliance more than 98% times) while comparing with the NAAQS 24-hour limit, i.e., 80 μ g/m³. - The concentration of NOx varies from **0.9** to **52.76** μ g/m³, with a yearly average concentration of **11.28** with a standard deviation of **7.17** μ g/m³. As shown in Graph 4, the highest concentration of NOx is at location A-7 (Admin Building Vadinar) in the winter. It can be seen that in all locations, NOx is within the NAAQS annual limit, i.e., 40 μ g/m³. It can be seen that all locations comply with the standards (compliance more than 98% of the time) while comparing with the NAAQS 24-hour limit, i.e., 80 μ g/m³. - The concentration of CO varies from **0.03** to **3.14** mg/m³, with a yearly average concentration of **0.87** with a standard deviation **0.41** mg/m³. As shown in Graph 5, the highest concentration of CO is at location **A-7**, (**Admin Building Vadinar**) in winter. it can be seen that at all locations they are complying (Complied more than 98% times) with the NAAQS 1 hour limit, i.e., 4 mg/m³. Both **locations A-7**, (**Admin building Vadinar**) and **A-8**,(**Vadinar Colony**) had **5.16**% exceedance, which is about 5 days out of 97 days of monitoring, while comparing with the NAAQS 8-hour limit, i.e., 2 mg/m³. - The concentration of **Total VOCs** levels was recorded in a range of **0 to 6.62** μ g/m³ with a yearly average value of **0.96** with a standard deviation of **1.051** μ g/m³ at Vadinar. As shown in graph 6, the **highest** concentration of **VOCs** is at **location A-8, (Vadinar Colony),** this is the only spike observed in the whole monitoring period for VOCs at this location. ### Polycyclic Aromatic Hydrocarbons (PAHs): - The concentration of **Benzene** levels was recorded in a range of **0.01 to 1.03** μg/m³, with a yearly average value of **0.28** with a standard deviation of 0.36 μg/m³. the **highest** concentration of Benzene is at **location A-7**, (**Admin building Vadinar**) in Winter. It can be seen that in all locations **Benzene** within the NAAQS annual limit, i.e., 5 μg/m³. - Non-methane VOC (NM-VOC) concentration at Vadinar was observed in the range of 0.07 to 2.15 μg/m³ with a yearly
average value of 0.82 with a standard deviation 0.085 μg/m³. the highest concentration is at A-7, (Admin building Vadinar) in Winter. With reference to the Ambient Air Quality monitoring conducted under the study, it may be concluded that the particulate matter PM_{10} , were reported in higher concentration and apparently exceeds the NAAQS particularly at locations of Kandla., whereas $PM_{2.5}$ complies with the NAAQS at majority of the locations. For both the ambient air monitoring parameters (PM_{10} and $PM_{2.5}$), the major exceedance was observed at location A-5 i.e. Coal Storage Area. The gaseous pollutants (NO_x , SO_x , CO, VOCs etc.) falls within the permissible limit. The probable reasons contributing to these emissions of pollutants into the atmosphere in-and-around the port area are summarized as follows: - - 1. **Port Machinery:** Port activities involve the use of various machinery and equipment, including cranes, for lifts, tugboats, and cargo handling equipment. These machines often rely on diesel engines, which can emit pollutants such as NO_x, Particulate matter, and CO. Older or poorly maintained equipment tends to generate higher emissions. - 2. **Port Vehicles:** Trucks and other vehicles operating within port and port area contributes to air pollution. Similar to port machinery, diesel-powered vehicles can emit NO_x, PM, CO, and other pollutants such as PAH, VOCs etc. Vehicle traffic and congestion in and around port areas can exacerbate the air quality issues. - 3. **Coal Handling:** Resuspension of dust occurs due to the transportation of coal and the handling of coal. - 4. **Construction Activities:** Another reason for the high particulate matter content in this area is due to high construction activities in the surrounding area. #### 4.4 Remedial Measures: Efficient mitigation strategies need to be implementation for substantial environmental and health co-benefits. To improve air quality, DPA has implemented a number of precautionary measures, such as maintaining Green zone, initiated Inter-Terminal Transfer of tractor-trailers, Centralized Parking Plaza, providing shore power supply to tugs and port crafts, the use of LED lights at DPA area helps in lower energy consumption and decreases the carbon foot prints in the environment, time to time cleaning of paved and unpaved roads, use of tarpaulin sheets to cover dumpers at project sites etc. are helping to achieve the cleaner and green future at port. To address air pollution from port shipping activities, various measures that can be implemented are as follows: - Practice should be initiated for using mask as preventative measure, to avoid Inhalation of dust particle-Mask advised in sensitive areas. Covering vehicles with tarpaulin during transportation will help to reduce the suspension of pollutants in air. - Ensuring maintenance of engines and machinery to comply with emission standards. - Frequent water sprinkling on roads to reduce dust suspension due to vehicular movement, this can be use during transporting coal to avoid suspension of coal dust. - Use of proper transport methods, such as a conveyor belt, for excavated material and screens around the construction site. - End to End pavement of roads in construction site could considerably reduce dust emission. Prohibition of use of heavy diesel oil as fuel could be possibly reduce pollutants. Encouraging use of low-sulfur fuels (viz. Marine Gas Oil (MGO)/Liquefied Natural Gas (LNG), can significantly reduce sulfur and PM emissions from ships. - Retrofitting ships with exhaust gas cleaning systems can help reduce sulfur emissions. Engine upgrades, such as optimizing fuel combustion and improving engine efficiency, can reduce overall emissions. - Investing in infrastructure for cold ironing allows ships to connect to the electrical grid while docked, reducing the need for auxiliary engines and associated emissions. - Implementing efficient cargo-handling processes, optimizing logistics to reduce congestion and idling times, and encouraging use of cleaner port machinery and vehicles can all contribute to reducing air pollution in port areas. - Shrouding shall be carried out in the work site enclosing the dock/proposed facility area. This will act as dust curtain as well achieving zero dust discharge from the site. These curtain or shroud will be immensely effective in restricting disturbance from wind in affecting the dry dock operations, preventing waste dispersion, improving working conditions through provision of shade for the workers. - Dust collectors shall be deployed in all areas where blasting (surface cleaning) and painting operations are to be carried out, supplemented by stacks for effective dispersion. - Periodic vacuum-sweeping mechanisms shall be adopted. # **CHAPTER 5: DG STACK MONITORING** # 5.1 DG Stack Monitoring A diesel generator is a mechanical-electrical machine that produces electrical energy (electricity) from diesel fuel. They are used by the residential, commercial, charitable and governmental sectors to provide power in the event of interruption to the main power, or as the main power source. Diesel generating (DG) sets are generally used in places without connection to a power grid, or as an emergency power supply if the grid fails. These DG sets utilize diesel as fuel and generate and emit the air pollutants such as Suspended Particulate Matter, SO₂, NO_x, CO, etc. from the stack during its functioning. The purpose of stack sampling is to determine emission levels from plant processes to ensure they are in compliance with any emission limits set by regulatory authorities to prevent macro environmental pollution. The stack is nothing but chimney which is used to disperse the hot air at a great height, emissions & particulate matters that are emitted. Hence, monitoring of these stacks attached to DG Sets is necessary in order to quantify the emissions generated from it. As defined in scope by DPA, the monitoring of DG Stack shall be carried out at two locations, one at Kandla and one at Vadinar. The details of the DG Sets at Kandla and Vadinar have been mentioned in Table 10 as follows: Table 10: Details of DG Stack monitoring locations | Sr. No. | Location Code | Location Name | Latitude/ Longitude | |---------|---------------|---------------|---------------------| | 1. | DG-1 | Kandla | 22.98916N 70.22083E | | 2. | DG-2 | Vadinar | 22.44155N 69.67419E | The map depicting the locations of DG Stack Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 6 and 7** as follows: Map 6: DG Stack monitoring Locations at Kandla Map 7: DG Stack monitoring Locations at Vadinar # Methodology: Under the study, the list of parameters to be monitored under the projects for DG Stack Monitoring has been mentioned in **Table 11** as follows: Table 11: DG stack parameters | Sr. No. | Parameter | Unit | Instrument | |---------|---------------------------------------|--------|--------------------------------------| | 1. | Suspended Particulate Matter | mg/Nm³ | Stack Monitoring Kit | | 2. | Sulphur Dioxide (SO ₂) | PPM | | | 3. | Oxides of Nitrogen (NO _x) | PPM | Sensor based Flue Gas | | 4. | Carbon Monoxide | % | Analyzer (Make: TESTO,
Model 350) | | 5. | Carbon Dioxide | % | 1,10401 000) | The methodology for monitoring of DG Stack has been mentioned as follows: The monitoring of DG Stack is carried out as per the IS:11255 and USEPA Method. The Stack monitoring kit is used for collecting representative samples from the stack to determine the total amount of pollutants emitted into the atmosphere in a given time. Source sampling is carried out from ventilation stack to determine the emission rates/or characteristics of pollutants. Sample collected must be such that it truly represents the conditions prevailing inside the stack. Whereas the parameters Sulphur Dioxide, Oxides of Nitrogen (NO_x), Carbon Monoxide and Carbon Dioxide, the monitoring is carried out by using the sensor-based Flue Gas Analyzer. #### **Monitoring Frequency** Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar for a period of April 2023 to March 2024. #### 5.2 Result and Discussion The sampling and monitoring of DG stack emission was carried out for monitoring period at Kandla and Vadinar and its comparison with CPCB or Indian standards for Industrial Stack Monitoring the flue gas emission from DG set has given in **Table 12**. Table 12: DG monitoring data | | Tuble 12. Do montoling data | | | | | | | | | | | |------------|---------------------------------------|-------------|------------------|-------------------|---|--|--|--|--|--|--| | Sr.
No. | Stack Monitoring Parameters | for DG Sets | DG-1
(Kandla) | DG-2
(Vadinar) | Stack Monitoring
Limits/Standards
As per CPCB | | | | | | | | 1. | Suspended Particulate Matter | Max | 98.47 | 45.32 | 150 | | | | | | | | | (SPM) (mg/Nm³) | Min | 46.82 | 31.85 | | | | | | | | | | | Avg. | 78.96 | 41.33 | | | | | | | | | 2. | Sulphur Dioxide (SO2) (PPM) | Max | 6.45 | N.D. | 100 | | | | | | | | | | Min | 3.25 | N.D. | | | | | | | | | | | Avg. | 4.95 | N.D. | | | | | | | | | 3. | Oxides of Nitrogen (NO _x) | Max | 55.2 | 46 | 50 | | | | | | | | | (PPM) | Min | 39.27 | 13.52 | | | | | | | | | | | Avg. | 45.31 | 25.92 | | | | | | | | | 4. | Carbon Monoxide (CO) (%) | Max | 0.34 | 0.016 | 1 | | | | | | | | | | Min | 0.007 | 0.002 | | | | | | | | | | | Avg. | 0.16 | 0.01 | | | | | | | | | 5. | Carbon Dioxide (CO ₂) (%) | Max | 3.09 | 1.42 | - | | | | | | | | | | Min | 1.21 | 1.03 | | | | | | | | | | | Avg. | 1.92 | 1.19 | | | | | | | | Graph 7 Spatial trend in SPM Concentration Graph 8 Spatial trend in SO_x Concentration Graph 9 Spatial trend in NOx Concentration Graph 10 Spatial trend in CO Concentration Graph 11 Spatial trend in CO₂ Concentration #### 5.3 Data Interpretation and Conclusion #### 1)
Kandla: The Suspended Particulate Matter (SPM) varies in the range of **46.82** to **98.47** mg/m³. The yearly average SPM of D.G stack-1 is **78.96** mg/m³. The maximum concentration for SPM was observed in the monitoring period of October to November 2023. The Sulphur dioxide (SO_x) varies in the range of **3.25** to **6.45** PPM. The yearly average SO_x of D.G stack-1 is **4.95** PPM. The maximum concentration of SO_x observed in the monitoring period of October to November 2023. The NO_x varies in the range of **39.27** to **55.2** PPM. The yearly average of NO_x of D.G stack-1 at Kandla is **45.31** PPM. The maximum concentration of NO_x observed in the monitoring period of July to August 2023. The CO at Kandla varies in the range of **0.007** to **0.34** %. The yearly average of CO of D.G stack-1 at Kandla is **0.16** % The maximum concentration of CO observed in the monitoring period of March to April 2024. The CO₂ at Kandla varies in the range of **1.21** to **3.09** %. The yearly average of CO₂ of D.G stack-1 at Kandla is **1.92** % The maximum concentration of CO₂ observed in the monitoring period of March to April 2024. The results of all the above parameters of DG stack-1 at Kandla emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters. #### 2) Vadinar: The Suspended Particulate Matter (SPM) in the range of **31.85** to **45.32** mg/m 3 . The yearly average SPM of D.G stack-2 at Vadinar is **41.33** mg/m 3 . The maximum concentration of SPM was observed in the monitoring period of March to April 2024. There is no Sulphur dioxide (SO_x) concentration detected at Vadinar. The NO_x at Vadinar varies in the range of 13.52 to 46 PPM. The yearly average of NO_x of D.G stack-2 at Vadinar is 25.928 PPM. The maximum concentration of NO_x observed in the monitoring period of June to July 2023. The CO at Vadinar varies in the range of **0.002** to **0.016** %. The yearly average of CO of D.G stack-2 at Vadinar is **0.0106** % The maximum concentration of CO observed in the monitoring period of October to November 2023. The CO₂ at Vadinar varies in the range of **1.03 to 1.42** %. The yearly average in CO₂ of D.G stack-2 at Vadinar is **1.92** % The maximum concentration of CO₂ observed in the monitoring period of June to July 2024. The results of all the above parameters of DG stack-2 at Vadinar emission are compared with the permissible limits mentioned in the consent issued by GPCB, and have been found within the prescribed limit for all the monitored parameters. # **CHAPTER 6: NOISE MONITORING** # 6.1 Noise Monitoring Noise can be defined as an unwanted sound, and it is therefore, necessary to measure both the quality as well as the quantity of environmental noise in and around the study area. Noise produced during operation stage and the subsequent activities may affect surrounding environment impacting the fauna and as well as the human population. Under the scope, the noise monitoring is required to be carried out at 10 locations in Kandla and 3 locations in Vadinar. The sampling locations for noise are not only confined to commercial areas of DPA but also the residential areas of DPA. The details of the noise monitoring stations are mentioned in **Table 13** and locations have been depicted in the **Map 8 and 9** as follow: Table 13: Details of noise monitoring locations | | | Tuble | 13. Details of house monitoring for | | |------------|---------|------------|-------------------------------------|-----------------------| | Sr.
No. | Loc | ation Code | Location Name | Latitude/ Longitude | | 1. | N-1 | | Oil Jetty 7 | 23.043527N 70.218456E | | 2. | | N-2 | West Gate No.1 | 23.006771N 70.217340E | | 3. | | N-3 | Canteen Area | 23.003707N 70.221331E | | 4. | | N-4 | Main Gate | 23.007980N 70.222525E | | 5. | dla | N-5 | Main Road | 23.005194N 70.219944E | | 6. | Kandla | N-6 | Marin Bhavan | 23.007618N 70.222087E | | 7. | | N-7 | Port & Custom Building | 23.009033N 70.222047E | | 8. | | N-8 | Nirman Building | 23.009642N 70.220623E | | 9. | | N-9 | ATM Building | 23.009985N 70.221715E | | 10. | | N-10 | Wharf Area/ Jetty | 22.997833N 70.223042E | | 11. | ır | N-11 | Near Main Gate | 22.441544N 69.674495E | | 12. | Vadinar | N-12 | Near Vadinar Jetty | 22.441002N 69.673147E | | 13. | Λ | N-13 | Port Colony Vadinar | 22.399948N 69.716608E | Map 8: Locations for Noise Monitoring at Kandla Map 9: Locations for Noise Monitoring at Vadinar #### Methodology: The intensity of sound energy in the environment is measured in a logarithmic scale and is expressed in a decibel (dB(A)) scale. The ordinary sound level meter measures the sound energy that reaches the microphone by converting it into electrical energy and then measures the magnitude in dB(A). Whereas, in a sophisticated type of sound level meter, an additional circuit (filters) is provided, which modifies the received signal in such a way that it replicates the sound signal as received by the human ear and the magnitude of sound level in this scale is denoted as dB(A). The sound levels are expressed in dB(A) scale for the purpose of comparison of noise levels, which is universally accepted. Noise levels were measured using an integrated sound level meter of the make Envirotech Sound Level Meter (Class-I) (model No. SLM-109). It has an indicating mode of Lp and Leq. Keeping the mode in Lp for few minutes and setting the corresponding range and the weighting network in "A" weighting set the sound level meter was run for one-hour time and Leq was measured at all locations. #### **Monitoring Frequency** Monitoring was carried out at each noise monitoring station for Leq. noise level (Day and Night), which was recorded for 24 hours continuously at a monthly frequency with the help of Sound/Noise Level Meter (Class-1). The details of the noise monitoring have been mentioned in **Table 14**. **Table 14: Details of the Noise Monitoring** | Sr. No. | Parameters | Units | Reference Method | Instrument | |---------|-------------|-------|------------------|---------------------------| | 1. | Leq (Day) | dB(A) | | Noise Level Meter (Class- | | 2. | Leq (Night) | dB(A) | IS 9989: 2014 | I) model No. SLM-109 | #### Standard for Noise Ministry of Environment & Forests (MoEF) has notified the noise standards vide the Gazette notification dated February 14, 2000 for different zones under the Environment Protection Act (1986). The day time noise levels have been monitored from 6.00 AM to 10.00 PM and night noise levels were measure from 10.00 PM to 6.00 AM at all the thirteen locations (10 at Kandla and 3 at Vadinar) monthly. The specified standards are as mentioned in **Table 15** as follows: Table 15: Ambient Air Quality norms in respect of Noise⁽²⁾ | | | Noise dB(A) Leq | | | | |-----------|------------------|-----------------|------------|--|--| | Area Code | Category of Area | Daytime | Night time | | | | Δ | Industrial Area | 75 | 70 | | | | B | Commercial Area | 65 | 55 | | | | C | Residential Area | 55 | 45 | | | | D | Silence Zone | 50 | 40 | | | # 6.2 Result and Discussion The details of the Noise monitoring conducted during the monitoring period April 2023 to March 2024 have been summarized in the **Table 16** as below: Table 16: The Results of Ambient Noise Quality | Table 16: The Results of Ambient Noise Quality | | | | | | | | | | | | |--|-----------------|---------------------------|---------------------|----------|-------------------|------|-------|----------|---------------------|------|--------| | Sr. | Station
Code | Station Name | Category of
Area | Standard | Day Time in dB(A) | | | Standard | Night Time in dB(A) | | | | No. | | | | | Max. | Min. | Avg. | | Max. | Min. | Avg. | | 1 | N-1 | Oil Jetty 7 | A | 75 | 65.7 | 36.5 | 47.75 | 70 | 57.5 | 33 | 41.801 | | 2 | N-2 | West Gate No.1 | A | 75 | 68.4 | 36.5 | 54.35 | 70 | 54.2 | 36.1 | 47.02 | | 3 | N-3 | Canteen Area | В | 65 | 66.2 | 38 | 52.61 | 55 | 52.1 | 33 | 43.46 | | 4 | N-4 | Main Gate | A | 75 | 61.4 | 35.3 | 50.69 | 70 | 50.8 | 36.1 | 43.33 | | 5 | N-5 | Main Road | A | 75 | 66.1 | 33.5 | 51.67 | 70 | 55.5 | 33.6 | 43.7 | | 6 | N-6 | Marin Bhavan | В | 65 | 62.3 | 38.9 | 52.52 | 55 | 52.3 | 31.9 | 43.23 | | 7 | N-7 | Port & Custom
Building | В | 65 | 66.3 | 37.6 | 50.89 | 55 | 54.3 | 33.9 | 38.91 | | 8 | N-8 | Nirman Building | В | 65 | 60.8 | 40.9 | 51 | 55 | 58.9 | 35.2 | 43.02 | | 9 | N-9 | ATM Building | В | 65 | 65.1 | 35.1 | 49.7 | 55 | 53.4 | 34.1 | 39.25 | | 10 | N-10 | Wharf Area/ Jetty | A | 75 | 74.5 | 36.9 | 52.9 | 70 | 52.7 | 36 | 42.3 | | 11 | N-11 | Near Main Gate | A | 75 | 72.3 | 34 | 62.51 | 70 | 71.2 | 34.3 | 55.71 | | 12 | N-12 | Near Vadinar Jetty | A | 75 | 76.3 | 39.2 | 64.98 | 70 | 68.5 | 34.7 | 56.38 | | 13 | N-13 | Port Colony
Vadinar | С | 55 | 77.5 | 37.7 | 50.05 | 45 | 65.9 | 36.2 | 49.5 | ### 6.3 Data Interpretation and Conclusion - 1) Kandla: The noise level was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 10 locations at Kandla ranged from 33.5 dB(A) to 74.5 dB(A) while, during Night Time the average Noise Level ranged from 31.9 dB(A) to 58.9 dB(A), of which six locations out of ten locations, noise level were within the permissible limits for the industrial, commercial area and residential zone for Day time and night time. Other Four locations such as i.e., N-3 (Canteen Area), N-7 (Port & Custom Building), N-8 (Nirman Building) and N-9 (ATM building) which are Commercial areas, slightly exceed the standard limits prescribed by NAAQS by CPCB, in the monitoring period of April to May 2023 and May to June 2023. - 2) Vadinar: The noise level was compared with the standard limits specified in NAAQS by CPCB. During the Day Time, the average noise level at all 3 locations at Vadinar ranged from 34 dB(A) to
77.5 dB(A) while, during Night Time the average Noise Level ranged from 34.3 dB(A) to 71.2 dB(A) at Vadinar, on location N-11 (Near main gate) noise level was within the permissible limits for the industrial zone for Day time and night time. On locations of Vadinar such as i.e., N-12 (Near Vadinar jetty), which are considered as industrial area slightly exceed the standard limits prescribed by NAAQS by CPCB, in the monitoring period of June to July 2023. And on location N-13 (Port Colony Vadinar), most frequently exceed the permissible limit during the day time as well as night time. #### 6.4 Remedial Measures The noise levels detected at the locations of Kandla and Vadinar, are found within the prescribed norms. The noise can further be considerably reduced by adoption of low noise equipment or installation of sound insulation fences. Green belt of plants can be a good barrier. If noise exceeds the applicable norms, then the working hours may be altered as a possible means to mitigate the nuisances of construction activities. # **CHAPTER 7: SOIL MONITORING** # 7.1 Soil Quality Monitoring: The purpose of soil quality monitoring is to track changes in the features and characteristics of the soil, especially the chemical properties of soil occurring at specific time intervals under the influence of human activity. Soil quality assessment helps to determine the status of soil functions and environmental risks associated with various practices prevalent at the location. As defined in scope by Deendayal Port Authority (DPA), Soil Quality Monitoring shall be carried out at Six locations, four at Kandla and two at Vadinar. The details of the soil monitoring locations within the Port area of DPA are mentioned in **Table 17**: Table 17: Details of the Soil quality monitoring | Sr. No. | Loca | ntion Code | Location Name | Latitude Longitude | | |---------|---------|---------------------------------|--------------------|-----------------------|--| | 1. | | S-1 | Oil Jetty 7 | 23.043527N 70.218456E | | | 2. | dla | S-2 IFFCO Plant | | 23.040962N 70.216570E | | | 3. | Kan | S-2 IFFCO Plant S-3 Khori Creek | | 22.970382N 70.223057E | | | 4. | | S-4 | Nakti Creek | 23.033476N 70.158461E | | | 5. | ar | S-5 | Near SPM | 22.400026N 69.714308E | | | 6. | Vadinar | S-6 | Near Vadinar Jetty | 22.440759N 69.675210E | | # Methodology As per the defined scope by Deendayal Port Authority (DPA), the sampling and analysis of Soil quality has been carried out on monthly basis. The samples of soil collected from the locations of Kandla and Vadinar and analyzed for the various physico-chemical parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures. The samples were analyzed for selected parameters to get the present soil quality status and environmental risks associated with various practices prevalent at the location. GEMI has framed its own guidelines for collection of soil samples titled as 'Soil Sampling Manual'. Soil samples were collected from 30 cm depth below the surface using scrapper, filled in polythene bags, labelled on-site with specific location code and name and sent to GEMI's laboratory, Gandhinagar for further detailed analysis. The samples collected from all locations are homogeneous representative of each location. The list of parameters to be monitored under the projects for the Soil Quality Monitoring been mentioned in **Table 18** as follows: # **Monitoring Frequency** Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. The monitoring was done from April 2023, to March, 2024. Table 18: Soil parameters | Sr. D. C. | | | | | | | |---|---|-------|---|---------------------------------|--|--| | No. | Parameters | Units | Reference method | Instruments | | | | 1. | TOC | % | Methods Manual Soil Testing in India | Titration Apparatus | | | | 2. | Organic
Carbon | % | January, 2011, 09. Volumetric method (Walkley and Black, 1934) | | | | | 3. | Inorganic
Phosphate Kg/Hectare | | Practical Manual Chemical Analysis of
Soil and Plant Samples, ICAR-Indian
Institute of Pulses Research 2017
Determination of Available
Phosphorus in Soil | UV-Visible
Spectrophotometer | | | | 4. | Texture | - | Methods Manual Soil Testing in India
January 2011,01 | Hydrometer | | | | 5. | рН | - | IS 2720 (Part 26): 1987 | pH Meter | | | | 6. | Conductivity | μS/cm | IS 14767: 2000 | Conductivity Meter | | | | 7. | Particle size
distribution &
Silt content | - | Methods Manual Soil Testing in India
January 2011 | Sieves Apparatus | | | | 8. | SAR | meq/L | Procedures for Soil Analysis,
International Soil Reference and
Information Centre, 6 th Edition 2002
13-5.5.3 Sodium Absorption Ratio
(SAR), Soluble cations | Flame Photometer | | | | 9. | Water Holding % Capacity | | NCERT, Chapter 9, 2022-23 and Water
Resources Department Laboratory
Testing Procedure for Soil & Water
Sample Analysis | Muffle Furnace | | | | 10. | Aluminium | mg/Kg | | | | | | 11. | Chromium | mg/Kg | EPA Method 3051A | ICP-OES | | | | 12. | Nickel | mg/Kg | | | | | | 13. | Copper | mg/Kg | Methods Manual Soil Testing in India
January, 2011, 17a | | | | | 14. | Zinc | mg/Kg | Methods Manual Soil Testing in India
January, 2011, 17a | | | | | 15. | Cadmium | mg/Kg | | | | | | 16. | Lead | mg/Kg | EPA Method 3051A | | | | | 17. | Arsenic mg/Kg | | | | | | | 18. | Mercury | mg/Kg | | | | | The map depicting the locations of Soil Quality Monitoring to be monitored in Kandla and Vadinar have been mentioned in **Map 10 and 11** as follows: Map 10: Soil Quality Monitoring Locations at Kandla Map 11: Soil Quality Monitoring Locations at Vadinar ## 7.2 Result and Discussion The analysis results of physical analysis of the soil samples collected during environmental monitoring period during April 2023 to March 2024 mentioned in **Table 19** are shown below: Table 19: Soil Quality for the Monitoring period | | | | Soil Quali | ity for the | Monitoring | period | | | |--------|---------------------|----------|-------------------------|------------------------|-------------------------|-------------------------|-------------------|--------------------------------| | | | Location | | Kaı | ndla | | Vad | linar | | Sr. No | Parameters | | S-1
(Oil Jetty
7) | S-2
IFFCO
Plant) | S-3
(Khori
Creek) | S-4
(Nakti
Creek) | S-5
(Near SPM) | S-6
(Near Vadinar
Jetty) | | | | Max | 9.53 | 8.8 | 8.88 | 9.48 | 8.69 | 9.36 | | 1 | pН | Min | 7.3 | 6.48 | 6.52 | 7.86 | 7.19 | 8.16 | | | | Avg. | 8.24 | 8.20 | 7.96 | 8.52 | 8.14 | 8.55 | | | | Max | 71500 | 36500 | 75700 | 17850 | 501 | 625 | | 2 | Conductivity | Min | 587 | 526 | 586 | 204 | 63 | 127 | | | (μS/cm) | Avg | 26881.17 | 11442 | 20646.33 | 5470 | 177.13 | 281.54 | | | | Max | 13.32 | 619.89 | 20.31 | 15.87 | 5.64 | 8.67 | | 3 | Inorganic Phosphate | Min | 0.39 | 0.43 | 1.24 | 0.32 | 0.35 | 0.26 | | | (Kg/ha) | Avg | 4.21 | 57.15 | 5.64 | 4.71 | 2.39 | 2.25 | | | | Max | 2.83 | 2.54 | 3.83 | 3.35 | 0.85 | 2.48 | | 4 | Organic Carbon (%) | Min | 0.03 | 0.08 | 0.14 | 0.27 | 0.06 | 0.14 | | | | Avg | 0.91 | 0.79 | 1.06 | 0.92 | 0.33 | 0.59 | | | | Max | 4.88 | 4.38 | 6.6 | 5.78 | 1.47 | 4.28 | | 5 | Organic Matter (%) | Min | 0.06 | 0.14 | 0.24 | 0.32 | 0.09 | 0.241 | | | | Avg | 1.57 | 1.36 | 1.82 | 1.48 | 0.57 | 1.01 | | | | Max | 41.45 | 22.91 | 31.51 | 10.01 | 0.25 | 0.45 | | 6 | SAR (meq/L) | Min | 0.81 | 0.36 | 0.5 | 0.36 | 0.05 | 0.09 | | | | Avg | 13.24 | 6.56 | 11.71 | 2.57 | 0.10 | 0.17 | | | | Max | 8643.04 | 9065.97 | 10298.7 | 9286.91 | 15921.7 | 14806.19 | | 7 | Aluminium (mg/Kg) | Min | 812.75 | 830.95 | 840.71 | 916.4 | 735.77 | 754.58 | | | | Avg | 2223.8 | 2322.3 | 2517.4 | 2470.4 | 2848.2 | 2762.2 | | | | Max | 92.23 | 90.7 | 86.18 | 87.07 | 106 | 91.88 | | 8 | Chromium (mg/Kg) | Min | 28.213 | 28.91 | 31.57 | 24.7 | 71.68 | 60.93 | | | | Avg | 52.28 | 58.79 | 59.005 | 53.30 | 82.46 | 70.91 | | | | Max | 33.32 | 36.66 | 38.1 | 45.41 | 41.425 | 42.68 | | 9 | Nickel (mg/Kg) | Min | 13.17 | 11.82 | 11.91 | 10.43 | 27.14 | 25.52 | | | | Avg | 19.17 | 19.22 | 22.72 | 21.72 | 33.29 | 32.353 | | | | Max | 92.51 | 88.31 | 150.7 | 192.72 | 123.18 | 104.64 | | 10 | Copper (mg/Kg) | Min | 12.42 | 14.71 | 14.74 | 12.8 | 81.14 | 60.57 | | | | Avg | 49.94 | 61.10 | 84.93 | 56.708 | 103.06 | 82.37 | | | | Max | 210.35 | 1755.44 | 188.29 | 142.71 | 88.14 | 97.36 | | 11 | Zinc (mg/Kg) | Min | 16.46 | 42.93 | 29.9 | 23.57 | 37.03 | 15.33 | | | | Avg | 73.75 | 283.57 | 99.49 | 81.77 | 62.53 | 49.70 | | | | Max | 0.397 | 23.47 | 0.59 | 0 | 3 | 0 | | 12 | Cadmium (mg/Kg) | Min | 0.397 | 0.5 | 0.59 | 0 | 3 | 0 | | | | Avg | 0.397 | 6.608 | 0.59 | 0 | 3 | 0 | | | | Max | 50.28 | 277.82 | 47.87 | 26.48 | 1.58 | 21.07 | | 13 | Lead (mg/Kg) | Min | 3.79 | 2.58 | 1.29 | 2.26 | 0.59 | 0.89 | | | | Avg | 12.09 | 32.75 | 15.59 | 8.88 | 1.08 | 6.66 | | | | Location | | Ka | ndla | | Vad | inar | |--------|-----------------|----------|-------------------------|------------------------|-------------------------|-------------------------|-------------------|--------------------------------| | Sr. No | Parameters | | S-1
(Oil Jetty
7) | S-2
IFFCO
Plant) | S-3
(Khori
Creek) | S-4
(Nakti
Creek) | S-5
(Near SPM) | S-6
(Near Vadinar
Jetty) | | | | Max | 4.87 | 8.4 | 5.28 | 6.62 | 0.4 | 5.05 | | 14 | Arsenic (mg/Kg) | Min | 0.1 | 0.29 | 0.88 | 0.3 | 0.099 | 0.59 | | | | Avg | 2.38 | 3.04 | 2.97 | 2.26 | 0.22 | 2.82 | | | | Max | 0 | 0 | 0 | 0 | 0 | 0 | | 15 | Mercury (mg/Kg) | Min | 0 | 0 | 0 | 0 | 0 | 0 | | | | Avg | 0 | 0 | 0 | 0 | 0 | 0 | | | | Max | 54 | 77.92 | 61.99 |
75.84 | 60 | 66 | | 16 | Water Holding | Min | 35.8 | 34 | 23.74 | 15.9 | 39.85 | 44 | | | Capacity (%) | Avg | 42.66 | 46.48 | 43.95 | 48.34 | 47.70 | 60.01 | | | | Max | 77.61 | 77.7 | 85.46 | 82.36 | 62.4 | 78.46 | | 17 | Sand (%) | Min | 44.4 | 46.57 | 48.27 | 13.39 | 42.26 | 42.25 | | | | Avg | 59.26 | 65.74 | 62.96 | 65.03 | 51.61 | 60.59 | | | | Max | 53.28 | 47.28 | 41.25 | 57.98 | 49.27 | 53.27 | | 18 | Silt (%) | Min | 9.77 | 9.28 | 9.93 | 9.28 | 12.24 | 12 | | | | Avg | 30.41 | 26.40 | 28.84 | 24.13 | 34.72 | 29.17 | | | | Max | 19.53 | 14.32 | 22.35 | 28.63 | 35.92 | 21.02 | | 19 | Clay (%) | Min | 2.32 | 0.63 | 0.64 | 0.48 | 1.75 | 1.74 | | | | Avg | 10.29 | 7.86 | 8.19 | 10.83 | 13.66 | 10.23 | | 20 | Texture | | Sandy
Loam | Sandy
Loam | Sandy Loam | Sandy
Loam | Loam | Sandy Loam | ## 7.3 Data Interpretation and Conclusion Soil samples were collected from 6 locations (4 at Kandla and 2 at Vadinar) and further analysed for its physical & chemical characteristics. Each of the parameters have been given an interpretation based on the observations as follows: #### 1) Kandla: - The value of pH ranges from 6.48 to 9.53, with the highest at location S-1 (Oil Jetty 7) and the lowest at location S-2 (IFFCO plant), while the average pH for Kandla was observed to be 8.23. The pH in Kandla varies from Slightly alkaline to strongly alkaline - At all monitoring locations, the value of Electrical Conductivity ranges from 204 to 75,700 μs/cm, with the highest at location S-3 (Khori Creek) and the lowest at S-4 (Nakti Creek). The average Electrical Conductivity is 16,109.87 μs/cm. - The concentration of inorganic phosphate varied from **0.32** to **619.89** kg/ha, with an average of **17.93** kg/ha. The highest concentration of inorganic phosphate was found at **S-2** (**IFFCO plant**) and the lowest concentration was found at **S-4** (**Nakti Creek**). The availability of phosphorus in the soil solution is influenced by several factors, such as organic matter, clay content, pH, temperature, and more. - The concentration of **Total Organic Carbon** ranges from **0.03% to 3.86%**, with an average TOC of **0.92%** detected. The highest concentration was found at **location S-3** (**Khori Creek**), and the minimum concentration was found at **S-1** (**Oil Jetty 7**). - The **Sodium Adsorption Ratio** ranges from **0.36** to **41.45** meq/L, with an average value of **8.25** meq/L at Kandla. The highest concentration of SAR is found at **S-1** (**Oil Jetty 7**) and the lowest concentration at **S-4** (**Nakti Creek**). - The Water Holding Capacity (WHC) in the soil samples of Kandla varies from 15.9% to 77.92%, with an average of 45.36%. The highest concentration of WHC was observed at S-2 (IFFCO plant) and the lowest concentration at S-4 (Nakti Creek). - The Soil Texture was observed as "Sandy loam" to "loamy sand" at all the monitoring locations in Kandla. ## **Heavy Metals** - During the sampling period, the concentration of **Aluminium** varied from **812.75** to **10,298.7** mg/kg. The average **Aluminium** concentration was observed to be **2,383.475** mg/kg at the Kandla monitoring station. The **highest concentration** was observed at **S-3** (**Khori Creek**), and the **lowest concentration** was observed at **S-1** (**Oil Jetty 7**). - The concentration of **Chromium** varied from **24.7 to 92.23** mg/kg, with an average value of **55.848** mg/kg observed at the Kandla monitoring station. The highest concentration was observed at **S-1** (**Oil Jetty 7**), and the lowest concentration was observed at **S-4** (**Nakti Creek**). - The concentration of **Nickel** varied from **10.43** to **45.41** mg/kg at Kandla, with an average value of **20.71** mg/kg at the Kandla monitoring station. The highest concentration was observed at **S-4** (**Nakti Creek**), while the lowest concentration was also observed at **S-4** (**Nakti Creek**). - The concentration of **Zinc** varied from **16.46** to **1755.4** mg/kg at Kandla, with an average value of **134.64** mg/kg at the Kandla monitoring station. The highest concentration was observed at **S-2** (**IFFCO plant**), which was the only spike observed during the entire monitoring period at Kandla. The lowest concentration was observed at **S-1** (**Oil Jetty 7**). - The concentration of **Copper** varied from **12.42** to **192.72** mg/kg, with an average value of **13.667** mg/kg observed at the Kandla monitoring station. The highest concentration was observed at **S-4** (**Nakti Creek**) and the lowest concentration was observed at **S-1** (**Oil Jetty 7**). - The concentration of Lead varied from **1.29 to 277.82** mg/kg, with an average value of **17.33** mg/kg. The highest concentration was observed at **S-2 (IFFCO plant)**; this was the only spike observed during the entire monitoring period, while the lowest concentration was observed at **S-3 (Khori creek)**. - The concentration of Arsenic varied from **0.1** to **8.4** mg/kg, with an average value of **2.67** mg/kg. The highest concentration was observed at **S-1** (Oil Jetty 7), and the lowest concentration was observed at **S-3** (Khori Creek). - The concentration of **Cadmium** varied from **0** to **23.47** mg/kg, with an average value of **1.89** mg/kg. The highest concentration was observed at **S-2** (**IFFCO plant**). During the monitoring period, it was observed that cadmium was mostly found **Below** **Quantification Limit (BQL)** at all locations, with only one spike observed at **S-2** (**IFFCO plant**) throughout the entire monitoring period. • During the monitoring period, it was observed that the concentration of **Mercury** was mostly found **below the quantification limit (BQL)** at all locations. ## 2) Vadinar: - The value of **pH** ranges from **7.675** to **9.36**, with the highest at location **S-6** (**Near Vadinar jetty**) and the lowest at **location S-5** (**Near SPM**), while the average **pH** for Vadinar was observed to be **8.34**. **pH** of Soil at Vadinar was found to be **moderately alkaline**. - At all monitoring locations in Vadinar, the value of **Electrical Conductivity** ranges from **63 to 625** μ s/cm, with the highest at **S-6 (Near Vadinar jetty)** and the lowest at **location S-5 (Near SPM).** The average Electrical Conductivity is **229.33** μ s/cm. - The concentration of **inorganic phosphate** varied from **0.26** to **8.67** kg/ha, with an average of **2.32** kg/ha. The highest concentration of inorganic phosphate was found at **S-6** (**Near Vadinar jetty**) and the lowest concentration was found at **location S-5** (**Near SPM**). - The concentration of **Total Organic Carbon** ranges from **0.06**% **to 2.48**%, with an average TOC of **0.46**% detected at Vadinar. The highest concentration was found at S-6 (Near Vadinar jetty), and the minimum concentration was found at S-5 (Near SPM). - The **Sodium Adsorption Ratio** ranges from **0.05** to **0.45** meq/L, with an average value of **0.143** meq/L at Vadinar. The highest concentration of SAR is found at **6** (**Near Vadinar jetty**) and the lowest concentration at **S-5** (**Near SPM**). - The Water Holding Capacity (WHC) in the soil samples of Vadinar varies from 39.85% to 66%, with an average of 53.85%. The highest concentration of WHC was observed at S-6 (Near Vadinar jetty) and the lowest concentration at S-5 (Near SPM). - The soil texture of Vadinar varies from "loam" to "slit loam". ## **Heavy Metals** - During the sampling period, the concentration of **Aluminium** varied from 735.77 to 15921.72 mg/kg. The average **Aluminium** concentration was observed to be 2,805.2 mg/kg at the Vadinar monitoring station. The **highest concentration** was observed at S-5 (Near SPM), and the **lowest concentration** was observed at S-5 (Near SPM) but during different months. - The concentration of **Chromium** varied from **60.93 to 106** mg/kg, with an average value of **76.69** mg/kg observed at the Vadinar monitoring station. The highest concentration was observed at **S-5** (**Near SPM**), and the lowest concentration was observed at **S-6** (**Near Vadinar jetty**). - The concentration of **Nickel** varied from **25.62** to **42.68** mg/kg, with an average value of **32.825** mg/kg at the Vadinar monitoring station. The highest concentration was observed at **S-6** (**Near Vadinar jetty**), and the lowest concentration was also observed at **S-6** (**Near Vadinar jetty**) but during different months. - The concentration of **Zinc** varied from **15.33** to **97.36** mg/kg, with an average value of **56.118** mg/kg at the Vadinar monitoring station. The highest concentration was observed at **S-6** (**Near Vadinar jetty**), and the lowest concentration was also observed at **S-6** (**Near Vadinar jetty**) but during different months. - The concentration of **Copper** varied from **60.57** to **123.18** mg/kg, with an average value of **92.71** mg/kg observed at the Vadinar monitoring station. The highest concentration was observed at **S-5** (**Near SPM**) and the lowest concentration was observed at **S-6** (**Near Vadinar jetty**). - The concentration of **Lead** varied from **0.59 to 21.07** mg/kg, with an average value of **3.875** mg/kg. The highest concentration was observed at **S-6** (**Near Vadinar jetty**); this was the only spike observed during the entire monitoring period at Kandla, while the lowest concentration was observed at **S-5** (**Near SPM**). - The concentration of Arsenic varied from 0.099 to 0.59 mg/kg, with an average value of 5.05 mg/kg. The highest concentration was observed at S-6 (Near Vadinar jetty), and the lowest concentration was observed at S-5 (Near SPM). - The concentration of Cadmium varied from 0 to 3 mg/kg, with an average value of 3 mg/kg. The highest concentration was observed at S-5 (Near SPM). During the monitoring period, it was observed that cadmium was mostly found Below Quantification Limit (BQL) at all locations. - During the monitoring period,
it was observed that the concentration of **Mercury** was mostly found **below the quantification limit (BQL)** at all locations. # CHAPTER 8: DRINKING WATER MONITORING ## 8.1 Drinking Water Monitoring It is necessary to check with the drinking water sources regularly so as to know whether water quality conforms to the prescribed standards for drinking. Monitoring the drinking water quality is essential to protect human health and the environment. With reference to the scope specified by DPA, a total of 20 locations (18 at Kandla and 2 at Vadinar) were monitored to assess the Drinking Water quality. The details of the drinking water sampling stations have been mentioned in **Table 20** and the locations have been depicted through Google map in **Map 12 and 13**. Table 20: Details of Drinking Water Sampling Locations | | | able 20: De | tails of Drinking Water Sampling | Locations | |------------|---------|-------------|----------------------------------|-----------------------| | Sr.
No. | Loca | tion Code | Location Name | Latitude/ Longitude | | 1. | | DW-1 | Oil Jetty 7 | 23.043527N 70.218456E | | 2. | | DW-2 | Port & Custom Building | 23.009033N 70.222047E | | 3. | | DW-3 | North Gate | 23.007938N 70.222411E | | 4. | | DW-4 | Workshop | 23.009372N 70.222236E | | 5. | | DW-5 | Canteen Area | 23.003707N 70.221331E | | 6. | | DW-6 | West Gate 1 | 23.006771N 70.217340E | | 7. | | DW-7 | Sewa Sadan -3 | 23.009779N 70.221838E | | 8. | | DW-8 | Nirman Building | 23.009642N 70.220623E | | 9. | ıdla | DW-9 | Custom Building | 23.018930N 70.214478E | | 10. | Kandla | DW-10 | Port Colony Kandla | 23.019392N 70.212619E | | 11. | | DW-11 | Wharf Area/ Jetty | 22.997833N 70.223042E | | 12. | | DW-12 | Hospital Kandla | 23.018061N 70.212328E | | 13. | | DW-13 | A.O. Building | 23.061914N 70.144861E | | 14. | | DW-14 | School Gopalpuri | 23.083619N 70.132061E | | 15. | | DW-15 | Guest House | 23.078830N 70.131008E | | 16. | | DW-16 | E- Type Quarter | 23.083306N 70.132422E | | 17. | | DW-17 | F- Type Quarter | 23.077347N 70.135731E | | 18. | | DW-18 | Hospital Gopalpuri | 23.081850N 70.135347E | | 19. | Vadinar | DW-19 | Near Vadinar Jetty | 22.440759N 69.675210E | | 20. | Va | DW-20 | Near Port Colony | 22.401619N 69.716822E | Map 12: Drinking Water Monitoring Locations at Kandla Map 13: Drinking Water Monitoring Locations at Vadinar ## Methodology The water samples were collected from the finalized sampling locations and analyzed for physico-chemical and microbiological parameter, for which the analysis was carried out as per APHA, 23rd Edition and Indian Standard method in GEMI's NABL Accredited Laboratory, Gandhinagar. GEMI has followed the CPCB guideline as well as framed its own guidelines for the collection of water/wastewater samples, under the provision of Water (Preservation and Control of Pollution) Act 1974, titled as 'Sampling Protocol for Water & Wastewater'; approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014. The samples under the study were collected and preserved as per the said Protocol. The parameters finalized to assess the drinking water quality have been mentioned in Table 21 as follows: Table 21: List of parameters for Drinking Water Quality monitoring(3) | | | | rs for Drinking Water Quality monitoring | | |---------|---------------------------|-------|--|--------------------------------------| | Sr. No. | Parameters | Units | Reference method | Instrument | | 1. | рН | - | APHA, 23 rd Edition (Section-4500-H+B):2017 | pH Meter | | 2. | Colour | Hazen | APHA, 23 rd Edition, 2120 B:2017 | Color Comparator | | 3. | EC | μS/cm | APHA, 23 rd Edition (Section-2510
B):2017 | Conductivity Meter | | 4. | Turbidity | NTU | APHA, 23 rd Edition (Section -2130
B):2017 | Nephlo Turbidity
Meter | | 5. | TDS | mg/L | APHA, 23 rd Edition (Section-2540
C):2017 | Vaccum Pump with filtration assembly | | 6. | TSS | mg/L | APHA, 23rd Edition, 2540 D: 2017 | and Oven | | 7. | Chloride | mg/L | APHA, 23 rd Edition (Section-4500-Cl-B):2017 | Titration Apparatus | | 8. | Total
Hardness | mg/L | APHA, 23 rd Edition (Section-2340
C):2017 | | | 9. | Ca Hardness | mg/L | APHA, 23 rd Edition (Section-3500-Ca
B):2017 | | | 10. | Mg Hardness | mg/L | APHA, 23 rd Edition (Section-3500-Mg
B):2017 | | | 11. | Free Residual
Chlorine | mg/L | APHA 23rd Edition, 4500 | | | 12. | Fluoride | mg/L | APHA, 23 rd Edition (Section-4500-F-D):2017 | UV- Visible
Spectrophotometer | | 13. | Sulphate | mg/L | APHA, 23 rd Edition (Section 4500-SO4-
2-E):2017 | | | 14. | Sodium | mg/L | APHA, 23 rd Edition (Section-3500-Na-B):2017 | Flame Photometer | | 15. | Potassium | mg/L | APHA,23 rd Edition, 3500 K-B: 2017 | | | 16. | Salinity | mg/L | APHA, 23rd Edition (section 2520 B, E.C. Method) | Salinity /TDS
Meter | | 17. | Nitrate | mg/L | APHA, 23 rd Edition, 4500 NO3- B: 2017 | UV- Visible | | 18. | Nitrite | mg/L | APHA, 23rd Edition, 4500 NO2-B: 2017 | Spectrophotometer | | 19. | Hexavalent
Chromium | mg/L | APHA, 23 rd Edition, 3500 Cr B: 2017 | | | 20. | Manganese | mg/L | APHA,23 rd Edition, ICP Method 3120 B: 2017 | ICP-OES | | Sr. No. | Parameters | Units | Reference method | Instrument | |---------|--------------------|---------------|---|----------------| | 21. | Mercury | mg/L | EPA 200.7 | | | 22. | Lead | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 23. | Cadmium | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 24. | Iron | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 25. | Total
Chromium | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 26. | Copper | mg/L | APHA,23 rd Edition, ICP Method 3120 B: 2017 | ICP-OES | | 27. | Zinc | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 28. | Arsenic | mg/L | APHA ICP 23 rd Edition (Section-3120 B):2017 | | | 29. | Total
Coliforms | MPN/
100ml | IS 15185: 2016 | LAF/ Incubator | ## **Monitoring Frequency** Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. Sample Collected from this location during the monitoring period April/2023 to March/2024. ## 8.2 Result and Discussion The drinking water quality of the locations at Kandla and Vadinar and its comparison with the to the stipulated standard (Drinking Water Specifications i.e., IS: 10500:2012) (4) have been summarized in **Table 22A, 22B, 22C** as follows: Table 22A: Drinking Water Quality for the Monitoring period | | | | | | | | | | | ~_ | | | omtom | 01 | | | | | | | | | | |----------------------------------|---------|-------------|------|------------|-------|---------|-------------|-------|-------|----------|-------|------|---------|------|-------|--------|-------|-------|----------|-------|-------|--------|--------| | Daganataga | | dard
ues | | DW-1 | ٨ | | DW-2
& C | ustom | | DW-3 | (~) | /TA | DW-4 | | | DW-5 | \ | /TA | DW-6 | .1\ | (C a) | DW-7 | | | Parameters | as pe | er IS- | (0 | il Jetty 7 |) | Buildin | | ustom | (1) | Iorth Ga | ie) | (*) | orkshop | ·) | (Call | teen A | rea) | (// | est Gate | : 1) | (56 | wa Sad | an -3) | | | A | P | Max | Min | Avg | рН | 6.5-8.5 | | 7.9 | 6.6 | 7.4 | 8.4 | 6.8 | 7.3 | 8.0 | 6.8 | 7.3 | 8.1 | 7.1 | 7.4 | 8.2 | 7.3 | 7.7 | 8.4 | 7.2 | 7.7 | 8.2 | 7.2 | 7.5 | | Colour (Hazen) | 5 | 15 | 5.0 | 1.0 | 1.7 | 5.0 | 1.0 | 1.3 | 5.0 | 1.0 | 1.3 | 5.0 | 1.0 | 1.3 | 5.0 | 1.0 | 3.3 | 5.0 | 1.0 | 1.7 | 5.0 | 1.0 | 1.3 | | EC (μS/ cm) | | | 370 | 19.4 | 195.6 | 600. | 36.0 | 153.8 | 1653 | 27.0 | 259.7 | 401 | 12.8 | 85.6 | 2200 | 42.0 | 1056 | 1470 | 28.0 | 336.3 | 150 | 22 | 57.8 | | Salinity (PSU) | | | 1.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.1 | 0.8 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | 1.1 | 0.0 | 0.5 | 0.7 | 0.0 | 0.2 | 0.1 | 0 | 0.0 | | Turbidity (NTU) | 1 | 5 | 1.2 | 1.1 | 1.1 | 2.0 | 1.5 | 1.8 | 1.9 | 0.7 | 1.2 | 3.7 | 0.9 | 2.3 | 3.1 | 0.9 | 1.9 | 1.5 | 1.0 | 1.2 | 5.9 | 1.1 | 3.5 | | Chloride (mg/L) | 250 | 1000 | 81 | 5.8 | 41.6 | 92 | 7.5 | 34.1 | 354.9 | 8.0 | 56.9 | 110 | 3 | 22.9 | 437.4 | 10.3 | 192.0 | 329.9 | 9.0 | 78 | 42.5 | 6.5 | 15.7 | | Total Hardness (mg/L) | 200 | 600 | 42 | 3 | 13.3 | 148 | 3 | 24.8 | 320 | 2.0 | 33.4 | 20.0 | 2 | 7.5 | 310 | 10 | 181 | 230 | 5.0 | 53.2 | 10 | 2 | 4.1 | | Ca Hardness (mg/L) | | | 27 | 2 | 6.3 | 92 | 2 | 13.9 | 200 | 1.0 | 20.3 | 8.0 | 1 | 3.3 | 210.0 | 5 | 103.9 | 120.0 | 2.5 | 28.9 | 5.0 | 1 | 2.2 | | Mg Hardness (mg/L) | | | 15 | 1 | 6.8 | 56 | 1 | 10.1 | 120 | 1.0 | 13.1 | 12 | 1 | 3.9 | 120.0 | 5 | 76.6 | 110.0 | 2.0 | 24.4 | 5.0 | 1 | 2 | | Free Residual Chlorine
(mg/L) | 0.2 | 1 | 0 | | TDS (mg/L) | 500 | 2000 | 184 | 10 | 101.7 | 306 | 20 | 81.8 | 840 | 14 | 132.7 | 204 | 8.0 | 44.7 | 928 | 22 | 452.4 | 752 | 20.0 | 171.6 | 78 | 14 | 30.8 | | TSS (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | Fluoride (mg/L) | 1 | 1.5 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | 0.5 | 0.7 | 0.3 | 0.4 | 0.0 | 0.0 | 0.0 | 0.9 | 0.3 | 0.5 | 0.9 | 0.7 | 0.8 | 0.4 | 0.4 | 0.4 | | Sulphate (mg/L) | 200 | 400 | 15.7 | 15.7 | 15.7 | 35.7 | 35.7 | 35.7 | 73.9 | 73.9 | 73.9 | 0.0 | 0.0 | 0.0 | 113.3 | 2.2 | 64.0 | 97.3 | 2 | 55.3 | 0 | 0 | 0 | | Parameters | Stan
val
as pe | ues | (O | DW-1
Dil Jetty 7 |) | | | ustom | (N | DW-3
orth Gat | te) | (N | DW-4
/orkshop |) | | DW-5
teen A | rea) | (M | DW-6
/est Gate | 1) | (Se | DW-7
wa Sad | | |---------------------------------|----------------------|-------|-------|---------------------|-------|---------|-----|------------|-------|------------------|-------|------|------------------|------|--------|----------------|-------|-------|-------------------|------|-------|----------------|--------| | | A | P | Max | Min | Avg | Nitrate (mg/L) | 45 | | 26 | 3.7 | 12.5 | 4.2 |
0.5 | 1.8 | 7.5 | 1.3 | 4.6 | 2.4 | 2.4 | 2.4 | 8.8 | 3.4 | 5.8 | 5.7 | 1.3 | 2.8 | 2.1 | 2.1 | 2.1 | | Nitrite (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0 | 0 | 0 | | Sodium (mg/L) | | | 86 | 5 | 34.5 | 38.5 | 7 | 21.2 | 178.6 | 9.7 | 38.0 | 42.6 | 5.7 | 18.0 | 319.6 | 12.0 | 118.4 | 197.5 | 8.8 | 44.1 | 15.1 | 5.5 | 9.6 | | Potassium (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.8 | 5.8 | 5.8 | 0 | 0 | 0 | 0 | 0 | 0 | | Hexavalent Chromium (mg/L) | | | 0 | | Odour (TON) | Agre | eable | | 1 | | Arsenic (mg/L) | 0.01 | 0.05 | 0 | | Cadmium (mg/L) | 0.003 | | 0 | | Copper (mg/L) | 0.05 | 1.5 | 17.3 | 0 | 5.8 | 8.4 | 0.0 | 2.8 | 6.2 | 0.0 | 3.1 | 11.1 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Iron (mg/L) | 0.3 | | 0.6 | 0 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.1 | 0.2 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | | Lead (mg/L) | 0.01 | | 3.1 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Manganese (mg/L) | 0.1 | 0.3 | 0.1 | 0 | 0.1 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.1 | 0.1 | 0.1 | 0 | 0 | 0 | 0.5 | 0 | 0.2 | 0 | 0 | 0 | | Mercury (mg/L) | 0.001 | | 0 | | Total Chromium
(mg/L) | 0.05 | | 0 | | Zinc (mg/L) | 5 | 15 | 0 | | Total Coliform*
(MPN/ 100ml) | Shall dete | | 630.0 | 5.0 | 118.0 | 12500.0 | 5.0 | 1629.
3 | 250.0 | 10.0 | 100.7 | 50.0 | 5.0 | 24.0 | 144500 | 5.0 | 17137 | 4350 | 5.0 | 1407 | 23500 | 2.0 | 3963.3 | Table 22B: Drinking Water Quality for the Monitoring period | | | | | | | Table | e 22B: | Drinki | ng vvat | er Quan | ty for | tne M | onitorin | g perio | oa - | | | | | | | | | |----------------------------------|---------|-------|---------|-----------|-------|---------|---------|--------|---------|----------|--------|--------|-----------|---------|---------|----------|--------|-------|-----------|-------|--------|---------|----------| | | Stan | dard | | DW-8 | | 1 | DW-9 | | | DW-10 | | | DW-11 | | I | DW-12 | | | DW-13 | | | DW-14 | <u>l</u> | | Parameters | val | ues | (Nirm | an Build | ling) | (Custor | n Build | ling) | (Port C | olony Ka | ındla) | (Wha | rf Area/ | Tettv) | (Hosp | ital Ka | ndla) | (A.0 | O. Buildi | ing) | (Scho | ool Gop | alpuri) | | T drumeters | as p | er IS | (11111) | dir Duire | 6) | (Custor | n Duni | 1116) | (1011) | orony ix | inaiuj | (**110 | ir riredy | jenyj | (1105p) | itui itu | iraruj | (22.0 | o, build | 6) | (Selic | or Gop | arpuri) | | | _ | A | P | Max | Min | Avg | рН | 6.5-8.5 | | 8 | 7 | 7.5 | 8 | 6.2 | 7.3 | 7.9 | 6.82 | 7.31 | 8.3 | 6.85 | 7.71 | 7.75 | 6.62 | 7.224 | 8.5 | 7.2 | 7.61 | 8.2 | 7.08 | 7.56 | | Colour (Hazen) | 5 | 15 | 5.0 | 1.0 | 2.3 | 5.0 | 1.0 | 2.0 | 5.0 | 1 | 2 | 10 | 1 | 3.083 | 5 | 1 | 1.67 | 5 | 1 | 1.33 | 10 | 1 | 3.28 | | EC (μS/ cm) | | | 2000 | 40.0 | 403.8 | 2900.0 | 48.0 | 492.9 | 3100 | 105.4 | 554.9 | 2460 | 55 | 980.1 | 269 | 47 | 141.2 | 1412 | 23.2 | 187.2 | 1467 | 43.3 | 412.15 | | Salinity (PSU) | | | 1.0 | 0.0 | 0.2 | 1.5 | 0.0 | 0.2 | 1.6 | 0.05 | 0.283 | 1.2 | 0.02 | 0.42 | 0.13 | 0.03 | 0.072 | 0.71 | 0.02 | 0.151 | 0.73 | 0.03 | 0.22 | | Turbidity (NTU) | 1 | 5 | 3.6 | 1.1 | 1.8 | 4.7 | 1.0 | 2.8 | 2.2 | 0.95 | 1.575 | 3.79 | 1 | 2.09 | 2 | 1.02 | 1.57 | 9.9 | 0.9 | 3.67 | 13.9 | 0.5 | 5.48 | | Chloride (mg/L) | 250 | 1000 | 499.9 | 10.0 | 93.1 | 689.8 | 12.5 | 108.7 | 504.8 | 21.99 | 75.52 | 404.8 | 13.54 | 173.9 | 67.98 | 12.5 | 31.79 | 307.4 | 7.5 | 44.28 | 332.4 | 11.5 | 93.83 | | Total Hardness (mg/L) | 200 | 600 | 280.0 | 4.0 | 61.8 | 480 | 6.0 | 80.2 | 340.0 | 3 | 62.83 | 320 | 15 | 176.4 | 30 | 3 | 17.84 | 240 | 1.5 | 70.3 | 270 | 2 | 82.64 | | Ca Hardness (mg/L) | | | 140.0 | 2.0 | 31.8 | 240 | 3.0 | 38.7 | 190.0 | 2 | 33.5 | 170 | 5 | 91.30 | 17 | 2 | 9.67 | 120 | 1 | 31.12 | 140 | 1.5 | 42.96 | | Mg Hardness (mg/L) | | | 140.0 | 2.0 | 30.1 | 190 | 3.0 | 37.5 | 150.0 | 1 | 29.32 | 150 | 10 | 84.76 | 14 | 1 | 8.167 | 120 | 0.5 | 33.15 | 130 | 2 | 43.6 | | Free Residual Chlorine
(mg/L) | 0.2 | 1 | 0 | | TDS (mg/L) | 500 | 2000 | 1012 | 22.0 | 205.2 | 1522 | 24.0 | 255.8 | 1064 | 54 | 165.4 | 872 | 29 | 403.8 | 138 | 24 | 73.17 | 718 | 14 | 101.9 | 742 | 22 | 218 | | TSS (mg/L) | | | 2.0 | 2.0 | 2.0 | 12.0 | 2.0 | 7.0 | 2.0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 8 | 10 | | Fluoride (mg/L) | 1 | 1.5 | 0.0 | 0.0 | 0.0 | 1.5 | 0.6 | 1.1 | 0.5 | 0.416 | 0.433 | 1.06 | 0.367 | 0.57 | 1.108 | 1.108 | 1.108 | 0 | 0 | 0 | 0.35 | 0.15 | 0.25 | | Sulphate (mg/L) | 200 | 400 | 100.8 | 45.5 | 73.2 | 142.0 | 41.5 | 80.0 | 115.6 | 3.17 | 59.39 | 134.7 | 1.97 | 59.51 | 0 | 0 | 0 | 108.7 | 108.77 | 108.7 | 113.4 | 11.55 | 56.304 | | Nitrate (mg/L) | 45 | | 4.5 | 1.1 | 2.6 | 5.6 | 2.4 | 3.8 | 7.5 | 1.04 | 3.68 | 8.49 | 3.78 | 5.929 | 2.023 | 1.42 | 1.752 | 3.392 | 1.524 | 2.585 | 4.48 | 1.382 | 2.38 | | Parameters | Stan
val | ues | (Nirm | DW-8
nan Build | ling) | (Custor | DW-9
n Build | ding) | | DW-10
olony Ka | ındla) | (Wha | DW-11
orf Area/ | Jetty) | | DW-12
ital Kai | ndla) | (A.0 | DW-13
O. Build | ing) | (Scho | DW-14
ool Gop | | |---------------------------------|-------------|-----------------|-------|-------------------|-------|---------|-----------------|-------|-------|-------------------|--------|-------|--------------------|--------|--------|-------------------|-------|-------|-------------------|-------|--------|------------------|--------| | | A | P | Max | Min | Avg | Nitrite (mg/L) | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.201 | 0.11 | 0.147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sodium (mg/L) | | | 109.5 | 9.2 | 39.4 | 396.2 | 8.0 | 75.4 | 105.8 | 11.98 | 37.65 | 356.5 | 12.8 | 106.5 | 31.35 | 11.59 | 20.22 | 83.91 | 8.66 | 21.44 | 173.5 | 6.24 | 46.666 | | Potassium (mg/L) | | | 0 | 0 | 0 | 13.6 | 13.6 | 13.6 | 7.0 | 2.6 | 4.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Hexavalent Chromium (mg/L) | | | 0 | | Odour (TON) | Agre | eable | | 1 | | Arsenic (mg/L) | 0.01 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.007 | 0.007 | 0.005 | 0.0039 | 0.004 | 0 | 0 | 0 | 0 | 0 | 0 | 0.015 | 0.015 | 0.015 | | Cadmium (mg/L) | 0.003 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.005 | 0.005 | 0.005 | 0.006 | 0.006 | 0.006 | | Copper (mg/L) | 0.05 | 1.5 | 6.8 | 0 | 3.4 | 0 | 0 | 0 | 10.2 | 0.005 | 2.049 | 0 | 0 | 0 | 9.257 | 0.005 | 3.57 | 0.008 | 0.0079 | 0.008 | 0 | 0 | 0 | | Iron (mg/L) | 0.3 | | 0.1 | 0.1 | 0.1 | 0 | 0 | 0 | 0.3 | 0.0001 | 0.16 | 0.17 | 0.0001 | 0.092 | 0 | 0 | 0 | 0.13 | 0.13 | 0.13 | 0.0001 | 0.0001 | 0.0001 | | Lead (mg/L) | 0.01 | | 0.2 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0.0033 | 0.003 | 0.004 | 0.0038 | 0.004 | 0.0028 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 4.27 | 4.27 | 4.27 | | Manganese (mg/L) | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.05 | 0.05 | 0.05 | 0 | 0 | 0 | | Mercury (mg/L) | 0.001 | | 0 | | Total Chromium
(mg/L) | 0.05 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0122 | 0.012 | 0.012 | 0.006 | 0.006 | 0.006 | 0 | 0 | 0 | | Zinc (mg/L) | 5 | 15 | 0 | 0 | 0 | 0.6 | 0.6 | 0.6 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Coliform*
(MPN/ 100ml) | Shall dete | not be
ected | 240.0 | 2.0 | 114.7 | 12050 | 4.0 | 1826 | 37080 | 35 | 5374 | 25550 | 5 | 3329 | 140 | 4 | 47.2 | 685 | 20 | 166.7 | 4900 | 15 | 636.4 | Table 22C: Drinking Water Quality for the Monitoring period | | | | | | Table . | 22C: Dri | iikiiig v | vater Qi | iaiity 10 | i tile ivi | OHHUH | ing per | 10 u | | | | | | | | |----------------------------------|------------------------|------|-------|-------------------|---------|----------|-------------------|----------|-----------|-------------------|-------|---------|-------------------------------|-------|-------|----------------------------|-------|--------|------------------|-------| | Parameters | Stand
valu
as pe | ies | (G | DW-15
uest Hou | se) | (E- T | DW-16
Type Qua | nrter) | | DW-17
7pe Quai | rter) | | DW-18
(Hospita
Gopalpur | | (Nea | OW-19
ir Vadi
Jetty) | nar | | OW-20
Port Co | lony) | | | A | P | Max | Min | Avg | | рН | 6.5-8.5 | | 7.99 | 6.87 | 7.35 | 7.68 | 6.93 | 7.28 | 8.19 | 6.78 | 7.46 | 8.27 | 7.12 | 7.6 | 8.38 | 7.21 | 7.685 | 8.07 | 7.05 | 7.435 | | Colour (Hazen) | 5 | 15 | 5 | 1 | 1.67 | 5 | 1 | 1.67 | 5 | 1 | 1.67 | 10 | 1 | 3.5 | 5 | 1 | 2.333 | 20 | 1 | 6 | | EC (μS/ cm) | | | 264 | 34.3 | 120.22 | 746 | 17.79 | 116.84 | 1337 | 15.93 | 298.6 | 7930 | 30.2 | 1037 | 537 | 30 | 199.7 | 1736 | 88.4 | 427.7 | | Salinity (PSU) | | | 0.7 | 0.02 | 0.113 | 0.38 | 0.02 | 0.06 | 0.67 | 0.02 | 0.16 | 4.39 | 0.02 | 0.55 | 0.26 | 0.02 | 0.100 | 0.87 | 0.05 | 0.235 | | Turbidity (NTU) | 1 | 5 | 2.29 | 0.63 | 1.27 | 2.8 | 0.52 | 1.50 | 1.97 | 1.1 | 1.66 | 3.98 | 0.7 | 2.03 | 1.5 | 1.2 | 1.35 | 5.3 | 0.7 | 3.25 | | Chloride (mg/L) | 250 | 1000 | 60.98 | 10.5 | 26.98 | 124.96 | 4 | 24.58 | 287.41 | 4 | 61.99 | 163.9 | 9 | 75.28 | 66.98 | 9 | 27.20 | 407.37 | 13 | 73.15 | |
Total Hardness (mg/L) | 200 | 600 | 20 | 2 | 11.97 | 180 | 1.5 | 22.86 | 230 | 2 | 52.6 | 195 | 4 | 96.25 | 160 | 2 | 44.58 | 240 | 20 | 88.5 | | Ca Hardness (mg/L) | | | 10 | 1.5 | 6.25 | 80 | 1 | 10.77 | 120 | 1 | 28.5 | 102 | 2 | 49.43 | 80 | 1.5 | 21.54 | 140 | 10 | 44.08 | | Mg Hardness (mg/L) | | | 12.5 | 1 | 6.136 | 100 | 0.5 | 13.25 | 110 | 1 | 24.1 | 100 | 1 | 46.79 | 80 | 1 | 25.09 | 100 | 8 | 44.41 | | Free Residual Chlorine
(mg/L) | 0.2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TDS (mg/L) | 500 | 2000 | 138 | 18 | 62.75 | 382 | 10 | 60.5 | 682 | 8 | 157.5 | 448 | 16 | 198.8 | 272 | 15 | 100.9 | 882 | 46 | 218.5 | | TSS (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 4 | 8 | | Fluoride (mg/L) | 1 | 1.5 | 0.34 | 0.34 | 0.34 | 0 | 0 | 0 | 0.5 | 0.37 | 0.43 | 0.51 | 0.38 | 0.44 | 0.35 | 0.35 | 0.35 | 1.06 | 1.06 | 1.06 | | Sulphate (mg/L) | 200 | 400 | 10.62 | 10.3 | 10.46 | 34.35 | 34.35 | 34.35 | 104.64 | 8.37 | 41.20 | 59.94 | 1.81 | 40.82 | 42.2 | 13.07 | 31.87 | 102.92 | 25.4 | 48.22 | | Nitrate (mg/L) | 45 | | 5.63 | 1.12 | 2.53 | 1.97 | 1.97 | 1.97 | 6.06 | 1.19 | 3.20 | 16.51 | 1.17 | 5.1 | 15.79 | 1.82 | 5.55 | 18.54 | 1.06 | 6.45 | | Nitrite (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.20 | 0.11 | 0.16 | 0 | 0 | 0 | 1.89 | 1.89 | 1.89 | | Parameters | Stand
valu
as pe | ies | (G | DW-15
uest Hou | se) | (E- T | DW-16
Type Qua | arter) | | DW-17
ype Quai | rter) | | DW-18
(Hospita
Gopalpur | | (Nea | DW-19
ar Vadi
Jetty) | nar | | OW-20
Port Co | olony) | |---------------------------------|------------------------|------|-------|-------------------|-------|-------|-------------------|--------|-------|-------------------|-------|-------|-------------------------------|-------|-------|----------------------------|-------|--------|------------------|--------| | | A | P | Max | Min | Avg | | Sodium (mg/L) | | | 40.46 | 14.3 | 19.38 | 74.46 | 7.06 | 24.85 | 82.61 | 5.75 | 35.30 | 185.2 | 7.08 | 55.81 | 58.37 | 6.08 | 20.49 | 204.04 | 7.18 | 46.23 | | Potassium (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | 3.2 | 3.2 | 0 | 0 | 0 | 5.85 | 5.85 | 5.85 | | Hexavalent Chromium (mg/L) | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.041 | 0.041 | 0.041 | 0.01 | 0.01 | 0.01 | | Odour (TON) | Agree | able | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Arsenic (mg/L) | 0.01 | 0.05 | 0.007 | 0.007 | 0.007 | 0 | 0 | 0 | 0.008 | 0.008 | 0.008 | 0.015 | 0.01 | 0.012 | 0.08 | 0.08 | 0.08 | 0 | 0 | 0 | | Cadmium (mg/L) | 0.003 | | 0.007 | 0.007 | 0.007 | 0.006 | 0.006 | 0.006 | 0.007 | 0.007 | 0.007 | 0.008 | 0.008 | 0.008 | 0 | 0 | 0 | 0 | 0 | 0 | | Copper (mg/L) | 0.05 | 1.5 | 7.24 | 0.006 | 2.42 | 0 | 0 | 0 | 0.012 | 0.012 | 0.012 | 7.3 | 0.006 | 3.65 | 16.25 | 0.006 | 7.99 | 15.403 | 0.01 | 3.09 | | Iron (mg/L) | 0.3 | | 0.25 | 0.0002 | 0.13 | 0 | 0 | 0 | 0.52 | 0.0001 | 0.213 | 0.11 | 0.0003 | 0.055 | 1.47 | 1.47 | 1.47 | 0 | 0 | 0 | | Lead (mg/L) | 0.01 | | 2.21 | 0.002 | 1.10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.53 | 0.003 | 5.26 | 0.002 | 0.002 | 0.002 | | Manganese (mg/L) | 0.1 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0. | 0.13 | 0 | 0.08 | | Mercury (mg/L) | 0.001 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Chromium (mg/L) | 0.05 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.006 | 0.006 | 0.006 | 0 | 0 | 0 | 0 | 0 | 0 | | Zinc (mg/L) | 5 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Coliform* (MPN/
100ml) | Shall r
detec | | 200 | 5 | 57.75 | 7650 | 5 | 1669 | 57000 | 9 | 6635 | 310 | 5 | 131 | 2850 | 120 | 1485 | 130000 | 10 | 16647 | A: Acceptable, P:Permissible, BQL: Below Quantification limit Turbidity (QL=0.5 NTU), Free Residual Chlorine (QL=2 mg/L), Total Suspended Solids (QL=2 mg/L), Fluoride (QL=0.3 mg/L), Sulphate (QL=10 mg/L), Nitrate as NO₃ (QL=1 mg/L), Nitrate as NO₂ (QL=0.1mg/L), Sodium as Na (QL=5mg/L), Potassium as K (QL=5mg/L), Hexavalent Chromium (QL=0.01 mg/L), Arsenic (QL=0.005 mg/L), Cadmium (QL=0.002 mg/L), Copper (QL=0.005 mg/L), Iron (QL=0.1mg/L), Lead (QL=0.002 mg/L), Manganese (QL=0.04 mg/L), Mercury (QL=0.0005 mg/L), Total Chromium (QL=0.005 mg/L), Total Coliforms (QL=1 MPN/ 100ml) **Note:** For Total Coliform, one MPN is equivalent to one CFU. The use of either method; MPN or CFU for the detection of bacteria are considered valid measurements for bacteria limits. ## 8.3 Data Interpretation and Conclusion Drinking water samples were taken from 20 locations (18 at Kandla and 2 at Vadinar), and their physical and chemical properties were analyzed. The analysis's results were compared with standard values as prescribed in IS 10500:2012 Drinking Water Specification. ## **Physico-Chemical Parameters:** - **pH:** The pH values of drinking water samples in Kandla were reported to be in the range of **6.24 to 8.5**, with an average pH of **7.5**. In Vadinar, its values ranged from **7.05 to 8.38**, with an average pH of **7.36**. Notably, the pH levels at both project sites fall within the acceptable range of 6.5 to 8.5, as specified under IS:10500:2012. - Colour: The colour varies from 1 to 10 at the monitoring locations in Kandla. Locations DW-11, DW-14 and DW-10 showed the value of 10 Hazen at Kandla. At Vadinar, the color was observed within the range of 1 to 20 Hazen. the Colour levels at both project sites fall within the acceptable range of 1 to 15, as specified under IS:10500:2012, except of one location DW-20 within the monitoring period of April to May 2023 - Electrical Conductivity (EC): It is a measure of the ability of a solution to conduct electric current, and it is often used as an indicator of the concentration of dissolved solids in water. During the monitoring period, the EC values for samples collected in Kandla were observed to range from 12.83 to 7930 μS/cm, with an average value of 708.65 μS/cm. In Vadinar, the EC values showed variation from 30 to 1736 μS/cm, with an average value of 503.14 μS/cm. It's important to regularly monitor EC levels in drinking water as it can provide valuable information about water quality and presence of dissolved substances. - **Salinity:** Salinity at Kandla varies from **0.02 to 4.39 PSU** with an average of **0.396** PSU, while at Vadinar, salinity was observed within the range of **0.02** to **0.87 PSU**. - Turbidity: The Turbidity values of drinking water samples in Kandla were reported to be in the range of **0.5 to 13.9 NTU**, with an average of **2.32**. In Vadinar, its values ranged from **0 to 5.3**, with an average **2.21**. Notably, the Turbidity levels at both project sites fall within the acceptable range of 1 to 5 NTU, as specified under IS:10500:2012, except DW-7, in the monitoring period of July to August 2023, DW-13 in the monitoring period of May to June 2023 and DW-14 in the monitoring period of September to October and October to November 2023. On all this location most of the time Turbidity observed Below Quantification Limit - Chlorides: The chloride concentrations in Kandla varied from 3 to 689.78 mg/L, with an average value of 116.85 mg/L. At Vadinar the chloride concentration was observed within the range of 9 mg/L to 407.37 mg/L, with an average value of 99.45 mg/L. Thus, the chloride levels at both project sites fall within the Permissible limit of 1000 mg/L, as specified under IS:10500:2012. - Total Hardness (TH): The concentration of Total Hardness varies from 1.5 to 480 mg/L, with an average concentration of 88.68 mg/L. While at Vadinar, the observed values were within range of 2 to 240 mg/L. at both study areas Total Hardness found to be within the Permissible limit norm of 600 mg/L as specified by IS:10500:2012 and is not harmful for local inhabitants. - Total Dissolved Solids (TDS): Monitoring TDS is crucial because it provides an indication of overall quality of the water. During the monitoring period, the TDS concentrations in Kandla were observed to vary in a wide range i.e., between 8 to 1522 mg/L, with an average concentration of 264.4 mg/L. which is within the permissible limit. while in Vadinar, it ranged from 6 to 882 mg/L, with an average of 255.75 mg/L. It is important to note that the TDS concentrations in both Kandla and Vadinar fall well within the Permissible limit of 2000 mg/L. - Fluoride: The concentration Fluoride varies from 0 to 1.477 mg/L, with an average concentration of 0.44 mg/L. While at Vadinar Fluoride concentration was varies within range of 0 to 1.06 mg/L, with an average concentration of 0.708 mg/L. The Fluoride concentration was found to be BQL in majority of the monitoring location at Kandla and Vadinar. at both study areas Fluoride found to be within the Permissible limit norm of 1.5 mg/L as specified by IS:10500:2012 - **Sulphate:** The concentration Sulphate varies from **0** to **141.99** mg/L, with an average concentration of **45.67** mg/L. While at Vadinar Sulphate concentration was varies within range of **13.07** to **102.92** mg/L, with an average concentration of **43.94** mg/L. During monitoring period in Kandla and Vadinar, the sulphate concentrations were found to be within the acceptable limits i.e., 200 mg/L as per the specified norms. - **Nitrate:** The concentration Nitrate varies from **0** to **25.96** mg/L, with an average concentration of **4.08** mg/L. While at Vadinar Nitrate concentration was varies within range of **0** to **18.54** mg/L, with an average concentration of **8.20** mg/L. The Nitrate concentration was found to be **BQL** in majority of the monitoring location at Kandla and Vadinar. at both study areas Nitrate found to be within the Acceptable limit norm of 45 mg/L as specified by IS: 10500:2012. - **Nitrite:** The concentration Nitrite varies from **0** to **0.2** mg/L. While at Vadinar Nitrite concentration was varies within range of **0** to **1.89** mg/L, with an
average concentration of **0.945** mg/L. The Nitrite concentration was found to be **BQL** in majority of the monitoring location at Kandla and Vadinar. - Sodium: During the monitoring period, at Kandla variation in the concentration of Sodium was observed to be in the range of **5.01 to 396.2 mg/L**, with the average concentration of **63.71** mg/L. While at Vadinar, the concentration recorded between **6.08** to **204.4** mg/L, with the average concentration of **57.067** mg/L. - Odour: Odour values recorded 1 TON at all monitoring locations of Kandla and Vadinar. ## Metals: • Arsenic: The Arsenic concentrations in Kandla varied from 0 to 0.042 mg/L. At Vadinar the Arsenic concentration was observed within the range of 0 mg/L to 0.08 mg/L. Thus, the Arsenic levels at both project sites fall within the Permissible limit of 0.05 mg/L, as specified under IS:10500:2012, except on one location at Vadinar DW-19 where Arsenic Concentration found 0.08 mg/L in the monitoring period of November to December 2023. In Kandla and Vadinar, the Arsenic concentrations were recorded BQL for majority of the locations except the locations DW-2, DW-12, and DW-18 in Kandla and DW-20 In Vadinar. - Copper: The Copper concentrations in Kandla varied from 0 to 17.3 mg/L. At Vadinar the Copper concentration was observed within the range of 0 mg/L to 16.25 mg/L. Thus, the Copper levels at both project sites fall within the Permissible limit of 1.5 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-2, DW-4, DW-8, DW-10, DW-12, DW-15, DW-18 in Kandla and on both Locations DW-19 and DW-20 of Vadinar for some samples taken during whole monitoring period. The Copper concentrations were recorded BQL for majority of the locations in Kandla and Vadinar. - Iron: The Iron concentrations in Kandla varied from 0 to 0.64 mg/L, with an average concentration of 0.10 mg/L. At Vadinar the Iron concentration was observed within the range of 0 mg/L to 1.478 mg/L. Thus, the Iron levels at both project sites fall within the Acceptable limit of 0.3 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-10, and DW-17 in Kandla and on Location DW-19 of Vadinar for some samples taken during the whole monitoring period. The Iron concentrations were recorded by BQL for the majority of the locations in Kandla and Vadinar. - Lead: The Lead concentrations in Kandla varied from 0 to 4.279 mg/L, with an average concentration of 0.37 mg/L. While at Vadinar the Lead concentration was observed within the range of 0 mg/L to 10.53 mg/L, with an average concentration of 2.6344. Thus, the Lead levels at both project sites fall within the Acceptable limit of 0.01 mg/L, as specified under IS:10500:2012, except for locations DW-1, DW-8, DW-14 and DW-15 in Kandla and on Location DW-19 of Vadinar for some samples taken during the whole monitoring period. The Lead concentrations were recorded in BQL for the majority of the locations in Kandla and Vadinar. - Manganese: The Manganese concentrations in Kandla varied from 0 to 0.51 mg/L, with an average concentration of 0.1 mg/L. While at Vadinar, the Manganese concentration was observed within the range of 0 mg/L to 0.13 mg/L. Thus, the Manganese levels at both project sites fall within the Acceptable limit of 0.3 mg/L, as specified under IS:10500:2012, except for locations DW-3, and DW-6 in Kandla and on Location DW-20 of Vadinar for some samples taken during the whole monitoring period. The Manganese concentrations were recorded BQL for the majority of the locations in Kandla and Vadinar. - The concentrations of parameters such as Free Residual Chlorine, Total Suspended Solid, Potassium Hexavalent Chromium and the metals (Cadmium, Mercury, Total Chromium and Zinc) were observed to fall within the Permissible limit at both project sites. Observed "Below the Quantification Limit (BQL)" at majority of the locations during the monitoring period. - Bacteriological Analysis of the drinking water reveals that Total Coliforms (TC) were detected in the range of 0 to 144500 MPN/100ml, with the average of 6964.8 MPN/100ml. While at Vadinar the observed within the range of 0 MPN/100ml to 1,30,000 MPN/100ml, with the average concentration of 25,185 MPN/100ml. And for the rest of the monitoring locations of Kandla and Vadinar were detected "Below the Quantification Limit (BQL)". Reporting such concentration of Coliforms indicates certain external influx may contaminate the source. Hence, it should be checked at every distribution point. The higher concentration of total coliforms were observed on locations DW-2, DW-5, DW-7, DW-10, DW-11, and DW-17 in Kandla and DW-20 location in Vadinar. #### 8.4 Remedial Measures Appropriate water treatment processes should be administered to eradicate coliform bacteria. The methods of disinfection such as **chlorination**, **ultraviolet** (UV), or ozone etc, apart from that, filtration systems can also be implemented to remove bacteria, sediment, and other impurities. The following steps can be implemented to ensure that the water being supplied is safe for consumption: - Regular monitoring should be carried out to assess the quality of drinking water at various stages, including the source, purification plants, distribution network, and consumer endpoints would help in early detection of coliform bacteria or other contaminants in the drinking water. - It is necessary to carry out a system assessment to determine whether the drinkingwater supply chain (up to the point of consumption) as a whole can deliver water of a quality that meets identified targets. This also includes the assessment of design criteria of the treatment systems employed. - Identifying control measures in a drinking-water system that will collectively control identified risks and ensure that the health-based targets are met. For each control measure identified, an appropriate means of operational monitoring should be defined that will ensure that any deviation from required performance (water quality) is rapidly detected in a timely manner. - Management and communication plan should be formulated describing actions to be taken during normal operation as well as during incident conditions (such as drinking water contamination) and documenting the same. # CHAPTER 9: SEWAGE TREATMENT PLANT MONITORING ## 9.1 Sewage Treatment Plant (STP) Monitoring: The principal objective of STP is to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. As defined in the scope by Deendayal Port Authority (DPA), Kandla, the STP Monitoring is to be carried out weekly at three locations, one at Kandla, one at Gopalpuri and one STP at Vadinar. The samples from the inlet and outlet of the STP have been collected weekly. The details of the locations of STP to be monitored for Kandla and Vadinar have been mentioned in **Table 23A** as follows: ## Frequency of monitoring: weekly Table 23A: Details of the monitoring locations of STP | Sr. No. | Locatio | n Code | Location Name | Latitude Longitude | |---------|---------|--------|----------------|-----------------------| | 1. | Kandla | STP-1 | STP Kandla | 23.021017N 70.215594E | | 2. | Kandia | STP-2 | STP Gopalpuri | 23.077783N 70.136759E | | 3. | Vadinar | STP-3 | STP at Vadinar | 22.406289N 69.714689E | The Consolidated Consent and Authorization (CC&A) issued by the GPCB were referred for the details of the STP for Kandla and Gopalpuri. The CC&A of Kandla and Gopalpuri entails that the treated domestic sewage should conform to the norms specified in **Table 23B**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner. Table 22B: Discharge norms (as per CC&A of Kandla STP) | Sr. No. | Parameters | Prescribed limits | |---------|----------------------|-------------------| | 1. | pН | 6.5-8.5 | | 2. | BOD (3 days at 27°C) | 30 mg/L | | 3. | Suspended Solids | 100 mg/L | | 4. | Fecal Coliform | < 1000 MPN/100 ml | The detailed process flow diagram of the Kandla and Gopalpuri STP have been mentioned in **Figure 3 and 4** as follows: Figure 3: Process flow diagram of STP at Kandla Figure 4: Process flow diagram of STP at Gopalpuri, Kandla ### STP at Vadinar The STP at Vadinar has been built with a treatment capacity of 450 KLD/day. The Consolidated Consent and Authorization (CC&A) issued by the GPCB has been referred for the details of the said STP. The CC&A of the Vadinar STP suggests that the domestic effluent generated shall be treated as per the norms specified in **Table 24**. The treated effluent conforming to the norms shall be discharged on the land within the premises strictly for the gardening and plantation purpose. Whereas, no sewage shall be disposed outside the premises in any manner. Table 23: Norms of treated effluent as per CC&A of Vadinar STP | | | Per cetter or cutting or r | |---------|----------------------|----------------------------| | Sr. No. | Parameters | Prescribed limits | | 1. | рН | 5.5-9 | | 2. | BOD (3 days at 27°C) | 10 mg/L | | 3. | Suspended Solids | 20 mg/L | | 4. | Fecal Coliform | Desirable 100 MPN/100 ml | | | | Permissible 230 MPN/100 ml | | Sr. No. | Parameters | Prescribed limits | |---------|------------|-------------------| | 5. | COD | 50 mg/L | The detailed process flow diagram of the Vadinar STP have been mentioned in **Figure 5** as follows: Figure 5: Process flowchart for the STP at Vadinar The map depicting the locations of STP to be monitored in Kandla and Vadinar have been shown in **Map 14 and 15** as follows: Map 14: STP Monitoring Locations at Kandla Map 15: STP Monitoring Locations at Vadinar ## Methodology As per the defined scope by DPA, the sampling and analysis of water samples from the inlet and outlet of
the STP's of Kandla and Vadinar are carried out once a week, i.e., four times a month. The water samples were collected from inlet and the outlet of the STP's and analyzed for physico-chemical and microbiological parameter. Collection and analysis of these samples was carried out as per established standard methods and procedures for the examination of water. The samples were analyzed for selected parameters to establish the existing water quality of the inlet and outlet points of the STP. GEMI has framed its own guidelines for collection of water/wastewater samples titled as 'Sampling Protocol for Water & Wastewater'; which has been approved by the Government of Gujarat vide letter no. ENV-102013-299-E dated 24-04-2014 under the provision of Water (Preservation and Control of Pollution) Act 1974. The sample collection and preservation are done as per the said Protocol. Under the project, the list of parameters to be monitored for the STP have been mentioned in **Table 26** as follows: ## **Monitoring Frequency** Monitoring is required to be carried out once a week for monitoring location of Kandla and Vadinar i.e., two STP station at Kandla and one STP station at Vadinar. Sample Collected from this location during the monitoring period April 2023 to March 2024. Table 24: List of parameters monitored for STP's at Kandla and Vadinar | Tuble 21. Elist of parameters monitored for 511 5 at Randal and Vacantai | | | | | | | | | |--|--------------------|-----------|---|---|--|--|--|--| | Sr. No. | Parameters | Units | Reference method | Instruments | | | | | | 1. | рН | 1 | APHA, 23 rd edition,
4500- H ⁺ B, 2017 | pH Meter | | | | | | 2. | TDS | mg/L | APHA, 23rd Edition, | Vacuum Pump with | | | | | | 3. | TSS | mg/L | 2540 C: 2017 | filtration assembly and
Oven | | | | | | 4. | DO | mg/L | APHA, 23 rd Edition,
4500 C: 2017 | Titration Apparatus | | | | | | 5. | COD | mg/L | APHA, 23 rd Edition,
5220 B: 2017 | Titration Apparatus plus
Digester | | | | | | 6. | BOD | mg/L | IS-3025, Part 44, 1993 | BOD Incubator plus
Titration Apparatus | | | | | | 7. | SAR | meq/L | IS 11624: 2019 | Flame Photometer | | | | | | 8. | Total
Coliforms | MPN/100ml | IS 1622: 2019 | LAF/ Incubator | | | | | ### 9.2 Result and Discussion Analytical results of the STP samples collected from the inlet and the outlet of the STP's of Kandla and Vadinar have been summarized in **Table 26**. Further it was compared with the standard norms specified in the CC&A of the respective STPs. Table 25: Water Quality of inlet and outlet of STP of Kandla | Sr No. | Parameter | Units | Kandla Vadinar | | | | | | | | | | | |---------|------------|-------|----------------|---------|---------|--------|---------|--------------|-------|------------|--------|--------|------| | 51 140. | 1 arameter | Onits | GPCB | STP-1 | | | STP-2 | | | GPCB STP-3 | | | | | | | | Norms | Inlet | Out | let | Inlet | Inlet Outlet | | Norms | Inlet | Outlet | | | | | | (Kandla) | Avg | Avg | Max | Avg | Avg | Max | (Vadinar) | Avg | Avg | Max | | 1. | pН | - | 6.5-8.5 | 7.17 | 7.302 | 7.65 | 6.99 | 7.48 | 8.88 | 5.5-9 | 7.19 | 7.41 | 8.46 | | 2. | TDS | mg/L | - | 3065.7 | 2069.28 | 6228 | 1099.40 | 1003.3 | 1814 | - | 471.61 | 402.67 | 482 | | 3. | TSS | mg/L | 100 | 183.4 | 20.97 | 88 | 115.17 | 16.45 | 46 | 20 | 38.78 | 8.42 | 36 | | 4. | COD | mg/L | - | 184.7 | 32.57 | 133.1 | 213.54 | 25.98 | 88.4 | 50 | 138.27 | 16.18 | 40.2 | | 5. | DO | mg/L | - | 145.91 | 37.780 | 277.09 | 162.29 | 21.98 | 76.92 | - | 115.12 | 18.69 | 54.5 | | 6. | BOD | mg/L | 30 | 56.82 | 11.937 | 52.4 | 61.75 | 8.40 | 18.45 | 10 | 44.62 | 6.053 | 11 | | 7. | SAR | meq/L | - | 12.06 | 9.318 | 21.04 | 5.75 | 5.43 | 13.1 | - | 2.71 | 2.12 | 3.2 | | 8. | Total | | | | | | | | | | | | | | | Coliform | MPN/ | <1000 | 1565.95 | 1530.66 | 1600 | 1537.02 | 1500.51 | 1600 | 100-230 | 1551 | 1492.3 | 1600 | | | s | 100ml | | | | | | | | | | | | BQL: Below Quantification limit; Total Suspended Solids (QL=2), Dissolved Oxygen (QL=0.5), Biochemical Oxygen Demand (QL=3 mg/L) ## 9.3 Data Interpretation and Conclusion For physicochemical analysis, the treated sewage water was gathered from the Kandla STP, Gopalpuri STP, and Vadinar STP and the analytical results were compared with the standards mentioned in the Consolidated Consent and Authorization (CC&A) by GPCB. - The average pH at the inlet of STP-1, STP-2, and STP-3 is, respectively, **7.17**, **6.99**, **and 7.19**. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum pH of **7.65**, **8.88**, **and 8.46** and an average pH of **7.302**, **7.48**, **and 7.41**, respectively. Which conform to their respective stipulated norms of 6.5–8.5 at Kandla and 5.5–9 at Vadinar, respectively. - The average TDS concentrations at the inlet of STP-1, STP-2, and STP-3 are, respectively, 3065.8, 1099.4, and 471.33 mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum TDS concentration of 6228, 1814, and 482 mg/L, and an average TDS concentration of 2069.3, 1003.3, and 402.67 mg/L, respectively. - The average TSS at the inlet of STP-1, STP-2, and STP-3 is respectively **183.43**, **115.17**, **and 38.78** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum TSS of **88**, **46**, and **36** mg/L, and an average TSS of **20.974**, **16.452**, **and 8.41** mg/L, respectively. Which conform to their respective stipulated norms of 100 mg/L at Kandla and 20 mg/L at Vadinar, respectively, as mentioned in their respective CCA, except in STP-3 at Vadinar, which exceeds norms in the 3rd and 4th weeks of April 2023. - The average COD at the inlet of STP-1, STP-2, and STP-3 is respectively **184.7**, **213.54**, **and 138.27** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had maximum COD concentrations of **133.1**, **88.4**, **and 40.2** mg/L, and average COD concentrations of **32.576**, **25.97**, **and 16.18** mg/L, respectively. There are no discharge norms for the COD parameter in STP-1 and STP-2 at Kandla, and they conform to their respective stipulated norms of 50 mg/L at Vadinar as mentioned in their respective CCA. - The average DO concentrations at the inlet of STP-1, STP-2, and STP-3 are, respectively, **145.91**, **162.29**, **and 115.12** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum DO concentration of **277.09**, **76.92**, **and 54.5** mg/L, and an average DO concentration of **37.78**, **21.98**, **and 18.68**, mg/L respectively. - The average BOD at the inlet of STP-1, STP-2, and STP-3 is respectively **56.82**, **61.76**, **and 44.62** mg/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) had a maximum BOD of **52.4**, **18.45**, **and 11** mg/L, and an average BOD of **11.93**, **8.40**, **and 6.05** mg/L, respectively. Which conform to their respective stipulated norms of 30 mg/L at Kandla and 10 mg/L at Vadinar, respectively, as mentioned in their respective CCA, except in STP-3 at Vadinar, which exceeds norms in the 3rd and 4th weeks of April 2023. - The average SAR concentrations at the inlet of STP-1, STP-2 and STP-3 are respectively **12.068**, **5.75** and **2.71** meq/L. After treatment, the treated effluent from STPs at Kandla (STP-1 and STP-2) and Vadinar (STP-3) having maximum SAR concentration **21.04**, **13.1** and **3.2** meq/L, and having Average SAR concentration **9.31**, **5.46** and **2.12** meq/L respectively. • The **Total Coliforms** was observed to exceed the norms at the locations of the STP-1 & STP-2 for the treated effluent at Kandla and STP-3 at Vadinar. During the monitoring period, only Total Coliforms were observed to be exceeding the limits at STPs of Kandla and Vadinar while rest of the treated sewage parameters for STP outlet were within norms as specified under the CCA at both the monitoring sites. Regular monitoring of the STP performance should be conducted on regular basis to ensure adequate treatment as per the norms. #### 9.4 Remedial Measures: - The quantum of raw sewage (influent) entering the STP should be monitored by installation of the flow meter. If the quantity of the sewage exceeds the treatment capacity of the treatment plant, then provision of additional capacity of collection sump should be provided. - The adequacy and efficacy of the stages of Sewage treatment units shall be conducted. - The results show the presence of total coliforms; hence the method of disinfection (Chlorination) sodium or calcium Hypochlorite can be used. - Effectiveness of any technology depends on factors such as the specific pollutants in the wastewater, plant size, local regulations, and available resources. There are several processes that may be implemented such as Advanced oxidation process involve using strong oxidants to break down complex organic compounds. Methods like Fenton's reagent (hydrogen peroxide and iron catalyst) and UV/H₂O₂ treatment can help in reducing COD through oxidation. - Electrochemical processes like Electrocoagulation (EC) and Electrooxidation (EO) that involve the application of an electric current to facilitate the removal of pollutants through coagulation, flocculation, and oxidation. These methods can be useful for treating sewage containing various pollutants. # CHAPTER 10: MARINE WATER QUALITY MONITORING #### 10.1 Marine Water Deendayal Port is one of the largest ports of the country and thus, is engaged in wide variety of activities such as movement of large vessels, oil tankers and its allied small and medium vessels and handling of dry cargo several such
activities whose waste if spills in water, can cause harmful effects to marine water quality. Major water quality concerns at ports include wastewater and leakage of toxic substances from ships, stormwater runoff, etc. This discharge of wastewater, combined with other ship wastes which includes sewage and wastewater from other on-board uses, is a serious threat to the water quality as well as to the marine life. As defined in the scope by DPA, the Marine Water sampling and analysis has to be carried out at a total of eight locations, six at Kandla and two at Vadinar. The marine water sampling has been carried out with the help of Niskin Sampler with a capacity of 5L. The Niskin Sampler is a device used to take water samples at a desired depth without the danger of mixing with water from other depths. Details of the locations to be monitored have been mentioned in **Table 27**: Table 26: Details of the sampling locations for Marine water | Sr. No. | | ocation
Code | Location Name | Latitude Longitude | | | |---------|---------|-----------------|---|-----------------------|--|--| | 1. | | MW-1 | Near Passenger Jetty One 23.017729N 70.2243 | | | | | 2. | | MW-2 | Kandla Creek (nr KPT
Colony) | 23.001313N 70.226263E | | | | 3. | dla | MW-3 | Near Coal Berth | 22.987752N70.227923E | | | | 4. | Kandla | MW-4 | Khori Creek | 22.977544N 70.207831E | | | | 5. | | MW-5 | Nakti Creek (nr Tuna Port) | 22.962588N 70.116863E | | | | 6. | | MW-6 | Nakti Creek (nr NH-8A) | 23.033113N 70.158528E | | | | 7. | nar | MW-7 | Near SPM | 22.500391N 69.688089E | | | | 8. | Vadinar | MW-8 | Near Vadinar Jetty | 22.440538N 69.667941E | | | The map depicting the locations of Marine Water to be sampled and analysed for Kandla and Vadinar have been mentioned in **Map 16 and 17** as follows: Map 16: Marine Water Monitoring Locations at Kandla Map 17: Marine Water Monitoring Locations at Vadinar ## Methodology The methodology adopted for the sampling and monitoring of Marine Water was carried out as per the 'Sampling Protocol for Water & Wastewater' developed by GEMI. The water samples collected through the Niskin Sampler are collected in a clean bucket to reduce the heterogeneity. The list of parameters to be monitored under the project for the Marine Water quality have been mentioned in Table 28 along with the analysis method and instrument. #### **Monitoring Frequency** As defined in the scope by DPA, the sampling and analysis of Marine Water has to be carried out once in a month at the eight locations (i.e., six at Kandla and two at Vadinar). For the period April 2023 to March 2024. Table 27: List of parameters monitored for Marine Water | Sr.
No | Parameters | Units | Reference method | Instrument | |-----------|---------------------------------------|-------|--|---| | 1. | Electrical
Conductivity | μS/cm | APHA, 23 rd Edition (Section-
2510 B):2017 | Conductivity Meter | | 2. | Dissolved Oxygen (DO) | mg/L | APHA, 23 rd Edition, 4500 O C, 2017 | Titration Apparatus | | 3. | рН | 1 | APHA, 23 rd Edition (Section-
4500-H+B):2017 | pH meter | | 4. | Color | Hazen | APHA, 23 rd Edition, 2120 B: 2017 | Color comparator | | 5. | Odour | 1 | IS 3025 Part 5: 2018 | Heating mantle & odour bottle | | 6. | Turbidity | NTU | IS 3025 Part 10: 1984 | Nephlo Turbidity Meter | | 7. | Total Dissolved
Solids (TDS) | mg/L | APHA, 23 rd Edition (Section-
2540 C):2017 | Vaccum Pump with
Filtration Assembly and | | 8. | Total Suspended
Solids (TSS) | mg/L | APHA, 23 rd Edition, 2540 D: 2017 | Oven | | 9. | Particulate Organic Carbon | mg/L | APHA, 23 rd Edition, 2540 D
and E | TOC analyser | | 10. | Chemical Oxygen
Demand (COD) | mg/L | IS-3025, Part- 58: 2006 | Titration Apparatus plus
Digester | | 11. | Biochemical
Oxygen Demand
(BOD) | mg/L | IS-3025, Part 44,1993, | BOD Incubator plus
Titration apparatus | | 12. | Silica | mg/L | APHA, 23 rd Edition, 4500 C, 2017 | | | 13. | Phosphate | mg/L | APHA, 23 rd Edition, 4500 P-D: 2017 | | | 14. | Sulphate | mg/L | APHA, 23 rd Edition, 4500
SO4-2 E: 2017 | UV- Visible
Spectrophotometer | | 15. | Nitrate | mg/L | APHA, 23 rd Edition, 4500
NO3-B: 2017 | | | 16. | Nitrite | mg/L | APHA, 23 rd Edition, 4500
NO2- B: 2017 | | | 17. | Sodium | mg/L | APHA, 23 rd Edition, 3500 Na-
B: 2017 | Flame photometer | | Sr.
No | Parameters | Units | Reference method | Instrument | |-----------|--|---------------|--|----------------------------------| | 18. | Potassium | mg/L | APHA, 23 rd Edition, 3500 K-B: 2017 | | | 19. | Manganese | μg/L | APHA, 23 rd Edition, ICP
Method 3120 B: 2017 | | | 20. | Iron | mg/L | APHA, 23 rd Edition, ICP
Method 3120 B: 2017 | ICP-OES | | 21. | Total Chromium | μg/L | APHA, 23 rd Edition, 3500 Cr | | | 22. | Hexavalent
Chromium | μg/L | B: 2017 | UV- Visible
Spectrophotometer | | 23. | Copper | μg/L | | | | 24. | Cadmium | μg/L | | | | 25. | Arsenic | μg/L | APHA, 23 rd Edition, ICP
Method 3120 B: 2017 | ICP-OES | | 26. | Lead | μg/L | | ICT-OES | | 27. | Zinc | mg/L | | | | 28. | Mercury | μg/L | EPA 200.7 | | | 29. | Floating Material
(Oil grease scum,
petroleum
products) | mg/L | APHA, 23 rd Edition, 5520 C: 2017 | Soxhlet Assembly | | 30. | Total Coliforms (MPN) | MPN/
100ml | IS 1622: 2019 | LAF/ Incubator | #### 10.2 Result and Discussion The quality of the Marine water samples collected from the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 29**. The said water quality has been represented in comparison with the standard values as stipulated by CPCB for Class SW-IV Waters. Table 28: Results of Analysis of Marine Water Sample for the sampling period | | Primary | Kandla | | | | | | | | | | | | | | Vad | linar | | | | | | | | | |--------------------------|---------------|--------|--------|---------|---------|--------|-----------|--------|----------|----------|-------|--------|----------|--------|--------|----------|--------|--------|----------|--------|--------|----------|--------|--------|----------| | | Water Quality | | MW-1 | | | MW-2 | 2 | | MW-3 | } | | MW-4 | 1 | | MW-5 | 5 | | MW-6 | 5 | | MW-7 | 7 | | MW-8 | | | Parameters | Criteria for | Class SW-IV | Min | Max | Avg | Density (kg/m³) | Waters | 1.02 | 1.03 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.021 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | | pH | 6.5-9.0 | 6.12 | 8.32 | 7.89 | 7.04 | 8.36 | 7.99 | 7.83 | 8.33 | 8.11 | 7.69 | 8.31 | 8.05 | 7.19 | 8.48 | 8.03 | 6.01 | 8.31 | 7.94 | 7.98 | 8.2 | 8.11 | 7.07 | 8.22 | 8.06 | | Colour (Hazen) | No Noticeable | 1 | 10 | 5.41 | 1 | 20 | 7.83 | 1 | 15 | 7.16 | 5 | 20 | 9 | 5 | 15 | 7.41 | 5 | 20 | 8.27 | 1 | 10 | 5.66 | 1 | 10 | 5.08 | | EC (µS/ cm) | - | 49700 | 63600 | 54282.5 | 49800 | 61700 | 54490.91 | 50200 | 60600 | 53767.75 | 50400 | 75300 | 55689.91 | 50100 | 65100 | 55115.58 | 15950 | 61528 | 50873.17 | 52200 | 56900 | 54239.2 | 52.119 | 57500 | 50312.6 | | Turbidity (NTU) | - | 56.4 | 310 | 188.26 | 33.9 | 314 | 206.76 | 61.8 | 317 | 203.81 | 69 | 300 | 216.66 | 94.5 | 379 | 202.5 | 70.1 | 346 | 209.23 | 3.15 | 12.5 | 5.36 | 3.42 | 13.8 | 6.39 | | TDS (mg/L) | - | 24800 | 44466 | 36356.3 | 24900 | 41922 | 36679.5 | 25100 | 41624 | 35690.92 | 25200 | 64721 | 38189.5 | 25000 | 47159 | 36938.58 | 9970 | 41436 | 32927.91 | 25784 | 38620 | 35400.16 | 26882 | 41790 | 35965.75 | | TSS (mg/L) | - | 44 | 436 | 342.42 | 26 | 563 | 374.58 | 52 | 478 | 340.75 | 58 | 924 | 402.33 | 80 | 682 | 427.66 | 58 | 852 | 387.72 | 78 | 341 | 255.08 | 151 | 346 | 282.33 | | COD (mg/L) | - | 29.2 | 79.37 | 49.62 | 11.98 | 79.37 | 47.81 | 25.41 | 81 | 47.68 | 22.65 | 81 | 52.12 | 31.56 | 79.37 | 53.76 | 22.97 | 88.8 | 49.34 | 21.28 | 75 | 50.98 | 17.92 | 75 | 47.63 | | DO (mg/L) | 3.0 mg/L | 4.7 | 6.4 | 5.76 | 5.3 | 6.4 | 6.07 | 4.5 | 6.7 | 5.87 | 3.4 | 6.5 | 5.85 | 5 | 6.6 | 6.07 | 5.6 | 8.4 | 6.49 | 4.3 | 7.6 | 6.25 | 4.4 | 7.9 | 6.48 | | BOD (mg/L) | 5.0 mg/L | 5.24 | 8.54 | 7.56 | 8.4 | 8.9 | 8.57 | 3.74 | 8.45 | 6.81 | 5 | 8.78 | 7.755 | 9.32 | 9.87 | 9.57 | 3.6 | 11.1 | 8.64 | 3.91 | 7.5 | 6.51 | 4.2 | 7.16 | 6.16 | | Oil & Grease | | 0 | | (mg/L) | | | | | | | - | · · | | Ü | - | | - | | · | - | | | Ů | | | | | Ŭ | - | | Sulphate (mg/L) | = | 2056 | 2937.5 | 2529.7 | 2156.32 | 2897.7 | 2544.18 | 2083.7 | 2925.2 | 2530.85 | 2239 | 3704.9 | 2879.88 | 2334.9 | 2916.8 | 2652.42 | 632.62 | 3612.8 | 2561.07 | 1846.3 | 3225.8 | 2472.195 | 2039.9 | 3236.8 | 2664.27 | | Nitrate (mg/L) | - | 1.89 | 5.40 | 4.28 | 1.12 | 5.16 | 3.75 | 3.21 | 5.68 | 4.17 | 3.41 | 5.85 | 4.64 | 3.17 | 6.92 | 4.21 | 3.06 | 6.84 | 4.06 | 2.225 | 5.17 | 3.56 | 1.759 | 5.1 | 3.39 | | Nitrite (mg/L) | - | 0.12 | 0.12 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.11 | 0.11 | 0.11 | 0.13 | 0.16 | 0.14 | 0 | 0 | 0 | 0 | 0 | 0! | | Phosphate (mg/L) | | 0.25 | 1.59 | 0.82 | 0.09 | 1.34 | 0.69 | 0.57 | 1.46 | 0.96 | 0.61 | 2.01 | 0.92 | 0.29 | 1.34 | 0.76 | 0.54 | 1.61 | 0.81 | 0.64 | 0.94 | 0.79 | 1.43 | 1.43 | 1.43 | | Silica (mg/L) | - | 0.29 | 3.24 | 2.12 | 0.22 | 4.04 | 2.24 | 0.2 | 3.73 | 2.19 | 1.12 | 3.69 | 2.54 | 1.26 | 4 | 2.64 | 0.33 | 3.74 | 1.92 | 0.11 | 0.96 | 0.56 | 0.09 | 1.86 | 0.76 | | Sodium (mg/L) | - | 7686 | 10625 | 9475.57 | 7811 | 10341 | 9242.42 | 7763 | 10308 | 9347.33 | 9101 | 10323 | 9724.14 | 8789 | 10278 | 9403.67 | 2086 | 10722 | 8042.71 | 2149.6 | 9485 | 6743.97 | 2349.4 | 9542 | 7244.66 | | Potassium (mg/L) | - | 68.35 | 451.9 | 318.57 | 69.27 | 446.5 | 303.94 | 68.57 | 421 | 290.60 |
71.73 | 543.96 | 342.71 | 69.63 | 423.34 | 324.92 | 68.34 | 442.63 | 272.9 | 10.86 | 421.7 | 259.6 | 76.31 | 518 | 327.43 | | Hexavalent | i | | Chromium | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 321 | 321 | 321 | 333 | 333 | 333 | | (mg/L)
Odour | | - | 1 | 1 | 1 | 1 | - | 1 | - | 1 | - | 1 | - | 1 | 1 | - 1 | 1 | 1 | 1 | - | - | - | 1 | - | 1 | | Arsenic (mg/L) | - | 5.13 | 5.13 | 5.13 | 5.25 | 5.25 | 1
5.25 | 5.4 | 1
5.4 | 5.4 | 0 | 0 | 0 | 0 | 0 | 0 | 9.44 | 12.94 | 11.19 | 0.11 | 1 | 0.41 | 0.08 | 1 | 0.38 | | Cadmium (mg/L) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.11 | 0 | 0.41 | 0.08 | 0 | 0.38 | | Copper (mg/L) | - | 5.1 | 6.99 | 5.8175 | 0.006 | 10.9 | 5.79 | 0.005 | 7.7 | 3.85 | 5.34 | 12.01 | 8.224 | 0.0067 | 7.6 | 5.13 | 8.07 | 10.2 | 9.49 | 3.4 | 3.4 | 3.4 | 0 | 0 | 0 | | Iron (mg/L) | - | 0.69 | 4.11 | 1.38 | 0.21 | 4.07 | 1.76 | 0.37 | 3.92 | 1.79 | 1.02 | 7.93 | 2.49 | 0.98 | 5.45 | 2.09 | 0.43 | 5.3 | 2.005 | 0.01 | 0.25 | 0.145 | 0.08 | 0.66 | 0.21 | | Lead (mg/L) | - | 0.002 | 3.44 | 2.067 | 0.0029 | 3.44 | 2.29 | 0.0026 | 3.06 | 1.98 | 0.002 | 9.68 | 4.32 | 0.002 | 4.65 | 2.39 | 0.0029 | 3.65 | 2.47 | 0.0023 | 2.26 | 1.035 | 0.002 | 2.75 | 0.96 | | Manganese | | 0.002 | 120.01 | F1 4F | 0.10 | 150 50 | 02.00 | 0.1005 | 105.66 | 740 | 0.006 | 204.01 | 00.54 | 0.074 | 212.14 | 74.7 | 0.11 | 157.41 | 00.07 | 2.20 | 110.00 | 20.62 | 1.07 | 00.0 | 24.64 | | (mg/L) | - | 0.082 | 129.91 | 71.47 | 0.12 | 159.78 | 83.88 | 0.1085 | 125.66 | 74.0 | 0.096 | 294.91 | 93.56 | 0.074 | 213.14 | 74.7 | 0.11 | 156.41 | 80.27 | 2.39 | 113.93 | 39.62 | 1.97 | 98.8 | 34.64 | | Total Chromium
(mg/L) | - | 0 | 0 | 0 | 5.62 | 7.8 | 6.71 | 5.67 | 5.67 | 5.67 | 5.14 | 15.99 | 12.28 | 5.11 | 9.65 | 7.207 | 0 | 0 | 0 | 0 | 0 | 0 | 45.75 | 45.75 | 45.75 | | Zinc (mg/L) | - | 0 | | Mercury (mg/L) | - | 0 | | Particulate | - | 0.51 | 900 | 76.22 | 0.51 | 35 | 3.98 | 0.42 | 10 | 1.94 | 0.58 | 55 | 6.03 | 0.92 | 30 | 3.89 | 0.85 | 44 | 5.01 | 0.47 | 4.67 | 1.62 | 0.32 | 4.76 | 1.51 | | Organic | Parameters | Primary | | | | | | | | | Kaı | ndla | | | | | | | | | Vadinar | | | | | | | |-------------------|-------------|------|------|--------|------|-----|-------|------|-----|-------|------|----|-------|------|-----|-------|------|----|-------|---------|-----|-------|------|-----|-------|--| | Carbon (mg/L) | Total Coliform* | 500/100 ml | 0.32 | 1600 | 159.61 | 0.16 | 120 | 29.76 | 0.56 | 108 | 31.55 | 0.25 | 47 | 14.02 | 0.35 | 170 | 37.19 | 0.29 | 50 | 21.86 | 0.36 | 240 | 39.76 | 0.39 | 240 | 35.28 | | | (MPN/100ml) | 300/ 100 Hi | 0.52 | 1600 | 139.61 | 0.16 | 120 | 29.76 | 0.56 | 106 | 31.33 | 0.23 | 4/ | 14.02 | 0.33 | 170 | 37.19 | 0.29 | 30 | 21.00 | 0.36 | 240 | 39.76 | 0.39 | 240 | 33.26 | | | Floating Material | (Oil grease scum, | petroleum | | 0 | 23 | 23 | 23 | | | products) | 10 mg/L | (mg/L) | ## 10.3 Data Interpretation and Conclusion The Marine water quality of Deendayal Port Harbor waters at Kandla and Vadinar has been monitored for various physico-chemical and biological parameters during the monitoring 2023 at high tide. The detailed interpretation of the parameters in comparison to the Class SW-IV for Harbour Waters is as follows: - **Density** at Kandla was observed in the range of **1.02 to 1.03 kg/m³**, with the average of **1.022 kg/m³**. Whereas for the location of Vadinar, it was observed in the range of **1.021 to 1.026 kg/m³**, with the average of **1.022 kg/m³**. - pH at Kandla was observed in the range of 6.01 to 8.48, with the average pH as 7.78. Whereas for the locations of Vadinar, it was observed in the range of be 7.07 to 8.22, with the average pH as 7.94. For the monitoring location of both the study areas, pH was found to comply with the norms of 6.5-8.5. - Color range varied from 1 to 20 Hazen at all the monitoring locations in Kandla, and for Vadinar, it varied from 1 to 10 Hazen. - Electrical conductivity (EC) was observed in the range of 15,950 to 75,300 μ S/cm, with the average EC as 54,344.32 μ S/cm for the locations of Kandla, whereas for the locations of Vadinar, it was observed in the range of 52,199 to 57,500 μ S/cm, with the average EC as 45,200.67 μ S/cm. - For all monitoring locations of Kandla the value of **Turbidity** was observed in the range of **33.9 to 379 NTU**, with average value of **198.83** NTU. For Vadinar it ranges from **3.15 to 13.8 NTU**, with average of **7.43** NTU. Materials that cause water to be turbid include clay, silt, finely divided organic and inorganic matter, soluble coloured organic compounds, plankton and microscopic organisms. Turbidity affects the amount of light penetrating to the plants for photosynthesis. - For the monitoring locations at Kandla the value of **Total Dissolved Solids (TDS)** ranged from **9,970 to 64,721 mg/L**, with an average value of **35,171** mg/L. Similarly, at Vadinar, the TDS values ranged from **25,784 to 41,790 mg/L**, with an average value of **34,073** mg/L. - TSS values in the studied area varied between 26 to 924 mg/L at Kandla and 78 to 346 mg/L at Vadinar, with the average value of 362.69 mg/L and 242.23 mg/L respectively for Kandla and Vadinar. - COD varied between 11.98 to 88.8 mg/L at Kandla and 17.92 to 75 mg/L at Vadinar, with the average value as 51.83 mg/L and 47.86 mg/L respectively for Kandla and Vadinar. - DO level in the studied area varied between 3.4 to 8.4 mg/L at Kandla and 4.3 to 7.9 mg/L at Vadinar, with the average value of 5.86 mg/L and 6.15 mg/L respectively for Kandla and Vadinar. Which represents that the marine water is suitable for marine life. - BOD observed was observed in the range of 3.6 to 11.1 mg/L, with average of 7.76 mg/L for the location of Kandla and for the locations of Vadinar, it was observed in the range of 3.91 to 7.5 mg/L, with an average value of 5.9 mg/L. - Sulphate concentration in the studied area varied between 632.92 to 3704.9 mg/L at Kandla and 1846.3 to 3236.8 mg/L at Vadinar. The average value observed at Kandla was 2566.45 mg/L, whereas 2580.87 mg/L was the average value of Vadinar. Sulphate is naturally formed in inland waters by mineral weathering or the decomposition and combustion of organic matter. - **Nitrate** in the study area was observed in the range of **1.12 to 6.92 mg/L**, with the average of **4.26** mg/L. Whereas for the Vadinar the concentration of Nitrate was observed in the range of **1.759 to 5.17** mg/L, with the average **3.53** mg/L. - Nitrite in the study area was observed in the range of 0 to 0.16 mg/L, with the average of 0.625 mg/L. Whereas for the Vadinar the concentration of Nitrite was observed Below Quantification Limit During whole monitoring period. - **Phosphate** in the study area was observed in the range of **0.09 to 2.01 mg/L**, with the average of **0.92** mg/L. Whereas for the Vadinar the concentration of Phosphate was observed in the range of **0.64 to 1.43** mg/L, with the average **1.11** mg/L. - Silica in the study area was observed in the range of 0.2 to 4.04 mg/L, with the average of 2.19 mg/L. Whereas for the Vadinar the concentration of silica was observed in the range of 0.09 to 1.86 mg/L, with the average 0.724 mg/L. - In the study area of Kandla the concentration of **Potassium** varied between **68.34 to 543.68 mg/L** and **10.86 to 518 mg/L** at Vadinar, with the average value as **277.71** mg/L and **268.99** mg/L respectively for Kandla and Vadinar. - Sodium in the study area varied between 2,086 to 10,722 mg/L, with average of 8948.26 mg/L, at Kandla whereas at Vadinar its value recorded within range of 2149.6 to 9542 mg/L, with the average of 6252.43 mg/L. - Odour was observed 1 for all locations of Kandla and Vadinar. - **Arsenic** concentration observed to be BQL for majority of location for Kandla and Vadinar except locations MW-1, MW-2, MW-3, MW-6, MA-7 and MW-8 for some instant of time during whole monitoring period. - Copper in the study area varied between 0.005 to 12.01 mg/L, with average of 6.23 mg/L, at Kandla whereas at Vadinar its value recorded within range of 0 to 3.4 mg/L, with the average of **2.04** mg/L, on both project sites during monitoring majority of time Copper found Below Quantification Limit. - Iron in the studied area varied between 0.21 to 7.93 mg/L, with the average of 2.55 mg/L, at Kandla, and for Vadinar value were recorded within range of 0.01 to 0.66 mg/L, with average value of 0.22 mg/L. - Lead concentration varied 0.002 to 9.68 mg/L, with an average of 2.41 mg/L at Kandla. At Vadinar location within range of 0.002 to 2.753 mg/L with an average 1.17 mg/L - Manganese in the studied area varied between 0.0748 to 294.91 mg/L, with the average of 86.57 mg/L, at Kandla and for Vadinar, recorded value were observed within the range of 1.97 to 113.93 mg/L, with the average of 48.56 mg/L. - Total Chromium in the study area varied between 0 to 15.99 mg/L, with average of 5.13 mg/L, at Kandla whereas at Vadinar its value recorded 45.76 mg/L at MW-8 in the monitoring period of January to February 2024, While on both project sites during monitoring majority of time Total Chromium found Below Quantification Limit - Particulate Organic Carbon in the study area was observed in the range of **0.42 to 900**, with the average value of **65.27**. the maximum spike
of 900 is only observed once in the period of April to May 2023 during whole monitoring period. Whereas for the Vadinar, the value observed was Within the range of **0.32** to **4.76**, with the average of **2.22**. - Oil & Grease, Nitrite, Phosphate, Hexavalent Chromium, Arsenic, Cadmium, Total Chromium, Zinc, Mercury and Floating Material (Oil grease scum, petroleum products) were observed to have concentrations "Below the Quantification Limits (BQL)" for most of the locations of Kandla and Vadinar, majority of time during whole monitoring period. - **Total Coliforms** were detected complying with the specified norm of 500 MPN/100ml for all the locations of Kandla and Vadinar, except on location MW-1 in the month of May to June 2023. During the Monitoring period, marine water samples were analysed and found in line with Primary Water Quality criteria for class-IV Waters (For Harbour Waters). However, as a safeguard towards marine water pollution prevention, appropriate regulations on ship discharges and provision of reception facilities are indispensable for proper control of emissions and effluent from ships. Detection of spills is also important for regulating ship discharges. Since accidental spills are unavoidable, recovery vessels, oil fences, and treatment chemicals should be prepared with a view to minimizing dispersal. Proper contingency plans and a prompt reporting system are keys to prevention of oil dispersal. Periodical clean-up of floating wastes is also necessary for preservation of port water quality. # CHAPTER 11: MARINE SEDIMENT QUALITY MONITORING #### 11.1 Marine Sediment Monitoring Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind. The unconsolidated materials derived from pre-existing rocks or similar other sources by the process of denudation are deposited in water medium are known as sediment. For a system, like a port, where large varieties of raw materials and finished products are handled, expected sediment contamination is obvious. The materials or part of materials spilled over the water during loading and unloading operations lead to the deposition in the harbour water along with sediment and thus collected as harbour sediment sample. These materials, serve as receptor of many trace elements, which are prone to environment impact. In this connection it is pertinent to study the concentration and distribution of environmentally sensitive elements in the harbour sediment. However, human activities result in accumulation of toxic substances such as heavy metals in marine sediments. Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulation. Metals affect the ecosystem because they are not removed from water by self-purification, but accumulate in sediments and enter the food chain. ## Methodology As defined in the scope by DPA, the Marine Sediment sampling is required to be carried out once in a month at total eight locations, i.e., six at Kandla and two at Vadinar. The sampling of the Marine Sediment is carried out using the Van Veen Grab Sampler (make Holy Scientific Instruments Pvt. Ltd). The Van Veen Grab sampler is an instrument to sample (disturbed) sediment up to a depth of 20-30 cm into the sea bed. While letting the instrument down on the seafloor, sediment can be extracted. The details of locations of Marine Sediment to be monitored under the study are mentioned in **Table 30** as follows: Table 29: Details of the sampling locations for Marine Sediment | | | | tuils of the sumpling focutions for ivi | | |--------|---------|------------|---|-----------------------| | Sr. No | Loc | ation Code | Location Name | Latitude Longitude | | 1. | | MS-1 | Near Passenger Jetty One | 23.017729N 70.224306E | | 2. | la | MS-2 | Kandla Creek | 23.001313N 70.226263E | | 3. | Kandla | MS-3 | Near Coal Berth | 22.987752N 70.227923E | | 4. | Ka | MS-4 | Khori Creek | 22.977544N 70.207831E | | 5. | | MS-5 | Nakti Creek (near Tuna Port) | 22.962588N 70.116863E | | 6. | | MS-6 | Nakti Creek (near NH-8A) | 23.033113N 70.158528E | | 7. | Vadinar | MS-7 | Near SPM | 22.500391N 69.688089E | | 8. | Vad | MS-8 | Near Vadinar Jetty | 22.440538N 69.667941E | The map depicting the locations of Marine Sediment sampling at Kandla and Vadinar have been mentioned in **Map 18 and 19** as follows: Map 18: Marine Sediment Monitoring Location at Kandla Map 19: Marine Sediment Monitoring Locations at Vadinar The list of parameters to be monitored under the projects for the Marine Sediment sampling been mentioned in **Table 31** as follows: Table 30: List of parameters to be monitored for Sediments at Kandla and Vadinar | Sr.
No. | Parameters | Units | Reference method | Instruments | |------------|------------------------------|-------|--|----------------------------------| | 1. | Texture | | Methods Manual Soil Testing in
India January 2011,01 | Hydrometer | | 2. | Organic Matter | % | Methods Manual Soil Testing in
India January, 2011, 09.
Volumetric method (Walkley
and Black, 1934) | Titration apparatus | | 3. | Inorganic
Phosphates | mg/Kg | Practical Manual Chemical
Analysis of Soil and Plant
Samples, ICAR-Indian Institute
of Pulses Research 2017 | UV- Visible
Spectrophotometer | | 4. | Silica | mg/Kg | EPA METHOD 6010 C & IS: 3025 (Part 35) – 1888, part B | | | 5. | Phosphate | mg/Kg | EPA Method 365.1 | | | 6. | Sulphate as SO ⁴⁻ | mg/Kg | IS: 2720 (Part 27) - 1977 | | | 7. | Nitrite | mg/Kg | ISO 14256:2005 | | | 8. | Nitrate | mg/Kg | Methods Manual Soil Testing in India January, 2011, 12 | | | 9. | Calcium as Ca | mg/Kg | Methods Manual Soil Testing in India January 2011, 16. | Titration | | 10. | Magnesium as
Mg | mg/Kg | Method Manual Soil Testing in India January 2011 | Apparatus | | 11. | Sodium | mg/Kg | EPA Method 3051A | | | 12. | Potassium | mg/Kg | Methods Manual Soil Testing in India January, 2011 | Flame Photometer | | 13. | Aluminium | mg/Kg | | | | 14. | Chromium | mg/Kg | | | | 15. | Nickel | mg/Kg | | | | 16. | Zinc | mg/Kg | | | | 17. | Cadmium | mg/Kg | EPA Method 3051A | ICP-OES | | 18. | Lead | mg/Kg | | | | 19. | Arsenic | mg/Kg | | | | 20. | Mercury | mg/Kg | | | #### 11.2 Result and Discussion The quality of Marine Sediment samples collected from the locations of Kandla and Vadinar during the monitoring period of April 2023 to March 2024 has been summarized in the Table 32. | | | | | | | | Tabl | e 31: S | | | esult c | ot Mari | ne Sec | limen | t Quali | ty | | | | | | | | | |--|---------------|-------------------|--------------|---------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|-------------------|-------------------|---------------|----------|---------|---------| | Parameters | | | | | | | | | Kand | la | | | | | | | | | | | V | adinar | | | | | | MS-1 | | | MS-2 | | | MS-3 | | | MS-4 | | | MS-5 | | | MS-6 | | | MS- | 7 | | MS-8 | | | | Max | Min | Avg | Inorganic
Phosphate (kg/
ha) | 16.85 | 0.86 | 6.6042 | 14.37 | 0.67 | 8.81 | 41.2 | 0.8 | 16.98 | 19.44 | 0.81 | 9.532 | 45.1 | 0.72 | 14.48 | 34.6 | 0.66 | 15.24 | 14.5 | 1.24 | 5.65 | 18.51 | 0.82 | 5.7325 | | Phosphate
(mg/Kg) | 3247.8 | 290.8 | 1280.63 | 2514.7 | 258.3 | 1304 | 3736 | 226.6 | 1515 | 3871 | 353.7 | 1287 | 3741 | 306.8 | 1442 | 14076 | 578.3 | 2793.9 | 3002 | 152.5 | 770.24 | 3477.29 | 167.93 | 940.70 | | Organic Matter | 1.42 | 0.21 | 0.7875 | 2.17 | 0.29 | 1.13 | 1.01 | 0.17 | 0.593 | 2.1 | 0.33 | 0.975 | 1.24 | 0.67 | 0.911 | 2.06 | 0.21 | 0.915 | 2.29 | 0.15 | 1.04 | 1.65 | 0.17 | 0.89 | | Sulphate
as SO ⁴ (mg/Kg) | 905.25 | 110.2 | 366.8 | 1022.25 | 98.2 | 370.03 | 571.64 | 95.33 | 275.09 | 650.25 | 97.45 | 268.51 | 768 | 87.28 | 294.27 | 732 | 96.38 | 249.1 | 296 | 74.07 | 126.31 | 213.4 | 80.06 | 132.03 | | Calcium as
Ca (mg/Kg) | 13800 | 1612 | 3464.3 | 5800 | 1259 | 2836 | 4200 | 962 | 2163 | 4200 | 1102 | 2669 | 10500 | 1089 | 3102 | 3800 | 1047 | 2274.6 | 3700 | 2200 | 2930.9 | 3974.2 | 2100 | 2805.45 | | Magnesium as
Mg (mg/Kg) | 1952 | 1225 | 1538.53 | 3050 | 826.46 | 1810.84 | 2136 | 764 | 1592.59 | 3172 | 866.94 | 1810.6 | 2440 | 1032 | 1622.80 | 2745 | 906.98 | 1581.95 | 1952 | 854 | 1385.18 | 14640 | 1167 | 2920.83 | | Silica (g/Kg) | 671.25 | 261.3 | 479.11 | 612.51 | 289.4 | 481.7 | 571.5 | 329.1 | 444.8 | 555.2 | 245.7 | 392.1 | 597.1 | 179.2 | 418.6 | 580.4 | 245.3 | 436.12 | 529.8 | 220.9 | 377.71 | 546.08 | 264.92 | 426.66 | | Nitrite (mg/Kg) | 0.75 | 0.12 | 0.41 | 0.92 | 0.13 | 0.50 | 0.81 | 0.08 | 0.41 | 0.91 | 0.01 | 0.43 | 0.71 | 0.11 | 0.375 | 0.89 | 0.07 | 0.489 | 0.22 | 0.07 | 0.159 | 0.37 | 0.04 | 0.23 | | Nitrate (mg/Kg) | 22.34 | 5.86 | 16.58 | 37.12 | 7.59 | 18.29 | 36.47 | 4.51 | 15.50 | 25.94 | 4.31 | 13.99 | 10.34 | 5.24 | 13.17 | 20.38 | 6.34 | 14.52 | 25.33 | 9.54 | 15.36 | 25.21 | 4.75 | 10.52 | | Sodium (mg/Kg) | 7860 | 3194 | 4512.43 | 14688 | 2453 | 5318 | 8612 | 2072 | 4550 | 18308 | 2612 | 6435 | 10520 | 2063 | 4665 | 14076 | 2072 | 5639.6 | 11944 | 3971 | 7904.6 | 13660 | 2719.42 | 9536.63 | | Potassium
(mg/Kg) | 2610.7 | 241 | 1525.98 | 11580 | 276 | 2320 | 3479 | 260.7 | 2126 | 4208 | 294 | 2424 | 3152 | 205 | 1790 | 3479 | 236.9 | 2233.4 | 3372 | 699 | 1876.1 | 4377 | 1028 | 2025.66 | | Aluminium
(mg/Kg) | 8371.7 | 2116 | 3827.74 | 10641 | 1237.1 | 4465.9 | 10363.1 | 1278.5 | 4370.2
| 12008.4 | 1971.2 | 5025.2 | 10361.1 | 1264.58 | 3891.23 | 12314.1 | 1273.22 | 4384.20 | 14179.7 | 358.3 | 4028.56 | 19356.55 | 479.16 | 4883.52 | | Mercury (mg/Kg) | 4.71 | 4.71 | 4.71 | 10.74 | 10.74 | 10.74 | 41.29 | 41.29 | 41.29 | 6.44 | 6.44 | 6.44 | 15.21 | 15.21 | 15.21 | 34.69 | 34.69 | 34.69 | 0 | 0 | 0 | 0 | 0 | 0 | | Texture | Sandy
loam | Sand
y
loam | Silt
loam | Sandy
loam | Silt
loam | Sand
y
loam Sandy
loam | Sand
y
loam | Sand
y
loam | Sandy
loam | Loam | Loam | Loam | #### 11.3 Data Interpretation and Conclusion The Marine sediment quality at Kandla and Vadinar has been monitored for various physico-chemical parameters during the monitoring April 2023 to March 2024. The detailed interpretation of the parameters is given below: - Inorganic Phosphate for the sampling period was observed in range of **0.66 to 45.12** Kg/ha for Kandla. Whereas for Vadinar the value observed Within range of **0.82** to **18.51** Kg/ha. For Kandla and Vadinar the average value of Inorganic Phosphate was observed **13.77** and **7.74** Kg/ha respectively. - The concentration of **Phosphate** was observed in range of **226.6 to 3871.15 mg/Kg** for Kandla and for Vadinar the value observed within the range of **152.53** to **3477.29** mg/Kg. For Kandla and Vadinar the average concentration of Phosphate was observed **1616.78** and **1418.5** mg/Kg respectively. - The **Organic Matter** for the sampling period was observed in the range of **0.17 to 2.17** % for Kandla with the average value of **0.95**% and for Vadinar the value recorded Within range of **0.15 to 2.29**%, with average concentration as **1.03** %. - The concentration of Sulphate was observed in the range of 87.28 to 1022 mg/Kg for Kandla and for Vadinar the value observed Within range of 74.07 to 296 mg/Kg. For Kandla and Vadinar the average value of Sulphate was observed 392.10 and 153.64 mg/Kg respectively. - The value of Calcium was observed in the range of 962 to 13800 mg/Kg for Kandla and for Vadinar the value observed within the range of 2100 to 3974.5 mg/Kg. The average value of Calcium for the monitoring period was observed 3660.21 mg/Kg and 2951.76 mg/Kg at Kandla and Vadinar, respectively. - The value of Magnesium for the sampling period was observed in the range of 764 to 3172 mg/Kg for Kandla and for Vadinar the value observed Within the range of 854 to 1952 mg/Kg. For Kandla and Vadinar the average value of Magnesium was observed 1726.35 mg/Kg and 1440.69 mg/Kg respectively. - For the sampling period **Silica** was observed in the range of **179.25 to 671.25 mg/Kg** for Kandla with average value **432.83** mg/Kg and for Vadinar the value observed within the range of **220.98** and **546.5** mg/Kg with average **394.35** mg/Kg. - The value of **Nitrate** was observed in the range of **4.31 to 37.12 mg/Kg** for Kandla with average value **15.47** mg/Kg and for Vadinar the value observed within the range of **4.75** to **25.33** mg/Kg. with average **15.12** mg/Kg. - The value of Nitrite was observed in the range of 0.01 to 0.92 mg/Kg for Kandla with average value 0.45 mg/Kg and for Vadinar the value observed to be within the range of 0.04 to 0.37 mg/Kg, with average 0.1828 mg/Kg. - The value of **Sodium** was observed in the range of **2063.3 to 18308 mg/Kg** for Kandla with average value **6647.43** mg/Kg and for Vadinar the value observed within the range of **2719.42** and **13660** mg/Kg, with average **8289** mg/Kg. - The value of **Potassium** was observed in the range of **205.08 to 11580 mg/Kg** for Kandla with average value **2357.95** mg/Kg and for Vadinar the value observed within range of **699.09** to **4377** mg/Kg, with average **2229.65** mg/Kg. - The value of **Aluminium**, was observed in the range of **1237.13 to 12314.13 mg/Kg** for Kandla with average value **5509.23** mg/Kg and for Vadinar the value observed within the range of **358.3** to **19356** mg/Kg, with average **7214.30** mg/Kg. - The value of **Mercury**, was observed in the range of **4.71 to 41.29 mg/Kg** for Kandla with average value **18.84** mg/Kg and for Vadinar the value of **Mercury** was observed "Below the Quantification Limit" at both two locations. During monitoring period majority of time Mercury was observed Below Quantification limit. - Texture was observed to be "Sandy Loam" at location MS-1, MS-2, MS-4 and MS-6 "Silt loam" at location MS-3 & MS-5 in Kandla. "Sandy Loam" at location MS-7 & "Silt loam" at location MS-8 in Vadinar during sampling period. #### **Heavy Metals** The sediment quality of Kandla and Vadinar has been compared with respect to the Average Standard guideline applicable for heavy metals in marine sediment specified by EPA have been mentioned in **Table 33**. Table 32: Standard Guidelines applicable for heavy metals in sediments | | Tubic 02 | i standara sarat | mics applicable for near | y mictais in scaimer | | | | | | | | |------|-------------------|------------------|--------------------------|----------------------|--------|--|--|--|--|--|--| | Sr. | Metals | | Sediment quality (mg/k | g) | Source | | | | | | | | No. | Metais | Not polluted | Moderately polluted | Heavily polluted | | | | | | | | | 1. | As | <3 | 3-8 | >8 | | | | | | | | | 2. | Cu | <25 | 25-50 | >50 | | | | | | | | | 3. | Cr | <25 | 25-75 | >75 | | | | | | | | | 4. | Ni | <20 | 20-50 | >50 | EPA | | | | | | | | 5. | Pb | <40 | 40-60 | >60 | | | | | | | | | 6. | Zn | <90 | 90-200 | >200 | | | | | | | | | 7. | Cd | - | <6 | >6 | | | | | | | | | ND = | ND = Not Detected | | | | | | | | | | | (Source: G Perin et al. 1997) Table 33: Comparison of Heavy metals with Standard value in Marine Sediment | D | | Kandla | | | | | | | | | | | | | III IVIUI | | | | | | X 7 | • | | | |---------------------|------|--------|-------|-------|-------|--------|--------|-------|--------|-------|-------|-------|--------|-------|-----------|--------|-------|--------|-------|-------|------------|--------|-------|---------| | Parameters | | | | | | | | | Kai | nala | | | | | | | | | | | vac | inar | | | | | | MS-1 | | | MS-2 | | | MS-3 | | | MS-4 | | | MS-5 | | | MS-6 | | | MS-7 | | | MS-8 | | | | Max | Min | Avg | Arsenic (mg/Kg) | 5.13 | 1.09 | 3.527 | 4.43 | 2.11 | 3.264 | 6.17 | 2.06 | 3.92 | 5.86 | 1.28 | 3.75 | 5.2 | 1.75 | 3.458 | 5.78 | 1.98 | 3.67 | 5.36 | 2.04 | 2.84 | 5.17 | 2.5 | 3.69 | | Copper (mg/Kg) | 5.6 | 2.13 | 3.282 | 11.4 | 2.14 | 5.013 | 8.1 | 2.08 | 4.49 | 9.8 | 3.48 | 5.71 | 12 | 2.14 | 5.97 | 8.9 | 2.98 | 4.97 | 6.13 | 2.19 | 4.567 | 412 | 2.1 | 39.05 | | Chromium
(mg/Kg) | 64.1 | 42.12 | 53.94 | 67.45 | 32.74 | 47.04 | 73.02 | 32.41 | 48.31 | 83.23 | 41.08 | 55.17 | 59.95 | 41.87 | 51.50 | 104.2 | 36.71 | 59.71 | 59.27 | 23.18 | 44.01 | 104.1 | 29.7 | 61.12 | | Nickel (mg/Kg) | 51.4 | 16.8 | 31.76 | 38.9 | 10.21 | 23.87 | 36.41 | 4.54 | 22.77 | 40.87 | 7.61 | 27.45 | 31.86 | 21.72 | 25.881 | 50.78 | 4.54 | 25.058 | 36.21 | 12.23 | 22.84 | 43.66 | 12.47 | 29.282 | | Lead (mg/Kg) | 7.05 | 1.25 | 5.3 | 7.45 | 4.21 | 5.76 | 28.73 | 2.36 | 6.683 | 8.25 | 3.46 | 5.9 | 14.22 | 1.21 | 6.055 | 5.01 | 2.81 | 7.88 | 7.94 | 2.85 | 4.90 | 10.58 | 2.97 | 5.65 | | Zinc (mg/Kg) | 63.2 | 35.88 | 54.63 | 65.69 | 32.11 | 50.455 | 301.32 | 23.63 | 69.545 | 82.9 | 18.15 | 50.86 | 159.42 | 19.54 | 60.65 | 157.82 | 23.63 | 57.7 | 52.13 | 11.47 | 34.6 | 104.87 | 13.65 | 53.8595 | | Cadmium
(mg/Kg) | 1.08 | 0.88 | 0.98 | 0.6 | 0.6 | 0.6 | 1.25 | 0.87 | 1.1 | 1.12 | 0.78 | 1.022 | 1.08 | 0.91 | 0.995 | 7.53 | 0.15 | 2.302 | 0 | 0 | 0 | 0 | 0 | 0 | - Arsenic was observed in the range of **1.09 to 6.17 mg/Kg** for Kandla with average value **3.58** mg/Kg and for Vadinar the value observed within range of **2.04** to **5.36** mg/Kg, with average of **3.6** mg/Kg. during monitoring period majority of time arsenic concentration found within moderately polluted class on both study area. - Copper was observed in the range of 2.08 to 12 mg/Kg for Kandla with average value 5.6 mg/Kg and for Vadinar the value observed within the range of be 2.1 to 8.33 mg/Kg, with average 4.72 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to copper falls in non-polluted class. - **Chromium** was observed in the range of **32.41 to 104.24 mg/Kg** for Kandla with average value **55.25** mg/Kg and for Vadinar the value observed within the range of **23.18** to **104.16** mg/Kg, with average **53.57** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to chromium falls majority of time in moderately polluted and for some instance it location MS-4, MS-6, and MS-8 fall in Heavily polluted class. - **Nickel** was observed in the range of **4.54 to 51.47 mg/Kg** for Kandla with average value **26.25** mg/Kg and for Vadinar the value observed within range of **12.23** to **43.66** mg/Kg, with average **26.115** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to nickel falls in moderately polluted class and for some instance it location MS-1, and MS-6 fall in heavily polluted class. - Lead was observed in the range of 1.21 to 28.73 mg/Kg for Kandla with average value 5.63 mg/Kg and for Vadinar the value observed within the range of 2.85 and 10.58 mg/Kg, with average 5.81 mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to lead falls in not polluted class. - **Zinc** was observed in the range of **18.15 to 301.32 mg/Kg** for Kandla with average value **73.73** mg/Kg and for Vadinar the value observed within the range of **11.47** to **104.87** mg/Kg, with average **46.997** mg/Kg. With reference to the guidelines mentioned in table 35, the sediment quality with respect to zinc falls in non-polluted class and for some instance its location MS-1, MS-3, MS-6 and MS-8 fall in Moderately polluted class. - Cadmium was observed in the range of 0.15 to 7.53 mg/Kg for Kandla
with average value 1.325 mg/Kg. During the monitoring period majority of time Cadmium found BQL, which falls in non-polluted. While exception on one location MS-6 fall within moderately polluted for the duration of July to August 2023. Cadmium was observed BQL for all locations at Vadinar during sampling period. With reference to the guidelines mentioned in table 35, the sediment quality with respect to cadmium falls in non-polluted class. Analysis of the sediments indicates moderate pollution. However, it may be noted that, the sediments are highly dynamic being constantly deposited and carried away by water currents. Hence maintaining the quality of sediments is necessary as it plays a significant role in regulating the quality of the marine water and the marine ecology. The presence of anthropic activity in the coastal areas has an effect upon the marine water and sediment. One of the primary risks associated with contaminated sediments is bioaccumulation in benthic organisms, which is a route of entry into the food chain. Generally adopted sediment remediation approaches include dredging, capping of contaminated areas, and monitored natural recovery (MNR). Dredging can remove contaminated sediments, but it requires large areas of land for sediment disposal. It is expensive and may cause secondary contamination of the water column during resuspension. MNR relies on ongoing naturally occurring processes to decrease the bioavailability or toxicity of contaminants in sediment. These processes may include physical, biological, and chemical mechanisms that act together to reduce the environmental risks posed by contaminated sediments. MNR require longer monitoring time and can be even more expensive than for dredging and capping. Capping consists of in situ covering of clean or suitable isolating material over contaminated sediments layer to limit leaching of contaminants, and to minimize their re-suspension and transport. Hence appropriate remedial measures for the polluted sediment sites may be implemented, to reduce the concentration of the heavy metals. # CHAPTER 12: MARINE ECOLOGY MONITORING #### 12.1 Marine Ecological Monitoring The monitoring of the biological and ecological parameters is important in order to assess the marine environment. A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval. Deendayal Port and its surroundings have mangroves, mudflats and creek systems as major ecological entities. As defined in the scope by DPA, the Marine Ecological Monitoring is required to be carried out once a month specifically at eight locations, six at Kandla and two at Vadinar. The sampling of the Benthic Invertebrates has been carried out with the help of D-frame nets, whereas the sampling of zooplankton and phytoplankton has been carried out with the help of Plankton Nets (60 micron and 20 micron). The details of the locations of Marine Ecological Monitoring have been mentioned in **Table 35** as follows: Table 34: Details of the sampling locations for Marine Ecological | Sr. No. | Locat | ion Code | Location Name | Latitude Longitude | |---------|-----------------|--------------------|--------------------------------|-----------------------| | 1. | | ME-1 | Near Passenger Jetty One | 23.017729N 70.224306E | | 2. | æ | ME-2 | Kandla Creek (near KPT Colony) | 23.001313N 70.226263E | | 3. | Kandla | ME-3 | Near Coal Berth | 22.987752N 70.227923E | | 4. | X | ME-4 | Khori Creek | 22.977544N 70.207831E | | 5. | | ME-5 | Nakti Creek (near Tuna Port) | 22.962588N 70.116863E | | 6. | | ME-6 | Nakti Creek (near NH - 8A) | 23.033113N 70.158528E | | 7. | nar | ME-7 | Near SPM | 22.500391N 69.688089E | | 8. | Vadinar
ME-8 | Near Vadinar Jetty | 22.440538N 69.667941E | | The map depicting the locations of Marine Ecological monitoring in Kandla and Vadinar have been mentioned in **Map 20 and 21** as follows: Map 20 Marine Ecological Monitoring: Locations at Kandla Map 21: Marine Ecological Monitoring Locations at Vadinar The various parameters to be monitored under the study for Marine Ecological Monitoring are mentioned in **Table 36** as follows: Table 35: List of parameters to be monitored for Marine Ecological Monitoring | Sr. No. | Parameters | |---------|--| | 1. | Productivity (Net and Gross) | | 2. | Chlorophyll-a | | 3. | Pheophytin | | 4. | Biomass | | 5. | Relative Abundance, species composition and diversity of phytoplankton | | 6. | Relative Abundance, species composition and diversity of zooplankton | | 7. | Relative Abundance, species composition and diversity of benthic invertebrates (Meio, Micro and macro benthos) | | 8. | Particulate Oxidisable Organic Carbon | | 9. | Secchi Depth | #### Methodology #### • Processing for chlorophyll estimation: Samples for chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. #### • Phytoplankton Estimation Phytoplankton are free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio-purifier and bio-indicators of the aquatic ecosystems of which diverse array of the life depends. They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem. The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are Diatoms (Bacillariophyceae) and Dinoflagellates (Dinophyceae). Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as Cyanophytes (Bluegreen algae). Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts. Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status. #### • Zooplankton Estimation Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes. Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of 'biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior. The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research. #### • Diversity Index A diversity index is a measure of
species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community. #### 1. Shannon-Wiener's index: An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index (H), which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species. Shannon-Wiener's index (H) reproduces community parameters to a single number by using an equation are as follow: $$H' = \sum p_i * \ln (p_i)$$ Where, \sum = Summation symbol, pi = Relative abundance of the species, In = Natural logarithm More diverse ecosystems are considered healthier and more resilient. Higher diversity ecosystems typically exhibit better stability and greater tolerance to fluctuations. e.g., The Shannon diversity index values between 2.19 and 2.56 indicate relatively high diversity within the community compared to communities with lower values. It suggests that the community likely consists of a variety of species, and the species are distributed somewhat evenly in terms of their abundance. #### 2. Simpson's index: A reasonably high level of dominance by one or a small number of species is indicated by the range of **0.89 to 0.91**. The general health and stability of the ecosystem may be impacted by this dominance. Community disturbances or modifications that affect the dominant species may be more likely to have an impact. The dominating species determined by the Simpson's index can have big consequences on how the community is organised and how ecological interactions take place. The formula for calculating D is presented as: $$D=1-\sum (p_i\hat{2})$$ Where, Σ = Summation symbol, pi = Relative abundance of the species #### 3. Margalef's diversity index: The number of species is significantly related to the port's vegetation cover surface, depth, and photosynthetic zone. The habitat heterogeneity is a result of these three elements. Species richness is related to the number of distinct species present in the analysed area. Margalef's index has a lower correlation with sample size. Small species losses in the community over time are likely to result in inconsistent changes. Margalef's index D_{Mg} , which is also a measure of species richness and is based on the presumed linear relation between the number of species and the logarithm of the number of individuals. It is given by the formula: $$D_{Mg} = \frac{S-1}{\ln N}$$ Where, N = total number of individuals collected S = No. of taxa or species or genera #### 4. Berger-Parker index: This is a useful tool for tracking the biodiversity of deteriorated ecosystems. Environmental factors have a considerable impact on this index, which accounts for the dominance of the most abundant species over the total abundance of all species in the assemblage. The preservation of their biodiversity and the identification of the fundamental elements influencing community patterns are thus critical for management and conservation. Successful colonising species will dominate the assemblage, causing the Berger-Parker index to rise, corresponding to well-documented successional processes. The environmental and ecological features of the system after disturbance may therefore simply but significantly determine the identity of the opportunistic and colonising species through niche selection processes. The Berger-Parker index is a biodiversity metric that focuses on the dominance or relative abundance of a single species within a community. It provides a measure of the most abundant species compared to the total abundance of all species present in the community. Mathematically, it can be represented as follows: $$d = \frac{N_{max}}{N_i}$$ Where, N_{max} = Max no of individuals of particular genera or species $\sum N_i$ = Total no of individuals obtained. The resulting value of the Berger-Parker index ranges between 0 and 1. A higher index value indicates a greater dominance of a single species within the community. Conversely, a lower index value suggests a more even distribution of abundance among different species, indicating higher species diversity. The range of the Berger-Parker index can be interpreted as when the index value is close to 0, it signifies a high diversity with a more even distribution of abundances among different species. In such cases, no single species dominates the community, and there is a balanced representation of various species. #### 5. Evenness index- Evenness index determines the homogeneity (and heterogeneity) of the species' abundance. Intermediate values between 0 and 1 represent varying degrees of evenness or unevenness in the distribution of individuals among species. Value of species evenness represents the degree of redundancy and resilience in an ecosystem. High species evenness = All species of a community can perform similar ecological activities or functions= even utilization of available ecological niches = food web more stable = ecosystem is robust (resistant to disturbances or environmental changes). Intermediate values between 0 and 1 represent variable degrees of evenness or unevenness. $$EI = \frac{H}{\ln{(S)}}$$ Where, H= Shannon value ln(S) = the natural logarithm of the number of different species in the community **Relative Abundance:** The species abundance distribution (SAD) from disturbed ecosystems follows even/ uneven pattern. E.g., If relative abundance is 0.15, then the found species are neither highly dominant nor rare. $$RA = \frac{No. of Individuals of Sp.}{Total no. of Individual} * 100\%$$ The basic idea of index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time. Biodiversity is commonly expressed through indices based on species richness and species abundances. Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index. #### **Monitoring Frequency:** Monitoring is required to be carried out once a month for both the locations of Kandla and Vadinar. Sample Collected from this location during the monitoring period April 2023 to March 2024. #### 12.2 Result and Discussion The details of Marine Ecological Monitoring conducted for the locations of Kandla and Vadinar during the monitoring period has been summarized in the **Table 37**. Table 36: Values of Biomass, Net Primary Productivity (NPP), Gross Primary Productivity (GPP), Pheophytin and Chlorophyll for Kandla and Vadinar | | Parameters | | | Kandla | | | | Va | dinar | |------------|---|--|---------------------------|------------------------------|--------------------------|---|---|-----------------------|------------------------------------| | Sr.
No. | | ME-1
(Near
Passenger
Jetty One) | ME-2
(Kandla
Creek) | ME-3
(Near Coal
Berth) | ME-4
(Khori
Creek) | ME-5
(Nakti
Creek-
near
Tuna
Port) | ME-6
(Nakti
Creek
near NH
- 8A) | ME-7
(Near
SPM) | ME-8
(Near
Vadinar
Jetty) | | | | Avg. | 1. | Biomass | 115 | 115 | 96 | 142 | 102 | 121 | 78 | 111 | | 2. | Net Primary
Productivity | 2.91 | 3.77 | 3.08 | 2.99 | 5.47 | 2.49 | 4.16 | 2.64 | | 3. | Gross Primary
Productivity | 2.95 | 3.04 | 3.73 | 3.26 | 2.44 | 2.85 | 3.67 | 3.09 | | 4. | Pheophytin | 1.10 | 1.28 | 0.80 | 1.35 | 0.82 | 5.81 | 2.66 | 2.43 | | 5. | Chlorophyll-a | 2.40 | 1.61 | 1.72 | 1.72 | 2.04 | 12.43 | 2.37 | 3.24 | | 6. | Particulate
Oxidisable Organic
Carbon | 1.34 | 1.12 | 1.18 | 1.51 | 1.45 | 1.40 | 1.26 | 1.20 | | 7. | Secchi Depth | 0.61 | 0.63 | 0.56 | 0.60 | 0.56 | 0.62 | 3.93 | 2.61 | #### Biomass: With reference to **Table 37**, the average concentration of biomass during the monitoring period, for locations ME-1 to ME-6 was reported within the range of **96–142** mg/L, with the lowest biomass present in **ME-3** (**near coal berth**) and the highest biomass present in **ME-4** (**Khori Creek**) during the sampling period. In Vadinar, the value of biomass was observed at **78** mg/L at ME-7 (near SPM) and **111** mg/L at ME-8 (near Vadinar Jetty) monitoring station. #### Productivity (Net and Gross) Gross primary productivity (GPP) is the rate at which organic matter is synthesised by producers per unit area and time (GPP). The amount of carbon fixed during photosynthesis by all producers in an ecosystem is referred to as gross primary productivity. During the Monitoring Period, the monitoring location of Kandla reported GPP value in range between 2.44 to 3.73 mg/L/48 Hr where the highest value recorded for ME-3 (Near Coal Bearth) and lowest recorded at ME-5 (Nakti creek-near tuna port). In Vadinar, the value of **GPP** was observed **3.67** at ME-7 (Near SPM) and **3.09** mg/L/48 Hr at ME-8 (Near Vadinar Jetty) monitoring station. **Net primary productivity**, is the amount of fixed carbon that is not consumed by plants, and it is this remaining fixed carbon that is made available to various consumers in the ecosystem. During the monitoring period of 2023 to 2024 the Net primary productivity of the monitoring location at Kandla from (ME-1 to ME-6) has been estimated to be between **2.49 to 5.47 mg/L/48 Hr**. While in Vadinar, the value of **NPP** was observed **4.16** at ME-7 (Near SPM) and **2.64** mg/L/48 Hr at ME-8 (Near Vadinar Jetty)
monitoring station. #### • Pheophytin The level of Pheophytin was detected in the range from **0.8 to 5.81 mg/m³** where the highest value observed at ME-6 (Nakti Creek (Near NH-8A)) and the lowest value observed at ME-3(Near Coral Breth), While in Vadinar, the value of Pheophytin was observed **2.66** mg/m³ at ME-7 and **2.43** mg/m³ at ME-8 monitoring station. #### • Chlorophyll-a In the sub surface water, the value of Chlorophyll-a reported in range from **1.61 to 12.43 mg/m**³. The highest value observed at ME-6 (Nakti Creek (Near NH-8A)), while the lowest value observed at ME-2 (Kandla Creek). In Vadinar, the value of chlorophyll-a was observed **2.37** mg/m³ at ME-7 (Near SPM) and **3.24** mg/m³ in ME-8 (Near Vadinar Jetty) monitoring station. #### • Particulate Oxidisable Organic Carbon During the sampling period, the particulate oxidisable organic carbon falls within the range of **1.12 to 1.51 mg/L** from monitoring location ME-1 to ME-6 at Kandla, whereas for Vadinar, the value of POC observed **1.26** mg/L at ME-7 (Near SPM) and **1.20** mg/L in ME-8 (Near Vadinar Jetty) monitoring station. #### Secchi Depth In monitoring station of Kandla (ME-1 to ME-6) the level of Secchi Depth was observed between **0.56 to 0.63 ft** whereas at Vadinar, the value recorded at ME-7 i.e. Near SPM is **3.93** ft and in Near Vadinar Jetty is **2.61** ft. # **Ecological Diversity** **Phytoplankton:** For the evaluation of the Phytoplankton population in DPA Kandla and Vadinar within the immediate surroundings of the port, sampling was conducted during the study period. Total 8 sampling locations were studied i.es. sampling locations (6 from Kandla and two from Vadinar). The details of variation in abundance and diversity in phytoplankton communities is mentioned in **Table 38**. Table 37: Phytoplankton variations in abundance and diversity in sub surface sampling stations | Genera | ME-1
(Near
Passenger
Jetty One) | ME-2
(Kandla
Creek) | ME-3
(Near
Coal
Berth) | ME-4
(Khori
Creek) | ME-5
(Nakti
Creek-
near Tuna
Port) | ME-6
(Nakti
Creek
near NH -
8A) | ME-7
(Near
SPM) | ME-8
(Near
Vadinar
Jetty) | |-------------------|--|---------------------------|---------------------------------|--------------------------|--|---|-----------------------|------------------------------------| | | Avg | Bacillaria sp. | 360 | 391 | 271 | 404 | 374 | 521 | 390 | 347 | | Biddulphia sp. | 492 | 340 | 73 | 542 | 315 | 434 | 402 | 274 | | Chaetoceros sp. | 279 | 379 | 316 | 258 | 627 | 322 | 462 | 394 | | Chlamydomonas sp. | 286 | 312 | 147 | 329 | 478 | 456 | 325 | 503 | | Cyclotella sp. | 367 | 443 | 284 | 418 | 454 | 609 | 303 | 378 | | Coscinodiscus sp. | 455 | 412 | 290 | 206 | 330 | 376 | 370 | 244 | | Ditylum sp | 342 | 322 | 124 | 241 | 225 | 205 | 227 | 294 | | Fragilaria sp. | 395 | 381 | 336 | 300 | 355 | 0 | 350 | 360 | | Bacteriastrum sp. | 178 | 96 | 52 | 166 | 111 | 252 | 162 | 252 | | Pleurosigma sp. | 236 | 236 | 129 | 565 | 276 | 675 | 352 | 219 | | Navicula sp. | 366 | 488 | 472 | 393 | 420 | 332 | 375 | 856 | | Nitzschia sp. | 309 | 272 | 249 | 295 | 366 | 284 | 418 | 435 | | Synedra sp. | 479 | 328 | 82 | 322 | 144 | 541 | 192 | 327 | | Skeletonema sp. | 270 | 566 | 130 | 0 | 488 | 536 | 521 | 495 | | Oscillatoria sp. | 341 | 351 | 176 | 251 | 493 | 423.5 | 144 | 306 | | Thallassiosira | 147 | 134 | 64 | 132 | 170 | 224 | 235 | 161 | | Gomphonema sp. | 550 | 495 | 128 | 360 | 600 | 310 | 564 | 500 | | Planktothrix sp. | 140 | 302 | 123 | 411 | 393 | 495 | 272 | 353 | | Gyrosigma sp. | 410 | 560 | 130 | 750 | 0 | 685 | 400 | 667 | | Actinestrum sp. | 0 | 0 | 0 | 0 | 0 | 500 | 0 | 0 | | Cymbella | 500 | 500 | 0 | 550 | 0 | 685 | 700 | 500 | | Limnothrix sp. | 0 | 700 | 0 | 650 | 0 | 800 | 750 | 0 | | Scendesmus sp. | 0 | 0 | 0 | 485 | 0 | 630 | 0 | 0 | | Mougeotia sp. | 0 | 0 | 0 | 8 | 0 | 20 | 0 | 4 | | Chlorella sp. | 0 | 0 | 0 | 0 | 0 | 850 | 0 | 0 | | Density-Units/L | 3107.1 | 3525 | 3177.3 | 2918 | 3073 | 3704 | 3357 | 3576 | | No. of genera | 20 | 21 | 19 | 22 | 18 | 24 | 21 | 21 | The phytoplankton community of the sub surface water in the Kandla and Vadinar was represented by, Diatoms, green algae and filamentous Cynobacteria. Diatoms were represented by 15 genera; green algae were represented by 1 genera and filamentous Cynobacteria were represented by 1 genera during the sampling period. The density of phytoplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **2918** to **3704** units/L, while for Vadinar its density of phytoplankton observed **3357** units/L at ME-7 and **3576** units/L at ME-8. During the sampling, all communities were contributing in phytoplankton on both location of Kandla & Vadinar except *Gyrosigma sp*, *Actinestrum sp*, *cymbella*, *Limnothrix sp*, *Scendesmus sp*, *Mougeotia sp* and *cholera sp*. The details of Species richness Index and Diversity Index in Phytoplankton is mentioned in **Table 39**. Table 38: Species richness Index and Diversity Index in Phytoplankton | Indices | ME-1 | ME-2 | ME-3 | ME-4 | ME-5 | ME-6 | ME-7 | ME-8 | |--------------------|-----------|---------|--------|--------|--------|---------|-------|---------| | | (Near | (Kandla | (Near | (Khori | (Nakti | (Nakti | (Near | (Near | | | Passenger | Creek) | Coal | Creek) | Creek- | Creek | SPM) | Vadinar | | | Jetty | | Berth) | | near | near NH | | Jetty) | | | One) | | | | Tuna | - 8A) | | | | | | | | | Port) | | | | | | Avg | Taxa S | 13 | 14 | 13 | 14 | 13 | 15 | 14 | 13 | | Individuals | 3099 | 3408 | 3202 | 2926 | 3094 | 3768 | 3357 | 3597 | | Shannon diversity | 2.09 | 2.12 | 2.05 | 1.97 | 1.94 | 2.02 | 2.10 | 1.95 | | Simpson 1-D | 0.86 | 0.86 | 0.85 | 0.83 | 0.83 | 0.84 | 0.86 | 0.80 | | Species Evenness | 0.92 | 0.91 | 0.90 | 0.89 | 0.90 | 0.87 | 0.90 | 0.85 | | Margalef richness | 1.03 | 1.09 | 1.02 | 1.00 | 0.93 | 1.01 | 1.07 | 1.01 | | Berger-Parker | 0.20 | 0.21 | 0.22 | 0.24 | 0.25 | 0.24 | 0.22 | 0.28 | | Relative abundance | 0.41 | 0.44 | 0.38 | 0.44 | 0.38 | 0.41 | 0.40 | 0.41 | - Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon-Wierner's index of phytoplankton communities was in the range of **1.94 to 2.12** between selected sampling stations from ME-1 to ME-6. While for Vadinar, Average Shannon Wiener's index of phytoplankton communities recorded to be **2.10** at ME-7 and **1.95** at ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar. - Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of phytoplankton communities was ranged between 0.83 to 0.86 at all sampling stations in the Kandla creek and nearby creeks. Similarly, for Vadinar average Simpson diversity index (1-D) of phytoplankton communities was 0.86 at ME-7 and 0.80 at ME-8. - Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of phytoplankton communities in Kandla and nearby creeks sampling stations was varying from 0.93 to 1.09. While for Vadinar, average Margalef's diversity index (Species Richness) of phytoplankton communities observed 1.07 at ME-7 and 1.01 at ME-8. - Berger-Parker Index (d): During the monitoring period 2023 to 2024, average Berger-Parker Index (d) of phytoplankton communities was in the range of 0.20 to 0.25 between selected sampling stations from ME-1 to ME-6. at Kandla creek and nearby creeks. Average Berger-Parker Index (d) of phytoplankton communities in the sampling stations of Vadinar, was in the range of **0.22** to **0.28**. All the monitoring station signifies a low diversity with an even distribution among the different species. - The Average **Species Evenness** is observed in the range of **0.87** to **0.92** for all the six-monitoring station of Kandla and for the Vadinar the average species evenness is observed in the range of **0.85** to **0.90**. - During the sampling period, average **Relative Abundance** of phytoplankton communities was in range of **0.38 to 0.44** between selected sampling stations from ME-1 to ME-6 at Kandla creek and nearby creeks. Whereas for Vadinar the Average relative Abundance value **0.40** at ME-7 and **0.41** at ME-8. thus, it is concluded that the studied species can be stated as neither highly dominant nor rare. The details of variation in abundance and diversity in zooplankton communities is mentioned in **Table 40**. Table 39: Zooplankton variations in abundance and diversity in sub surface sampling stations | Genera | ME-1
(Near
Passenger
Jetty One) | ME-2
(Kandla
Creek) | ME-3
(Near
Coal
Berth) | ME-4
(Khori
Creek) | ME-5
(Nakti
Creek-
near
Tuna
Port) | ME-6
(Nakti
Creek
near NH
- 8A) | ME-7
(Near
SPM) | ME-8
(Near
Vadinar
Jetty) | |-----------------|--|---------------------------|---------------------------------|--------------------------|---|---|-----------------------|------------------------------------| | | Avg | Acartia sp. | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | | Acrocalanus | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | | Amoeba | 3 | 2 | 3 | 3 | 4 | 2 | 3 | 2 | | Brachionus sp. | 3 | 2 | 2 | 2 | 2 | 3 | 4 | 2 | | Calanus sp. | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | | Cladocera sp. | 2 | 3 | 5 | 2 | 3 | 2 | 3 | 3 | | Cyclopoid sp. | 5 | 4 | 4 | 4 | 2 | 2 | 4 | 2 | | Copepod larvae | 2 | 3 | 2 | 3 | 2 | 4 | 2 | 2 | | Diaptomus sp. | 5 | 2 | 4 | 2 | 3 | 2 | 3 | 3 | | Eucalanus sp. | 3 | 2 | 2 | 4 | 3 | 6 | 3 | 4 | | Mysis sp. | 3 | 9 | 7 | 5 | 1 | 6 | 6 | 8 | | Oithona sp. | 1 | 2 | 4 | 2 | 1 | 4 | 4 | 9 | |
Paracalanus sp. | 8 | 7 | 4 | 8 | 11 | 8 | 9 | 10 | | Density Unit/L | 24.45 | 24.91 | 25.82 | 26.00 | 22.91 | 26.45 | 27.64 | 27.36 | | No. of genera | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | A total of 13 groups/taxa of zooplankton were recorded in Kandla and Vadinar during the study period which mainly constituted by *diaptomus, copepods, brachionus, cladocera,* fish and shrimp larval forms. *Amoeba* and *Cyclopoida* had the largest representation at all stations from (ME-1 to ME-8). The average density of Zooplankton of the sampling stations from ME-1 to ME-6 (Kandla) varying from **22.91** to **26.45** units/L, while for Vadinar its average density of zooplankton observed **27.64** units/L at ME-7 and **27.36** units/L at ME-8. During the sampling, all communities were contributing in zooplankton except *Oithana sp.* in Kandla and Vadinar. The details of Species richness Index and Diversity Index in Zooplankton communities is mentioned in **Table 41**. Table 40: Species richness Index and Diversity Index in Zooplankton | | ME-1
(Near | ME-2
(Kandla | ME-3
(Near | ME-4
(Khori | ME-5
(Nakti | ME-6
(Nakti | ME-7
(Near | ME-8
(Near | |--------------------|---------------|-----------------|---------------|----------------|----------------|----------------|---------------|---------------| | | Passenger | Creek) | Coal | Creek) | Creek- | Creek | SPM) | Vadinar | | Indices | Jetty | | Berth) | | near | near NH | | Jetty) | | | One) | | | | Tuna | - 8A) | | | | | | | | | Port) | | | | | | Avg | Taxa S | 11 | 13 | 10 | 13 | 10 | 12 | 13 | 10 | | Individuals | 24 | 57 | 26 | 26 | 23 | 26 | 28 | 27 | | Shannon diversity | 1.77 | 1.74 | 1.76 | 1.79 | 1.67 | 1.76 | 1.79 | 1.72 | | Simpson (1-D) | 0.79 | 0.75 | 0.79 | 0.79 | 0.76 | 0.77 | 0.79 | 0.77 | | Species Evenness | 0.78 | 0.61 | 0.78 | 0.79 | 0.79 | 0.73 | 0.82 | 0.76 | | Margalef | 2.15 | 2.21 | 2.07 | 2.21 | 2.06 | 2.34 | 2.22 | 2.16 | | Berger-Parker | 0.34 | 0.42 | 0.32 | 0.34 | 0.35 | 0.37 | 0.31 | 0.35 | | Relative abundance | 34.93 | 40.08 | 31.95 | 37.76 | 39.98 | 38.18 | 39.18 | 37.27 | - Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon- Wierner's index of zooplankton communities was in the range of 1.67 to 1.79 between selected sampling stations from ME-1 to ME-6, at Kandla creek and its nearby creeks. While for Vadinar, average Shannon Wiener's index of zooplankton communities recorded to be 1.79 at ME-7 and 1.72 at ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Near SPM (Vadinar). - Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of zooplankton communities was ranged between 0.75 to 0.79 at all sampling stations in the Kandla creek and nearby creeks, for Vadinar average Simpson diversity index (1-D) of zooplankton communities was 0.79 at ME-7 and 0.77 at ME-8. - Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of zooplankton communities in Kandla and nearby creeks sampling stations was varying from 2.06 to 2.34, during the sampling period. While for Vadinar, average Margalef's diversity index (Species Richness) of zooplankton communities observed 2.2 at ME-7 and 2.16 at ME-8. - **Berger-Parker Index (d):** During the monitoring period **2023 to 2024**, average Berger-Parker Index (d) of zooplankton communities was in the range of **0.32 to 0.42** between selected sampling stations from ME-1 to ME-6, at Kandla creek and nearby creeks. Average Berger-Parker Index (d) of zooplankton communities in the sampling stations of Vadinar, was in the range of **0.31** to **0.35**. All the monitoring station signifies a low diversity with an even distribution among the different species. - The average **Species Evenness** is observed in the range of **0.61 to 0.79** for all the six-monitoring station of Kandla whereas, for the Vadinar the average species evenness was observed in the range of **0.76** to **0.82**, during the monitoring period. - During the sampling period, average Relative Abundance of zooplankton communities was in range of 31.95 to 40.08 between selected sampling stations from ME-1 to ME-6. at Kandla creek and nearby creeks. Whereas for Vadinar the average relative abundance value 39.18 at ME-7 and 37.27 at ME-8, thus it can be concluded that the studied species is stated as neither highly dominant nor rare. The details of variation in abundance and diversity in **Benthic organism** is mentioned in **Table 42.** Table 41: Benthic Fauna variations in abundance and diversity in sub surface sampling | Genera | ME-1
(Near
Passenger
Jetty
One) | ME-2
(Kandla
Creek) | ME-3
(Near
Coal
Berth) | ME-4
(Khori
Creek) | ME-5
(Nakti
Creek-
near
Tuna
Port) | ME-6
(Nakti
Creek
near
NH -
8A) | ME-7
(Near
SPM) | ME-8
(Near
Vadinar
Jetty) | |------------------------|---|---------------------------|---------------------------------|--------------------------|---|--|-----------------------|------------------------------------| | | Avg | Thiaridae | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | | Mollusca sp. | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | | Odonata sp. | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 3 | | Lymnidae | 2 | 1 | 5 | 2 | 2 | 2 | 3 | 2 | | Planorbidae | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | | Atydae | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | | Gammaridae | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | | Portunidae | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | | Turbinidae | 2 | 1 | 3 | 1 | 1 | 2 | 2 | 2 | | Palaemonidae | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 2 | | Diapatra sp. | 2 | 1 | 3 | 4 | 2 | 4 | 2 | 3 | | Coleoptera sp. | 2 | 1 | 3 | 3 | 0 | 1 | 3 | 2 | | Crustacea sp. | 3 | 1 | 3 | 3 | 3 | 3 | 2 | 1 | | Hemiptera sp. | 2 | 1 | 0 | 2 | 2 | 2 | 3 | 2 | | Tricoptera sp. | 2 | 1 | 3 | 4 | 3 | 5 | 2 | 1 | | Hydrobidae | 1 | 1 | 1 | 2 | 1 | 3 | 0 | 3 | | Viviparidae | 3 | 1 | 0 | 1 | 2 | 2 | 3 | 3 | | Neridae | 2 | 1 | 2 | 0 | 4 | 2 | 1 | 2 | | Density-m ³ | 10.18 | 8.82 | 9.64 | 10.09 | 8.5 | 9.73 | 9.73 | 9.55 | | No of genera | 18 | 18 | 16 | 5.00 | 16 | 18 | 17 | 18 | Few Benthic organisms were observed in the collected sample by using the Van-Veen grabs during the sampling conducted for DPA Kandla and Vadinar. Majority of the species were found under the Macro-benthic organisms during the sampling period were represented by *Atyde, Palaemonidae, Mollusca sp.*, etc. The average density of benthic fauna was varying from **8.55** to **10.18** m³. The details of Species richness Index and Diversity Index in Benthic Organisms is mentioned in **Table 43**. Table 42: Species richness Index and Diversity Index in Benthic Organisms | Indices | ME-1 | ME-2 | ME-3 | ME-4 | ME-5 | ME-6 | ME-7 | ME-8 | |--------------------|------------|---------|--------|--------|-----------|-----------|-------|---------| | | (Near | (Kandla | (Near | (Khori | (Nakti | (Nakti | (Near | (Near | | | Passenger | Creek) | Coal | Creek) | Creek- | Creek | SPM) | Vadinar | | | Jetty One) | | Berth) | | near Tuna | near NH - | | Jetty) | | | | | | | Port) | 8A) | | | | | Avg. | Avg | Taxa S | 6 | 7 | 6 | 6 | 7 | 6 | 6 | 6 | | Individuals | 10 | 9 | 10 | 10 | 9 | 10 | 9 | 10 | | Shannon diversity | 1.55 | 1.42 | 1.47 | 1.50 | 1.43 | 1.48 | 1.43 | 1.43 | | Simpson 1-D | 0.76 | 0.73 | 0.75 | 0.75 | 0.73 | 0.75 | 0.73 | 0.74 | | Species Evenness | 0.89 | 0.89 | 0.92 | 0.92 | 0.90 | 0.91 | 0.90 | 0.89 | | Margalef | 1.92 | 1.77 | 1.73 | 1.81 | 1.83 | 1.79 | 1.76 | 1.68 | | Berger-Parker | 0.33 | 0.37 | 0.33 | 0.34 | 0.37 | 0.34 | 0.38 | 0.36 | | Relative abundance | 55.92 | 57.66 | 53.67 | 56.55 | 60.63 | 56.18 | 57.46 | 51.58 | - Shannon- Wiener's Index (H): During monitoring period 2023 to 2024, Average Shanon- Wierner's index of benthic organism was in the range of **1.42 to 1.55** between selected sampling stations from ME-1 to ME-6, at Kandla creek and its nearby creeks. While for Vadinar, average Shannon Wiener's index of benthic organism recorded to be **1.43** at ME-7 and ME-8. The apportionment of the numbers of individuals among the species observed higher stability at all monitoring location of Kandla and Vadinar. - Simpson diversity index (1-D): During the monitoring period 2023 to 2024, average Simpson diversity index (1-D) of benthic organism was ranged between 0.73 to 0.76 at all sampling stations in the Kandla creek and nearby creeks, Similarly, for Vadinar average Simpson diversity index (1-D) of benthic organism was 0.73 at ME-7 and 0.74 at ME-8. - Margalef's diversity index (Species Richness): During the monitoring period 2023 to 2024, average margalef's diversity index of benthic organism in Kandla and nearby creeks sampling stations was varying from 1.73 to 1.92. While for Vadinar, average Margalef's diversity index (Species Richness) of benthic organism observed to be 1.76 at ME-7 and 1.68 at ME-8. - Berger-Parker Index (d): During the monitoring period 2023 to 2024, average Berger-Parker Index (d) of benthic organism was in the range of 0.33 to 0.37 between selected sampling stations from ME-1 to ME-6, at Kandla creek and nearby creeks. average Berger-Parker Index (d) of benthic organism in the sampling stations of Vadinar, was in the range of 0.36 to 0.38. All the monitoring station signifies a low diversity with an even distribution among the different species. - The average **Species Evenness** is observed in the range of **0.89** to **0.92** for all the six-monitoring station of Kandla and for the Vadinar the species evenness is observed in the range of **0.89** to **0.90**. - During the sampling period, **average Relative Abundance** of Benthic organisms was in range of **53.67 to 60.63** between selected sampling stations from ME-1 to ME-6
at Kandla creek and nearby creeks. Whereas for Vadinar the Average relative abundance value **57.46** at ME-7 and **51.58** at ME-8, thus it is concluded that the studied species can be stated as neither highly dominant nor rare. # CHAPTER 13: SUMMARY AND CONCLUSION #### 13.1 Summary and Conclusion The report, prepared by the Gujarat Environment Management Institute (GEMI), details the environmental monitoring and management plan for the Deendayal Port Authority (DPA) at Kandla and Vadinar. The monitoring covers the period from April 2023 to March 2024. The primary objective is to systematically assess and monitor environmental parameters including ambient air, water (drinking and surface), soil, sediment, noise, and ecology to ensure compliance with environmental standards and statutory norms. #### Methodology Environmental monitoring was conducted using standard operating procedures, protocols, and guidelines to ensure accurate data collection. Various parameters were measured, including air quality, water quality, soil characteristics, noise levels, and meteorological data. Based on the results obtained for both study areas, Kandla and Vadinar, during the monitoring period from April 2023 to March 2024, the following observations are concluded. ### • Ambient Air Quality Monitoring Particulate matter (PM_{10} and $PM_{2.5}$) levels exceeded the national ambient air quality standards (NAAQS) at most monitoring locations, especially at the coal storage area. The high particulate matter levels were attributed to heavy vehicular traffic, loading/unloading of cargo, and dust from unpaved roads. For Gaseous monitoring, sulfur dioxide (SO_2), nitrogen oxides (NO_x), volatile organic compounds (VOCs), and carbon monoxide (SO_2) were generally within the SO_2 0 limits. The noise level was within the permissible limits for the industrial, commercial, and residential zones for daytime and nighttime. #### • DG Stack Monitoring Monitoring of the diesel generator (DG) stacks was conducted at one location each in Kandla and Vadinar. Parameters like suspended particulate matter, SO_2 , NO_x , CO, and CO_2 were measured and found to be within the prescribed emission limits. #### Soil Monitoring The pH in Kandla varies from slightly alkaline to strongly alkaline, while the soil at Vadinar was found to be moderately alkaline. The soil texture was observed as "sandy loam" to "loamy sand" at all the monitoring locations in Kandla, and the soil texture of Vadinar varies from "loam" to "slit loam. Kandla displays higher salinity and nutrient levels, while Vadinar exhibits lower nutrient levels. Vadinar generally shows moderate conditions with higher water holding capacity and more consistent soil composition. The presence of heavy metals such as aluminium, chromium, nickel, copper, zinc, lead, arsenic, and cadmium vary considerably at both study area. # STP Monitoring After the effluent treatment in both the study areas, the treated water followed the GPCB discharge norms except for total coliform. #### • Drinking Water Quality Monitoring Drinking water samples were collected from 20 locations across Kandla and Vadinar. Most water quality parameters like pH, color, turbidity, chloride, and total hardness were within the drinking water standards (IS 10500:2012). A few locations showed slightly elevated levels of electrical conductivity, salinity, and total dissolved solids, likely due to the coastal location. #### • Marine Water and Sediment Quality Monitoring Marine water and sediment samples were collected from 6 locations in Kandla and 2 locations in Vadinar. The water quality parameters like pH, salinity, dissolved oxygen, and nutrients were within the acceptable limits for coastal waters. The sediment quality in terms of heavy metals and organic contaminants was also found to be within the prescribed standards. #### • Marine Ecology Monitoring Monitoring of marine ecology was conducted at 6 locations in Kandla and 2 locations in Vadinar. The analysis indicates that both regions exhibit low diversity with an even distribution among species, as evidenced by the Berger-Parker Index and Simpson Diversity Index values. These indices suggest a stable ecosystem where no single species overwhelmingly dominates, nor are any species exceedingly rare. The even distribution of species, coupled with moderate levels of biomass and primary productivity, highlights the resilience of these ecosystems. Overall, the report concludes that the environmental monitoring conducted by the DPA during the period of April 2023 to March 2024 indicates compliance with the applicable environmental regulations, with some exceptions related to particulate matter levels in the ambient air. # Annexure 1: Photographs of the Environmental Monitoring conducted at Kandla # Annexure 2: Photographs of the Environmental Monitoring conducted at Vadinar Source: GEMI # **CHAPTER 14: REFERENCES** #### **References:** - (1) National ambient air quality standards central pollution control board, 2009 - (2) Ambient Air Quality Standards in respect of Noise,2000. - (3) American Public Health Association 23rd Addition, Standard Methods for Water and Waste water analysis, 2017.s - (4) Indian Standard DRINKING WATER SPECIFICATION (Second Revision), 2012. # **Gujarat Environment Management Institute (GEMI)** (An Autonomous Institute of Government of Gujarat) 'An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified Institute #### **Head Office** Plot No. B 246 & 247, G.I.D.C. Electronic Estate, Sector-25, Gandhinagar-382024 # Laboratory Plot No. B-64, G.I.D.C. Electronic Estate, Opp. I.P.R., Sector-25, Gandhinagar-382025 Tel: (+91) 79-23240964 (O), T: (+91) 79-23287758 (Lab), F: (+91) 79-23240965 E-mail: info-gemi@gujarat.gov.in | Website: www.gemi.gujarat.gov.in "We Provide Environmental Solutions"