DEENDAYAL PORT TRUST

ISO 9001:2015 & ISO 14001:2015 certified Port

Administrative Office Building Post Box NO. 50 GANDHIDHAM (Kutch). Gujarat: 370 201 Fax: (02836) 220050 Ph.: (02836) 220038

www.deendayalport.gov.in

EG/WK/5202 (D)/ Part (CRZ/ 142

Dated 0 7 /01/2022

The Additional Secretary & Director (Environment), Govt. of Gujarat, Forest & Environment Department, Block No.14, 8t^{il} floor, New Sachivalaya, <u>Gandhinagar - 382 010.</u>

Sub: CRZ Clearance for "Creation of water front facilities (Oil Jetties 8, 9, 10 & 11) and development of land of area 554 acres for associated facilities for storage at Old Kandla, Gandhidham, Kutch, Gujarat by M/s Deendayal Port Trust" <u>Compliances of the stipulated</u> <u>conditions in CRZ Recommendations reg.</u>

<u>Ref.:</u> (1) Letter No. ENV-10-2018-24-T Cell dated 30/7/2020 of Director (Environment) & Additional Secretary, Forest & Environment Department, GoG.

(2) DPT letter no. EG/WK/5202 (D)/ Part (CRZ 2)/28 dated 29/06/2021

Sir,

It is requested to kindly refer the above cited reference for the said subject.

In this connection, it is to state that, the Gujarat Coastal Zone Management Authority vide above referred letter dated 30/7/2020 had recommended the subject project of Deendayal Port Trust. Subsequently, the MoEF&CC, GoI had accorded the Environmental & CRZ Clearance vide letter dated 20/10/2020 for the subject project. Subsequently, DPT vide above referred letter dated 29/06/2021 had submitted compliance report of the stipulated conditions for the period upto May, 2021.

Now, as directed under Specific Condition No. 26 mentioned in the CRZ Clearance letter dated 30/7/2020 i.e. A six-monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by the OPT on a regular basis to this Department and MoEF&CC, GoI, we have been regularly submitting the said report vide reference (2) cited letter. Further, please find enclosed herewith compliance report of the stipulated conditions for period June to November, 2021 along with necessary annexure, for kind information & record please (Annexure I). Further, as per the MoEF&CC, Notification 5.0.5845 (E) dated 26.11.2018, in which it is mentioned that, "In the said notification, in paragraph 10, in subparagraph (ii), for the words "hard and soft copies" the words "soft copy" shall be substituted". Accordingly, we are submitting herewith soft copy of the same via e-mail in ID gczma.crz@gmail.com & direnv@gujarat.gcv.in.

This has the approval of Chief Engineer, Deendayal Port Trust.

Yours Faithfully, Superintending Engineer (PL) & EMC (I/c) Deendayal Port Trust

Copy to: -

Shri Amardeep Raju, MoEF&CC,GoI Scientist E, Ministry of Environment, Forest and Climate Change, & Member Secretary (EAC-Infra.1), Indira Paryavaran Bhavan, 3rd Floor, Vayu Wing, Jor Bagh Road, Aliganj, New Delhi-110003. Email ID: <u>ad.raju@nic.in</u>

Annexure -I

Subject: Point-wise Compliance Status Report for CRZ clearance for proposed project for creation of water front facilities (oil jetties 8,9,10 and 11) and development of land (1432 acres – revised area 554 acres) for associated facilities for storage at old Kandla, Tal: Gandhidham Dist. Kutch, Gujarat by Deendayal Port Trust -reg

S. No.	CRZ Conditions	Compliance Status
1.	SPECIFIC CONDITIONS The DPT shall strictly adhere to the provisions of the CRZ Notification, 2011 issued by the Ministry of Environment,	It is assured that, the provisions of the CRZ Notification, 2011 shall be strictly adhere to by the DPT.
2.	Forests and Climate Change, Government of India Necessary permissions from different departments/ agencies under different laws/ acts shall be obtained before commencing any activity (including the construction)	The Consent to Establish (CTE) from the GPCB had already been obtained vide CTE No. 94118 granted by the GPCB vide letter no. PC/CCA-KUTCH 1524/GPCB ID 56985 dated 23/7/2018
3.	The DPT shall ensure that that the all the provisions of CRZ Notification 2011 shall be complied with and storage facilities in CRZ areas shall be in compliance with Annexure- II of the above said Notification	(Copy Annexure A). It is assured that all the provisions of CRZ Notification, 2011 will be complied with and only storage of permissible cargo as per CRZ Notification, 2011, Annexure II will be allowed to store in storage facilities to be developed.
4.	There shall not be any blockage of creek due to laying of pipeline. and free flow of water shall be maintained.	Work is in progress (Oil Jetty No. 8 - Jetty & allied facilities). It is hereby assured that, no creeks or rivers shall be blocked, due to any activities at the project site and free flow of water will be maintained.
5.	There shall not be any mangrove destruction/ damage due to proposed activities and adequate buffer zone of 70 metres shall be maintained from mangrove areas	It is assured that all the proposed activities shall be carried out strictly as per the EC & CRZ Clearance accorded by the MoEF&CC, GoI dated 20/11/2020.
6.	The DPT shall effectively implement the Mangrove Development, Protection & Management plan for control of indirect impact on mangrove habitat	As per the directions of the GCZMA and MoEF&CC, GoI, till date (2005-06 to 2019-20), DPT had already undertaken Mangrove Plantation in an area of 1500 Ha. at various locations.

Ref No: - GCZMA CRZ recommendation vide Letter No- <u>ENV-10-2018-24-</u> <u>T Cell</u> dated 30.07.2020

S. No.	CRZ Conditions	Compliance Status
7		It is also relevent to submit here that, as per the direction of the Gujarat Coastal Zone Management Authority, DPT had already prepared & submitted a report on mangrove conservation and management plan formulated by Gujarat Institute of Desert Ecology during the study period of Jan-April, 2015 (Report already submitted along with earlier compliance reports submitted). Further, DPT appointed M/s GUIDE, Bhuj vide work order dated 1/9/2017 for "Regular Monitoring of Mangrove Plantation (1300 Ha.) carried out by DPT". DPT had already submitted final report along with compliance reports submitted to the GCZMA for the project of "Construction of 13th to 16th CB" dated 30/11/2019.
7.	The DPT shall have to make a provision that mangrove areas get proper flushing water and free flow of water shall not be obstructed	It is assured that necessary provisions will be made so that mangrove area get proper flushing water and to maintain free flow of water.
8.	The DPT shall have to dispose of the dredged material at the designated dredged material disposal point based on scientific study and approved by the MOEF&CC, GOI	No dredging activity has been started yet. However, it is assured that dredging activity will be carried out strictly as per the requirement of the condition and the same shall be disposed at designated dumping ground (25° 51' 00" N & 70°10' 00" E).
9.	The DPT shall have to maintain the record for generation and disposal of capital dredging and maintenance dredging	No dredging activity has been started yet. However, it is assured that necessary record will be maintained as per the requirement of the condition.
10.	No dredging, reclamation or any other project related activities shall be carried out in the CRZ area categorized as CRZ I (i) (A) and it shall have to be ensured that the mangrove habitat and other ecologically important and significant areas, if any, in the region are not affected due to any of the project activities.	It is assured that all the project related activities will be strictly carried out as per the EC & CRZ Clearance accorded by the MoEF&CC, GoI dated 20/11/2020.

S.	CRZ Conditions	Compliance Status
No.		• • • • • • • •
11.	The DPT shall ensure that construction activities like dredging etc shall be caried out in confined manner to reduce the impact on marine environment.	No dredging activities have been started yet. However, it is assured that construction activities like dredging will be carried out as per the requirement of the condition.
12.	The DPT shall ensure that the dredging shall not be carried out during the fish breeding season	No dredging activities have been started yet. Point Noted for compliance.
13.	Construction waste including debris and dredged material shall be disposed safely in the designed areas as approved by MoEF&CC, Gol and it shall be ensured that there shall be no impact on flora and fauna	Point Noted for compliance.
14.	No effluent or sewage shall be discharged into the sea / creek or in the CRZ area and shall be treated to conform the norms prescribed by the Gujarat Pollution Control Board and would be reused / recycled as per the approval of the Board	It is assured that No effluent or sewage will be discharged into the Sea/creek or in the CRZ area. Further, the same will be treated in STP as per the norms prescribed by the GPCB.
15.	All the recommendations and suggestions given by the Cholamandalam MS Risk Services Limited in their Environment Impact Assessment report shall be implemented strictly by DPT	It is assured that all the recommendations and suggestions given by the EIA Consultant, M/s SV Enviro, Vizag in EIA Report will be implemented.
16.	The DPT shall exercise extra precautions to ensure the navigation safety and mitigation of the risk associated with the project activities especially due to collision, sinking or accidents of the vessels and would deploy the latest communication and navigation aids for this purpose. The proposed facilities shall also be covered under the VTMS being developed by the GMB	It is assured that emergency preparedness plan based on the Hazard Identification and Risk Assessment (HIRA) will be implemented.
17.	The cost of the external agency that may be appointed by this department for supervision / monitoring of the project activities during construction/ operational phases shall be paid by DPT	
18.	The DPT shall contribute financially for any common study or project that may be proposed by this Department for environmental management / conservation / improvement for the Gulf Kutch	Point noted for compliance.

S. No.	CRZ Conditions	Compliance Status
19.	The piling activities debris and any other type of waste shall not be discharged into the sea or creek or in the CRZ areas. The debris shall be removed from the site immediately after the piling activities are over	Work is in progress (Oil Jetty No. 8 - Jetty & allied facilities). Point Noted for compliance.
20.	The camps shall be located outside the CRZ area and the labour shall be provided with the necessary amenities, including sanitation, water supply and fuel and it shall be ensured that the environmental conditions are not deteriorated by the labours.	Point Noted for compliance.
21.	The DPT shall prepare and regularly update their Local Oil Spill Contingency and Disaster Management Plan in consonance with the National Oil Spill and Disaster Contingency Plan	Point Noted for compliance. DPT is already having Local Oil Spill contingency plan and updated DMP.
22.	The DPT shall bear the cost of the external agency that may be appointed by this Department for supervision / monitoring of proposed activities and the environmental impacts of the proposed activities	Point noted for compliance.
23.	The groundwater shall not be tapped to meet with the water requirements in any case	Point Noted for compliance.
24.	DPT shall take up greenbelt development activities in consultation with the Gujarat institute of Desert Ecology / Forest Department / Gujarat Ecology Commission	
25.	The DPT shall have to contribute financially for taking up the socio-economic upliftment activities in this region in consultation with the Forests and Environment Department and the District Collector / District Development Officer	As per the CSR Guidelines issued by the Ministry of Ports, Shipping & Waterways, Government of India, from time to time, DPT had undertaken CSR activities since the year 2011-12. The details of CSR Activities undertaken & planned is attached herewith as Annexure B.
26.	A six-monthly report on compliance of the conditions mentioned in this letter shall have to be furnished by DPT on a regular basis to this Department and MoEF&CC, Gol.	DPT has been regularly submitting the six-monthly report on compliance of the conditions mentioned in the CRZ Recommendation letter dated 30/7/2020 to the CRZ Authority and to the MoEF&CC, GoI.
27.	The DPT shall ensure that the numbers of the Vessels and machinery deployed during	Point Noted for compliance.

S. No.	CRZ Conditions	Compliance Status
	marine construction, which are a source of low level organic and PHC pollution will be optimized to minimize risks of accidents involving these vessels.	Work is in progress (Oil Jetty No. 8 - Jetty & allied facilities).
28.	The noise level during transport and construction of marine facilities shall be kept minimum.	DPT appointed M/s Detox Corporation, Surat for Monitoring of environmental parameters since the year 2016. The work is in progress & DPT submitted monitoring data regularly to all the concerned authorities along with compliance reports submitted. The monitoring reports are attached herewith as Annexure C .
29.	The DPT shall regularly conduct the surveys to identify changes in the channel bathymetry to minimize navigation hazards. Proper navigational aids and guidance should be provided to ships navigating the channel and there should be a properly structured vessels traffic management strategy to avoid accidents.	Point noted for compliance.
30.	The DPT shall carry out separate study for further erosion and deposition pattern in the area after dredging through a reputed agency and shall follow the suggestions of the study done by reputed agency, for maintenance dredging, the recommendations /suggestions of the reputed agency shall be follow by the DPT	No dredging activity has been started yet. However, it is assured that necessary will be conducted as per the requirement of the condition.
31.	Any other condition that may be stipulated by this Department and MoEF&CC, Gol from time to time for environmental protection / management purpose shall also have to be complied with by DPT.	Point noted.

ANNEXURE A

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

By R.P.A.D

CONSENT TO ESTABLISH CTE- 94118

No. PC/CCA-KUTCH-1524/GPCB ID 56985/ To, 🗸

Date:

Deendayal Port Trust Land, Kandla Port Trust Land,

A.O Building, P.O box No. 50, Tal.:Gandhidham,

Dist.Kutch-370201

Subject

: Consent to Establish (NOC) under Section 25 of Water (Prevention and Control of Pollution) Act 1974 and Section 21 of Air (Prevention and Control of Pollution) Act 1981

Reference : Your CTE Application Inward ID No 133847 dated 04/04/2018

Sir.

Without prejudice to the powers of the Board under the Water (Prevention and Control of Pollution) Act-1974, the Air (Prevention and Control of Pollution) Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that the Board grants Consent to Establish (NOC) of industrial activity at Kandla Port Trust Land, A.O Building, P.O box No. 50, Tal.: Gandhidham, For Creation of water front facilities of oil jetties of 8,9,10,&11 & development of land (1432 Areas).

1. The validity period of the order shall be up to 03/04/2023

SUBJECT TO FOLLOWING SPECIFIC CONDITIONS:

- 1. Proposed jetties shall be handled of 3.5 MMTP/Annum of liquid cargo of edible oil. Fertilizer & food grains etc.
- 2. Unit shall strictly adhere to all condition of TOR issued by MoEF & CC, Delhi dated 04/08/2017 & shall not carry out any construction activities till obtaining EC & CRZ from competent authority
- 3 No ground water shall be withdrawn without prior approval from competent authority.

2. CONDITIONS UNDER WATER ACT 1974:

- 2.1 There shall be no industrial water consumption and hence there shall be no industrial waste water generation from manufacturing process and other ancillary operations.
- 2.2 Domestic water consumption shall not exceed 20 KL/day.
- 2.3 The quantity of domestic waste water (Sewage) shall not exceed 16 KL/Day.
- out march yoo do a 2.4 The quality of the sewage shall conform to the following standards.

Page 1 of 3

Clean Gujarat Green Gujarat

1SO-9001-2008 & ISO-14001 - 2004 Certified Organisation

PARAMETERS	GPCB NORMS
pH	6.5 to 9.0
BOD (5 days at 20° C)	30 mg/L
Suspended Solids	100 mg/L
Fecal Coliform	1000 MPN/ 100 ml

2.5 The domestic sewage shall be treated in Sewage Treatment Plant and treated sewage conforming to standards mentioned in 2.4 shall be reused in various activities shall not be used for gardening and plantation purpose in premises.

3. CONDITIONS UNDER AIR ACT 1981:

- 3.1 There shall be no use of fuel hence there shall be no flue gas emission from manufacturing process and other industrial operations.
- 3.2 There shall be no process gas emission from manufacturing process and other industrial operations.
- 3.3 The concentration of the following parameters in the ambient air within the premises of the industry shall not exceed the limits specified hereunder as per National Ambient Air Quality Standards issued by MoEF&CC dated 16th November-2009.

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in µg/m ³
1	Sulphur Dioxide (SO ₂)	Annual	50
		24 Hours	80
2	Nitrogen Dioxide (NO ₂)	Annual	40
	· · · · · · · · · · · · · · · · · · ·	24 Hours	80
3	Particulate Matter	Annual	60
·	(Size less than 10 µm) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 µm) OR PM _{2.5}	24 Hours	60

3.4 The level of Noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6 A.M. to 10 P.M.	75 dB(A)
Between 10 P.M. to 6 A.M.	: 70 dB(A)

4. CONDITIONS UNDER HAZARDOUS WASTE:

- 4.1 The applicant shall provide temporary storage facilities and maintain the record for each type of Hazardous Waste as per Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2016 as amended from time to time
- 4.2 The applicant shall be obtain membership of common TSDF site for disposal Hazardous Waste as categorized in Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2016 as amended thereof

5. GENERAL CONDITION

- 5.1 Any change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.
- 5.2 The waste generator shall be totally responsible for (i.e. Collection, storage, transportation and ultimate disposal) of the wastes generated.
- 5.3 Records of waste generation, its management and annual return shall be submitted to Gujarat Pollution Control Board in Form 4 by 31st January of every year.
- 5.4 In case of any accident, details of the same shall be submitted in Form 5 to Gujarat Pollution Control Board
- 5.5 Applicant shall comply relevant provision of "Public Liability Insurance Act-91".

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

- 5.6 Unit shall take all concrete measures to show tangible results in waste generation reduction. voidance, reuse and recycle. Action taken in this regards shall be submitted within 03 months
- 5.7 Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous waste generated within the factory premises.
- 5.8 Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 10
- meters width shall be developed. 5.9 The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water (Prevention and Control of Pollution) Cess Act- 1977.

For and on behalf of Gujarat Pollution Control Board

(Sushil Vegda) Senior Environment Engineer

Page 3 of 3

outward No. 462839 12310112018 Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

ANNEXURE B

Annexure C

10	
al	
. 2	

	-	I spent in PM Fund for						
		100	3117.09 Lakh		37.81 Cr	Total		
MoS aporoval is awaited		NI	1838.57 Lakh	92 of 06.12.2019	5.49 Cr	58 of 10.10.2019	2019-20	9
	209.47	1069.05	1278.52 Lakh					
Works in progress	1 104.40	50.50	154.90 Lakh	111 of 4, 12, 2018	6.70 Cr	51 of 07.08.2019	2018-19	20
Works in progress	39.73	115.37	155.10 Lakh	15 of 04.05.2018	7.02 Cr	41 of 2.08.2017	2017-2018	7
Works completed	-5.70	146.00	140.30 Lakin	52 of 2.8.2017	_ 2,60 Cr	138 of 06.01.2017	2016-2017	6
Works in progress	23.00	5.00	28.00 Lakh	48 of 12.08.2016	1.50 Cr	151 of 12.02.2016	2015-2016	Ś
Works in progress	8.04	188.18	236.22 Lakh	20 of 16.04.2015	1.07 Cr	322 of 21.11.2014	2014-2015	4
					6.43 Cr	99 of 30.09.2013	2013 - 2014	در
Works completed	NU	564.00	564.00 Lakh	64 of 30.08.2012				
					4.00 Cr	17 of 31.05.2012	2012-2013	2
		Ì			3.00 Cr	2011-2012 369 of 28.03.2012	2011-2012	æ
1	4-7	۔ اور ا	6	s	4	3	2	÷
Remarks	Net balance (Rs. In Laklis)	Actual Exp. Upto Nov'20 [Rs. Jn Lakhs]	Board Approved Amount For CSR Activities	Board Resolution for approval of the CSR activities	Board Approved Budget Provision	Board Resolution For Budget Provision	Vear	No St

1

32

1

83

<u>CSR</u> Activities at Deendarad Port Truss Details of CSR Year-wise details of CSR works undertaken by DPT during 2012 – 13 to 2019 – 20 are given in **Tables** 7.3a, 7.3b, 7.3c, 7.3d, 7.3e, 7.3f and 7.3g.

Table 7.3a: CSR Works Undertaken by DPT during 2011-12 and 2012 – 13

SI.	Name of Work	Cost
No.		(Rs. In lakhs)
1	Repair of road from Dr. Baba Saheb Ambedkar Circle to NH 8A (via Ganesh Nagar)	
2	Repair of road from S.T. Bus Stand to Sunderpuri Cross Road via Collector Road	
3	Repair of road from NH 8A Railway Crossing to Maninagar (along railway track)	518
4	Repair of road from Khanna Market Road (Collector Road) to Green Palace Hotel	
5	Construction of internal roads at "Shri Ram" Harijan Co-operative Housing Society (near Kidana)	
6	Construction of cremation ground and graveyard with other facilities at Vadinar	19.44
7	Providing cement concrete internal roads in Village Vadinar Stage - I	16.16
8	Approach road provided for developing tourism at Village Veera near Harsidhi Mata Temple	4.65
9	Water tank along with R.O. provided near developing tourism area	0.30
10	Creating facilities of flooring and steps surrounding lake to stop soil erosion and attract tourists at Village	4.80
	Veera.	
	TOTAL	563.35

Table 7.3b: CSR Works Undertaken by DPT during 2014-15

SI.	Name of Work	Cost
No.		(Rs. In lakhs)
1	Construction of community hall – cum – school at Maheshwari Nagar, Gandhidham	51.90
2	Renovation of "Muktidham" (cremation ground) at Kandla	10.65
3	Sunderpuri – 1 Valmiki Community Hall	5.00
4	Sunderpuri – 2 Valmiki Community Hall	5.00
5	Ganeshnagar Community Hall	10.00
6	Jagjivan Maheshwari Community Hall	10.00
7	Various works of road at Sapnanagar	99.19
8	Construction of compound wall in the dam of Jogninar Village	14.48
	TOTAL	206.22

Table 7.3c: CSR Works Undertaken by DPT during 2015-16

SI.	Name of Work	Cost
No.		
1	Construction of Bus Stand at Vadinar Village	10.00
2	Providing drainage system at Vadinar Village	6.00
3	Providing and laying of water supply lines in Vadinar Village	6.00
4	Road from Gandhidham Post Office to Merchantile Marine Department Office along with toilet facilities	60.00
5	Construction of toilets for girls / women at Khari Rohar, Village	3.00
6	Construction of toilets for girls at Mathak Primary School, Mathak, Village	3.00
	TOTAL	88.00

Table 7.3d: CSR Works Approved by DPT Board for 2016-17

SI.	Name of Work	Cost
No.		(Rs. In lakhs)
1	RCC community hall at Harsidhi Mata Temple, Village Veera, Anjar Taluka	19.00
2	Fabricated Community Hall at Sanghad Village, Anjar Taluka	21.00
3	CSR Works for Shri Maheshwari Meghvad Samaj, Gandhidham at graveyard behind Redison Hotel	8.00
4	CSR Works for Shri Dhanraj Matiyadev Mukti Dham, Sector 14, Rotary Nagar, Gandhidham	30.50
5	CSR Works for Nirvasit Harijan Co-operative Housing Society, Gandhidham Health Cum Education Centre	41.00
6	CSR Works for Shri Rotary Nagar Primary School, Gandhidham	2.80
7	CSR Works at NU-4, NU-10(B) Sapnanagar & Saktinagar, Golden Jubilee Park at Gandhidham	18.00
	TOTAL	140.30

	Table 7.3e: CSR Works Approved for 2017-18			
SI.	Name of Work	Proposal Received from / / Name	Cost	
No.		of Organization / N.G.O	(Rs. In lakhs)	
1	CSR Works at Shri Ganesh Nagar High School, Gandhidham	Principal,	38.30 Lakhs	
		Shri Ganesh Nagar Govt High		
		School, Gandhidham		
2	CSR Works for MOLANA AZAD Primary School, Kandla	Shri M L Bellani, Trustee, DPT,	7.00 Lakhs	
		Shri Kandla Port Education		
		Society, New Kandla		
3	Grant financial contribution for facility of Army Cantonment for 50	Shri Vinod L Chavda, MP	15 Lakhs	
	nos. air coolers at Kutch Border Area			
4	40% of the estimated cost of providing drainage lines at Tuna and	Shri Sarpanch, Tuna Village &	Rs. 39.80 Lakhs	
	Vandi villages under Swachh Bharat Abhiyan.	Vandi village	Approx. estimated	
		& Shri M L Bellani, Trustee, DPT	Cost Rs.99.50 Lakhs,	
			of which 40% to be	
			contributed by DPT.	
5	CSR works for S.H.N. Academy English School (managed by Indian	Director, S.H.N Academy English	40 Lakhs	
	Inst. Of Sindhology – Bharati Sindhu Vidyapeeth), Adipur	School		
6	Construction of internal roads at Bhaktinagar Society, Kidana	Smt Maltiben Maheshwari, MLA	15 Lakh	
		TOTAL	155.10	

Table 7.3e: CSR Works Approved for 2017-18

Table 7.3f: CSR Works Approved for 2018-19

SI. No.	Name of Work	Proposal Received from / / Name of Organization / N.G.O	Cost (Rs. In lakhs)
1	CSR work to Donate 100 Nos of Computers to Daughters of Martyred Soldiers in the country under the "BETI BACHAO BETI PADHAO" program by Atharva Foundation, Mumbai	Chairman, Atharva Foundation, Mumbai	24.00
2	CSR work to Donate ONE (40 Seater) School Bus for Deaf Children Students for the Institute of Mata Lachmi Rotary Society, Adipur	Mata Lachmi Rotary Society, Adipur	18.00
3	CSR work to Providing One R.O Plant with Cooler at PanchyatPrathmikSala, Gadpadar Village for the ANARDE Foundation, Kandla&Gandhidham Center.	adar Village for the ANARDE Annarde Foundation-Kandla &	
4	CSR work for Providing Drainage Line at MeghparBorichi village, AnjarTaluka	Shri Vasanbhai Ahir, MLA, Gujarat Govt	25.00
5	CSR work for Construction of Health Centre at Kidana Village	Shri Vinod L Chavda, MP	13.00
6	CSR work to provide 4 Nos. of Big Dust Bin for MithiRoharJuth Gram Panchayat.	Shri Sarapanch, Mithi RoharJuth Gram Panchayat	3.40

SI. No.	Name of Work	Proposal Received from / / Name of Organization / N.G.O	Cost (Rs. In lakhs)
7	CSR work for Renovation & construction of shed at CharanSamaj, Gandhidham – Adipur.	Shri Vinod L Chavda, MP	10.00
8	CSR Work for Renovation/Repairing of Ceiling of School Building at A. P Vidhyalay, Kandla.	Smt Maltiben K. Maheshwary, MP, Gandhidham.	10.00
9	CSR work for Construction of Over Head Tank & Providing 10 Nos of Computers (for students) of NavjivanViklangSevashray, Bhachau, Kutch	Shri Jitendra Joshi, Founder Secretary, Shri Navjivan Viklang Sevashray, Bhachau, Kutch	9.50
10	CSR work to Provide Books & Tuition fees for Educational facilities to weaker section children of ValmikiSamaj, Kutch.	Shri Manohar Jala, Chairman of "National Commission of Safai Karamcharis"	2.00
11	CSR work to provide Water Purifier & Cooler for the ST. Joseph's Hospital, Gandhidham	Smt. Maltiben K Mahewari, MLA ,Gandhidham	1.50
12	CSR work for Construction of Second Floor (Phase – I) for Training Centre of "GarbhSanskran Kendra" "Samarth Bharat Abhiyan" of Kutch Kalyan Sangh, Gandhidham	Shri Vinod L Chavda, MP, Kutch	37.00
		TOTAL	154.90

Table 7.3g: CSR works approved for the year 2019-20 (approval from Ministry of Shipping still awaited)

SI.	Name of Work	Proposal Received from / /	Cost
No.		Name of Organization / N.G.O	(Rs. In lakhs)
1	CSR activities for Providing Drainage line at Nani Nagalpar village.	Sarpanch of Village:-Nani Nagalpar, Taluk: Anjar.	3.00
2	CSR activities for Development of ANGANWADI Building at School no- 12 at Ward no 3 & 6 at Anjar.	Shri Vasanbhai Ahir, MLA	7.00
3	CSR activities for Improving the facilities of Garden at Sapna Nagar(NU-4)& (NU-10 B), Gandhidham.	Shri K P Maheshwari, Resident Sapnanagar, Gandhidham	18.00
4	CSR activities for Providing of Plastic Shredding Machine to Mirror Charitable Trust, Gandhidham.	Mirror Charitable Trust ,Gandhidham	4.75
5	CSR activities for development of School premises of Shri Guru Nanak Edu. Society, Gim.	Shri Guru Nanak Education Society, Gandhidham.	30.00
6	CSR activities for the improvement of the facilities at St. Joseph Hospital & Shantisadan at Gandhidham	St. Joseph Hospital Trust, Gandhidham	20.00
7	CSR activities for the improvement of the facilities at SVP (SardarValabhbhai Patel) Multipurpose Hall at Gandhidham	Request from MarwadiYuva Munch & UNION Gandhidham	500.00
8	Consideration of Expenditure for running of St Ann's High School at Vadinar of last 5 years 2014 to 2019 under CSR.	Proposal from COM, OOT Vadinar, DPT	825.00
9	CSR activities for development of school premises of Shri Adipur Group Kanya Sala no-1 at Adipur	Principal, Shri Adipur Group KanyaSala, Adipur	6.50
10	CSR activities for development of school premises of Shri Jagjivan Nagar Panchyat Prathmiksala, Gandhidham.	Principal, Shri Jagjivan Nagar Panchyat Prathmiksala, Gandhidham.	16.50
11	CSR activities for development of school premises of Ganeshnagar Government high school, Gandhidham.	Shri Vinod L Chavda, MP, Kutch	9.00
12	CSR activities for improving greenery, increase carbon sequestration and beat Pollution at Kandla, DPT reg.	Work awarded to Forest Department , Bhuj	352.32
13	CSR activities for providing infrastructures facilities at "Bhiratna Sarmas Kanya Chhatralaya" under the Trust of Samaj Nav- Nirman at Mirjapur highway, Ta Bhuj.	SamajNav- Nirman at Mirjapur highway, Ta Bhuj.	46.50
	·· · · ·	TOTAL	1838.57

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details
-------	----------------	---	---------------

1	CSR activities for the development of gardening at Sector -5 , Gim	Shri Sarvodaya Co- Operative Housing Society Ltd	Appx Cost – Rs 25.00 Lakhs Cost for – Comp wall, Benches, Plantation, walkway, other facilities (Land is reserved for Garden development only since from 50 years)
2	CSR activities for providing various facilities in SHRI GANESHNAGAR GOVT HIGHSCHOOL, GANDHIDHAM	Principal of School	Appx cost –Rs 20.00 Lakhs (Two times CSR works carried out at school by DPT)
3	CSR activities for the VadhiyarVankarSamajvaadi, NaviSunderpuriGim	SmtMaltiben K Maheswari, MLA	Appx Cost Rs 6.00 Lakhs Cost for Const. of Comp Wall
4	CSR activities for Construction work of Cabin at Oslo Area- Gim	SmtMaltiben& Shri VinadChavda	Cost not mentioned.
5	CSR activities & Land requirement forAkhil Kutch SamastaMeghvanshiGurjarmeghwal Charitable Trust ,Gim.	Shri Akhil Kutch SamastaMeghvanshiG urjarmeghwal Charitable Trust. Shri Dharmendra R Gohil	Cost Not mentioned. (demand of Land for development of SAMAJ VADI in Gandhidham)
6	CSR Activities for providing Water supply pipe line, Play ground and sports equipment, electric facilities, drinking water facilities for poor people & Fishermen at VANDI Village.	Shri R RKhambhra, PRO , Collector Office, Bhuj.	Appx Cost Rs 51.00 Lakhs (Last year also applied by village Sarpanch) & Recommended by Shri VASANBHAI AHIR, MLA, Shri V L Chavda, MP)
7	CSR activities for the Tuna village,	Sarpanch, Tuna village	Appx Cost Rs. 25 Lakhs Cost for :-

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details
-------	----------------	---	---------------

	Ta -Gim		2 No Fab shed 20'x20'x1250= 10 Lakh 2 Nos of Agnawadi =10 Lakh Fab shed for school=5 Lakh
8	CSR activities for the Global Vision India Foundation, Gim	Global vision India Foundation, G'dham	Requirement of Land –OR- Old building at Gandhidham for foundation of welfare activities.
9	CSR activities for the UNITED ORPHANAGE FOR THE DISABLED, TAMIL NADU	UNITED ORPHANAGE FOR THE DISABLED, TAMIL NADU	Cost Rs 25,000.00 (Winter sweaters for children)
10	CSR activities for the Garden Development on already bounded area with Compound wall near Plot no 448 Sector-1/A, Gandhidham.	Residents, near Plot no 448, Sector-1/A, Gim.	AppxCost Rs 20.00 Lakhs (Requirement to provide benches, drinking water facility, plantation, lightings & walkways in side bounded area)
11	CSR activities for donation of Land for the Shri SUNDARPUI Govt Primary School, Gim	SmtMalti ben Maheshwari, MLA	(request for Land Requirement)
12	CSR activities for Extension of Adarsh Primary School building, Adipur	GandhidhamMatri Mandal, English Medium School, Adipur	Appx Cost Rs. 40.00Lakhs(Construction for 4 Rooms extension)(Trust registered under Societies Registration Act XXI -1860, Reg No F-42 dtd 23.9.1965. Land belong to Trust)
13	CSR Activities for providing HD projector for KANYA MAHA VIDYALAYA, Adipur	Principal, KANYA MAHA VIDYALAYA, Adipur	Cost Rs 1.50 Lakhs (School Managed by G'dhamMaitry Mandal, Adipur)

Sr.N	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details
14	CSR activities for DONATION various Medical Equipment for the Hospital of Gandhidham Jain SevaSamiti, Adipur	Gandhidham Jain SevaSamiti, Adipur	Cost for :- 1) Fresenius Haemodialysis Machine Rs 38.00 Lakh 2) Maltislice Helical CT Scanner- Rs 52.00 Lakhs 3) Others Rs 54.00 Lakhs (Total Appx Cost Rs 144 Lakhs)
15	CSR activities for SHRI VIDI JUTH GRAM PANCHAYAT, Vidi, Anjar	Sarpanch, Vidi Gram	Appx Cost Rs 30.00 Lakhs Cost for- Drainage , Garbage vehicle, and Cattle shed (Already applied earlier at Sr-5/12)
16	CSR activities for SOS CHILDRESN'S VILLAGES INDIA, Madhapar, Bhuj	Director, SOS Children's Village of India-Bhuj	Appx Cost Rs 31.00 Lakhs (request for Financial support towards parentless and abandoned Children Education support located at Bhuj) & support to women working in SOS.
17	Gujarat Biodiversity Board, Gandhinagar invites to involved National & Global endeavour of conservation of biodiversity by creating financial partnership with GBB under CSR programme of expenditure to be incurred 187 Lakh.	GUJARAT BIODIVERSITY BOAD, GANDHINAGAR	Requirement-FinancialSupportfromDPTforAppxRs 1.88 Cr.(Cost for various meetings, collection of primary data from villagers , processing of documentation, printing , TA DA of Technical support &Miscexp for 150 Peoples Biodiversity Register (PBR).

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details
		organization / N.C.O	
18	CSR activities for providing furniture & Home appliances for ROJAVANAM TRUST at Madurai.	Shri Arul Kannan, Director	Appx Cost Rs 30 Lakhs (seeking help to provide facilities to Aged & Homeless people living in Trust and Purchasing of New Ambulance)
19	CSR activities for providing Dialysis Machine for treatment of Kidney patients at "ST JOSEPH'S HOSPITAL TRUST" at Gandhidham.	Sr. Franciline, Administrator of Hospital.	Appx Cost Rs 31.36 Lakhs (Cost of 5 Nos of Dialysis Machines for treatment of kidney patients)
20	CSR activities for providing facilities in Girls Hostel of Gasturba Gandhi BalikaVidhyalay, Gandhidham.	Shri Vinod L Chavda, MP	Appx cost Rs 30 Lakhs. (Cost of Comp Wall, Entrance gate, Girls toilets etc)
21	CSR works for providing Oxygen Generator Plant and 45 KV Silent Generator for COVID HOSPITAL at Swami LilashahKutia, Adipur.	Secretary, BHARAT VIKAS PARISHAD, Gandhidham	Appx Cost Rs 80.00 Lakhs (Facilities for 100 Beds of COVID patient which it to be extend upto 240 Beds)
22	CSR works for providing Two Numbers of Oxygen Concentrator and others medical equipment for the Trust ,Antarjal, Gim.	President SHRI SARV JEEV KALYAN TRUST, ANTARJAL, Gandhidham	Appx Cost Rs21.50 Lakhs (Facilities to be provided for the treatment of CORONA PATIENTS at their trust.)
23	CSR works for providing Fabricated Shed , Construction of Compound Wall and Land levelling for the Cattle of GauSevaSamiti-Tappar at Gram- Tappar, Ta Anjar.	Shri Vinod Chavda, MP &Presedent , GauSevaSamiti, village Tappar, Ta- Anjar	Appx Cost Rs84 Lakhs (Facilities to be provided for Cattle shelters at Village.) (Land belongs to Gram- panchayat)
24	CSR works for Construction of Auditorium Hall at RSETI (Rural Self Employment Training Institute) at	Shri Vinod Chavda, MP & Director of RSETI, Bhuj	Cost not mentioned. (Facilities to be provided

Sr.N	o Name of Scheme	Name of Scheme Proposal Received from / Name of Organization / N.G.O	
	Bhujodi-Bhuj.		for the people needs Self- employment activities.)
25	CSR works for Providing of Furniture for the School "SHRI GALPADAR PANCHAYAT PRATHMIC KUMAR GROUP SALA " atGalpadar Village Ta Gim.	Principal, SHRI GALPADAR PANCHAYAT PRATHMIC KUMAR GROUP SALA " atGalpadar Village Ta Gim.	Cost not mentioned. (Facilities to be provided for the Students of Workers & poor village people who study in the school.)
26	Construction of Shed, hall and Gate for the DADA Bhagwandas Charitable Trust, Adipur. (Sr no -4)	Shri Vinod Chavda, MP & DADA BHAGWANDAS CharitableTrust, Gandhidham	As per CSR Guideline- → Promoting gender equality and empowering women → Eradicating extreme hunger and poverty (Considered shed and hall) Fab Shelter Shed - 30'x100'

			(Appx Cost Rs67.00 Lakhs) Land authority belongs to Trust given by GDA and NOC given by SRC.Doc submitted.
27	CSR work for reconstruction of the Internal Roads of the Sector-9B-C and Sector-10 area in Gandhidham.	President, Shri TejaKangad, The Gandhidham Chamber of Commerce and Industry, Gandhidham.	Cost not mentioned.

x 1250=37.00 Lakh &

Hall 20'x100'x1500=30.00 Lakh

RCC

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details
-------	----------------	---	---------------

	CSR Applications kept pending in		
27	CSR Activities for providing Water supply pipe line, Play ground and sports equipment, electric facilities, drinking water facilities for poor people & Fishermen at VANDI Village. (Sr no-3)	Sarpanch ,Village-VANDI , Ta- Anjar (Recommd. By Shri VASANBHAI AHIR, MLA, Shri V L Chavda, MP)	As per CSR Guideline- > Env Sustainability > Eradicating extreme hunger and poverty (to be Consider for health Center ,Drainage line, Water sump etc activities) (Appx Cost - 51.00 Lakhs) (Land authorization of Gram Panchayat)
28	Construction of Shed, hall and Gate for the DADA Bhagwandas Charitable Trust, Adipur. (Sr no -4)	DADA BHAGWANDAS CharitableTrust, Gandhidham (Recommd. By Shri V L Chavda, MP)	As per CSR Guideline- ➤ Promoting gender equality and empowering women ➤ Eradicating extreme hunger and poverty (Considered shed and hall) Fab Shed - 30'x100' x 1250=37.00 Lakh & RCC Hall - 20'x100'x1500=30.00 Lakh (Appx Cost Rs 67.00 Lakhs) Land authority belongs to Trust given by GDA and NOC given by SRC. Doc submitted.
29	10 Nos of Computers required for ShirMaheswarinagar Panchayat Girls Primary School, Gandhidham& Boys Group School, Gandhidham. (Sr no-8)	Maheswarinagar Panchayat Primary Kanya Sala, Gandhidham (Contact no 9913903686)	AppxRs 5.00 Lakhs <u>As per CSR Guideline-</u> ➤ Promotion of Education (to be consider for 20 Computers)

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details	
			Visited the site. Land belongs to MahewariMeghwadSamaj given by SRC for school purpose, doc are awaited.	
30	Construction of Shed and Roof at JeparMatiyadev, shamsanbhumi at Kidana village &Maheswari Community Hall at JuniSundarpuri ,Gandhidham. (Sr no-10)	Shri VINOD CHAVDA, MP	AppxRs 15.00 Lakhs (Land authorization not mentioned)	
31	Drainage, road, Dust bins, & shed for Cattle shelters at VIDI Village, Ta –Anjar. (Sr no- 12)	Village- VIDI, Ta: Anjar	 AppxRs 30.00 Lakhs As per CSR Guideline- > Env Sustainability > Eradicating extreme hunger and poverty (Consider for Garbage vehicle & Drainage Cost) 	
32	Education, Women empowerment and Primary health care services at Kutch area. (Sr no-13)	Light of Life Trust, Mumbai.	Cost not mentioned.	
33	Request for Help Divyang persons to employment by providing machineries. (Sr no-14)	Kutch DivyangSangthan, Gandhidham.	Cost not mentioned	
34	Construction of 2 nd Floor of Shri MaheswariMeghwadSamaj, Gandhidham. (Sr no-20)	Shri MaheswariMeghwadSamaj, Gandhidham	AppxRs. 15.00 Lakhs (Visited the site and Land ownership documents awaited) (Name plate of DPT fixed at the Asset)	

Sr.No	Name of Scheme	Proposal Received from / Name of Organization / N.G.O	Brief Details	
35	Installation of Mini Science Center at Anjar and Gandhidham. (Sr no-21)	STEM Learning Pvt Ltd, Mumbai.	Cost not mentioned.	
36	CSR work for Shri Rampar Gram Panchayat. > Wall Plastering for Cattles -7 Lakhs > Shed for Cattel's-15 Lakhs (Sr no-25)	Shri Sarpanch, Rampar Village.	AppxRs 22.00 Lakhs (Land authorization of Gram Panchayat and under taking submitted by applicant)	
37	 CSR activities for the 45,000 Patients over the period of 3 years by "SMILE FOUNDATION", Mumbai. 1. Concept for Nutrition covering 3 years 2. Concept for Mobile Health Unit reaching beneficiaries for 3 years 3. Concept for Vocational Training with NGO (Sr no-29) 	Proposal from "SMILE FOUNDATION " Mumbai.	Appx Cost- Rs 539 Lakhs for 3 years	
38	Development of Park in Public utility plot in between Block "C" & "D" of Sapna Nagar (NU-4), Gandhidham (Sr no -31)	Shri RAVI MAHESHWARI, DPT	Land belongs to DPT earmarked for recreational purpose. (Total Cost –Rs 88.75 Lakhs)	
39	CSR works for NariJanshsktiVikas Foundation at Gandhidham near Shakti Nagar. (Sr no-33)	NariJanshsktiVikas Foundation, Ahmedabad	 Promoting gender equality and empowering women Env Sustainability Under promotion of education (Consider for Computers with printers, Sewing machine & RO plantCost Rs 48 Lakhs) 	

ANNEXURE C

ENVIRONMENTAL MONITORING REPORT FOR DEENDAYAL PORT TRUST

(
REPORT NO.	:	DCPL/DPT/20-21/14	
Month	:	June 2021	
Issue No	:	01	
Revision No	:	00	
Prepared by	:	DETOX CORPORATION PVT. LTD., SURAT	

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Quality Monitoring	1 - 17
2	Drinking Water Quality Monitoring	18 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 82
7	Meteorological Observations	83
8	Conclusive Summary& Remedial Measures	84-87

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformities in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_x, NH₃ & Benzene, and Grab-sampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_x. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}.

The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of June 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

	Table 1 : Results of Air Pollutant Concentration at Marine Bhavan									
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [μg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3		80 μg/m3		80 μg/m3		400 μg/m3
					14.07		23.50		12.51	
AL1 – 1	02-06-2021	447	107	53	9.23	9.23	20.33	24.14	10.72	11.83
					4.40		28.58		12.25	
					12.75		20.33		12.51	
AL1 – 2	04-06-2021	399	135	46	11.87	11.28	24.77	22.87	12.00	11.74
					9.23		23.50		10.72	
					13.63		24.77		7.40	
AL1 – 3	09-06-2021	423	204	172	18.46	14.95	17.15	19.27	7.91	7.06
					12.75		15.88		5.87	
					5.71		16.51		9.19	
AL1 – 4	11-06-2021	223	58	149	5.71	6.59	14.61	13.76	8.93	9.62
					8.35		10.16		10.72	
					17.14		18.42		7.15	
AL1 – 5	16-06-2021	476	103	203	14.07	16.56	16.51	16.51	6.89	6.81
					18.46		14.61		6.38	
					9.23		26.68		12.00	
AL1 - 6	18-06-2021	268	111	116	9.67	10.55	27.95	25.41	12.51	12.42
					12.75		21.60		12.76	
					5.71		26.68		6.89	
AL1 - 7	23-06-2021	415	179	65	6.15	6.74	28.58	26.68	5.87	7.83
					8.35		24.77	1	10.72	
					11.87		17.15		10.98	
AL1 – 8	25-06-2021	341	141	57	17.14	13.48	20.33	23.29	12.00	10.98
					11.43		32.39	1	9.96	
Monthly	Average	374	130	108		11.17		21.49		9.79
Standard	Deviation	89	46	61		3.65		4.53		2.28

Location 1: Marine Bhavan (AL1)

NS: Not Specified

Table 1B : Results of Air Pollutant Concentration at Marine Bhavan								
Parameter		C ₆ H ₆ [µg/m ³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]			
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling			
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS			
AL1 – 1	02/06/2021	1.2	BDL	1.46	510			
AL1 – 2	04/06/2021	1.23	BDL	1.3	519			
AL1 – 3	09/06/2021	1.07	BDL	1.86	495			
AL1 – 4	11/06/2021	1.06	BDL	1.84	476			
AL1 – 5	16/06/2021	1.06	BDL	1.75	490			
AL1 - 6	18/06/2021	1.11	BDL	1.62	489			
AL1 – 7	23/06/2021	1	BDL	1.8	480			
AL1 – 8	25/06/2021	1.07	BDL	1.71	476			
Monthly	Average	1.10	-	1.67	492			
Standard	Deviation	0.08	-	0.20	16			

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm) NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_x and NH_3 is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM_{10} . The mean TSPM value at Marine Bhavan was $374 \ \mu g/m^3$, The mean PM_{10} values were $130.0 \ \mu g/m^3$, which is above the permissible limit. $PM_{2.5}$ values were above the permissible limit (mean = $108 \ \mu g/m^3$). The average values of SO_2 , NO_x and NH_3 were within the permissible limit. The average values of SO_2 , NO_x and NH_3 were 11.17 $\mu g/m^3$, 21.49 $\mu g/m^3 \& 9.79 \ \mu g/m^3$ respectively. These were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at

Marine Bhavan. The mean Benzene concentration was 1.10 μ g/m³,well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and CarbonMonoxide concentration was 1.67 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 2 : Results of Air Pollutant Concentration at Oil Jetty									
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					9.23		20.33		13.27	
AL2 - 1	02-06-2021	283	68	120	13.19	11.72	25.41	23.08	10.72	10.47
					12.75		23.50		7.40	
					9.23		18.42		10.72	
AL2 - 2	04-06-2021	353	108	210	14.07	11.14	14.61	17.15	11.23	10.89
					10.11		18.42		10.72	
					17.58		17.15		9.96	
AL2 - 3	09-06-2021	275	42	137	12.74	13.19	24.14	20.54	7.91	8.25
					9.23		20.33		6.89	
					5.27		23.50		3.32	
AL2 - 4	11-06-2021	257	37	145	5.71	5.42	18.42	19.27	4.85	5.87
					5.27		15.88		9.45	
					12.75		17.15		7.15	
AL2 - 5	16-06-2021	532	84	117	9.23	12.02	20.33	18.21	7.40	6.98
					14.07		17.15		6.38	
					11.87		26.68		10.72	
AL2 - 6	18-06-2021	192	111	65	8.35	7.91	27.95	28.58	12.51	11.40
					3.52		31.12		10.98	
					5.71		15.88		9.45	
AL2 - 7	23-06-2021	346	79	80	7.91	6.30	17.15	16.73	9.70	8.85
					5.28		17.15		7.40	
					11.87		18.42		3.83	
AL2 - 8	25-06-2021	256	125	31	13.63	15.09	18.42	18.84	8.93	7.83
					19.78		19.69		10.72	
Monthly	/ Average	312	82	113		10.35		20.30		8.82
Standard	Deviation	103	32	55		3.43		3.90		1.97

Location 2: Oil Jetty (AL2)

NS: Not Specified

Table 2B : Results of Air Pollutant Concentration at Oil Jetty								
Parameter		C ₆ H ₆ [µg/m ³]	HC* ppm	CO [mg/m ³]	CO ₂ [ppm]			
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling			
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS			
AL2 -1	02/06/2021	1.11	BDL	1.78	482			
AL2 -2	04/06/2021	1.06	BDL	1.77	496			
AL2 -3	09/06/2021	1.22	BDL	1.8	480			
AL2 -4	11/06/2021	1.05	BDL	1.75	484			
AL2 – 5	16/06/2021	1.02	BDL	1.81	515			
AL2 – 6	18/06/2021	1.07	BDL	1.78	496			
AL2 -7	23/06/2021	1.09	BDL	1.88	491			
AL2 – 8	25/06/2021	1.06	BDL	1.64	470			
Monthly	Average	1.09	-	1.78	489			
Standard	Deviation	0.06	-	0.07	14			

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit - NMHC : 0.5ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 312 μ g/m³ The mean PM₁₀ values were 82 μ g/m³, which is below the permissible limit. PM_{2.5} values were above the permissible limit (mean = 113 μ g/m³).The average values of SO₂, NO_x and NH₃ were within the permissible limit; The mean concentration of SO₂, NO_x and NH₃ were 10.35 μ g/m³, 20.30 μ g/m³ and 8.82 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was 1.09 μ g/m³. Well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.78 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 3 : Results of Air Pollutant Concentration at Estate Office										
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]		NOx [µg/m3]		NH3 [µg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.96		18.42		4.85	
AL3 – 1	02-06-2021	151	18	41	5.28	6.01	17.15	16.51	6.89	8.42
					8.79		13.97		13.53	
	04-06-2021	232	63	12	10.11	11.58	17.15	18.00	6.89	9.19
AL3 – 2					12.75		19.69		8.17	
					11.87		17.15		12.51	
	09-06-2021	290	98	55	12.75	10.84	20.33	20.11	10.98	10.47
AL3 – 3					9.67		24.77		12.25	
					10.11		15.24		8.17	
					1.76		20.33		6.89	
AL3 – 4	11-06-2021	235	61	128	2.20	2.34	23.50	20.54	5.87	6.13
					3.08		17.78		5.62	
					5.71		26.68		13.53	
AL3 – 5	16-06-2021	231	66	139	12.75	10.84	20.96	22.02	7.40	9.28
					14.07		18.42		6.89]
					10.11		20.33		7.91	
AL3 – 6	18-06-2021	463	76	37	13.63	11.43	22.87	22.23	9.96	8.00
					10.55	1	23.50		6.13	1
					11.87		8.26		9.96	
AL3 – 7	23-06-2021	382	70	35	14.07	13.33	15.24	13.97	10.72	8.68
					14.07	1	18.42		5.36	1
					12.75		19.69		7.15	
AL3 – 8	25-06-2021	148	99	42	12.31	12.16	22.23	19.69	9.19	7.91
					11.43	1	17.15	1	7.40	1
Monthly Average		267	69	61		9.82		19.13		8.51
Standard Deviation		109	25	46		3.70		2.83		1.27

Location 3: Kandla Colony – Estate Office (AL-3)

NS: Not Specified

Table 3B : Results of Air Pollutant Concentration at Kandla Port Colony								
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO₂ [ppm]			
Sampling Period	Date	8 hr Grab Sampling		Grab Sampling	Grab Sampling			
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS			
AL3 -1	02/06/2021	1.07	BDL	1.72	489			
AL3 -2	04/06/2021	1.1	BDL	1.82	502			
AL3 -3	09/06/2021	1.07	BDL	1.74	482			
AL3 -4	11/06/2021	1.16	BDL	1.61	480			
AL3 – 5	16/06/2021	1.17	BDL	1.69	475			
AL3 – 6	18/06/2021	1.1	BDL	1.7	489			
AL3 – 7	23/06/2021	1.04	BDL	1.96	486			
AL3 – 8	25/06/2021	1.04	BDL	1.59	464			
Monthly	y Average	1.09		1.73	483			
Standard	Deviation	0.05		0.12	11			

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm) NS- Not Specified

The overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_x and NH_3 at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPMvalues at Oil Jetty were 267 µg/m³, The mean PM_{10} values were $69\mu g/m^3$, which is below the permissible limit. $PM_{2.5}$ values were slightly above the permissible limit (mean = $61 \mu g/m^3$). The average values of SO_2 , NO_x and NH3 were 9.82 µg/m³, 19.13 µg/m³ and 8.51 µg/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was 1.09 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.73 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 4 : Results of Air Pollutant Concentration at Gopalpuri Hospital										
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]		NOx [µg/m3]		NH3 [µg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
			40	15	3.96	2.64	13.34		5.11	5.28
AL4 -1	02-06-2021	115			3.08		14.61	15.46	4.85	
					0.88		18.42		5.87	
			43	13	8.79	7.33	14.61	17.57	6.89	7.49
AL4 -2	04-06-2021	144			5.71		19.69		7.40	
					7.47		18.42		8.17	
	09-06-2021	157	49	34	2.64	3.37	14.61	20.96	6.89	7.40
AL4 -3					3.52		29.85		7.40	
					3.96		18.42		7.91	
					9.23		5.08		3.06	
AL4 -4	11-06-2021	122	29	46	9.23	7.47	7.62	6.99	4.85	4.60
					3.96		8.26		5.87	
					3.96		10.80		10.72	
AL4 – 5	16-06-2021	156	35	21	3.52	3.96	12.07	12.49	10.98	11.40
					4.40		14.61		12.51	
					9.23		13.34		7.40	
AL4 – 6	18-06-2021	207	72	108	8.79	8.65	24.77	18.42	9.96	7.57
					7.91		17.15		5.36	
					0.88		11.43		10.98	
AL4 – 7	23-06-2021	263	36	13	3.96	3.08	13.34	13.97	12.00	10.30
					4.40		17.15		7.91	
					3.52		12.70		7.40	
AL4 – 8	25-06-2021	216	111	14	4.84	4.54	12.07	11.86	7.15	7.06
					5.28	1	10.80		6.64	
Monthly Average		173	52	33		5.13		14.71		7.64
Standard Deviation		51	27	33		2.33		4.39		2.28

Location 4: Gopalpuri Hospital (AL-4)

NS: Not Specified

Table 4E	Table 4B : Results of Air Pollutant Concentration at Gopalpuri Hospital										
Parameter		C ₆ H ₆ [µg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]						
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling						
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS						
AL4 -1	02/06/2021	1.07	BDL	1.68	482						
AL4 -2	04/06/2021	1.06	BDL	1.7	488						
AL4 -3	09/06/2021	1.11	BDL	1.9	478						
AL4 -4	11/06/2021	1.1	BDL	1.54	470						
AL4 – 5	16/06/2021	1.21	BDL	1.58	455						
AL4 – 6	18/06/2021	1.2	BDL	1.78	460						
AL4 – 7	23/06/2021	1.19	BDL	1.94	481						
AL4 – 8	AL4 – 8 25/06/2021		BDL	1.91	475						
Monthly	Monthly Average			1.75	474						
Standard	Deviation	0.06		0.15	11						

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPMvalues at Oil Jetty were 173 μ g/m³, The mean PM₁₀ values were 52 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean= 33 μ g/m³). The average values of SO₂, NO_x and NH₃ were 5.13 μ g/m³, 14.71 μ g/m³ and 7.64 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.13 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.75 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 5 : Results of Air Pollutant Concentration at Coal Storage Area											
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]	NOx [µg/m3]	NH3 [μg/m3]		
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)		
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3		
					9.23		26.04		13.27			
AL5 – 1	02-06-2021	829	78	60	12.75	9.23	28.58	26.47	15.32	13.96		
					5.71		24.77		13.27			
					5.71		20.33		12.51			
AL5 – 2	04-06-2021	332	104	97	8.79	7.77	24.77	21.60	12.51	12.00		
					8.79		19.69		10.98			
					10.11		18.42		10.72			
AL5 – 3	09-06-2021	289	185	154	12.75	13.48	17.78	18.84	12.51	11.83		
					17.58		20.33		12.25			
					9.23		12.07		10.98			
AL5 – 4	11-06-2021	280	70	162	13.19	13.19	13.34	13.55	10.72	10.64		
					17.14		15.24		10.21			
					3.96		14.61		2.30			
AL5 – 5	16-06-2021	944	148	150	19.78	10.99	10.80	18.84	6.89	5.45		
					9.23		31.12		7.15			
					10.11		26.68		13.53			
AL5 – 6	18-06-2021	603	145	234	7.47	9.23	22.87	24.56	13.27	13.96		
					10.11		24.14		15.06			
					11.87		12.70		12.51			
AL5 – 7	23-06-2021	766	181	152	14.07	12.75	17.15	21.17	10.72	10.47		
					12.31		33.66		8.17			
					13.63		18.42		12.51			
AL5 – 8	25-06-2021	728	208	94	10.55	11.72	17.78	15.03	9.19	9.53		
					10.99		8.89		6.89			
Monthly	/ Average	596	140	138		11.04		20.01		10.98		
Standard	Deviation	263	51	54		2.11		4.40		2.74		

Location 5: Coal Storage Area (AL-5)

Table 5B	Table 5B : Results of Air Pollutant Concentration at Coal Storage Area										
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]						
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling						
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS						
AL5 – 1	02/06/2021	1.08	BDL	1.78	482						
AL5 – 2	04/06/2021	1.1	BDL	1.68	490						
AL5 – 3	09/06/2021	1.24	BDL	1.64	462						
AL5 – 4	11/06/2021	1.28	BDL	1.66	464						
AL5 – 5	16/06/2021	1.31	BDL	1.66	460						
AL5 – 6	18/06/2021	1.2	BDL	1.7	490						
AL5 – 7	23/06/2021	1.33	BDL	1.74	464						
AL5 – 8	25/06/2021	1.11	BDL	1.91	484						
Monthly	Monthly Average		-	1.72	475						
Standard	Standard Deviation		-	0.09	13						

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_x and NH_3 at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, $_{PM10}$, $PM_{2.5}$, SO_2 , NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPMvalues at Coal storage were 596 µg/m³. The mean PM_{10} values were 140 µg/m³, which is well above the permissible limit. $PM_{2.5}$ values were above the permissible limit (mean = 138 µg/m³). The average values of SO_2 , NO_x and NH_3 were 11.04 µg/m³, 20.01 µg/m³ and 10.98 µg/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was $1.21 \ \mu g/m^3$, well below the permissible limit of 5.0 $\mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.72 mg/m³, well below the permissible limit of 4.0 mg/m³.

DCPL/DPT/20-21/14-June - 2021

Location 6: Tuna Port (AL-6)

Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx	NOx [µg/m3]		NH3 [μg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3	
					0.44		17.15		4.60		
AL6 -1	02-06-2021	72	72	37	1.32	1.76	13.34	16.73	8.17	6.72	
					3.52		19.69		7.40		
					4.84		24.77		7.40		
AL6 – 2	04-06-2021	80	42	39	3.96	6.01	13.34	18.84	9.45	8.76	
					9.23		18.42		9.45		
					9.23		17.78		7.40		
AL6 – 3	09-06-2021	122	38	31	18.90	12.45	14.61	16.94	8.17	8.76	
					9.23		18.42		10.72		
					3.52		10.80		3.32		
AL6 – 4	11-06-2021	72	25	44	1.32	2.93	14.61	14.61	4.85	4.25	
					3.96		18.42		4.60		
					8.79		15.24		9.45		
AL6 – 5	16-06-2021	86	78	12	13.63	11.72	20.33	19.69	9.96	9.19	
					12.75		23.50		8.17		
					11.87		19.69		5.62		
AL6 – 6	18-06-2021	187	32	66	3.96	6.74	17.78	18.00	6.13	6.30	
					4.40		16.51		7.15		
					11.87		20.33		8.17		
AL6 – 7	23-06-2021	261	73	8	12.75	12.75	26.68	18.42	10.72	9.87	
		-	_	_	13.63	_	8.26		10.72		
					8.35		11.43		9.96		
AL6 – 8	25-06-2021	123	109	26	9.23	10.26	6.99	10.16	9.45	8.25	
					13.19		12.07		5.36	5.25	
Monthly	Average	125	59	33		8.08		16.67		7.76	
Standard	-	67	29	18		4.33		3.06		1.86	

Table	Table 6B : Results of Air Pollutant Concentration at Tuna Port										
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]						
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling						
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS						
AL6 -1	02/06/2021	1.2	BDL	1.72	489						
AL6 – 2	04/06/2021	1.12	BDL	1.65	479						
AL6 – 3	09/06/2021	1.03	BDL	1.71	466						
AL6 – 4	11/06/2021	1.14	BDL	1.74	469						
AL6 – 5	16/06/2021	1.05	BDL	1.71	490						
AL6 – 6	18/06/2021	1.12	BDL	1.72	472						
AL6 – 7	23/06/2021	1.29	BDL	1.7	470						
AL6 – 8	AL6 – 8 25/06/2021		BDL	1.88	480						
Monthly	Monthly Average		-	1.73	477						
Standard	Deviation	0.09	-	0.07	9						

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm) NS- Not Specified

The mean TSPM values at Tuna Port were 125 μ g/m³, The mean PM₁₀ values were 59 μ g/m³, which is below the permissible limit. PM_{2.5} values were within the permissible limit (mean = 33 μ g/m³ μ g/m³). The average values of SO₂, NO_x and NH₃ were 8.08 μ g/m³, 16.67 μ g/m³ and 7.76 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was $1.15 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.73 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Т	able 7 : Re	sults of Air	Pollutant	Concentra	ation at S	ignal Buildi	ng		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µ	ıg/m3]	NOx [μ	g/m3]	NH3 [μ _ξ	;/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.517		10.98		17.15	
AL7 -1	02-06-2021	56	27	27	5.715	4.396	10.47	9.96	19.69	17.57
					3.956		8.42		15.88	
					3.517		7.91		10.80	
AL7 -2	04-06-2021	59	16	29	1.319	2.051	10.98	10.13	12.07	12.70
					1.319		11.49		15.24	
					2.198		6.13		10.80	
AL7 -3	09-06-2021	51	41	26	1.319	1.905	3.32	6.30	12.70	14.19
					2.198		9.45		19.05	
					3.956		7.15		9.53	
AL7 -4	11-06-2021	49	38	63	3.077	3.077	9.96	9.53	10.80	10.80
					2.198		11.49		12.07	
					1.758		10.98		10.80	
AL7 -5	16-06-2021	62	51	24	2.198	3.810	11.49	9.10	11.43	11.43
					7.473		4.85		12.07	
					11.869		6.89		15.88	
AL7 -6	18-06-2021	68	29	58	3.956	6.447	21.44	13.96	17.78	16.94
					3.517		13.53		17.15	
					10.110		3.318611		8.892276	
AL7 -7	23-06-2021	63	41	24	10.990	10.843	11.4875	9.28	10.79776	10.37
					11.429	1	13.01917		11.43293	
					0.879		6.8925		24.77134	
AL7 -8	25-06-2021	66	23	55	1.758	1.612	7.913611	7.23	23.50102	22.44
					2.198	1	6.8925		19.05488	
Monthly	Monthly Average		33	38		4.268		9		15
Standard	Deviation	7	11	17		3.098		2		4

Location 7: Signal Building (Vadinar) (AL-7)

Table 7	Table 7B : Results of Air Pollutant Concentration at Signal Building									
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]					
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling					
NAAQMS limit		5.0 μg/m ³			NS					
AL7 -1	02/06/2021	1.06	BDL	1.68	472					
AL7 – 2	04/06/2021	1.11	BDL	1.72	468					
AL7 – 3	09/06/2021	1.23	BDL	1.55	482					
AL7 – 4	11/06/2021	1.07	BDL	1.69	492					
AL7 – 5	16/06/2021	1.23	BDL	1.78	466					
AL7 – 6	18/06/2021	1.21	BDL	1.92	478					
AL7 – 7	23/06/2021	1.18	BDL	1.88	485					
AL7 – 8	AL7-8 25/06/2021		BDL	1.68	488					
Monthly	Monthly Average		-	1.74	479					
Standard	Deviation	0.07	-	0.12	10					

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit - NMHC : 0.5 ppm)

NS_Not Specified

The mean TSPM values at Vadinar Port were 59 μ g/m³. The mean PM₁₀ values were 33 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 38 μ g/m³ μ g/m³). The average values of SO₂, NO_x and NH₃ were 4.26 μ g/m³, 9 μ g/m³ and 15 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was 1.15 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.74 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 8 : Results of Air Pollutant Concentration at Admin Building											
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [ug/m3]	NH3 [µ	ıg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3	
					0.879		8.257		6.893		
AL8 -1	02-06-2021	54	16	27	1.758	1.905	8.257	8.469	7.148	6.637	
					3.077		8.892		5.871		
					0.879		19.690		5.361		
AL8 -2	04-06-2021	58	19	23	1.758	1.172	17.149	16.514	4.850	4.850	
					0.879		12.703		4.340		
					2.198		14.609		1.276		
AL8 -3	09-06-2021	70	63	23	1.319	1.612	8.257	12.915	1.021	1.106	
					1.319		15.879		1.021		
					1.758		17.149		2.298		
AL8 -4	11-06-2021	53	47	28	2.198	2.198	13.338	17.996	6.382	4.340	
					2.638		23.501		4.340		
					2.198		17.149		3.319		
AL8 -5	16-06-2021	57	12	14	2.638	2.638	12.703	12.915	3.063	3.234	
					3.077		8.892		3.319	1	
					1.319		9.527		4.850		
AL8 -6	18-06-2021	59	28	19	1.758	1.758	8.257	9.527	4.340	4.340	
					2.198		10.798		3.829		
					0.879		6.352		3.829		
AL8 -5	23-06-2021	56	29	15	1.319	1.758	9.527	8.892	4.340	5.191	
					3.077		10.798		7.403		
					0.440		13.974		7.914		
AL8-6	25-06-2021	73	51	28	0.879	0.733	15.244	15.667	10.466	8.084	
	23-00-2021	/3	51		0.879]	17.785	1	5.871	_	
Monthly	Monthly Average		33	22		1.7217		12.862		4.72	
Standard	Deviation	7	18	6		0.5848		3.660		2.10	

Location 8: Admin Building (Vadinar) (AL-8)

Table 8	Table 8B : Results of Air Pollutant Concentration at Admin Building										
Parameter		C ₆ H ₆ [µg/m ³]	HC*	CO [mg/m ³]	CO₂ [ppm]						
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling						
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS						
AL8 -1	02/06/2021	1.21	BDL	1.78	496						
AL8-2	04/06/2021	1.18	BDL	1.92	477						
AL8 -3	09/06/2021	1.23	BDL	1.68	468						
AL8-4	11/06/2021	1.16	BDL	1.77	484						
AL8 -5	16/06/2021	1.25	BDL	1.84	477						
AL8-6	18/06/2021	1.22	BDL	1.68	485						
AL8-7	23/06/2021	1.16	BDL	1.62	476						
AL8-8	AL8-8 25/06/2021		BDL	1.77	466						
Monthly	Monthly Average		-	1.76	479						
Standard	Standard Deviation		-	0.10	10						

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm)

NS-Not Specified

The overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_x and NH_3 at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPMvalues at Vadinar Port were 60 µg/m³. The mean PM_{10} values were 33 µg/m³, which is below the permissible limit. $PM_{2.5}$ values were also within the permissible limit (mean = 22.0 µg/m³). The average values of SO_2 , NO_x and NH_3 were 1.72 µg/m³, 12.86 µg/m³ and 4.72 µg/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.19 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.76 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various pollutants. However, Near Coal storage area, Marine Bhavan and Oil Jetty area, PM₁₀ values was above the permissible standards. All other pollutants were recorded well below the prescribed limits.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - CPCB/GPCB Guidelines and Standard Methods -APHA. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.1	7.3	7.8	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	570	590	610	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1243.0	1150.0	1190.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2.0	NS*	NS*
8	Chloride as Cl	mg/l	513.19	457.02	561.25	250.0	1000.0
9	Ca as Ca	mg/l	48.10	44.09	48.10	75.0	200.0
10	Mg as Mg	mg/l	82.62	87.48	89.91	30.0	100.0
11	Total Hardness	mg/l	460.0	470.0	490.0	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.30	0.47	0.24	1.0	1.5
14	Sulphate as SO4	mg/l	232.8	180	258	200.0	400
15	Nitrite as NO2	mg/l	0.04	0.05	0.05	NS*	NS*
16	Nitrate as NO3	mg/l	0.77	9.15	28.16	45.0	No Relaxation
17	Salinity	%	0.93	0.83	1.01	NS*	NS*
18	Sodium as Na	mg/l	322.0	315.0	342.0	NS*	NS*
19	Potassium as K	mg/l	3.44	3.21	4.08	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	< 0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 9: Drinking Water Quality Monitoring Parameters for Nirman Building 1, P & C building &Main Gate (North) at Kandla

Table 10: Drinking Water Quality Monitoring Parameters for Canteen, West Gate – I & Wharf Area at Kandla

Sr. No.	Parameter	Unit	Canteen	West Gate - I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.0	7.6	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	910.0	960.0	870.0	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1703.0	1753.0	1630.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2.0	NS*	NS*
8	Chloride as Cl	mg/l	613.86	620.88	658.46	250.0	1000.0
9	Ca as Ca	mg/l	52.10	52.10	44.09	75.0	200.0
10	Mg as Mg	mg/l	72.90	80.19	77.76	30.0	100.0
11	Total Hardness	mg/l	430.0	460.0	430.0	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<.0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.47	0.32	0.42	1.0	1.5
14	Sulphate as SO4	mg/l	156.0	300.0	366.0	200.0	400
15	Nitrite as NO2	mg/l	0.03	<0.01	0.03	NS*	NS*
16	Nitrate as NO3	mg/l	24.64	10.56	12.67	45.0	No Relaxation
17	Salinity	%	1.11	1.12	1.19	NS*	NS*
18	Sodium as Na	mg/l	333.0	362.0	412.0	NS*	NS*
19	Potassium as K	mg/l	3.78	3.99	4.11	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	SewaSadan – 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.3	7.4	7.8	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1090.0	830.0	935.0	500	2000
3	Turbidity	NTU	1	0	1	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1910.0	1600.0	1820.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2.0	NS*	NS*
8	Chloride	mg/l	743.65	571.77	550.72	250.0	1000.0
9	Ca as Ca	mg/l	52.10	56.11	48.10	75.0	200.0
10	Mg as Mg	mg/l	82.62	85.05	80.19	30.0	100.0
11	Total Hardness	mg/l	470.0	490.0	450.0	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.32	0.93	0.30	1.0	1.5
14	Sulphate	mg/l	190.8	172.8	195.6	200.0	400
15	Nitrite	mg/l	0.01	0.03	0.05	NS*	NS*
16	Nitrate	mg/l	13.37	6.33	12.67	45.0	No Relaxation
17	Salinity	%	1.34	1.03	0.99	NS*	NS*
18	Sodium as Na	mg/l	333.0	342.	392.0	NS*	NS*
19	Potassium as K	mg/l	3.88	3.71	4.12	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 11: Drinking Water Quality Monitoring Parameters for Sewa sadan – 3, Workshop I & Custom Building at Kandla

Table 12: Drinking Water Quality Monitoring Parameters for Port Colony Kandla, Hospital Kandla &
A.O. Building at Gandhidham

Sr. No.	Parameter	Unit	Port Colony Kandla	Hospital Kandla	A.O. Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.2	7	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1200.0	1400.0	1090.0	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	2512.0	2830.0	1920.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2.0	NS*	NS*
8	Chloride	mg/l	763.70	794.77	838.86	250.0	1000.0
9	Ca as Ca	mg/l	56.11	48.10	60.12	75.0	200.0
10	Mg as Mg	mg/l	77.76	80.19	77.76	30.0	100.0
11	Total Hardness	mg/l	460.0	450.0	470.0	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.77	0.12	0.21	1.0	1.5
14	Sulphate	mg/l	202.8	261.6	372	200.0	400
15	Nitrite	mg/l	0.05	0.05	0.06	NS*	NS*
16	Nitrate	mg/l	5.63	12.67	16.89	45.0	No Relaxation
17	Salinity	%	1.38	1.44	1.52	NS*	NS*
18	Sodium as Na	mg/l	322.0	373.0	432.0	NS*	NS*
19	Potassium as K	mg/l	3.61	3.81	4.45	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 13: Drinking Water Quality Monitoring Parameters for School Gopalpuri, Guest House &	Ε-	
Type Quarter at Gopalpuri, Gandhidham		

Sr. No.	Parameter	Unit	School Gopalpuri	Guest House	E - Type Quarter	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.1	7.3	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	970.0	1010.0	1135.0	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1850.0	1920.0	2210.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2.0	NS*	NS*
8	Chloride	mg/l	708.58	615.87	845.88	250.0	1000.0
9	Ca as Ca	mg/l	56.11	52.10	56.11	75.0	200.0
10	Mg as Mg	mg/l	82.62	85.05	85.05	30.0	100.0
11	Total Hardness	mg/l	480.0	480.0	490.0	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	1.37	0.89	0.33	1.0	1.5
14	Sulphate	mg/l	369.6	384	376.8	200.0	400
15	Nitrite	mg/l	0.04	0.06	0.04	NS*	NS*
16	Nitrate	mg/l	7.74	6.33	12.67	45.0	No Relaxation
17	Salinity	%	1.28	1.11	1.53	NS*	NS*
18	Sodium as Na	mg/l	392.0	320.0	332.0	NS*	NS*
19	Potassium as K	mg/l	4.11	3.11	3.29	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7	7.3	7.38	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	890.0	950.0	1030.0	500	2000
3	Turbidity	NTU	1	0	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odorless	Agreeable	Agreeable
5	Color	Hazen Unit	Colourless	Colourless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1700.0	2030.0	1920.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	<2	NS*	NS*
8	Chloride	mg/l	706.57	545.21	692.0	250.0	1000.0
9	Ca as Ca	mg/l	52.10	56.11	69.74	75.0	200.0
10	Mg as Mg	mg/l	85.05	85.05	38.39	30.0	100.0
11	Total Hardness	mg/l	480	490	332.0	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.65	1.00	0.39	1.0	1.5
14	Sulphate	mg/l	358.8	378	112.8	200.0	400
15	Nitrite	mg/l	0.06	0.04	<0.01	NS*	NS*
16	Nitrate	mg/l	9.856	11.264	1.42	45.0	No Relaxation
17	Salinity	%	1.28	0.98	1.23	NS*	NS*
18	Sodium as Na	mg/l	373.0	351.0	344	NS*	NS*
19	Potassium as K	mg/l	4.07	3.87	3.4	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0

Table 14: Drinking Water Quality Monitoring Parameters for F - Type Quarter, Hospital Gopalpuri &Tuna Port

*NS: Not Specified

Bacterial Count

CFU/100ml

Absent

Absent

Absent

Absent

28

Absent

Sr. No.	Parameter	Unit	Vadinar Jetty	Port Colony Vadinar	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	990.0	1010.0	500	2000
3	Turbidity	NTU	0.00	1.00	1.0	5.0
4	Odor	-	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1830.0	1990.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2.0	<2.0	NS*	NS*
8	Chloride	mg/l	445.99	496.10	250.0	1000.0
9	Ca as Ca	mg/l	52.104	56.11	75.0	200.0
10	Mg as Mg	mg/l	80.19	80.19	30.0	100.0
11	Total Hardness	mg/l	460.0	470.0	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.82	0.94	1.0	1.5
14	Sulphate	mg/l	30.00	34.80	200.0	400
15	Nitrite	mg/l	0.04	0.04	NS*	NS*
16	Nitrate	mg/l	4.93	4.79	45.0	No Relaxation
17	Salinity	%	0.81	0.90	NS*	NS*
18	Sodium as Na	mg/l	311.0	306.0	NS*	NS*
19	Potassium as K	mg/l	4.3	4.9	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	< 0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty & Port Cold	ony at Vadinar
--	----------------

2.3 Results & Discussion

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 6.9 to 7.8 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 600 -1800 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards .

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of June ranged from 2000-3800 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was less than 2.0 mg/L. Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 380-960 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 60 - 90 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

Magnesium

Magnesium value in the studied area varied between 25 - 90 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 312-520 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was below 0.01mg/L and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 - 1.0 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 100 – 330 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were <0.1. There are no specified standard values for Nitrites in Drinking water. The mean Nitrate values in drinking water of KPT was 4.10 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.6 to 1.8~% . There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 80 - 460 mg/l and Potassium salts ranged from 2.8 to 4.6 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well below the permissible limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 Conclusions

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (Db).

3.2 Results

Sr. No.	Location	Day Time Average Noise Level (SPL) in dB(A)	Night Time Average Noise Level (SPL) in dB(A)
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM
1	Marine Bhavan	63.40	57.1
2	Nirman Building 1	57.8	53.9
3	Tuna Port	55.8	47.1
4	Main Gate North	57.1	52.8
5	West Gate 1	62.1	54.6
6	Canteen Area	57.1	49.6
7	Main Road	60.0	57.8
8	ATM Building	63.5	56.2
9	Wharf Area /Jetty Area	67.1	57.8
10	Port & Custom Office	55.5	52.7
		Vadinar Port	
11	Entrance Gate of Vadinar Port	57.1	54.6
12	Nr. Port Colony, Vadinar	56.2	56.2
13	Nr. Vadinar Jetty	59.6	55.8

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

3.3 Conclusions- Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all ten locations at Deendayal Port ranged from 56.25 dB(A) to 69.51 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all ten locations of Deendayal Port ranged from 48.28 dB to 62.33 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

4.1 Methodology

The soil samples were collected in the month of June 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 Results

Table-17: Chemical Characteristics of Soil in the Study Area

					Station I	Name			
			SL1	SL2	SL3	SL4	SL5	SL6	
Sr. No.	Parameter	Unit	Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony	
			Near main gate of Port	10 m away from main gate	Sand from creek at low tide		Va	Vadinar	
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	
2	рН	-	7.30	8.16	8.36	8.26	7.27	7.82	
3	Electrical Conductivity	μs/cm	33400.0	48500.0	21800.0	37200.0	511.0	464.0	
4	Moisture	%	21.45	13.94	18.82	14.26	6.28	4.56	
5	Total Organic Carbon	%	0.31	0.19	0.26	0.24	0.15	0.11	
6	Alkalinity	mg/kg	100.1	140.14	80.08	140.14	60.06	100.1	
7	Total Nitrogen	%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8	Chloride	mg/kg	6228.7	6032.5	2550.3	7160.6	68.66	78.47	
9	Sulphate	mg/kg	2056.4	75.86	292.0	87.84	14.37	13.58	
10	Phosphorus	mg/kg	0.97	1.41	0.79	1.59	0.97	0.97	
11	Potassium	mg/kg	1161.0	592.2	700.2	765.0	626.4	876.4	
12	Calcium	mg/kg	641.3	561.12	701.4	661.32	124.2	172.3	
13	Sodium	mg/kg	10821.6	2992.8	3164.4	3736.8	2116.8	2565.0	
14	Copper as Cu	mg/kg	11.21	27.22	28.20	31.78	82.66	72.42	
15	Lead as Pb	mg/kg	3.10	6.20	23.0	11.4	ND	ND	
16	Nickel as Ni	mg/kg	20.71	1823	7.80	15.10	25.46	27.73	
17	Zinc as Zn	mg/kg	32.26	72.62	65.90	77.21	23.46	43.20	
18	Cadmium as Cd	mg/kg	ND	ND	ND	ND	ND	ND	

DCPL/DPT/20-21/14-June - 2021

4.3 Discussion

- The data shows that value of pH ranges from 8.68at Nakti Creek to 9.02 at Tuna Creek indicating that all soil sample sare neutral to basic. Iffco plant samples howed maximum conductivity of 36,200µmhos/cm, while Nakti Creek location showed minimum conductivity of 4790µmhos/cm. Conductivity at Vadinar Port was 439 and 634 µmhos/cm at Admin site and Vadinar Port colony respectively.
- Total organic Carbon ranged from 0.7 % to 2.3 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.8 % to 1.04 %.
- The concentration of Phosphorus and Potassium in the soil samples varies from 34.0 to 53.0mg/kg and 700.0 to 1100 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 6.82 mg/kg and mean concentration of Potassium at Vadinar site was 176.5 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel, Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was not detected in the Soil.

4.4 Conclusion

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 Methodology for STP Monitoring

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. carboys and were analyzed in laboratory for various parameters.

5.2 Results

• Kandla STP

Table 18: Sewage Water Monitoring at Kandla STP (1st Week)

Date of Sampling 05.06.21	Date of Sampling	05.06.21
---------------------------	------------------	----------

	_		Results				
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.62	7.23			
2	Total Suspended Solids	mg/l	450	38.2			
3	Residual Chlorine	mg/l	<1.0	<0.5			
4	COD	mg/l	494.9	40.4			
5	BOD @ 27 °C	mg/l	152.0	12.0			
	Aeration Tank						
6	MLSS	mg/l	íl 40.0				
7	MLVSS	%	82.0				

Sr.	r		Results				
No.	Parameters	Unit	KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.93	7.13			
2	Total Suspended Solids	mg/l	268.3	58.3			
3	Residual Chlorine	mg/l	<1.0	<0.5			
4	COD	mg/l	289.87 63.63				
5	BOD @ 27 °C	mg/l	94.0 16.0				
Aeration Tank							
6	MLSS	mg/l	36.0				
7	MLVSS	%	74.0				

 Table 19: Sewage Water Monitoring at Kandla STP (2nd Week)

Date of Sampling

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

Date of Sampling	15.06.21

Sr. No.	Parameters	llait	Res	sults
51. NO.	Parameters	Unit	KPT STP I/L	KPT STP O/L
1	рН	pH unit	7.43	7.23
2	Total Suspended Solids	mg/l	210.5	99
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	259.57	31.31
5	BOD @ 27 °C	mg/l	72.0	8.0
Aeration Tank				
6	MLSS	mg/l	36.0	
7	MLVSS	%	78.0	

Sr. No.	Dovernations	Unit	Results	
Sr. NO.	Parameters		KPT STP I/L	KPT STP O/L
1	рН	pH unit	7.71	7.02
2	Total Suspended Solids	mg/l	226.1	18.3
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	303.0	96.0
5	BOD @ 27 °C	mg/l	110.0	18.0
Aeration Tank				
6	MLSS	mg/l	20.0	
7	MLVSS	%	96.0	

 Table 21: Sewage Water Monitoring at Kandla STP (4th Week)

Date of Sampling

• Gopalpuri Colony STP

Table 22: Sewage Water Monitoring at Gopalpuri STP (1st Week)

Date of Sampling	05.06.21

			Re	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.21	7.09
2	Total Suspended Solids	mg/l	166.7	54.9
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	383.8	84.4
5	BOD @ 27 °C	mg/l	124.0	16.0
Aeration Tank				
6	MLSS	mg/l	28.0	
7	MLVSS	%	8	6.0

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.7	7.26
2	Total Suspended Solids	mg/l	95.21	41.9
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	431.27	109.8
5	BOD @ 27 °C	mg/l	138.0	19.0
Aeration Tank				
6	MLSS	mg/l	18.0	
7	MLVSS	%	96.0	

 Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date of Sampling 15.06.21

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.53	7.29
2	Total Suspended Solids	mg/l	52.9	20.1
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	230.28	57.57
5	BOD @ 27 °C	mg/l	76.0	15.0
Aeration Tank				
6	MLSS	mg/l	12.0	
7	MLVSS	%	92	2.0

Date of Sampling	21.06.21

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.25	7.12
2	Total Suspended Solids	mg/l	183.8	89
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	202	20.2
5	BOD @ 27 °C	mg/l	68.0	6.0
Aeration Tank				
6	MLSS	mg/l	38.0	
7	MLVSS	%	98	8.0

• Vadinar STP

Table 26: Sewage Water Monitoring at Vadinar STP (1st Week)

Date of Sampling	05.06.21
------------------	----------

			Results	
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.26	
2	Total Suspended Solids	mg/l	139.5	
3	Residual Chlorine	mg/l	<1.0	NOT
4	COD	mg/l	222.2	WORKING
5	BOD @ 27 °C	mg/l	86.0	

			Results		
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.36		
2	Total Suspended Solids	mg/l	108.8		
3	Residual Chlorine	mg/l	<1.0	NOT	
4	COD	mg/l	353.5	WORKING	
5	BOD @ 27 °C	mg/l	108.0		

 Table 27: Sewage Water Monitoring at Vadinar STP (2nd Week)

Date of Sampling

Table 28: Sewage Water Monitoring at Vadinar STP (3rd Week)

Date of Sampling	15.06.21

			Res	ults
Sr. No.	No. Parameters		Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.14	
2	Total Suspended Solids	mg/l	166.7	
3	Residual Chlorine	mg/l	<1.0	NOT WORKING
4	COD	mg/l	171.7	
5	BOD @ 27 °C	mg/l	52.0	

Sr.	Domente		Results		
No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/I	
1	рН	pH unit	7.26		
2	Total Suspended Solids	mg/l	203.5		
3	Residual Chlorine	mg/l	<1.0	Not working	
4	COD	mg/l	90.9		
5	BOD @ 27 °C	mg/l	28.0		

Table 29: Sewage	e Water Monitoring at	Vadinar STP (4 th	'Week)
------------------	-----------------------	------------------------------	--------

Date of Sampling

5.3 Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea. Also, the STP at Vadinar is also non-functional and thus, steps should be taken to commission the STP at Vadinar Port. Hence, currently only inlet samples are collected and analysed.

6. Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decision-making. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 10th & 11th June -2021 in harbor regions of KPT and on 10th June-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 18th & 19th June 2021 in harbor regions of KPT. 18th June -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month. Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative & quantitative evaluation of phytoplankton, qualitative & quantitative evaluation zooplanktons (density and their population).

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek
	2 in Nakti creek
	1 in Khori creek
	1 near Vadinar Jetty
	1 near 1 st SBM
Total Number of locations	8

Sampling Locations

6.1 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

	Daramators	Unit	Kandla Creek Near KPT colony (1) 23°0'58"N 70°13'22."E			
Sr.	Parameters	Unit				
No.			Spring Tide		Near	o Tide
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.21	7.35	7.18	7.14
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	31.7	32.1	32.8	
5	Turbidity	NTU	29	28	28	24
6	Total Dissolved Solids	mg/l	31107.0	35947.0	37797.0	33665.0
7	Total Suspended Solids	mg/l	377.4	359.9	714.2	412.4
8	Total Solids	mg/l	31560.0	36800.0	38860.0	34260.0
9	DO	mg/l	4.9	4.6	3.5	3.3
10	COD	mg/l	78.0	82.0	72.0	76.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.23	0.25	0.56	0.38
13	Phosphate	mg/l	0.35	0.36	0.27	0.24
14	Sulphate	mg/l	3360	3156	2628	3216
15	Nitrate	mg/l	1.97	2.35	2.14	2.78
16	Nitrite	mg/l	<0.01	<0.01	<0.01	<0.01
17	Calcium	mg/l	561.12	641.28	641.28	521.04
18	Magnesium	mg/l	1676.7	1676.7	1555.2	1725.3
19	Sodium	mg/l	11220.0	12080.0	8194.0	7418.0
20	Potassium	mg/l	380.0	390.0	372.0	414.0
21	Iron	mg/l	1.48	1.66	1.76	1.92
22	Chromium	mg/l	0.11	0.13	0.12	0.13
23	Copper	mg/l	0.05	0.06	0.06	0.07
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.06	0.08	0.05	0.06
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.15	0.17	0.16	0.18
28	Zinc	mg/l	0.06	0.07	0.05	0.06

Table 30: Marine Water Quality Monitoring Parameters for location near KPT colony

				Near passenge	er Jetty One (2)	
Sr.	Parameters	Unit		23° 0'18 "N	70°13'31"E	
No.			Sprin	g Tide	Near	o Tide
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.5	7.5	7.28	7.15
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	32.0	32.1	32.6	32.1
5	Turbidity	NTU	29	31	39	29
6	Total Dissolved Solids	mg/l	39865.0	39935.0	41765.0	36900.0
7	Total Suspended Solids	mg/l	366.8	414.5	404.0	477.9
8	Total Solids	mg/l	40212.0	40500.0	46018.0	37338.0
9	DO	mg/l	5.1	5.0	3.5	3.5
10	COD	mg/l	82.0	92.0	78.0	80.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.25	0.27	0.81	0.32
13	Phosphate	mg/l	0.35	0.32	0.20	0.33
14	Sulphate	mg/l	3120.0	3708.0	3336.0	2880.0
15	Nitrate	mg/l	6.0	2.54	1.35	4.33
16	Nitrite	mg/l	<0.01	<0.01	<0.01	<0.01
17	Calcium	mg/l	721.44	601.2	681.36	561.12
18	Magnesium	mg/l	1701.0	1603.8	1676.7	1725.3
19	Sodium	mg/l	11460.0	13211.0	9929.0	10111.0
20	Potassium	mg/l	390.0	382.0	471.0	381.0
21	Iron	mg/l	1.76	1.56	1.72	1.80
22	Chromium	mg/l	0.13	0.11	0.14	0.12
23	Copper	mg/l	0.06	0.07	0.08	0.07
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.05	0.06	0.06	0.07
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.18	0.16	0.17	0.16
28	Zinc	mg/l	0.06	0.06	0.07	0.07

Table 31: Marine Water Quality Monitoring Parameters for location near passenger Jetty One atKandla

				Near Co	al Berth		
Sr.	Parameters	Unit	22°59'12"N 70°13'40"E				
No.			Spring Tide		Neap	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.3	7.21	7.2	7.5	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.0	32.2	32.0	32.3	
5	Turbidity	NTU	33.0	31.0	31.8	32.0	
6	Total Dissolved Solids	mg/l	34545.0	37030.0	35312.0	35363.0	
7	Total Suspended Solids	mg/l	275.3	344.5	563.5	603.2	
8	Total Solids	mg/l	35266.0	38080.0	36540	36100.0	
9	DO	mg/l	4.8	4.6	4.2	4.3	
10	COD	mg/l	86.0	92.0	101.0	100.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	0.27	0.20	0.38	0.22	
13	Phosphate	mg/l	0.28	0.30	0.22	0.21	
14	Sulphate	mg/l	1344	1500	2436	3240	
15	Nitrate	mg/l	5.56	5.70	2.45	2.27	
16	Nitrite	mg/l	0.028	0.02	0.04	0.02	
17	Calcium	mg/l	641.28	681.36	601.2	641.28	
18	Magnesium	mg/l	1555.2	1676.7	1652.4	1725.3	
19	Sodium	mg/l	12015.0	11852.0	9320.0	9481.0	
20	Potassium	mg/l	343.0	355.0	491.0	512.0	
21	Iron	mg/l	1.44	1.23	1.64	1.34	
22	Chromium	mg/l	0.12	0.10	0.12	0.13	
23	Copper	mg/l	0.06	0.05	0.06	0.06	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.05	0.06	0.06	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.18	0.12	0.16	0.14	
28	Zinc	mg/l	0.06	0.06	0.05	0.06	

Table 32: Marine Water Quality Monitoring Parameters for location Near Coal Berth

			КРТ 4				
Sr.	Parameters	Unit		Near 15,	/16 Berth		
No.			Sprin	g Tide	Near	o Tide	
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.43	7.59	7.21	7.39	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.2	33.1	31.8	31.6	
5	Turbidity	NTU	37	35	25	47	
6	Total Dissolved Solids	mg/l	40837.0	45070.0	33588.0	33133.0	
7	Total Suspended Solids	mg/l	299.2	315.5	407.3	438.9	
8	Total Solids	mg/l	42994.0	46208.0	34336.0	34040.0	
9	DO	mg/l	4.7	4.5	4.4	3.6	
10	COD	mg/l	86.0	92.0	78.0	80.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	0.24	2.34	0.63	0.41	
13	Phosphate	mg/l	0.28	0.32	0.26	0.28	
14	Sulphate	mg/l	2628	2124	2988	2148	
15	Nitrate	mg/l	7.25	2.64	4.67	7.08	
16	Nitrite	mg/l	0.02	0.02	0.02	0.02	
17	Calcium	mg/l	641.28	601.2	641.28	601.2	
18	Magnesium	mg/l	1628.1	1749.6	1676.7	1652.4	
19	Sodium	mg/l	10920.0	10962.0	9381.0	9252.0	
20	Potassium	mg/l	344.0	352.0	366.0	488.0	
21	Iron	mg/l	1.72	1.49	1.56	1.66	
22	Chromium	mg/l	0.12	0.11	0.12	0.10	
23	Copper	mg/l	0.05	0.05	0.06	0.05	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.06	0.07	0.08	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.18	0.16	0.15	0.14	
28	Zinc	mg/l	0.06	0.05	0.05	0.06	

Table 33: Marine Water Quality Monitoring Parameters for location Khori creek at Kandla

			Nakti Creek Near Tuna Port					
Sr.	Parameters	Unit	22°57'49."N 70° 7'0.67"E					
No.			Sprin	g Tide	Near	o Tide		
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide		
1	рН	pH unit	7.39	7.21	7.73	7.7		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	32.2	31.8	32.4	31.6		
5	Turbidity	NTU	34	60	39	49		
6	Total Dissolved Solids	mg/l	48922.0	26656.0	39244.0	26963.0		
7	Total Suspended Solids	mg/l	287.3	243.68	326.4	214.2		
8	Total Solids	mg/l	49728.0	27300.0	40996.0	27294.0		
9	DO	mg/l	4.6	4.9	4.2	3.5		
10	COD	mg/l	96.0	98.0	88.0	82.0		
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0		
12	Silica	mg/l	0.28	0.29	0.61	0.74		
13	Phosphate	mg/l	0.35	0.37	0.18	0.18		
14	Sulphate	mg/l	3480	2868	2316	3480		
15	Nitrate	mg/l	5.28	2.80	4.50	4.58		
16	Nitrite	mg/l	0.02	<0.01	<0.01	0.03		
17	Calcium	mg/l	601.2	721.44	521.04	601.2		
18	Magnesium	mg/l	1749.6	1628.1	1773.9	1773.9		
19	Sodium	mg/l	12126.0	12102.0	10821.0	10728.0		
20	Potassium	mg/l	352.0	372.0	521.0	510.0		
21	Iron	mg/l	1.52	1.42	1.56	1.59		
22	Chromium	mg/l	0.16	0.14	0.13	0.15		
23	Copper	mg/l	0.07	0.08	0.07	0.07		
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01		
25	Cadmium	mg/l	0.08	0.07	0.07	0.07		
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001		
27	Lead	mg/l	0.14	0.12	0.12	0.13		
28	Zinc	mg/l	0.05	0.06	0.06	0.07		

Table 34: Marine Water Quality Monitoring Parameters for location Nakti Creek near Tuna Port

			Nakti Creek Near NH-8A						
Sr.	Parameters	Unit		23° 02'01"N	70° 09'31"E				
No.			Sprin	g Tide	Nea	p Tide			
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide			
1	рН	pH unit	7.3		7.51				
2	Color	-	Colorless		Colorless				
3	Odor	-	Odorless		Odorless				
4	Salinity	ppt	32.2		32.8				
5	Turbidity	NTU	37		38				
6	Total Dissolved Solids	mg/l	34970		35210.0				
7	Total Suspended Solids	mg/l	736.8		318.3				
8	Total Solids	mg/l	36048.0		36110.0				
9	DO	mg/l	5.1		3.9				
10	COD	mg/l	98.0		110.0				
11	BOD	mg/l	<2.0		<2.0				
12	Silica	mg/l	0.31		0.98				
13	Phosphate	mg/l	0.28	Complian	0.29	Compling not			
14	Sulphate	mg/l	3720	 Sampling not possible 	2220	Sampling not possible			
15	Nitrate	mg/l	5.45	during Low Tide	3.62	during Low Tide			
16	Nitrite	mg/l	0.03	nue	0.04	nue			
17	Calcium	mg/l	721.44		681.36				
18	Magnesium	mg/l	1506.6		1749.6				
19	Sodium	mg/l	11622.0		10303.0				
20	Potassium	mg/l	486.0		495.0				
21	Iron	mg/l	1.49		1.62				
22	Chromium	mg/l	0.13		0.14				
23	Copper	mg/l	0.08		0.08				
24	Arsenic	mg/l	<0.01		<0.01				
25	Cadmium	mg/l	0.05		0.07				
26	Mercury	mg/l	<0.001		<0.001				
27	Lead	mg/l	0.19		0.14				
28	Zinc	mg/l	0.07		0.06				

Table 35: Marine Water Quality Monitoring Parameters for location Nakti Creek Near NH-8A atKandla

			Nr.Vadinar Jetty				
Sr.	Parameters	Unit	22°26'25.26"N 69°40'20.41"E				
No.			Sprin	g Tide	Nea	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.25	7.36	7.26	7.21	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.8	32.2	31.2	32.0	
5	Turbidity	NTU	5	9	21	15	
6	Total Dissolved Solids	mg/l	34444	31931	37088	41030	
7	Total Suspended Solids	mg/l	258	482	405.5	399.5	
8	Total Solids	mg/l	34948.0	32054.0	37892.0	41410.0	
9	DO	mg/l	3.8	4.2	1.9	2.8	
10	COD	mg/l	86.0	88.0	72.0	68.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	0.21	0.30	0.45	0.39	
13	Phosphate	mg/l	0.28	0.30	0.16	0.14	
14	Sulphate	mg/l	3012	3192	2388	1980	
15	Nitrate	mg/l	5.7376	4.32256	0.07744	3.4496	
16	Nitrite	mg/l	0.02	0.02	0.02	<0.01	
17	Calcium	mg/l	561.12	521.04	561.12	521.04	
18	Magnesium	mg/l	1409.4	1603.8	1579.5	1676.7	
19	Sodium	mg/l	11720.0	12118.0	10062.0	10080.0	
20	Potassium	mg/l	458.0	456.0	406.0	412.0	
21	Iron	mg/l	1.77	1.56	1.66	1.62	
22	Chromium	mg/l	0.13	0.12	0.16	0.15	
23	Copper	mg/l	0.07	0.06	0.05	0.06	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.04	0.05	0.05	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.18	0.19	0.17	0.16	
28	Zinc	mg/l	0.08	0.08	0.06	0.07	

Table 36: Marine Water Quality Monitoring Parameters for locations Nr. Vadinar Jetty

6.1.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

6.2 Results

The Sediment Quality results are given in below from table no. 33

Table 34A: Results of Analysis of Sediment of Kandla & \	/adinar Port (Spring Tide)
--	----------------------------

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 2	КРТ - З	Khori - 1	Nakti Creek Near Tuna Port	Nakti - 1 (Near NH-8A)	Jetty
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	1.20	1.88	1.20	1.30	1.76	1.88	1.56
3	Organic Carbon	mg/kg	0.80	0.96	0.87	0.87	0.69	0.78	0.78
4	Inorganic Phosphate	mg/kg	132.0	126.0	156.0	177.0	167.0	182.0	175.0
5	Moisture	%	24.96	26.86	21.33	16.64	26.33	22.78	23.01
6	Aluminium	mg/kg	ND	ND	ND	ND	ND	ND	ND
7	Silica	mg/kg	23.0	22.0	26.0	28.0	32.0	36.0	40.0
8	Phosphate	mg/kg	10.80	11.50	11.77	12.71	9.24	9.88	10.20
9	Sulphate	mg/kg	218.0	252.0	138.0	225.2	239.0	280.0	252.0
10	Nitrite	mg/kg	0.1	0.12	0.13	0.12	0.13	0.12	0.13
11	Nitrate	mg/kg	9.20	7.22	10.42	8.88	8.02	7.89	6.88
12	Calcium	mg/kg	861.0	1102.0	801.0	862.0	922.0	1082.0	802.0
13	Magnesium	mg/kg	437.0	851.0	693.0	765.0	449.0	522.0	422.0
14	Sodium	mg/kg	2083.0	2387.0	1937.0	1859.0	2857.0	2034.0	2185.0
15	Potassium	mg/kg	707.0	918.0	954.0	774.0	1058.0	779.0	792.0
16	Chromium	mg/kg	123.0	180.0	140.0	138.2	146.0	92.0	145.0
17	Nickel	mg/kg	26.0	23.2	28.9	26.2	32.6	33.6	37.7
18	Copper	mg/kg	46	42.7	21.20	36.0	37.2	29.6	26.8
19	Zinc	mg/kg	32.35	38.30	36.70	40.	41.00	39.00	40.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND	ND	ND
21	Lead	mg/kg	2.86	2.8	5.2	5.0	4.2	5.6	7.2
22	Mercury	mg/kg	ND	ND	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND	ND	ND

*Grab samples could not be collected due high current at Vadinar SBM

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 3	Khori - 1	Nakti Creek Near Tuna Port	Nakti – 1 (Near NH-8A)	Jetty
1	Texture		Sandy Ioam	Sandy Ioam	Sandy Ioam	Sandy Ioam	Sandy loam	Sandy Ioam
2	Organic Matter	mg/kg	1.46	1.22	1.66	1.55	1.46	1.35
3	Organic Carbon	mg/kg	0.84	0.69	0.48	0.90	0.96	0.78
4	Inorganic Phosphate	mg/kg	155.0	148.0	162.0	149.0	164.0	166.0
5	Moisture	%	24.9	22.05	28.4	30.08	28.62	20.30
6	Aluminium	mg/kg	ND	ND	ND	ND	ND	ND
7	Silica	mg/kg	23.8	22.5	21.82	33.6	32.8	26.0
8	Phosphate	mg/kg	8.53	7.97	9.80	8.62	9.88	11.06
9	Sulphate	mg/kg	196.6	163.89	184.45	140.0	152.0	171.88
10	Nitrite	mg/kg	0.11	0.13	0.14	0.12	0.14	0.12
11	Nitrate	mg/kg	6.42	7.77	6.88	6.89	7.02	8.88
12	Calcium	mg/kg	288.6	212.0	232.4	284.0	296.0	224.0
13	Magnesium	mg/kg	177.4	177.0	170.76	197.2	188.0	535.0
14	Sodium	mg/kg	2662.0	1216.0	990.0	828.0	910.0	1150.0
15	Potassium	mg/kg	200.0	106.0	50.2	79.0	89.0	110.0
16	Chromium	mg/kg	145.0	133.0	146.0	126.0	101.0	166.0
17	Nickel	mg/kg	31.2	26.6	20.3	28.2	27.8	20.9
18	Copper	mg/kg	54.2	26.5	16.2	12.10	11.02	42.0
19	Zinc	mg/kg	23.0	31.0	24.62	29.42	33.36	42.52
20	Cadmium	mg/kg	ND	ND	ND	ND	ND	ND
21	Lead	mg/kg	ND	4.2	4.0	4.2	4.2	3.8
22	Mercury	mg/kg	ND	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND	ND

*Grab samples could not be collected due high current at KPT 2, Vadinar Jetty and Vadinar SBM

REPORT

ON

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPT HARBOURAREA, NEAR BY CREEKS

For

DEENDAYAL PORT TRUST

JUNE, 2021

INTRODUCTION:

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decision-making. The National Conservation Strategy and Policy Statement on Environment and Development, (1992)aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

MARINE ENVIRONMENT:

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on 10th June, 2021 in in harbour region of DPT, and on 11thJune, 2021 in creeks near by the port during spring tide .The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 18th June, 2021 in harbour region of DPT and on19thJune, 2021 in creeks near by the port during neap tidal condition .

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of DPT harbour area andone stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

monitoring requirement	Number of locations
Kandla creek	3 in Kandla creek
Nakti creek	2 in Nakti creek
Khori Creek	1 in Khori creek
Total Number of locations	6

TABLE #1 SAMPLING LOCATIONS

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval. 50 litters of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litter of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of 20μm mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litter of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone. The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos*meaning "passively drifting or wandering") is defined as drifting or free-floating organisms are categorised into phytoplankton (organisms having an autotrophic mode of nutrition) and zooplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae). The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts.

Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of DCPL/DPT/20-21/14-June - 2021

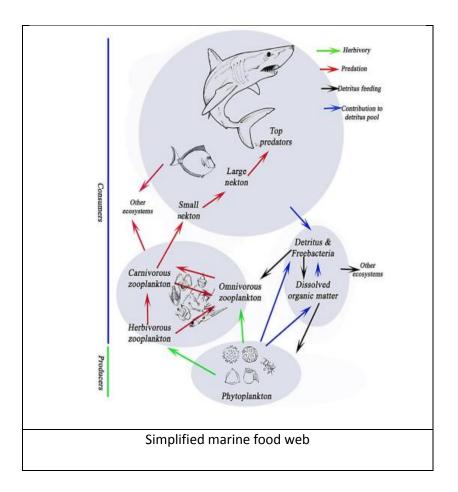
deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community is a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryProduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are organisms which live a brief planktonic life, such as the benthic crustaceans (cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.


Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of

fish, shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda), and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton June also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 15-30minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton

in each microscopic field was thus counted. When first microscopic field row was finished the next consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sediment–water interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining:

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom

tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of cooccurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (*S*) and evenness (*J*)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species

The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

- relatively few successful species in the habitat
- the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment
- food webs which are relatively simple
- change in the environment would probably have quite serious effects

High species diversity suggests:

- a greater number of successful species and a more stable ecosystem
- more ecological niches are available and the environment is less likely to be hostile complex food webs
- environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness(*S*) is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic humaninduced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness(*S*) is simply the number of species present in an ecosystem. This index makes no use of

relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduce community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 are characterized as heavily polluted

$$H' = -\sum_{j=1}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin –a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.314 -0.468mg/m³.in harbour region of DPT during sampling done in spring tide period of June, 2021. In the nearby creeks chlorophyll-a was varying from 0.329-0.739 mg/m³.Pheophytin –a level was below detectable limit- the all the sampling stations during spring in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.527 -0.765 mg/m³.in harbour region of DPT during sampling done in neap tide period of June, 2021. In the nearby creeks chlorophyll-a was varying from 0.425- 0.850 mg/m³. Pheophytin –a level was below detectable limit- the all the sampling stations during spring in the harbour region of DPT

TABLE #2 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

JUNE,2021

Sr.No.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHAR	BOUR AREA		
1	KDT1	High tide	0.381	BDL	25.53
1	1 KPT1	Low tide	0.440	BDL	29.48
2	2 KPT 2	High tide	0.314	BDL	21.04
2		Low tide	0.417	BDL	27.94
3	КРТ З	High tide	0.468	BDL	31.36
5	KFT 5	Low tide	0.424	BDL	28.41
		CR	REEKS		
4	KPT-4 Khori-I	High tide	0.739	BDL	49.51
4	KP1-4 KHOH-I	Low tide	0.578	BDL	38.73
5	KPT-5 Nakti-I	High tide	0.637	BDL	42.68
5	KF1-3 Maku-1	Low tide	0.409	BDL	27.40
6	KPT-5 Nakti-II	High tide	0.329	BDL	22.04

BDL: Below Detectable Limit.

TABLE #3 VARIATIONS IN CHLOROPHYLL –aPHEOPHYTIN- aAND ALGAL BIOMASS FROMSAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

JUNE,2021

Sr.No.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHAR	BOUR AREA		
1	KDT1	High tide	0.631	BDL	42.28
1	1 KPT1	Low tide	0.765	BDL	51.25
2	2 KPT 2	High tide	0.731	BDL	48.98
2		Low tide	0.614	BDL	41.14
3	KPT 3	High tide	0.527	BDL	35.31
5	NFT 5	Low tide	0.615	BDL	41.21
		CR	REEKS		
4	KPT-4 Khori-I	High tide	0.748	BDL	50.12
4	KF 1-4 KH0H-1	Low tide	0.850	BDL	56.95
E	KPT-5 Nakti-I	High tide	0.715	BDL	47.90
5 KPT-5 Na	KF 1-3 INdKU-1	Low tide	0.715	BDL	47.90
6	KPT-5 Nakti-II	High tide	0.425	BDL	28.47

BDL: Below Detectable Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide. The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by,Diatoms and dinoflagellates during spring tide period.Diatoms were represented by 14 genera. Dinoflagellates wererepresented by onegenera .during the sampling conducted in spring tide in June,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 112-216 units/ L during high tide period and 147-172 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms and dinoflagellates during spring tide period.Diatoms were represented by 15genera and Dinoflagellateswere represented onegenera during the sampling conducted in Neap tide in June, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 72-293 units/ L during high tide period and 202-375 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices :

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.907-2.660 with an average of 2.381during the sampling conducted in High tide period of spring tide While .Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 1.603-2.395 with an average of 2.140 during the consecutive in low tide period .

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.775-2.614 with an average of 2.212 during the sampling conducted in High tide period of Neaptide While .Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 1.695-2.193 with an average of 1.966 during the consecutive in low tide period .

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.794-0.908 (H'(log10)) between selected sampling stations with an average value of 0.844. during high tide period of spring tide .Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.788-0.845 (H'(log10)) between selected sampling stations with an average value of 0.813 during consecutive lowtide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.722-0.883 (H'(log10)) between selected sampling stations with an average value of 0.814. during high tide period of neap tide . Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.723-0.883 (H'(log10)) between selected sampling stations with an average value of 0.813 during consecutive low tide. Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.796- 0.840 between selected sampling stations with an average of 0.815 during high tide period of spring tide . Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.790- 0.821 between selected sampling stations with an average of 0.803 during consecutive low tide . Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tide period during neap tide also, which was varying from 0.741-0.831 with an average value of 0.800

between selected sampling stations during high tide period and varying from 0.719-0.808 with an average value of 0.758 between selected sampling stations duringconsecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	158	14/15	93.33	2.568	0.89	0.8401
TIDE	2	151	14/15	93.33	2.591	0.8397	0.8165
	3	170	12/15	80	2.142	0.7942	0.7962
	4	216	14/15	93.33	2.418	0.8223	0.8042
	5	193	15/15	100	2.66	0.9078	0.8326
	6	112	10/15	66.66	1.907	0.8103	0.8029
LOW	1	156	13/15	86.66	2.376	0.8446	0.8209
TIDE	2	147	9/15	60	1.603	0.7909	0.8148
	3	152	12/15	80	2.19	0.8051	0.791
	4	172	12/15	80	2.137	0.788	0.7904
	5	150	13/15	86.66	2.395	0.8371	0.7996

JUNE,2021

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	240	15/16	93.75	2.554	0.883	0.8308
TIDE	2	248	12/16	75	1.995	0.7916	0.7925
	3	212	15/16	93.75	2.614	0.8664	0.8285
	4	293	15/16	93.75	2.465	0.8666	0.8224
	5	280	11/16	68.75	1.775	0.7227	0.7413
	6	72	9/16	56.25	1.871	0.7522	0.7891
LOW	1	278	11/16	68.75	1.777	0.7379	0.7658
TIDE	2	206	12/16	75	2.065	0.7625	0.784
	3	202	10/16	62.50	1.695	0.7941	0.8008
	4	375	14/16	87.5	2.193	0.7182	0.7189
	5	303	13/16	81.25	2.1	0.7164	0.7232

JUNE,2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
			DIATOMS	112-214	14/15	93.33
HIGH TIDE	Sub surface	6	DINO FLAGELLATES	0-2	1/15	6.67
			TOTAL PHYTO PLANKTON	112-216	15	-
			DIATOMS	147-171	14/15	93.33
LOW TIDE		5	DINO FLAGELLATES	0-2	1/15	6.67
TIDE	surface		TOTAL PHYTO PLANKTON	147-172	15	-

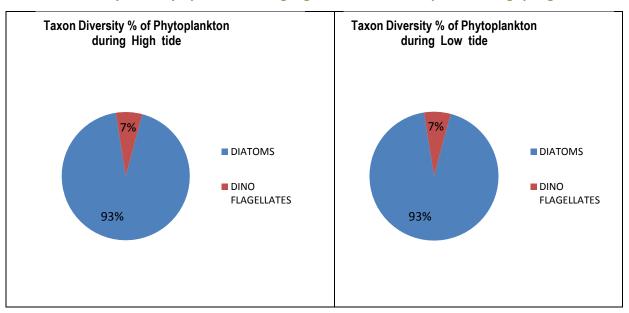
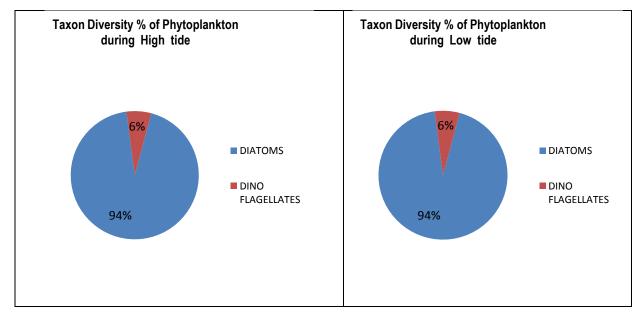

Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR AREA, NEAR BY CREEKS DURING SPRING TIDE IN JUNE, 2021

Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT

Tide Surface No of Group of Phytoplankton Genera or Taxon Sampling phytoplankton Group range species **Diversity %**


HARBOUR AREA, NEAR BY CREEKS DURING NEAP TIDE IN JUNE, 2021

		location		Units/L	/total Phyto plankton	(Group level)
	HIGH Sub 6		DIATOMS	72-291	15/16	93.75
HIGH TIDE		6	DINO FLAGELLATES	0-2	1/16	6.25
			TOTAL PHYTO PLANKTON	72-293	16	-
			DIATOMS	202-374	15/16	93.75
LOW	LOW Sub TIDE surface	5	DINO FLAGELLATES	0-1	1/16	6.25
			TOTAL PHYTO PLANKTON	202-375	16	

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khoricreek) during high tide period and low tide period of spring tide and Neap tide in June 2021 . The Zooplankton community of the sub surface water in the harbour and nearby creeks during spring tide was represented by mainly four groups, Tintinids, Copepods,Foraminiferans and larval forms of Crustacea, Molluscans. The Zooplankton

community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Tintinids, Copepods, Arrow worms, Mysids and larval forms of Crustacea and Polychates,.

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from $61-138 \times 10^3$ N/m³ during high tide and $78-112 \times 10^3$ N/m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from $47-176 \times 10^3$ N/m³ during high tide and 80-157 N/L during low tide of Neap Tide period.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla Harbour region and nearby creeks was varying from 2.563-3.067 with an average of 2.804 during the sampling conducted in High tide period.Margalef's diversity index (Species Richness) S of Zooplankton communities varying from.2.136-2.875 with an average of 2.485 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla Harbour region and nearby creeks sampling stations was varying from3.610-453 with an average of 4.016 during the sampling conducted in high tide and varying from. 2.755-4.747 with an average of 3.779 during the sampling conducted in low tide during Neap tide period.**Shannon-Wiener's index:**

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.912-1.017 (H'(log10)) between selected sampling stations with an average value of 0.947 (H'(log10)) during high tide period of spring tide .Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.872-0.939 (H'(log10)) between selected sampling stations with an average value of 0.908 (H'(log10)) during consecutive low tide period .

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.962-1.143 (H'(log10)) between selected

sampling stations with an average value of 1.071 (H'(log10)) during high tide period of Neap tide . Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.952-1.168(H'(log10)) between selected sampling stations with an average value of 1.051 (H'(log10)) during consecutive low tide period .Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period except few during high tide period, which was varying from 0.838-0.904 between selected sampling stations with an average of 0.862 during high tide period and was varying from 0.838-0.865 with an average value of 0.849 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 at all sampling stations the Kandla Harbour region and nearby creeks during high tide and except one duringhigh tide of Neap tide, which was varying from 0.853-0.905 between selected sampling stations with an average of 0.886 during high tide period and was varying from 0.840- 0.909 with an average value of 0.881 between selected sampling stations during consecutive low tide

This low species diversity suggests a relatively low number of successful species in this habitat. Environment is quite stressful with relatively few ecological niches and only few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Table # 8ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	96 X10 ³	15/17	88.24	3.067	1.01	0.8836
	2	77 X10 ³	13/17	76.47	2.763	0.9118	0.8506
HIGH	3	92 X10 ³	14/17	82.35	2.875	0.9144	0.8385
TIDE	4	138 X10 ³	14/17	82.35	2.638	0.9177	0.8445
	5	108 X10 ³	13/17	76.47	2.563	0.9144	0.852
	6	61 X10 ³	13/17	76.47	2.919	1.017	0.9038
	1	78 X10 ³	11/17	64.70	2.295	0.8723	0.8382
	2	92 X10 ³	14/17	82.35	2.875	0.9395	0.8538
LOW TIDE	3	105 X10 ³	12/17	70.58	2.364	0.8972	0.8443
TIDE	4	112 X10 ³	14/17	82.35	2.755	0.9159	0.8468
	5	108 X10 ³	11/17	64.70	2.136	0.9189	0.8654

JUNE,2021

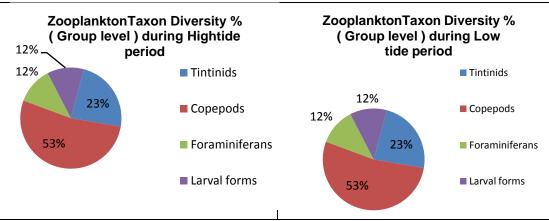
Table # 9 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

JUNE,2021

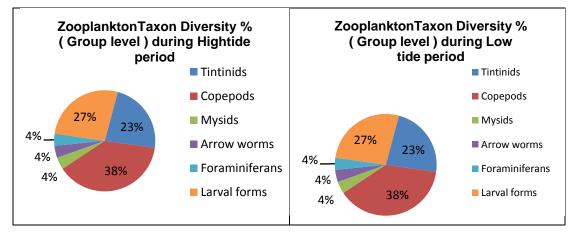
Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit Y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	111 X10 ³	18/26	69.23	3.61	0.9985	0.8526
	2	100 X10 ³	19/26	73.07	3.909	1.068	0.8846
HIGH	3	103 X10 ³	22/26	84.61	4.531	1.129	0.905
TIDE	4	176 X10 ³	24/26	92.31	4.448	1.143	0.904
	5	155 X10 ³	21/26	80.77	3.966	1.13	0.9041
	6	47 X10 ³	15/26	57.69	3.636	0.9622	0.8668
	1	80 X10 ³	16/26	61.54	3.423	1	0.8684
LOW	2	103 X10 ³	17/26	65.38	3.452	0.9526	0.8401
TIDE	3	112 X10 ³	14/26	53.85	2.755	1.005	0.8795
TIDE	4	157 X10 ³	25/26	96.15	4.747	1.168	0.9082
	5	130 X10 ³	23/26	88.46	4.52	1.131	0.9095

Table # 10 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	10-16	4/17	23.53
			Copepods	31-72	9/17	52.95
			Foraminiferans	0-4	2/17	11.76
HIGH TIDE	Sub	6	Larval forms	15-50	2/17	11.76
	surface		TOTAL ZOOPLANKTON NO/L	61-138	17	-
			Tintinids	8-15	4/17	23.53
			Copepods	45-57	9/17	52.95
			Foraminiferans	0-2	2/17	11.76
LOW TIDE	Sub	5	Larval forms	25-43	2/17	11.76
	surface		TOTAL ZOOPLANKTON NO/L	78-112	17	-

HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN JUNE,2021

Table # 11 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


HARBOUR AREA, NEAR BY CREEKS DURING NEAP TIDE IN JUNE, 2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	4-15	6/26	23.07
			Copepods	25-98	10/26	38.46
			Mysids	1-2	1/26	3.85
HIGH TIDE	Sub	6	Arrow worms	1-2	1/26	3.85
	surface		Foraminiferans	0-2	1/26	3.85
			Larval forms	17-59	7/26	26.92
			TOTAL ZOOPLANKTON NO/L	47-176	26	-
			Tintinids	4-15	6/26	23.07
			Copepods	38-85	10/26	38.46
			Mysids	0-2	1/26	3.85
LOW TIDE	Sub	5	Arrow worms	0-2	1/26	3.85
	surface		Foraminiferans	0-1	1/26	3.85
			Larval forms	37-52	7/26	26.92
			TOTAL ZOOPLANKTON NO/L	80-157	26	-

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide

Taxon Diversity % of Zooplankton during High tide and Low tide period of Neap tide

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKSDURINGSPRING TIDE OF JUNE,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
		_	Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Rare
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
			Triceratiales	T	Odontellasp	D3	Rare
		Coscinodiscophyceae		Triceratiaceae	Triceratiumsp.	D4	Occasional
			Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Frequent
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D6	Occasional
	Bacillariophyta		Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D7	Occasional
DIATOMS			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D8	Dominant
			Thalassiosirales	Thalassiosiraceae	Thalassiosirasp	D9	Rare
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D10	Rare
					Thalassiothrix sp.	D11	Frequent
		Fue eile vie vie vee e	Thalassionematales	Thalassionemataceae	Thalassionema sp.	D12	Rare
		Fragilariophyceae	Fue eile viele e	Function in the second	Fragilariasp	D13	Occasional
			Fragilariales	Fragilariaceae	Synedrasp	D14	Frequent
DINO FLAGELLATES	Dinoflagellata / Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF1	Rare

DCPL/DPT/20-21/14-June - 2021

Detox Corporation Pvt.Ltd.,Surat

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURING ANDNEAP TIDE OF JUNE,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Occasional
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Dominant
			Tricoratialas	Tricorationana	Triceratiumsp	D3	Occasional
		Coscinodiscophyceae	Triceratiales	Triceratiaceae	Odontellasp	D4	Rare
			Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Abundant
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D6	Rare
			Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D7	Rare
DIATOMS	Bacillariophyta		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D8	Abundant
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D9	Occasional
			Bacillariales	Bacillariaceae	Bacillaria sp.	D10	Rare
			Thelessienemetales	The less is a smooth second	Thalassiothrix sp.	D11	Frequent
			Thalassionematales	Thalassionemataceae	Thalassionema sp.	D12	Rare
		Fragilariophyceae			Fragilariasp	D13	Rare
			Fragilariales	Fragilariaceae	<i>Synedra</i> sp	D14	Frequent
					Asterionellasp	D15	Occasional
DINO FLAGELLATES	Dinoflagellata / Dinozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare

TABLE #13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING SPRING

TIDE OF JUNE,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Occasional
TINTINIDS	PROTOZOA	Spirotrichoo	Tintinnida		Tintinnopsisfailakkaensis	T2	Occasional
	CILIOPHORA	Spirotrichea	Πητιηρία	Codonellidae	Tintinnopsisgracilis	Т3	Occasional
					Tintinnopsis radix	T4	Rare
					Acrocalanus sp.	C1	Frequent
		Crustacea Sub class copepoda	Calanoida	Paracalanidae	Bestiolina sp.	C2	Rare
	ATHROPODA				Parvocalanus sp.	C3	Occasional
				Eucalanidae	Pareucalanus sp.	C4	Rare
				Clausocalanidae	Clausocalanus sp.	C5	Occasional
COPEPODS				Temoridae	Temora sp.	C6	Rare
			Cyclopoida	Oithonidae	Oithona sp.	C7	Abundant
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C8	Frequent
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C9	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Occasional
FORAMINIFERA	FORAMINIFERA	Clobathalamaa	Potoliida	Globigerinidae	Globigerina sp.	F1	Rare
FURAIVIINIFERA	FUNAIVIIIVIFENA	Globothalamea	Rotaliida	Rotalliidae	<i>Rotalia</i> sp.	F2	Rare

TABLE # 13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING NEAP TIDE OF JUNE,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Rare
	PROTOZOA				Tintinnopsisaccuminata	Т2	Occasional
TINTINIDS		Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisfailakkaensis	Т3	Occasional
CILIOPHORA	CILIOPHORA	Spirotricilea	Tilliniua	Couoneniuae	Tintinnopsisgracilis	T4	Rare
					Tintinnopsis radix	T5	Rare
				Codonellopsidae	Codonellopsis sp.	Т6	Rare
				Paracalanidae	Acrocalanus sp.	C1	Abundant
			Calanoida	Paracalamuae	Parvocalanus sp.	C2	Rare
				Eucalanidae	Pareucalanus sp.	C3	Frequent
					Subeucalanus sp.	C4	Occasional
		Crustacea		Temoridae	Temora sp.	C5	Frequent
COPEPODS	ATHROPODA	Sub class		Acartiidae	Acartia sp.	C6	Occasional
	ATTINOFODA	copepoda	Cyclopoida	Oithonidae	Oithona sp.	C7	Frequent
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C8	Frequent
			паграсисониа	Euterpinidae	Euterpina sp.	C9	Frequent
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C1 0	Rare
ARROW WORMS	CHAETOGNATHA	Sagittoideae	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
MYSIDS	ATHROPODA CRUSTACEA	Malacostraca	Mysida, Decapoda	Penaeidae	Metapenaeussp.	M1	Rare

DCPL/DPT/20-21/14-June - 2021

Detox Corporation Pvt.Ltd.,Surat

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
POLYCHAETE LARVA	ANNELIDA	Polychaeta			Trochophore larvae	L2	Occasional

DCPL/DPT/20-21/14-June - 2021

BENTHIC ORGANISMS:

No Benthic organism was observed in the collected sediments by using the Van-veen grabs during the sampling conducted during spring tide periodfrom DPT harbour region and nearby creek except few dead shells. Benthic organisms form the sample collected during Neap tide is represented by mainly Polychates *Pontodrasp. Paronis* sp. and *Phalacophorus*sp and few Amphipods. The benthic organisms at subtidal region of harbour region and creek varies from 30-100 N/m²

	ABUND	ANCE IN I				NG STATI	ONS
			REPRESI	ENTATION	N BY GRO	UP	
	DP	T HARBO	UR	CREEKS			
Benthic fauna							
POLYCHATES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6	
Family : lospilidae	10	NS	0	20	30	NS	
Pondodora sp.							
Family : Syllidae	20	NS	10	30	10	NS	
Syllis sp.							
Family Glyceredae		NS		0		NS	
Glycerasp.	30		0		0		
Total Polychates N/M ²		NS				NS	
Un identified Nematode							
worms		NS		0		NS	
Amhipods							
Un identified							
	0	NS	0	50	0	NS	
TOTAL Benthic Fauna		NG	10	100	20	NG	
NUMBER/ M ²	60	NS	10	100	30	NS	

Table # 14 BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPT HARBOUR AREA CREEKS DURING NEAP TIDE IN JUNE,2021

NS : No sample

7. Meteorological Data

Automatic Weather station have been installed in SevaSadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 29.77 °C. The day-time maximum temperature was 34.1 °C. The mean night time temperature was 32.53 °C. The minimum mean night time temperature recorded was 28.2 °C.

Air Pressure

The mean absolute air pressure for the month of June was 1004.93 hpa, whereas the mean relative pressure was 1005.03 hpa. The maximum absolute air pressure recorded for the month of June was 1008.9 hpa.

Heat Index

The mean day-time heat index for the month of June was 35.20 °C. The maximum heat index recorded was 44°C.

Solar Radiation

The mean Solar Radiation in June was 208.28 w/m². The maximum solar radiation recorded in the month of June was 654.8 w/m^2 .

Humidity

The mean day-time humidity was 76.42 % for the month of June and mean night time humidity was 65.97%. Maximum humidity recorded during day-time was 84.0 % and maximum humidity recorded during night-time was 82.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of June was 9.72 km/hour (i.e. 2.7 mtr/sec). Maximum wind velocity recorded was 46.8 Km/hr (13 mtr/sec). The wind direction was mostly S to SW.

Conclusive Summary and Remedial measures Suggested

- The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM_{10} values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 µg/m³)andPM_{2.5}was above permissible limits at Coal storage location(Limit 60 µg/m³).
- Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).
- Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.
- The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board. The STP at Deendayal Port is not fully operational and STP at Vadinar Port was found non-operational.

Reasons for higher Values of PM₁₀

- Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.
- Also, the coal laden trucks are not always covered with tarpaulin sheets, and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM_{10} during the month of June, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

- Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)
- Sewage Treatment Plan at Vadinar Port is not working. Hence, it is recommended to commission the sewage treatment plant at Vadinar immediately.
- Except for the higher values of PM₁₀ at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- 2) BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae Indian Council of Agricultural research New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north –West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A.,NAIRK.K.C., VENUGOPL,P.
 BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.
- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- 21) Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.
- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.

Environmental Monitoring Report Of Deendayal Port Trust, JUNE-2021

- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology, Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de franceA. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi . M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.

ENVIRONMENTAL MONITORING REPORT FOR DEENDAYAL PORT TRUST

REPORT NO.	DCPL/DPT/20-21/15	
Month	July 2021	
Issue No	01	
Revision No	00	
Prepared by	DETOX CORPORATION PVT. LTD., SURAT	

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Quality Monitoring	1 - 17
2	Drinking Water Quality Monitoring	18 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 81
7	Meteorological Observations	82
8	Conclusive Summary & Remedial Measures	83-84
	References	85- 86

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformities in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_x, NH₃ & Benzene, and Grab-sampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_x. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}.

The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of July 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

	Tal	ble 1 : Resu	Its of Air P	ollutant Co	oncentra	tion at M	arine Bh	avan		
Parameter	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [ug/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3		80 μg/m3		80 μg/m3		400 μg/m3
					3.08		59.07		13.53	
AL1 – 1	01.07.2021	417	302	96	3.52	2.78	55.26	48.70	16.08	15.32
					1.76		31.76		16.34	
					6.59		57.16		15.83	
AL1 – 2	05.07.2021	875	776	40	5.71	5.71	47.64	52.51	10.21	12.34
					4.84		52.72		10.98	
					8.79		33.03		13.79	
AL1 – 3	09.07.2021	769	693	11	8.35	7.62	31.76	34.30	13.53	13.87
					5.71		38.11		14.30	
					2.64		14.61		19.15	
AL1 – 4	14.07.2021	267	257	31	5.28	4.69	28.58	24.98	5.11	10.21
					6.15		31.76		6.38	
					10.55		13.34		9.19	
AL1 – 5	16.07.2021	234	143	8	13.19	10.11	22.87	20.11	14.04	12.34
					6.59		24.14		13.79	
					4.84		13.34		7.66	
AL1 - 6	21.07.2021	314	257	202	1.32	2.93	15.24	13.76	12.25	12.17
					2.64		12.70		16.59	
					1.76		38.11		16.34	
AL1 - 7	23.07.2021	387	256	163	3.52	3.08	27.31	28.16	13.79	61.10
					3.96		19.05		153.17	
					6.15		12.70		137.85	
AL1 – 8	27.07.2021	471	299	163	6.59	6.01	18.42	16.09	10.98	53.78
					5.28		17.15		12.51	
Monthly	Average	467	373	89		5.37		29.83		23.89
Standard	Deviation	234	230	78		2.58		14.43		20.85

Location 1: Marine Bhavan (AL1)

Table 1E	B : Results of A	Air Pollutant	t Concentra	tion at Marin	ne Bhavan
Parameter		С6Н6 [µg/m³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL1 – 1	01.07.2021	1.13	BDL	1.46	508
AL1 – 2	05.07.2021	1.1	BDL	1.52	489
AL1 – 3	09.07.2021	1.04	BDL	1.36	512
AL1 – 4	14.07.2021	1.14	BDL	1.48	562
AL1 – 5	16.07.2021	1.12	BDL	1.52	496
AL1 - 6	21.07.2021	1.05	BDL	1.48	485
AL1 – 7	23.07.2021	1.04	BDL	1.78	508
AL1 – 8	27.07.2021	1.1	BDL	1.69	495
Monthly	Average	1.09	-	1.54	507
Standard	Deviation	0.04	-	0.13	24

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm) NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM₁₀. The mean TSPM value at Marine Bhavan was 467 μ g/m³, The mean PM₁₀ values were 373.0 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 89 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Marine Bhavan. The mean Benzene concentration was 1.09 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.54 mg/m³, well below the permissible limit of 4.0 mg/m³.

Location 2: Oil Jetty (AL2)

	т	able 2 : Res	ults of Air	Pollutant C	oncentra	ation at O	il Jetty			
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]	NOx [µg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					2.20		55.26		7.66	
AL2 – 1	01.07.2021	265	392	127	0.88	1.47	52.72	45.94	10.98	9.96
					1.32		29.85		11.23	
					0.88		44.46		13.53	
AL2 – 2	05.07.2021	812	737	42	2.64	2.93	47.64	47.64	13.53	13.96
					5.28		50.81		14.81	
					5.28		17.15		7.91	
AL2 – 3	09.07.2021	807	707	35	10.11	8.35	24.77	24.56	12.76	10.98
					9.67		31.76		12.25	
					3.08		19.05		15.32	
AL2 – 4	14.07.2021	602	280	5	2.64	3.37	17.15	20.33	16.08	16.59
					4.40		24.77		18.38	
					4.40		16.51		6.13	
AL2 – 5	16.07.2021	578	539	6	3.52	4.10	17.15	17.15	5.11	6.98
					4.40		17.78		9.70	
					4.84		29.22		10.98	
AL2 – 6	21.07.2021	867	772	10	4.40	5.13	32.39	28.16	12.76	13.36
					6.15		22.87		16.34	
					2.20		23.50		13.79	
AL2 – 7	23.07.2021	244	194	76	1.76	2.20	26.68	26.25	15.83	15.40
					2.64		28.58		16.59	
					6.15		23.50		12.00	
AL2 – 8	27.07.2021	448	350	76	7.03	6.45	14.61	18.84	13.02	12.59
					6.15	1	18.42		12.76	
Monthly	Average	578	496	47		4.25		28.61		12.48
Standard	Deviation	244	224	43		2.30		11.83		3.10

Tab	le 2B : Results	of Air Polluta	nt Concentra	ation at Oil Jet	ty
Parameter		C6H6 [µg/m³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL2 -1	01.07.2021	1.12	BDL	1.76	512
AL2 -2	05.07.2021	1.16	BDL	1.85	498
AL2 -3	09.07.2021	21 1.06 BDL		1.77	506
AL2 -4	14.07.2021	1.15	BDL	1.54	489
AL2 – 5	16.07.2021	1.14	BDL	1.78	490
AL2 – 6	21.07.2021	1.19	BDL	1.62	506
AL2 -7	23.07.2021	1.72	BDL	1.82	515
AL2 – 8	27.07.2021	1.58	BDL	1.78	510
Monthly	Average	1.27	-	1.74	503
	Deviation	0.24	-	0.11	10

BDL- Below Detection Limit (Detection Limit - NMHC: 0.5ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 578 μ g/m³ The mean PM₁₀ values were 496 μ g/m³, which is above the permissible limit. PM_{2.5} values were below the permissible limit (mean = 47 μ g/m³).The average values of SO₂, NO_x and NH₃ were within the permissible limit; The mean concentration of SO₂, NO_x and NH₃ were 4.25 μ g/m³, 28.61 μ g/m³ and 12.48 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was 1.27 μ g/m³. Well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.74 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Tab	ole 3 : Resu	Ilts of Air P	ollutant Co	oncentra	tion at Es	tate Offi	ice		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µ	g/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					3.52		20.96		14.30	
AL3 – 1	01.07.2021	168	153	55	5.28	3.81	27.31	21.38	9.45	10.21
					2.64		15.88		6.89	
					3.52		21.60		14.04	
AL3 – 2	05.07.2021	467	373	21	1.32	2.49	18.42	23.50	15.83	15.91
					2.64		30.49		17.87	
					3.08		23.50		9.19	
AL3 – 3	09.07.2021	297	139	37	6.15	4.98	29.85	24.77	6.38	7.66
					5.71		20.96		7.40	
					4.84		21.60		14.55	
AL3 – 4	14.07.2021	292	121	80	5.71	5.86	18.42	19.27	186.35	72.33
					7.03		17.78		16.08	
					17.58		17.15		13.53	
AL3 – 5	16.07.2021	629	566	96	7.91	10.11	15.24	14.82	9.70	12.00
					4.84		12.07		12.76	
					3.96		6.99		20.42	
AL3 – 6	21.07.2021	721	668	57	1.32	2.49	15.88	14.82	21.44	18.98
					2.20		21.60		15.06	
					2.64		22.87		11.23	
AL3 – 7	23.07.2021	490	406	51	3.08	2.49	19.69	23.29	9.70	11.91
					1.76	1	27.31	1	14.81	1
					1.76		20.96		11.23	
AL3 – 8	27.07.2021	640	500	51	4.40	3.66	17.15	18.00	8.17	10.04
					4.84		15.88		10.72	
Monthly	Average	463	366	56		4.49		19.98		19.88
Standard	Deviation	196	210	23		2.59		3.89		21.49

Location 3: Kandla Colony – Estate Office (AL-3)

Table 3E	8 : Results of Air	[•] Pollutant C	oncentration	at Kandla Por	t Colony
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL3 -1	01.07.2021	1.12	BDL	1.78	510
AL3 -2	05.07.2021	1.22	BDL	1.84	526
AL3 -3	09.07.2021	1.16	BDL	1.96	520
AL3 -4	14.07.2021	1.26	BDL	1.88	542
AL3 – 5	16.07.2021	1.18	BDL	1.78	533
AL3 – 6	21.07.2021	1.26	BDL	1.6	525
AL3 – 7	23.07.2021	1.21	BDL	1.58	542
AL3 – 8	27.07.2021	1.11	BDL	1.78	502
Monthly	y Average	1.19	-	1.78	525
	Deviation	0.06	-	0.13	14

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm) NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPM values at Oil Jetty were 463 μ g/m³, The mean PM₁₀ values were 366 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly above the permissible limit (mean = 56 μ g/m³). The average values of SO₂, NO_x and NH3 were 4.49 μ g/m³, 19.98 μ g/m³ and 19.88 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was 1.19 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.78 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 4	: Results o	of Air Pollut	ant Conce	ntratior	n at Gopa	lpuri Hos	spital		
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2	µg/m3]	NOx [µg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					1.32		12.70		3.57	
AL4 -1	01.07.2021	148	138	21	2.20	2.20	13.34	13.34	7.40	5.36
					3.08		13.97		5.11	
					3.52		24.14		5.36	
AL4 -2	05.07.2021	313	277	115	1.32	1.76	13.34	19.48	8.42	6.72
					0.44		20.96		6.38	
					1.32		12.70		5.87	
AL4 -3	09.07.2021	287	152	40	2.64	2.49	22.23	30.06	5.11	5.79
					3.52		55.26		6.38	
					1.32		13.34		11.74	
AL4 -4	14.07.2021	143	77	8	0.88	0.88	11.43	11.64	8.17	9.19
					0.44		10.16		7.66	
					1.32		20.33		5.62	
AL4 – 5	16.07.2021	196	119	83	3.52	2.93	13.34	15.24	9.45	7.49
					3.96		12.07		7.40	
					2.64		22.87		7.15	
AL4 – 6	21.07.2021	228	128	100	1.32	1.90	13.34	17.57	7.40	6.89
					1.76		16.51		6.13	
					0.88		19.05		7.15	
AL4 – 7	23.07.2021	338	200	109	1.32	1.32	28.58	26.25	9.70	9.36
					1.76		31.12		11.23	
					1.76		19.05		6.89	
AL4 – 8	27.07.2021	806	746	27	2.20	2.49	14.61	16.94	6.38	6.47
					3.52		17.15		6.13	
Monthly	Average	307	230	63		2.00		18.82		7.16
Standard	Deviation	214	217	43		0.67		6.34		1.46

Location 4: Gopalpuri Hospital (AL-4)

Table 4E	B : Results of Ai	r Pollutant Co	ncentration	at Gopalpuri Ho	ospital
Parameter		C6H6 [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL4 -1	01.07.2021	1.22	BDL	1.62	502
AL4 -2	05.07.2021	1.16	BDL	1.48	499
AL4 -3	09.07.2021	1.32	BDL	1.62	501
AL4 -4	14.07.2021	1.28	BDL	1.78	489
AL4 – 5	16.07.2021	1.25	BDL	1.46	496
AL4 – 6	21.07.2021	1.18	BDL	1.62	510
AL4 – 7	23.07.2021	1.14	BDL	1.78	502
AL4 – 8	27.07.2021	1.23	BDL	1.48	496
Monthly	Average	1.22	-	1.61	499
Standard	Deviation	0.06	-	0.13	6

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPMvalues at Oil Jetty were 307 μ g/m³, The mean PM₁₀ values were 230 μ g/m³, which is above the permissible limit. PM_{2.5} values were slight above the permissible limit (mean= 63 μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.00 μ g/m³, 18.82 μ g/m³ and 7.16 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.22 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.61 mg/m³, well below the permissible limit of 4.0 mg/m³.

Location 5: Coal	Storage	Area	(AL-5)
------------------	---------	------	--------

	Table 5	: Results o	of Air Pollu	tant Conce	entration	n at Coal	Storage /	Area		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	ug/m3]	NOx [ug/m3]	NH3 [µ	ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.08		42.56		15.83	
AL5 – 1	01.07.2021	428	158	47	4.84	3.37	50.81	48.70	12.76	14.04
					2.20		52.72		13.53	
					9.67		57.16		10.21	
AL5 – 2	05.07.2021	496	150	44	4.84	6.01	49.54	54.84	13.53	14.98
					3.52		57.80		21.19	
					9.67		60.98		16.85	
AL5 – 3	09.07.2021	222	135	76	3.52	7.62	57.16	50.60	18.89	17.44
					9.67		33.66		16.59	
					17.58		22.87		9.45	
AL5 – 4	14.07.2021	349	309	21	4.84	9.23	32.39	31.97	21.70	15.32
					5.28		40.65		14.81	
					9.67		16.51		12.00	
AL5 – 5	16.07.2021	264	123	12	13.19	11.87	22.23	21.38	14.04	14.21
					12.75		25.41		16.59	
					4.40		22.87		16.85	
AL5 – 6	21.07.2021	358	303	33	6.15	5.28	19.05	19.69	16.34	18.47
					5.28		17.15		22.21	
					4.40		27.95		12.76	
AL5 – 7	23.07.2021	268	194	45	5.28	5.28	20.96	23.71	16.59	16.76
					6.15		22.23		20.93	1
					6.15		14.61		10.21	
AL5 – 8	27.07.2021	446	273	45	7.03	6.89	22.23	17.15	14.04	13.19
					7.47		14.61		15.32	
Monthly	/ Average	354	206	40		6.94		33.50		15.55
Standard	Deviation	98	77	19		2.65		15.50		1.84

Table 5B	: Results of Air F	Pollutant Cor	centration	at Coal Stora	ge Area
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL5 – 1	01.07.2021	1.28	BDL	1.82	526
AL5 – 2	AL5 – 2 05.07.2021		BDL	1.78	522
AL5 – 3	09.07.2021	1.16	BDL	1.88	520
AL5 – 4	14.07.2021	1.32	BDL	1.78	530
AL5 – 5	16.07.2021	1.28	BDL	1.82	536
AL5 – 6	21.07.2021	1.22	BDL	1.77	522
AL5 – 7	23.07.2021	1.18	BDL	1.86	526
AL5 – 8	AL5 – 8 27.07.2021		BDL	1.9	530
Monthl	Monthly Average		-	1.83	527
Standard	Deviation	0.07	-	0.05	5

BDL- Below Detection Limit (Detection Limit - NMHC: 0.5 ppm)

NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPM values at Coal storage were 354 μ g/m³. The mean PM₁₀ values were 206 μ g/m³, which is well above the permissible limit. PM_{2.5} values were below the permissible limit (mean = 40 μ g/m³). The average values of SO₂, NO_x and NH₃ were 6.94 μ g/m³, 33.50 μ g/m³ and 15.55 μ g/m³

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was $1.23 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.83 mg/m³, well below the permissible limit of 4.0 mg/m³.

	1	Table 6 : Res	sults of Air F	Pollutant Co	oncentra	tion at Tu	ına Port			
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [μg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					0.88		16.51		5.87	
AL6 -1	01.07.2021	149	97	39	2.20	2.20	17.15	15.24	7.91	7.32
					3.52		12.07		8.17	
					2.20		13.97		12.76	
AL6 – 2	05.07.2021	270	169	97	1.32	2.20	14.61	17.36	11.74	12.00
					3.08		23.50		11.49	
					5.71		21.60		6.89	
AL6 – 3	09.07.2021	513	198	86	6.15	4.98	17.15	20.96	6.64	7.06
					3.08		24.14		7.66	
					2.20		8.26		7.40	
AL6 – 4	14.07.2021	230	97	98	2.64	3.08	9.53	9.53	8.93	8.76
					4.40		10.80		9.96	
					1.76		14.61		10.72	
AL6 – 5	16.07.2021	554	484	18	3.52	2.20	12.07	12.07	10.98	10.89
					1.32		9.53		10.98	
					2.20		6.35		16.34	
AL6 – 6	21.07.2021	405	302	98	1.76	2.64	10.80	9.95	15.57	14.89
					3.96		12.70		12.76	
					1.32		21.60		10.98	
AL6 – 7	23.07.2021	211	128	12	2.20	2.05	13.34	19.05	13.27	11.83
					2.64		22.23		11.23	
					0.88		14.61		10.21	
AL6 – 8	27.07.2021	645	524	12	2.64	2.05	17.15	18.84	8.68	9.36
					2.64		24.77		9.19	
Monthly Average		372	250	58		2.67		15.38		10.26
Standard	Deviation	183	171	41		1.00		4.40		2.65

Location 6: Tuna Port (AL-6)

Table	e 6B : Results of	Air Pollutar	nt Concentra	tion at Tuna	Port	
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]	
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling	
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS	
AL6 -1	01.07.2021	1.2	BDL	1.79	510	
AL6 – 2	L6 – 2 05.07.2021		BDL	1.84	502	
AL6 – 3	09.07.2021	1.19	BDL	1.72	511	
AL6 – 4	14.07.2021	1.15	BDL	1.69	496	
AL6 – 5	16.07.2021	1.06	BDL	1.88	499	
AL6 – 6	21.07.2021	1.11	BDL	1.87	502	
AL6 – 7	23.07.2021	1.06	BDL	1.74	506	
AL6 – 8	27.07.2021	1.15	BDL	1.7	512	
Monthly	Average	1.13	-	1.78	505	
Standard	Deviation	0.05	-	0.08	6	

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm) NS- Not Specified

The mean TSPM values at Tuna Port were 372 μ g/m³, The mean PM₁₀ values were 250 μ g/m³, which is above the permissible limit. PM_{2.5} values were within the permissible limit (mean = 58 μ g/m³ μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.63 μ g/m³, 15.38 μ g/m³ and 10.26 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was $1.13 \ \mu g/m^3$, well below the permissible limit of $5.0 \ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.78 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	ug/m3]	NOx [µ	g/m3]	NH3 [μ	g/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.20		8.05		4.41	
AL7 -1	01.07.2021	119	72	37	2.97	3.08	8.49	8.26	4.42	4.34
					3.06		8.24		4.19	
					3.40		13.07		5.45	
AL7 -2	05.07.2021	104	81	30	3.18	3.52	12.38	12.70	5.29	5.36
					3.99		12.65		5.35	
					4.28		6.35		6.09	-
AL7 -3	09.07.2021	62	73	42	3.60	3.96	6.50	6.35	5.82	5.87
					4.01		6.20		5.69	
					4.18		6.24		18.21	
AL7 -4	14.07.2021	104	74	110	3.87	3.96	6.47	6.35	17.45	17.88
					3.84		6.34		17.97	
					2.82		20.65		9.23	
AL7 -5	16.07.2021	96	63	40	2.65	2.64	19.80	20.33	8.86	8.93
					2.45		20.54		8.69	
					8.02		5.73		2.71	
AL7 -6	21.07.2021	102	68	12	7.18	7.47	6.03	5.72	2.59	2.81
					7.22		5.40		3.13	
					5.17		33.65		3.29	
AL7 -7	23.07.2021	143	95	35	5.10	4.84	33.82	33.57	3.8	3.57
					4.26		33.23		3.62	
					7.26		31.49		4.5	
AL7 -8	27.07.2021	107	74	18	7.49	7.46	31.78	31.46	4.75	4.45
					7.62		31.12		4.1	
Monthly	Monthly Average		75	40		5		16		7
Standard Deviation		23	10	30		2		12		5

Location 7: Signal Building (Vadinar) (AL-7)

Table 7	B : Results of A	ir Pollutant C	oncentratior	at Signal Bu	ilding
Parameter	rameter		HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL7 -1	01.07.2021	1.1	BDL	1.56	489
AL7 – 2	AL7 – 2 05.07.2021		BDL	1.66	488
AL7 – 3	09.07.2021	1.02	BDL	1.72	479
AL7 – 4	14.07.2021	1.1	BDL	1.62	496
AL7 – 5	16.07.2021	1.11	BDL	1.68	488
AL7 – 6	21.07.2021	1.16	BDL	1.58	490
AL7 – 7	23.07.2021	1.12	BDL	1.66	481
AL7 – 8 27.07.2021		1.1	BDL	1.6	475
Monthly	/ Average	1.10	-	1.64	486
Standard	Deviation	0.04	-	0.05	7

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm)

NS_Not Specified

The mean TSPM values at Vadinar Port were 105 μ g/m³. The mean PM₁₀ values were 75 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 40 μ g/m³ μ g/m³). The average values of SO₂, NO_x and NH₃ were 5.0 μ g/m³, 16.0 μ g/m³ and 7.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was 1.10 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.64 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table	8 : Results	of Air Poll	utant Conc	entratio	on at Adn	nin Build	ing		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [ug/m3]	ΝНЗ [μ	ug/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					2.71		10.75		3.42	
AL8 -1	01.07.2021	172	96	25	2.64	2.64	10.55	10.80	3.71	3.57
					2.58		11.09		3.58	
					4.05		8.89		4.51	
AL8 -2	05.07.2021	121	100	16	3.95	3.96	8.81	8.89	5.18	4.85
					3.88		8.96		4.86	
					5.02		5.80		9.48	
AL8 -3	09.07.2021	108	88	14	4.79	4.84	5.70	5.72	8.94	9.19
					4.72		5.67		9.15	
					6.74		5.76		22.65	
AL8 -4	14.07.2021	169	68	84	6.16	6.59	5.52	5.72	23.06	22.61
					6.88		5.89		22.12	
					1.40		18.40		23.67	
AL8 -5	16.07.2021	136	85	37	1.23	1.32	18.53	18.42	22.46	22.98
					1.32		18.33		22.81	
					9.58		9.04		6.65	-
AL8 -6	21.07.2021	140	65	87	9.80	9.67	8.86	8.89	6.72	6.63
					9.62		8.76		6.52	
					6.10		44.85		9.23	
AL8 -5	23.07.2021	168	96	47	6.24	6.15	44.21	44.46	8.46	8.93
					6.10		44.32		9.1	
					3.46		45.00		3.95	
AL8-6	27.07.2021	153	53	40	3.72	3.52	44.05	44.46	4.09	4.08
					3.38		44.32		4.2	
Monthly	/ Average	146	81	44		5		18		10
Standard	Deviation	24	17	28		3		17		8

Location 8: Admin Building (Vadinar) (AL-8)

Table 8	B : Results of A	ir Pollutant	Concentratio	on at Admin	Building
Parameter		С ₆ Н ₆ [µg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL8 -1	01.07.2021	1.1	BDL	1.56	489
AL8-2	L8-2 05.07.2021		BDL	1.66	488
AL8 -3	09.07.2021	1.02	BDL	1.72	479
AL8-4	14.07.2021	1.1	BDL	1.62	496
AL8 -5	16.07.2021	1.11	BDL	1.68	488
AL8-6	21.07.2021	1.16	BDL	1.58	490
AL8-7	23.07.2021	1.12	BDL	1.66	481
AL8-8	AL8-8 27.07.2021		BDL	1.6	475
Monthly	Monthly Average		-	1.64	486
Standard	Deviation	0.04	-	0.05	7

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm)

NS-Not Specified

The overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_x and NH_3 at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPM values at Vadinar Port were 146 µg/m³. The mean PM_{10} values were 81 µg/m³, which is below the permissible limit. $PM_{2.5}$ values were also within the permissible limit (mean = 44.0 µg/m³). The average values of SO_2 , NO_x and NH_3 were $5.0\mu g/m^3$, $18.0 \mu g/m^3$ and $10.0 \mu g/m^3$ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.10 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.64 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various pollutants. However, Near Coal storage area, Marine Bhavan and Oil Jetty area, PM₁₀ values was above the permissible standards. All other pollutants were recorded well below the prescribed limits.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - IS 10500:2012. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.7	7.4	7.6	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1290	1530	1180	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	2500	3010	2200	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	416	436	451	250.0	1000.0
9	Ca as Ca	mg/l	72.14	52.10	64.13	75.0	200.0
10	Mg as Mg	mg/l	51.03	68.04	65.61	30.0	100.0
11	Total Hardness	mg/l	390	410	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.26	0.47	0.21	1.0	1.5
14	Sulphate as SO4	mg/l	140.52	166.8	156	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	10.21	8.45	7.74	45.0	No Relaxation
17	Salinity	%	0.75	0.79	0.81	NS*	NS*
18	Sodium as Na	mg/l	170	168	148	NS*	NS*
19	Potassium as K	mg/l	2.2	2.3	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 9: Drinking Water Quality Monitoring Parameters for Nirman Building 1, P & C building &Main Gate (North) at Kandla

Table 10: Drinking Water Quality Monitoring Parameters for Canteen, West Gate – I & Wharf Area	
at Kandla	

Sr. No.	Parameter	Unit	Canteen	West Gate - I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.3	7.6	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1590	1190	1670	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	3110	2330	3300	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	411	416	426	250.0	1000.0
9	Ca as Ca	mg/l	56.11	64.13	52.10	75.0	200.0
10	Mg as Mg	mg/l	60.75	48.60	63.18	30.0	100.0
11	Total Hardness	mg/l	390	360	390	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.18	0.53	1.05	1.0	1.5
14	Sulphate as SO4	mg/l	166.8	165.6	226.8	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	10.56	11.97	7.53	45.0	No Relaxation
17	Salinity	%	0.74	0.75	0.77	NS*	NS*
18	Sodium as Na	mg/l	133	168	156	NS*	NS*
19	Potassium as K	mg/l	3	2.2	2.4	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	SewaSadan – 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.7	7.9	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1490	1090	1330	500	2000
3	Turbidity	NTU	1	0	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	2990	2090	2680	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	451	456	461	250.0	1000.0
9	Ca as Ca	mg/l	60.12	56.11	64.13	75.0	200.0
10	Mg as Mg	mg/l	60.75	63.18	53.46	30.0	100.0
11	Total Hardness	mg/l	400	400	380	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.93	0.70	1.45	1.0	1.5
14	Sulphate	mg/l	156	171.6	195.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	14.78	16.83	9.50	45.0	No Relaxation
17	Salinity	%	0.81	0.82	0.83	NS*	NS*
18	Sodium as Na	mg/l	162	152	162	NS*	NS*
19	Potassium as K	mg/l	2.3	2.4	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 11: Drinking Water Quality Monitoring Parameters for Sewa sadan – 3, Workshop I & Custom Building at Kandla

Sr. No.	Parameter	Unit	Port Colony Kandla	Hospital Kandla	A.O. Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.8	7.7	7.0	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1210	1450	1010	500	2000
3	Turbidity	NTU	1	2	2	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	2370	2880	2030	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	526	541	491	250.0	1000.0
9	Ca as Ca	mg/l	52.10	52.10	48.10	75.0	200.0
10	Mg as Mg	mg/l	58.32	68.04	75.33	30.0	100.0
11	Total Hardness	mg/l	370	410	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	1.05	1.16	0.93	1.0	1.5
14	Sulphate	mg/l	204	214.8	147.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.01	9.72	9.15	45.0	No Relaxation
17	Salinity	%	0.95	0.98	0.89	NS*	NS*
18	Sodium as Na	mg/l	178	160	180	NS*	NS*
19	Potassium as K	mg/l	2.7	2.3	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 12: Drinking Water Quality Monitoring Parameters for Port Colony Kandla, Hospital Kandla & A.O. Building at Gandhidham

*NS: Not Specified

Sr. No.	Parameter	Unit	School Gopalpuri	Guest House	E - Type Quarter	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.1	7.3	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	990	1410	1330	500	2000
3	Turbidity	NTU	1	0	1	1.0	5.0
4	Odor	-	Odourless	Odourless	Odourless	Agreeable	Agreeable
5	Color	Hazen Units	Colourless	Colourless	Colourless	5.0	15.0
6	Conductivity	μs/cm	1900	2900	2660	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	526	476	516	250.0	1000.0
9	Ca as Ca	mg/l	60.12	56.11	68.14	75.0	200.0
10	Mg as Mg	mg/l	55.89	53.46	53.46	30.0	100.0
11	Total Hardness	mg/l	380	360	390	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	1.08	0.82	1.14	1.0	1.5
14	Sulphate	mg/l	183.6	157.2	150	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	10.35	11.48	10.35	45.0	No Relaxation
17	Salinity	%	0.95	0.86	0.93 NS*		NS*
18	Sodium as Na	mg/l	196	203	200	NS*	NS*
19	Potassium as K	mg/l	2.4	2.3	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 13: Drinking Water Quality Monitoring Parameters for School Gopalpuri, Guest House & E - Type Quarter at Gopalpuri, Gandhidham

Table 14: Drinking Water Quality Monitoring Parameters for F - Type Quarter, Hospital Gopalpuri& Tuna Port

Sr. No.	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.2	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1100	1020	1050	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odourless	Odourless	Odorless	Agreeable	Agreeable
5	Color	Hazen Unit	Colourless	Colourless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2200	2050	1940	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	506	546	592	250.0	1000.0
9	Ca as Ca	mg/l	64.13	72.14	72.14	75.0	200.0
10	Mg as Mg	mg/l	65.61	43.74	36.45	30.0	100.0
11	Total Hardness	mg/l	430	360	330	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.94	1.02	0.46	1.0	1.5
14	Sulphate	mg/l	165.6	159.6	120	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	10.63	9.36	1.33	45.0	No Relaxation
17	Salinity	%	0.91	0.99	0.92	NS*	NS*
18	Sodium as Na	mg/l	180	180	188	NS*	NS*
19	Potassium as K	mg/l	2.5	2.4	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	< 0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr.	Parameter	Unit	Vadinar Jetty	Port Colony	Acceptable Limits as per IS	Permissible Limits as per IS
No.				Vadinar	10500 : 2012	10500 : 2012
1	рН	pH Unit	7.9	7.6	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	950.0	620.0	500	2000
3	Turbidity	NTU	ND	ND	1.0	5.0
4	Odor	-	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1580.0	1030.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	NS*	NS*
8	Chloride	mg/l	445.99	466.04	250.0	1000.0
9	Ca as Ca	mg/l	60.12	52.10	75.0	200.0
10	Mg as Mg	mg/l	63.18	60.75	30.0	100.0
11	Total Hardness	mg/l	410	380	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.99	0.94	1.0	1.5
14	Sulphate	mg/l	16.80	17.64	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	11.48	9.50	45.0	No Relaxation
17	Salinity	%	0.81	0.84	NS*	NS*
18	Sodium as Na	mg/l	142.0	156.0	NS*	NS*
19	Potassium as K	mg/l	2.3	2.4	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty & Port Colony atVadinar

2.3 Results & Discussion

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 7.0 to 7.9 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 600 -1800 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards .

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of July ranged from 1000-3300 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was less than 2.0 mg/L. Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 400-600 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 45 - 80 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

Magnesium

Magnesium value in the studied area varied between 30 - 80 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 330-430 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was below 0.01mg/L and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 - 1.4 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 100 – 330 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were <0.1. There are no specified standard values for Nitrites in Drinking water. The mean Nitrate values in drinking water of KPT was 4.10 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.6 to 0.9 %. There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 100 - 2000 mg/l and Potassium salts ranged from 2.2 to 3.0 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well below the permissible limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 Conclusions

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (Db).

3.2 Results

Sr. No.	Location	Day Time Average Noise Level (SPL) in dB(A)	Night Time Average Noise Level (SPL) in dB(A)
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM
1	Marine Bhavan	60.71	55.49
2	Nirman Building 1	58.02	52.12
3	Tuna Port	53.16	46.37
4	Main Gate North	56.47	53.21
5	West Gate 1	61.41	53.6
6	Canteen Area	56.78	48.45
7	Main Road	59.41	56.44
8	ATM Building	63.81	55.02
9	Wharf Area /Jetty Area	65.66	56.59
10	Port & Custom Office	53.59	49.22
		Vadinar Port	
11	Entrance Gate of Vadinar Port	56.32	54.2
12	Nr. Port Colony, Vadinar	55.5	54.8
13	Nr. Vadinar Jetty	58.76	55.4

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

3.3 Conclusions- Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all ten locations at Deendayal Port ranged from 56.25 dB(A) to 69.51 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all ten locations of Deendayal Port ranged from 48.28 dB to 62.33 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

4.1 Methodology

The soil samples were collected in the month of July 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 Results

Table-17: Chemical Characteristics of Soil in the Study Area

					Station	Name		
			SL1	SL2	SL3	SL4	SL5	SL6
Sr. No.	Parameter	Unit	Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony
			Near main gate of Port	10 m away from main gate		n creek at tide	Va	dinar
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	рН	-	8.56	8.11	8.38	8.33	8.12	8.42
3	Electrical Conductivity	μs/cm	26,800.0	23,800.0	23,700.0	16,260.0	509.0	419.0
4	Moisture	%	23.66	22.09	24.41	23.65	9.44	7.59
5	Total Organic Carbon	%	0.16	0.24	0.32	0.10	0.20	0.12
6	Alkalinity	mg/kg	140.14	140.14	100.10	80.08	100.10	60.06
7	Total Nitrogen	%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Chloride	mg/kg	3,908.6	4,309.5	6,114.0	3,959.0	39.3	68.7
9	Sulphate	mg/kg	203.0	177.9	113.8	93.8	13.4	15.5
10	Phosphorus	mg/kg	0.97	0.80	1.24	1.77	0.80	0.97
11	Potassium	mg/kg	779.4	644.4	1,135.8	766.8	129.6	180.0
12	Sodium	mg/kg	2,241.0	3,556.8	3,981.6	3,038.4	1,220.0	1,445.4
13	Calcium	mg/kg	144.29	128.22	168.30	224.40	104.20	56.11
14	Copper as Cu	mg/kg	42.6	61.2	38.2	22.6	16.2	23
15	Lead as Pb	mg/kg	4.2	3.2	3.6	3.8	ND	ND
16	Nickel as Ni	mg/kg	36.2	31.6	39.4	22.6	18.3	21.2
17	Zinc as Zn	mg/kg	58.60	39.25	52.4	46.60	46.80	38.20
18	Cadmium as Cd	mg/kg	ND	ND	ND	ND	ND	ND

4.3 Discussion

- The data shows that value of pH ranges from 8.11 at Nakti Creek to 8.56 at Tuna Creek indicating that all soil samples are neutral to slight basic. Tuna port samples howed maximum conductivity of 26,800µmhos/cm, while Nakti Creek location showed minimum conductivity of 16,260 µmhos/cm. Conductivity at Vadinar Port was 509 and 419 µmhos/cm at Admin site and Vadinar Port colony respectively.
- Total organic Carbon ranged from 0.1 % to 0.3 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.1 % to 0.2 %.
- The concentration of Phosphorus and Potassium in the soil samples varies from 0.8 to 1.77 mg/kg and 600.0 to 1150 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 0.89 mg/kg and mean concentration of Potassium at Vadinar site was 154.8 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel and Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was not detected in the Soil.

4.4 Conclusion

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 Methodology for STP Monitoring

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. Carboys and were analyzed in laboratory for various parameters.

5.2 Results

Kandla STP

Table 18: Sewage Water Monitoring at Kandla STP (1st Week)

Date of Sampling	05.07.2021

Sr. No.	Parameters	Unit	Results		
		Unit	KPT STP I/L	KPT STP O/L	
1	рН	pH unit	7.5	7.8	
2	Total Suspended Solids	mg/l	125.4	64.3	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	333.3	102	
5	BOD @ 27 °C	mg/l	110.0	26.0	
Aeration Tank					
6	MLSS	mg/l	18.0		
7	MLVSS	%	88.0		

Date of Sampling			15.07.202	1	
Sr. No.	Parameters	Unit	Res KPT STP I/L	sults KPT STP O/L	
1	рН	pH unit	7.6	7.68	
2	Total Suspended Solids	mg/l	350	46	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	585	98	
5	BOD @ 27 °C	mg/l	196.0	26.0	
Aeration Tank					
6	MLSS	mg/l	24.0		
7	MLVSS	%	8	2.0	

Table 19: Sewage Water Monitoring at Kandla STP (2nd Week)

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

Date of Sampling			20.07.202	1	
Cr. No. Dorrowstowe		11	Results		
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L	
1	рН	pH unit	7.73	7.61	
2	Total Suspended Solids	mg/l	192.6	62	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	222	20	
5	BOD @ 27 °C	mg/l	68.0	8.0	
Aeration Tank					
6	MLSS	mg/l	16.0		
7	MLVSS	%	86.0		

26.07.2021

Sr. No.	Parameters	11	Results		
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L	
1	рН	pH unit	Plant was not working		
2	Total Suspended Solids	mg/l			
3	Residual Chlorine	mg/l			
4	COD	mg/l			
5	BOD @ 27 °C	mg/l			
	Aeration Tank				
6	MLSS	mg/l		-	
7	MLVSS	%		-	

Table 21: Sewage Wate	er Monitoring at Kandla	STP (4 th Week)
-----------------------	-------------------------	----------------------------

Date of Sampling

• Gopalpuri Colony STP

Table 22: Sewage Water Monitoring at Gopalpuri STP (1st Week)

Date of Sampling 05.07.2021

	Parameters	Unit	Results		
Sr. No.			Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.7	7.63	
2	Total Suspended Solids	mg/l	408.3	38.3	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	262.6	102	
5	BOD @ 27 °C	mg/l	82.0	28.0	
Aeration Tank					
6	MLSS	mg/l	12.0		
7	MLVSS	%	92.0		

15.07.2021

			Res	esults	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.3	7.43	
2	Total Suspended Solids	mg/l	333	69	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	444.4	103	
5	BOD @ 27 °C	mg/l	142.0	28.0	
Aeration Tank					
6	MLSS	mg/l	16.0		
7	MLVSS	%	89.0		

 Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date of Sampling			20.07.202	1	
			Res	sults	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.39	7.43	
2	Total Suspended Solids	mg/l	166.6	36.7	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	230	58	
5	BOD @ 27 °C	mg/l	70.0	19.0	
Aeration Tank					
6	MLSS	mg/l	12.0		
7	MLVSS	%	92.0		

Date of Sampling		26.07.2021					
			Res	sults			
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L			
1	рН	pH unit	7.28	7.4			
2	Total Suspended Solids	mg/l	160	38			
3	Residual Chlorine	mg/l	<1.0	<0.5			
4	COD	mg/l	210	62			
5	BOD @ 27 °C	mg/l	62.0	19.0			
	Aeration Tank						
6	MLSS	mg/l	11.0				
7	MLVSS	%	96.0				

Table 25: Sewage Water Monitoring at Gopalpuri STP (4th Week)

Vadinar STP •

Table 26: Sewage	Water Monitoring a	t Vadinar STP (1 st Week)
------------------	--------------------	--------------------------------------

Date of Sampling		05.07.2021		
			Resu	ults
Sr. No.	r. No. Parameters		Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.23	
2	Total Suspended Solids	mg/l	8	
3	Residual Chlorine	mg/l	70.0	NOT
4	COD	mg/l	86.0	WORKING
5	BOD @ 27 °C	mg/l	27.0	

15.07.2021

			Resu	ults	
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.22		
2	Total Suspended Solids	mg/l	62		
3	Residual Chlorine	mg/l	<1.0	NOT WORKING	
4	COD	mg/l	82.0		
5	BOD @ 27 °C	mg/l	27.0		

Table 27: Sewage Water Monitoring at Vadinar STP (2nd Week)

Date of Sampling

 Table 28: Sewage Water Monitoring at Vadinar STP (3rd Week)

Date of Sampling			20.07.2021	
Sr. No.	Parameters	Unit	Resu Vadinar STP I/L	ults Vadinar O/L
1	рН	pH unit	7.22	
2	Total Suspended Solids	mg/l	62	
3	Residual Chlorine	mg/l	<1.0	NOT WORKING
4	COD	mg/l	82.0	
5	BOD @ 27 °C	mg/l	27.0	

26.07.2021

			Resi	ults
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.18	
2	Total Suspended Solids	mg/l	72	
3	Residual Chlorine	mg/l	<1.0	NOT WORKING
4	COD	mg/l	80.0	
5	BOD @ 27 °C	mg/l	26.0	

Table 29: Sewage Water Monitoring at Vadinar STP (4th Week)

Date of Sampling

5.3 Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea. Also, the STP at Vadinar is also non-functional and thus, steps should be taken to commission the STP at Vadinar Port. Hence, currently only inlet samples are collected and analysed. And the sample of kandla stp was not collected in the last week of July 2021 as plant was not working.

6. Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decisionmaking. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 10th & 12th July -2021 in harbor regions of KPT and on 10th July-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 17th & 19th July 2021 in harbor regions of KPT. 17th July -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month .Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek
	2 in Nakti creek
	1 in Khori creek
	1 near Vadinar Jetty
	1 near 1 st SBM
Total Number of locations	8

Sampling Locations

6.1 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

	Parameters	Unit	ŀ	andla Creek Ne	ear KPT colony (1)
Sr.	Parameters	Unit		23°0'58"N	70°13'22."E	
No.			Sprin	g Tide	Neap Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.29	7.25	7.13	7.15
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	32.0	31.8	32.1	32.6
5	Turbidity	NTU	30	28	35	27
6	Total Dissolved Solids	mg/l	37802.0	23743	43720.0	43881.0
7	Total Suspended Solids	mg/l	624	412	409	261
8	Total Solids	mg/l	38426.2	24155.4	44129.0	44142.0
9	DO	mg/l	4.5	5	4.9	5.3
10	COD	mg/l	72.0	68.0	74.0	76.0
11	BOD	mg/l	<2	<2	<2	<2
12	Silica	mg/l	0.23	0.38	0.30	0.48
13	Phosphate	mg/l	0.31	0.28	0.19	0.35
14	Sulphate	mg/l	2856	2556	2076	2160
15	Nitrate	mg/l	2.10	2.04	2.40	2.04
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	521.04	561.12	521.04	440.88
18	Magnesium	mg/l	1798.2	1798.2	1773.9	1871.1
19	Sodium	mg/l	14122.0	14820.0	10110.0	10872.0
20	Potassium	mg/l	325.0	289.0	321.0	289.0
21	Iron	mg/l	1.12	1.42	1.52	1.45
22	Chromium	mg/l	0.12	0.13	0.12	0.11
23	Copper	mg/l	0.12	0.19	0.06	0.08
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.07	0.06	0.05	0.06
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.20	0.19	0.11	0.12
28	Zinc	mg/l	0.05	0.06	0.06	0.07

Table 30: Marine Water Quality Monitoring Parameters for location near KPT colony

				Near passenge	er Jetty One (2)		
Sr.	Parameters	Unit		23° 0'18 "N 70°13'31"E			
No.			Sprin	g Tide	Near	Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	5.3	4.7	7.3	7.27	
2	Color	-	80.0	76.0	Colorless	Colorless	
3	Odor	-	<2	<2	Odorless	Odorless	
4	Salinity	ppt	0.32	0.68	33.0	32.6	
5	Turbidity	NTU	0.32	0.26	22	28	
6	Total Dissolved Solids	mg/l	2976	2748	46102.0	47052.0	
7	Total Suspended Solids	mg/l	2.25	2.03	211	312	
8	Total Solids	mg/l	<0.05	<0.05	46313.0	47364.0	
9	DO	mg/l	521.04	521.04	4.6	4.9	
10	COD	mg/l	1846.8	1773.9	86.0	79.0	
11	BOD	mg/l	11052.0	13425.0	<2	<2	
12	Silica	mg/l	325.0	306.0	0.39	0.72	
13	Phosphate	mg/l	1.55	1.62	0.34	0.30	
14	Sulphate	mg/l	0.12	0.14	1956	2520	
15	Nitrate	mg/l	0.18	0.16	1.74	2.52	
16	Nitrite	mg/l	<0.01	<0.01	<0.05	<0.05	
17	Calcium	mg/l	0.07	0.05	480.96	480.96	
18	Magnesium	mg/l	<0.001	<0.001	1822.5	1822.5	
19	Sodium	mg/l	0.28	0.16	11011.0	10452.0	
20	Potassium	mg/l	0.05	0.06	333.0	315.0	
21	Iron	mg/l	5.3	4.7	1.56	1.89	
22	Chromium	mg/l	80.0	76.0	0.16	0.14	
23	Copper	mg/l	<2	<2	0.09	0.08	
24	Arsenic	mg/l	0.32	0.68	<0.01	<0.01	
25	Cadmium	mg/l	0.32	0.26	0.06	0.07	
26	Mercury	mg/l	2976	2748	<0.001	<0.001	
27	Lead	mg/l	2.25	2.03	0.16	0.19	
28	Zinc	mg/l	<0.05	<0.05	0.06	0.08	

Table 31: Marine Water Quality Monitoring Parameters for location near passenger Jetty One at Kandla

			Near Coal Berth				
Sr.	Parameters	Unit	22°59'12"N 70°13'40"E				
No.			Sprin	g Tide	Near	o Tide	
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.51	7.30	7.29	7.5	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.6	32.8	32.4	33.1	
5	Turbidity	NTU	35	47	35	47	
6	Total Dissolved Solids	mg/l	40788	35363	41086.0	42830.0	
7	Total Suspended Solids	mg/l	563	601	215	161	
8	Total Solids	mg/l	41351.3	35964.2	41301.0	42991.0	
9	DO	mg/l	4.8	5	4.8	5	
10	COD	mg/l	88.0	70.0	90.0	79.0	
11	BOD	mg/l	<2	<2	<2	<2	
12	Silica	mg/l	0.30	0.34	0.42	0.36	
13	Phosphate	mg/l	0.28	0.32	0.35	0.38	
14	Sulphate	mg/l	2580	3444	3156	3240	
15	Nitrate	mg/l	1.93	2.10	2.56	2.46	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	561.12	480.96	561.12	601.2	
18	Magnesium	mg/l	1725.3	1798.2	1725.3	1725.3	
19	Sodium	mg/l	15555.0	13252.0	11052.0	11412.0	
20	Potassium	mg/l	389.0	296.0	315.0	296.0	
21	Iron	mg/l	1.47	2.02	2.10	2.02	
22	Chromium	mg/l	0.19	0.15	0.12	0.20	
23	Copper	mg/l	0.14	0.12	0.06	0.10	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.06	0.08	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.20	0.18	0.10	0.12	
28	Zinc	mg/l	0.08	0.06	0.07	0.06	

Table 32: Marine Water Quality Monitoring Parameters for location Near Coal Berth

			КРТ 4				
Sr.	Parameters	Unit	Near 15/16 Berth				
No.			Sprin	g Tide	Near	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.25	7.20	7.39	7.45	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.4	32.8	32.4	32.2	
5	Turbidity	NTU	50	29	51	55	
6	Total Dissolved Solids	mg/l	35588	33113	43563.0	44059.0	
7	Total Suspended Solids	mg/l	407	420	213	265	
8	Total Solids	mg/l	35995.3	33533.4	43776.0	44324.0	
9	DO	mg/l	5.2	4.8	5.3	4.7	
10	COD	mg/l	68.0	79.0	76.0	86.0	
11	BOD	mg/l	<2	<2	<2	<2	
12	Silica	mg/l	0.81	0.29	0.79	0.37	
13	Phosphate	mg/l	0.26	0.34	0.43	0.42	
14	Sulphate	mg/l	2388	2652	2280	2376	
15	Nitrate	mg/l	1.74	1.96	2.10	2.57	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	601.20	561.12	601.2	561.12	
18	Magnesium	mg/l	1749.6	1822.5	1725.3	1798.2	
19	Sodium	mg/l	10026.0	11252.0	10512.0	9899.0	
20	Potassium	mg/l	302.0	378.0	266.0	275.0	
21	Iron	mg/l	1.66	1.48	1.45	1.60	
22	Chromium	mg/l	0.16	0.16	0.18	0.16	
23	Copper	mg/l	0.15	0.10	0.12	0.10	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.07	0.06	0.06	0.05	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.16	0.2	0.08	0.10	
28	Zinc	mg/l	0.07	0.08	0.05	0.05	

Table 33: Marine Water Quality Monitoring Parameters for location Khori creek at Kandla

				Nakti Creek N	Near Tuna Port		
Sr.	Parameters	Unit		22°57'49."N	70° 7'0.67"E	0.67"E	
No.			Sprin	g Tide	Near	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.29	7.35	7.2	7.28	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.6	33.2	33.6	33.0	
5	Turbidity	NTU	35	29	29	29	
6	Total Dissolved Solids	mg/l	38200	18212	46852.0	47695.0	
7	Total Suspended Solids	mg/l	324	214	200	196	
8	Total Solids	mg/l	38524.4	18426.2	47052.0	47891.0	
9	DO	mg/l	5.1	5.1	4.9	5	
10	COD	mg/l	80.0	68.0	89.0	78.0	
11	BOD	mg/l	<2	<2	<2	<2	
12	Silica	mg/l	0.26	0.29	0.62	0.30	
13	Phosphate	mg/l	0.28	0.26	0.31	0.38	
14	Sulphate	mg/l	2964	3408	3240	3156	
15	Nitrate	mg/l	1.95	2.18	2.56	2.49	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	561.12	521.04	601.2	440.88	
18	Magnesium	mg/l	1822.5	1749.6	1798.2	1822.5	
19	Sodium	mg/l	11256.0	12625.0	11021.0	11425.0	
20	Potassium	mg/l	302.0	366.0	396.0	378.0	
21	Iron	mg/l	1.83	1.76	2.02	2.11	
22	Chromium	mg/l	0.15	0.18	0.20	0.18	
23	Copper	mg/l	0.12	0.11	0.16	0.10	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.06	0.07	0.08	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.18	0.19	0.12	0.16	
28	Zinc	mg/l	0.06	0.05	0.06	0.07	

Table 34: Marine Water Quality Monitoring Parameters for location Nakti Creek near Tuna Port

Nakti Creek Near NH-8A Unit 23° 02'01"N 70° 09'31"E **Parameters** Sr. No. **Spring Tide** Neap Tide Tide \rightarrow **High Tide** Low Tide **High Tide** Low Tide 1 pН pH unit 7.37 7.37 Color 2 Colorless Colorless _ Odor Odorless Odorless 3 -4 33.4 32.4 Salinity ppt 5 NTU 27 33 Turbidity 6 **Total Dissolved Solids** mg/l 35166 42125.0 7 180 164.3 **Total Suspended Solids** mg/l 8 **Total Solids** 35346.3 42289.3 mg/l 9 5 DO mg/l 5.5 10 COD mg/l 72.0 79.0 11 BOD mg/l <2 <2 12 Silica mg/l 0.61 0.62 13 Phosphate mg/l 0.30 0.39 Sampling Sampling not 14 Sulphate mg/l 2988 3036 possible not possible during Low during Low 15 Nitrate mg/l 2.43 2.72 Tide Tide < 0.05 < 0.05 16 Nitrite mg/l 601.20 521.04 17 Calcium mg/l 18 Magnesium mg/l 1749.6 1749.6 14485.0 19 Sodium mg/l 11528.0 396.0 20 Potassium mg/l 311.0 21 1.52 2.06 Iron mg/l 22 Chromium mg/l 0.16 0.19 Copper 23 mg/l 0.16 0.11 24 Arsenic < 0.01 < 0.01 mg/l 0.04 0.06 25 Cadmium mg/l < 0.001 < 0.001 26 Mercury mg/l 27 Lead mg/l 0.17 0.10 28 Zinc mg/l 0.06 0.07

Table 35: Marine Water Quality Monitoring Parameters for location Nakti Creek Near NH-8A atKandla

	Parameters	Unit	Nr.Vadinar Jetty				
Sr.			22°26'25.26"N 69°40'20.41"E				
No.			Sprin	g Tide	Neap Tide		
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.60	7.45	7.5	7.8	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	33.2	32.6	33.0	33.1	
5	Turbidity	NTU	32	28	35	25	
6	Total Dissolved Solids	mg/l	37530	35780	43940.0	46623.0	
7	Total Suspended Solids	mg/l	327	417	405.5	399.5	
8	Total Solids	mg/l	37856.5	36197.4	44345.5	47022.5	
9	DO	mg/l	5.2	5.1	5.2	5.1	
10	COD	mg/l	68.0	72.0	78.0	79.0	
11	BOD	mg/l	<2	<2	<2	<2	
12	Silica	mg/l	0.32	0.31	0.42	0.62	
13	Phosphate	mg/l	0.26	0.26	0.35	0.33	
14	Sulphate	mg/l	2136	2352	2220	2304	
15	Nitrate	mg/l	2.72	2.80	2.09	2.44	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	480.96	561.12	561.12	521.04	
18	Magnesium	mg/l	1749.6	1749.6	1579.5	1555.2	
19	Sodium	mg/l	16458.0	15555.0	11425.0	12021.0	
20	Potassium	mg/l	345.0	388.0	316.0	296.0	
21	Iron	mg/l	2.06	2.10	2.45	2.3	
22	Chromium	mg/l	0.16	0.20	0.15	0.16	
23	Copper	mg/l	0.17	0.18	0.09	0.08	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.05	0.06	0.05	0.06	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.14	0.13	0.10	0.10	
28	Zinc	mg/l	0.08	0.09	0.05	0.06	

Table 36: Marine Water Quality Monitoring Parameters for locations Nr. Vadinar Jetty

6.1.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

6.2 Results

The Sediment Quality results are given in below from table no. 34 A & B.

Table 34A: Results of Analysis of Sediment of Kandla &	Vadinar Port (Spring Tide)
--	----------------------------

Sr. No.	Parameters	Unit	KPT - 1	KPT - 2	Khori - 1	Nakti - 1 (Near NH-8A)	Jetty
1	Texture	-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	0.64	1.12	0.39	1.03	1.06
3	Organic Carbon	mg/kg	0.37	0.65	0.22	0.60	0.52
4	Inorganic Phosphate	mg/kg	126.0	125.0	136.0	146.0	152.0
5	Moisture	%	11.70	18.10	6.60	26.1	23.50
6	Aluminium	mg/kg	ND	ND	ND	ND	ND
7	Silica	mg/kg	26.0	24.0	42.0	49.0	41.2
8	Phosphate	mg/kg	9.88	7.82	8.80	9.70	18.00
9	Sulphate	mg/kg	170.0	192.0	259.0	259.0	362.0
10	Nitrite	mg/kg	0.12	0.13	0.11	0.11	0.11
11	Nitrate	mg/kg	9.23	7.82	9.25	9.25	7.52
12	Calcium	mg/kg	144.3	148.0	132.0	124.0	169.0
13	Magnesium	mg/kg	165.2	214.0	122.0	136.0	162.0
14	Sodium	mg/kg	2221.0	1686.0	1882.0	1775.0	3785.0
15	Potassium	mg/kg	641.0	542.0	738.0	562.0	658.0
16	Chromium	mg/kg	123	145	126	130	162
17	Nickel	mg/kg	24.8	22.5	18.9	26.02	38
18	Copper	mg/kg	48	42	20.6	27.5	23.6
19	Zinc	mg/kg	32.60	36.00	30.40	36.00	32.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND
21	Lead	mg/kg	2.8	1.8	1.2	4.5	5.8
22	Mercury	mg/kg	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND

*Grab samples could not be collected due high current at KPT 3, Natki Creek Near Tuna port & Vadinar SBM

Sr. No.	Parameters	Unit	KPT - 1	KPT - 2	Jetty
1	Texture	-	Sandy loam	Sandy loam	Sandy loam
2	Organic Matter	mg/kg	0.74	1.10	1.10
3	Organic Carbon	mg/kg	0.52	0.62	0.63
4	Inorganic Phosphate	mg/kg	162.0	142.0	162.0
5	Moisture	%	15.62	14.20	21.52
6	Aluminium	mg/kg	ND	ND	ND
7	Silica	mg/kg	16.60	20.30	39.2
8	Phosphate	mg/kg	9.8	7.26	16.66
9	Sulphate	mg/kg	342.0	280.0	289.0
10	Nitrite	mg/kg	0.10	0.11	0.1
11	Nitrate	mg/kg	10.6	9.8	8.02
12	Calcium	mg/kg	141.0	152.0	178.0
13	Magnesium	mg/kg	156.0	214.0	206.0
14	Sodium	mg/kg	2210.0	1786.0	3682.0
15	Potassium	mg/kg	590.0	562.0	666.0
16	Chromium	mg/kg	136	149	158
17	Nickel	mg/kg	26.2	23.5	32
18	Copper	mg/kg	52	46	18.2
19	Zinc	mg/kg	33.20	34.00	22.00
20	Cadmium	mg/kg	ND	ND	ND
21	Lead	mg/kg	2.4	2.2	4.6
22	Mercury	mg/kg	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND

Table 34B: Results of Analysis of Sediment of Kandla & Vadinar Port (Neap Tide)

*Grab samples could not be collected due high current at KPT 3,Khori, Natki Creek Near Tuna Port, Vadinar Jetty and Vadinar SBM

REPORT

ON

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPT HARBOUR AREA, NEAR BY CREEKS

For

DEENDAYAL PORT TRUST

JULY, 2021

INTRODUCTION:

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decision-making. The National Conservation Strategy and Policy Statement on Environment and Development, (1992)aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

MARINE ENVIRONMENT:

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on 10th July, 2021 in in harbour region of DPT, and on 12thJuly, 2021 in creeks near by the port during spring tide .The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 17th July, 2021 in harbour region of DPT and on 19thJuly, 2021 in creeks near by the port during neap tidal condition.

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of DPT harbour area andone stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons(density and their population).

monitoring requirement	Number of locations
Kandla creek	3 in Kandla creek
Nakti creek	2 in Nakti creek
Khori Creek	1 in Khori creek
Total Number of locations	6

TABLE #1 SAMPLING LOCATIONS

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval.

50 litters of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litter of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of 20µm mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litter of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone.

The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and

zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos*meaning "passively drifting or wandering") is defined as drifting or free-floating organisms are categorised into phytoplankton (organisms having an autotrophic mode of nutrition) and zooplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae).The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

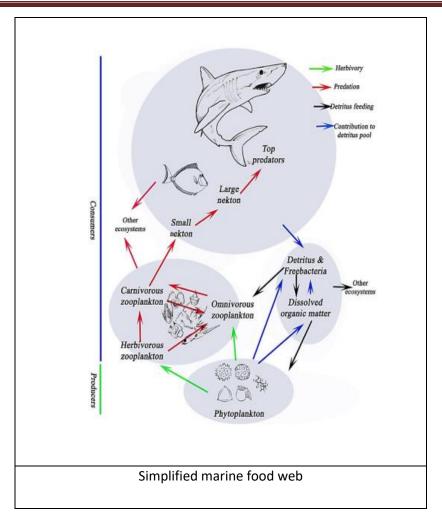
Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts.

Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community is a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryProduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.


Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are organisms which live a brief planktonic life, such as the benthic crustaceans (cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.

Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of fish, shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda), and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton may also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 15-30minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton in each microscopic field was thus counted. When first microscopic field row was finished the next

consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sediment–water interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining:

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom

tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (*S*) and evenness (*J*)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

- relatively few successful species in the habitat
- the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment
- food webs which are relatively simple
- change in the environment would probably have quite serious effects

High species diversity suggests:

- a greater number of successful species and a more stable ecosystem
- more ecological niches are available and the environment is less likely to be hostile complex food webs
- environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness(*S*) is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic human-induced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness(*S*) is simply the number of species present in an ecosystem. This index makes no use of

relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduce community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 are characterized as heavily polluted

$$H' = -\sum_{j=l}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin –a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.511 -0.921mg/m³.in harbour region of DPT during sampling done in spring tide period of July, 2021. In the nearby creeks chlorophyll-a was DCPL/DPT/20-21/15 -JULY - 2021

varying from 0.173-0.980 mg/m³.Pheophytin –a level was below detectable limit- the all the sampling stations during spring in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.391 -0.835mg/m³.in harbour region of DPT during sampling done in neap tide period of July, 2021. In the nearby creeks chlorophyll-a was varying from 0.308-0.991 mg/m³. Pheophytin –a level was below detectable limit- the all the sampling stations during spring in the harbour region of DPT

TABLE #2 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN JULY,2021

Sr.N o.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³					
DPTHARBOUR AREA										
1	KPT1	High tide	0.629	BDL	42.14					
		Low tide	0.921	BDL	61.71					
2	КРТ 2	High tide	0.745	BDL	49.92					
		Low tide	0.558	BDL	37.39					
3	КРТ З	High tide	0.511	BDL	34.24					
		Low tide	0.598	BDL	40.06					
		С	REEKS							
4	KPT-4 Khori-I	High tide	0.425	BDL	28.48					
		Low tide	0.473	BDL	31.69					
5	KPT-5 Nakti-I	High tide	0.714	BDL	47.84					
		Low tide	0.980	BDL	65.66					
6	KPT-5 Nakti-II	High tide	0.173	BDL	11.59					

BDL: Below Detectable Limit.

	LING STATIONS IN DP				-
Sr.N o.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHA	RBOUR AREA		
1	KPT1	High tide	0.730	BDL	48.91
		Low tide	0.835	BDL	55.94
2	КРТ 2	High tide	0.391	BDL	26.20
		Low tide	0.484	BDL	32.43
3	КРТ З	High tide	0.612	BDL	41.00
		Low tide	0.513	BDL	34.37
		C	CREEKS		
4	KPT-4 Khori-I	High tide	0.385	BDL	25.80
		Low tide	0.497	BDL	33.30
5	KPT-5 Nakti-I	High tide	0.991	BDL	66.39
		Low tide	0.692	BDL	46.36
6	KPT-5 Nakti-II	High tide	0.308	BDL	20.64

TABLE #3 VARIATIONS IN CHLOROPHYLL –aPHEOPHYTIN- a AND ALGAL BIOMASS FROM

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN JULY,2021

BDL: Below Detectable Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide. The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by,Diatoms andblue green algae during spring tide period.Diatoms were represented by 14 genera. Blue green wererepresented by onegenera .during the sampling conducted in spring tide in July,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 68 -196 units/ L during high tide period and 171-212 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms andBlue green algae during spring tide period.Diatoms were represented by 14genera and Blue green algae were represented two genera during the sampling conducted in Neap tide in July , 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 86-224 units/ L during high tide period and 222-254 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices :

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.896 -2.495 with an average of 2.315during the sampling conducted in High tide period of spring tide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 2.054-2.334 with an average of 2.170 during the consecutive in low tide period .

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 2.245-2.630 with an average of 2.495 during the sampling conducted in High tide period of Neaptide While .Margalef's diversity index (Species Richness) S ofphytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 2.003-2.709 with an average of 2.232 during the consecutive in low tide period .

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.878-0.959 (H'(log10)) between selected sampling stations with an average value of 0.905 during high tide period of spring tide .Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.863-0.904 (H'(log10)) between selected sampling stations with an average value of 0.892 during consecutive lowtide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.960-1.025 (H'(log10)) between selected sampling stations with an average value of 0.990. during high tide period of neap tide . Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.969-1.008 (H'(log10)) between selected sampling stations with an average value of 0.990 during consecutive low tide. Typical values are generally between 1.5 and 3.5 in most ecological DCPL/DPT/20-21/15-JULY - 2021 studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.837- 0.878 between selected sampling stations with an average of 0.855 during high tide period of spring tide . Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.840- 0.856 between selected sampling stations with an average of 0.849 during consecutive low tide . Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tideperiod during neap tide also, which was varying from 0.872-0.891 with an average value of 0.881 between selected sampling stations during high tide period and varying from 0.882-0.889 with an average value of 0.885 between selected sampling stations during stations during consecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	183	14/15	93.33	2.495	0.906	0.8502
TIDE	2	154	13/15	86.66	2.382	0.8957	0.8537
	3	159	13/15	86.66	2.367	0.8948	0.8424
	4	188	13/15	86.66	2.292	0.8783	0.8372
	5	196	14/15	93.33	2.463	0.9587	0.8667
	6	68	9/15	60	1.896	0.899	0.8784
LOW	1	171	13/15	86.66	2.334	0.9041	0.8535
TIDE	2	212	12/15	80	2.054	0.8992	0.8565
	3	197	13/15	86.66	2.271	0.89	0.8406
	4	203	12/15	80	2.07	0.8634	0.8401
	5	179	12/15	80	2.121	0.9037	0.856

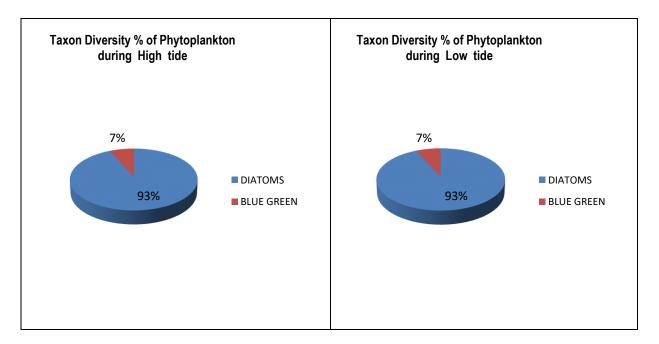
JULY,2021

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN JULY2021

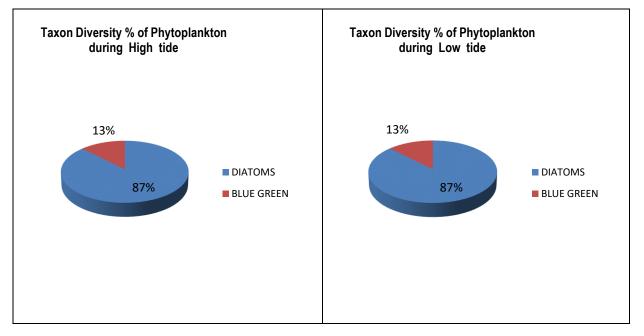
Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	205	15/16	93.75	2.63	1.002	0.8735
TIDE	2	184	14/16	87.5	2.493	0.9603	0.872
	3	221	14/16	87.5	2.408	0.9762	0.8773
	4	213	15/16	93.75	2.611	1.025	0.8905
	5	224	15/16	93.75	2.587	1.011	0.8859
	6	86	11/16	68.75	2.245	0.9685	0.8914
LOW	1	243	12/16	75	2.003	0.9696	0.8823
TIDE	2	222	12/16	75	2.036	0.9893	0.8893
	3	222	13/16	81.25	2.221	1.001	0.8872
	4	254	16/16	100	2.709	1.008	0.883
	5	239	13/16	81.25	2.191	0.985	0.8864

Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR


Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	6	DIATOMS	68-194	14/15	93.33
HIGH	surface	C C	BLUE GREEN	0-2	1/15	6.67
TIDE			TOTAL PHYTO	68-196	15	-
			PLANKTON			
LOW			DIATOMS	170-211	14/15	93.33
TIDE	Sub	5	BLUE GREEN	0-1	1/15	6.67
	surface		TOTAL PHYTO	171-212	15	-
			PLANKTON			

AREA, NEAR BY CREEKS DURING SPRING TIDE IN JULY,2021

Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR


Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level
	Sub	6	DIATOMS	74-202	14/16	87.5
HIGH TIDE	surface		BLUE GREEN TOTAL PHYTO PLANKTON	12-26 86-224	2/16 16	- 12.5
LOW			DIATOMS	201-236	14/16	87.5
TIDE	Sub	5	BLUE GREEN	16-21	2/16	12.5
	surface		TOTAL PHYTO PLANKTON	222-254	16	-

AREA, NEAR BY CREEKS DURING NEAP TIDE IN JULY,2021

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide

Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khoricreek) during high tide period and low tide period of spring tide and Neap tide in July 2021 . The Zooplankton community of the sub surface water in the harbour

DCPL/DPT/20-21/15 -JULY - 2021

and nearby creeks during spring tide was represented by mainly four groups, Tintinids, Copepods, Foraminiferans and larval forms of Crustacea, Molluscans and Polychates. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Tintinids, Copepods, Arrow worms, Mysids and larval forms of Crustaceans, Mollusacansand Polychates,.

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 59-142x10³ N/ m³ during high tide and 123 -147x10³ N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 59-147x10³ N/ m³ during high tide and 141-164 N/ L during low tide of Neap Tide period.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla Harbour region and nearby creeks was varying from 2.850 -3.366 with an average of 3.040 during the sampling conducted in High tide period.Margalef's diversity index (Species Richness) S of Zooplankton communities varying from.2.263-2.701 with an average of 2.562 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla Harbour region and nearby creeks sampling stations was varying from3.188-4. 133 with an average of 3.754 during the sampling conducted in high tide and varying from.2.802 -4.314 with an average of 3.548 during the sampling conducted in low tide during Neap tide periodShannon-Wiener's index:

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 1.011-1.080 (H'(log10)) between selected sampling stations with an average value of 1.050 (H'(log10)) during high tide period of spring tide .Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.953 -1.011 (H'(log10)) between selected sampling stations with an average value of 0.988 (H'(log10)) during consecutive low tide period .

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.884-1.145 (H'(log10)) between selected sampling

DCPL/DPT/20-21/15 -JULY - 2021

stations with an average value of 1.075 (H'(log10)) during high tide period of Neap tide. Shannon-Wiener's Index (H) of Zooplankton communities in the samplingstations in Kandla Harbour region and nearby creeks was in the range of 1.004- 1.177 (H'(log10)) between selected sampling stations with an average value of 1.056 (H'(log10)) during consecutive low tide period .Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 most of sampling stations except few in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period, which was varying from 0.882-0.911between selected sampling stations with an average of 0.899 during high tide period and was varying from 0.875- 0.888 with an average value of 0.882 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks during high tide and low tide period except few, which was varying from 0.829-0.907 between selected sampling stations with an average of 0.887 during high tide period and was varying from 0.872- 0.913 with an average value of 0.886 between selected sampling stations during consecutive low tide

This low species diversity suggests a relatively low number of successful species in this habitat. Environment is quite stressful with relatively few ecological niches and only few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Table # 8 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	125 X10 ³	15/19	78.95	2.9	1.02	0.8906
	2	116 X10 ³	16/19	84.21	3.156	1.08	0.9076
HIGH	3	116 X10 ³	17/19	89.47	3.366	1.076	0.8961
TIDE	4	142 X10 ³	16/19	84.21	3.027	1.011	0.8821
	5	136 X10 ³	15/19	78.95	2.85	1.077	0.9077
	6	59 X10 ³	13/19	68.42	2.943	1.037	0.9112
	1	129 X10 ³	12/19	63.16	2.263	0.9534	0.8751
LOW	2	123 X10 ³	14/19	73.68	2.701	0.9887	0.8835
TIDE	3	145 X10 ³	14/19	73.68	2.612	1.011	0.8879
TIDE	4	147 X10 ³	14/19	73.68	2.605	0.9919	0.8823
	5	140 X10 ³	14/19	73.68	2.631	0.9951	0.8808

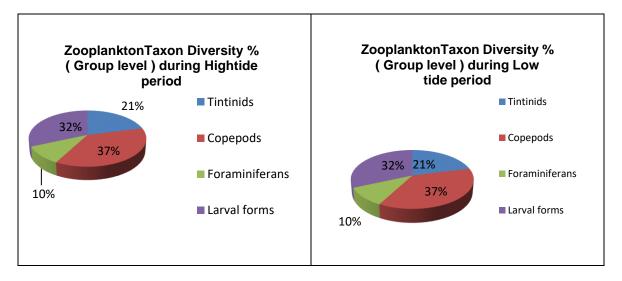
STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN JULY,2021

Table # 9 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit Y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	162 X10 ³	19/23	82.61	3.538	1.094	0.895
	2	152 X10	20/23	86.96	3.782	1.088	0.8906
HIGH	3	146 X10	20/23	86.96	3.812	1.106	0.9011
TIDE	4	174 X10	22/23	95.65	4.071	1.134	0.9015
	5	161 X10	22/23	95.65	4.133	1.145	0.9069
	6	59 X10	14/23	60.86	3.188	0.8842	0.8299
	1	141 X10	17/23	73.91	3.233	1.004	0.8719
	2	142 X10	18/23	78.26	3.43	1.022	0.8797
LOW TIDE	3	148 X10	15/23	65.22	2.802	1.034	0.8911
TIDE	4	164 X10	23/23	100	4.314	1.177	0.9134
	5	156 X10	21/23	91.30	3.961	1.046	0.8781

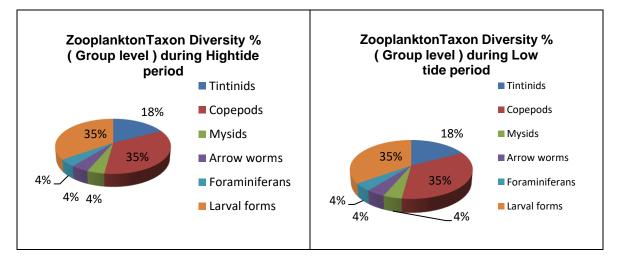
STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS DURING NEAP TIDE IN JULY, 2021

Table # 10 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	3-10	4/19	21.05
			Copepods	34-77	7/19	36.84
			Foraminiferans	2-6	2/19	10.53
HIGH TIDE	Sub	6	Larval forms	20-57	6/19	31.58
	surface		TOTAL ZOOPLANKTON NO/L	59-142	19	-
			Tintinids	3-8	4/19	21.05
			Copepods	76-80	7/19	36.84
			Foraminiferans	0-2	2/19	10.53
LOW TIDE	Sub	5	Larval forms	40-63	6/19	31.58
	surface		TOTAL ZOOPLANKTON NO/L	123-147	19	-

HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN JULY2021

Table # 11 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


HARBOUR AREA, NEAR BY CREEKS DURING NEAPTIDE IN JULY,2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	4-13	4/23	17.39
			Copepods	37-83	8/23	34.78
			Mysids	0-2	1/23	4.35
HIGH TIDE	Sub	6	Arrow worms	1-2	1/23	4.35
	surface		Foraminiferans	0-4	1/23	4.35
			Larval forms	17-74	8/23	34.78
			TOTAL ZOOPLANKTON NO/L	59-173	23	-
			Tintinids	3-13	4/23	17.39
			Copepods	70-84	8/23	34.78
			Mysids	0-2	1/23	4.35
LOW TIDE	Sub	5	Arrow worms	0-2	1/23	4.35
	surface		Foraminiferans	0-2	1/23	4.35
			Larval forms	60-70	8/23	34.78
			TOTAL ZOOPLANKTON NO/L	140-164	23	

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURINGSPRING

				1			
GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
BLUE GREEN ALAGE	Cynophyta	Cynophyceae	Stigonematales	Stigonemataceae	Stigonemasp	B1	Rare
		Coscinodiscophyceae	Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Rare
			Cassingdiageles	Consideration	Coscinodiscus sp.	D2	Abundant
			Coscinodiscales	Coscinodiscaceae	Palmeriasp	D3	Occasional
			Triceratiales	Tricorationee	Odontellasp	D4	Frequent
				Triceratiaceae	Triceratiumsp.	D5	Frequent
			Biddulphiales	Biddulphiaceae	Biddulphiasp	D6	Abundant
DIATOMS	Bacillariophyta		Hemiaulales	Bellerocheaceae	Bellerocheasp	D7	Occasional
				Hemiaulaceae	<u>Eucampia</u> sp	D8	Rare
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D9	Frequent
			Thalassiosirales	Thalassiosiraceae	Thalassiosirasp	D10	Rare
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D11	Rare
			Bacillariales	Bacillariaceae	<u>Nitzschia</u> sp	D12	Rare
			Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D13	Dominant
		Fragilariophyceae	Fragilariales	Fragilariaceae	Synedrasp	D14	Occasional

TIDE OF JUIY,2021

DCPL/DPT/20-21/15 -JULY - 2021

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURING ANDNEAP TIDE OF JULY,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
BLUE GREEN	Cynophyta	Cynophyceae	Chlorococcales	Chroococcaceae	Microcystis sp.	B1	Occasional
ALAGE	-,,	-, -, ,	Stigonematales	Stigonemataceae	Stigonemasp	B2	Frequent
		Coscinodiscophyceae	Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Rare
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
			cosciliouiscales	coscinouiscaccac	Palmeriasp	D3	Occasional
			Triceratiales	Triceratiaceae	Odontellasp	D4	Frequent
				merallaceae	Triceratiumsp.	D5	Abundant
DIATOMS			Biddulphiales	Biddulphiaceae	Biddulphiasp	D6	Dominant
DIATONIS	Bacillariophyta		Hemiaulales	Bellerocheaceae	Bellerocheasp	D7	Occasional
				Hemiaulaceae	Eucampiasp	D8	Rare
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D9	Abundant
			Thalassiosirales	Thalassiosiraceae	Thalassiosirasp	D10	Frequent
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D11	Rare
			Bacillariales	Bacillariaceae	Nitzschiasp	D12	Rare
		Fragilariophyceae	Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D13	Frequent
			Fragilariales	Fragilariaceae	Synedrasp	D14	Frequent

DCPL/DPT/20-21/15 -JULY - 2021

Detox Corporation Pvt.Ltd.,Surat

TABLE #13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING SPRINGTIDEOF JULY,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Rare
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida		Tintinnopsisfailakkaensis	T2	Rare
	CILIOPHORA	Spirotricitea	Tintiniua	Codonellidae	Tintinnopsisgracilis	T3	Rare
					Tintinnopsis radix	T4	Rare
					Acrocalanus sp.	C1	Abundant
COPEPODS			Calanoida	Paracalanidae	Bestiolina sp.	C2	Rare
		Crustacea	Calaliolua		Parvocalanus sp.	C3	Occasional
	ATHROPODA	Sub class copepoda		Temoridae	Temora s <mark>p</mark> .	C4	Frequent
	ATHROPODA	Sub class copepoua	Cyclopoida	Oithonidae	Oithona sp.	C5	Frequent
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C6	Abundant
				Euterpinidae	Euterpina	C7	Occasional
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
(Brachyuraian LARVAE	ARTHROPODA CRUSTACEA	DECAPODA (BRACHYURA)			Zoea larvae	L2	Rare
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L3	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L4	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura		Opisthobranchia larvae		L5	Rare
POLYCHAETE LARVAE	ANNELIDA				Trochophore larvae	L6	Frequent
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Globigerinidae	Globigerina sp.	F1	Rare
FURAIVIINIFERA	FURAIVIINIFERA	Giobotrialamea	NULAIIIUA	Rotalliidae	Rotalia sp.	F2	Rare

DCPL/DPT/20-21/15 -JULY - 2021

Detox Corporation Pvt.Ltd.,Surat

TABLE # 13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING NEAPTIDE OF JULY,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Rare
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida		Tintinnopsisfailakkaensis	T2	Occasional
TINTINDS	CILIOPHORA	Spirotriciea	Tintininda	Codonellidae	Tintinnopsisgracilis	Т3	Occasional
					Tintinnopsis radix	T4	Rare
				Paracalanidae	Acrocalanus sp.	C1	Abundant
				Faracalanidae	Parvocalanus sp.	C2	Rare
		Crustanaa	Calanoida	Eucalanidae	Subeucalanus sp.	C3	Frequent
		Crustacea Sub class		Temoridae	Temora sp.	C5	Frequent
COPEPODS	ATHROPODA			Acartiidae	Acartia sp.	C6	Occasional
		copepoda	Cyclopoida	Oithonidae	Oithona sp.	C7	Frequent
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C8	Abundant
			Harpacticoida	Euterpinidae	Euterpina sp.	C9	Frequent
ARROW WORMS	CHAETOGNATHA	Sagittoideae	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
MYSIDS	ATHROPODA CRUSTACEA	Malacostraca	Mysida, Decapoda	Penaeidae	Metapenaeus sp.	M1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
POLYCHAETE LARVA	ANNELIDA	Polychaeta			Trochophore larvae	L2	Occasional
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Rare
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L4	Occasional

DCPL/DPT/20-21/15 -JULY - 2021

Detox Corporation Pvt.Ltd.,Surat

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L5	Rare
BRACHYURAIAN LARVAE	ARTHROPODA CRUSTACEA	DECAPODA (BRACHYURA)			Zoea larvae	L6	Occasional
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L7	Occasional
ECHINODERMATA larvae	ECHINODERMATA	Ophiuroidea			Ophiopluetus larvae	L8	Occasional
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Rotalliidae	Rotalia sp.	F1	Rare

DCPL/DPT/20-21/15 -JULY - 2021

BENTHIC ORGANISMS:

No Benthic organisms were observed in the collected sediments by using the Van-veen grabs during the sampling conducted IN spring tide period as well as Neap tide period from DPT harbour region and nearby creek except few dead shells.

DCPL/DPT/20-21/15 - JULY -2021

7. Meteorological Data

Automatic Weather station have been installed in SevaSadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 28.5 °C. The day-time maximum temperature was 32.1 °C. The mean night time temperature was 30.3 °C. The minimum mean night time temperature recorded was 27.8 °C.

Air Pressure

The mean absolute air pressure for the month of July was 1002.4 hpa, whereas the mean relative pressure was 1000.2 hpa. The maximum absolute air pressure recorded for the month of July was 1004.1 hpa.

Heat Index

The mean day-time heat index for the month of July was 36.1 °C. The maximum heat index recorded was 43°C.

Solar Radiation

The mean Solar Radiation in July was 158.4 w/m². The maximum solar radiation recorded in the month of July was 751.7 w/m².

Humidity

The mean day-time humidity was 80.3 % for the month of July and mean night time humidity was 71.2%. Maximum humidity recorded during day-time was 89.0 % and maximum humidity recorded during night-time was 85.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of July was 11.72 km/hour (i.e. 2.7 mtr/sec). Maximum wind velocity recorded was 47.2 Km/hr (13 mtr/sec). The wind direction was mostly S to SW.

Rainfall

The mean Rainfall in July was 58.1 mm. The maximum Rainfall recorded in the month of July was 132.7 mm.

DCPL/DPT/20-21/15 - JULY -2021

Conclusive Summary and Remedial measures Suggested

- The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM₁₀ values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 μg/m³)andPM_{2.5}was above permissible limits at Coal storage location(Limit 60 μg/m³).
- Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).
- Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.
- The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board. The STP at Deendayal Port is not fully operational and STP at Vadinar Port was found non-operational.

Reasons for higher Values of PM₁₀

- Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.
- Also, the coal laden trucks are not always covered with tarpaulin sheets and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM₁₀ during the month of July, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

- Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)
- Sewage Treatment Plan at Vadinar Port is not working. Hence, it is recommended to commission the sewage treatment plant at Vadinar immediately.
- Except for the higher values of PM₁₀ at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- 2) BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae Indian Council of Agricultural research New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north –West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A.,NAIRK.K.C., VENUGOPL,P. BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- 19) KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.
- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- 21) Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.
- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.

DCPL/DPT/20-21/15 - JULY -2021

- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology, Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de franceA. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi. M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.

DCPL/DPT/20-21/15 - JULY -2021

ENVIRONMENTAL MONITORING REPORT FOR DEENDAYAL PORT TRUST

: DCPL/DPT/20-21/16	REPORT NO.
: Aug 2021	Month
: 01	Issue No
: 00	Revision No
: DETOX CORPORATION PVT. LTD., SURAT	Prepared by
: DETOX CORPORATION PVT. LTD., SURAT	Prepared by

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Quality Monitoring	1 - 17
2	Drinking Water Quality Monitoring	18 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 79
7	Meteorological Observations	80
8	Conclusive Summary & Remedial Measures	81-82
	References	83- 84

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformity in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_X, NH₃ & Benzene, and Grab-sampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_X. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}.

The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of August 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

	Tal	ole 1 : Resu	Its of Air P	ollutant Co	ncentra	tion at M	arine Bł	avan			
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [NH3 [µg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3		80 μg/m3		80 μg/m3		400 μg/m3	
					2.64		20.33		9.45		
AL1 – 1	04.08.2021	328	179	68	0.62	2.40	19.05	21.17	9.70	9.87	
					3.96		24.14		10.47		
					7.03		14.61		13.79		
AL1 – 2	06.08.2021	659	211	75	5.71	6.15	15.88	20.11	13.53	13.70	
					5.71		29.85		13.79		
					8.35		29.85		12.00		
AL1 – 3	11.08.2021	813	247	70	7.91	7.03	31.76	27.10	13.02	11.49	
					4.84		19.69		9.45		
					2.20		18.42		14.55		
AL1 – 4	13.08.2021	549	272	89	1.76	2.05	15.88	17.15	17.69	15.68	
					2.20		17.15		14.81		
					3.96		19.69		5.36		
AL1 – 5	18.08.2021	442	300	45	4.40	3.66	20.33	21.38	12.00	9.62	
					2.64		24.14		11.49		
					3.08		17.78		10.47		
AL1 - 6	20.08.2021	360	299	88	4.40	3.22	21.60	16.51	5.36	6.13	
					2.20		10.16		2.55		
					2.64		13.34		14.81		
AL1 - 7	25.08.2021	340	290	72	3.52	2.64	22.23	18.00	10.47	11.57	
					1.76]	18.42		9.45		
					3.08		27.31		10.98		
AL1 – 8	27.08.2021	471	299	63	1.76	2.93	30.49	26.25	5.62	7.83	
					3.96	1	20.96		6.89		
Monthly	Average	495	262	71		3.76		20.96		10.74	
Standard	Deviation	171	46	14		1.83		3.96		3.08	

Location 1: Marine Bhavan (AL1)

NS: Not Specified

Table 1E	B : Results of A	Air Pollutant	Concentra	tion at Marin	ne Bhavan
Parameter		C ₆ H ₆ [μg/m ³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL1 – 1	04.08.2021	1.06	BDL	1.86	488
AL1 – 2	06.08.2021	1.22	BDL	1.74	496
AL1 – 3	11.08.2021	1.28	BDL	1.7	499
AL1 – 4	13.08.2021	1.2	BDL	1.68	501
AL1 – 5	18.08.2021	1.21	BDL	1.72	490
AL1 - 6	20.08.2021	1.06	BDL	1.62	497
AL1 – 7	25.08.2021	1.12	BDL	1.52	488
AL1 – 8	27.08.2021	1.06	BDL	1.72	496
Monthly	Average	1.15	-	1.70	494
Standard	Standard Deviation		-	0.10	5

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm)

NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_X and NH₃ is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM₁₀. The mean TSPM value at Marine Bhavan was 495 μ g/m³, The mean PM₁₀ values were 262.0 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly above the permissible limit (mean = 71 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit. These were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Marine Bhavan. The mean Benzene concentration was 1.15 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.70 mg/m³, well below the permissible limit of 4.0 mg/m³.

	т	able 2 : Res	ults of Air	Pollutant C	oncentra	ation at O	il Jetty			
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.52		18.42		13.53	
AL2 – 1	04.08.2021	299	222	55	4.84	3.81	12.70	16.30	14.81	14.81
					3.08		17.78		16.08	
					1.32		12.07		7.40	
AL2 – 2	06.08.2021	837	394	89	3.08	3.08	10.80	12.28	11.74	10.47
					4.84		13.97		12.25	
					8.35		33.66		4.08	
AL2 – 3	11.08.2021	403	350	49	8.79	9.38	19.05	25.62	6.89	6.89
					10.99		24.14		9.70	
					3.08		17.78		7.15	
AL2 – 4	13.08.2021	511	327	82	1.76	2.05	15.88	16.30	10.72	9.10
					1.32		15.24		9.45	
					3.08		17.15		9.70	
AL2 – 5	18.08.2021	567	281	75	1.32	2.20	26.04	18.63	5.36	7.83
					2.20		12.70		8.42	
					6.15		22.87		5.36	
AL2 – 6	20.08.2021	728	490	90	7.91	5.86	8.89	15.88	8.42	8.00
					3.52		15.88		10.21	
					0.88		24.14		9.96	
AL2 – 7	25.08.2021	344	237	67	0.88	1.17	15.88	20.75	12.76	10.38
					1.76		22.23		8.42	
					1.32		15.88		5.87	
AL2 – 8	27.08.2021	475	278	76	1.76	2.20	24.14	17.78	9.19	8.51
					3.52		13.34	1	10.47	
Monthly	Average	520	322	73		3.72		17.94		9.50
Standard	Deviation	186	88	15		2.70		3.95		2.47

Location 2: Oil Jetty (AL2)

NS: Not Specified

Tab	Table 2B : Results of Air Pollutant Concentration at Oil Jetty									
Parameter		С6Н6 [µg/m³]	HC* ppm	CO [mg/m³]	CO₂ [ppm]					
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling					
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS					
AL2 -1	04.08.2021	1.22	BDL	1.86	492					
AL2 -2	06.08.2021	1.06	BDL	1.72	496					
AL2 -3	11.08.2021	1.26	BDL	1.76	489					
AL2 -4	13.08.2021	1.23	BDL	1.66	500					
AL2 – 5	18.08.2021	1.2	BDL	1.84	496					
AL2 – 6	20.08.2021	1.16	BDL	1.74	489					
AL2 -7	25.08.2021	1.18	BDL	1.76	476					
AL2 – 8	27.08.2021	1.23	BDL	1.7	490					
Monthly	Monthly Average		-	1.76	491					
Standard	Deviation	0.06	-	0.07	7					

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 520 μ g/m³. The mean PM₁₀ values were 322 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly above the permissible limit (mean = 73 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit; The mean concentration of SO₂, NO_x and NH₃ were 3.72 μ g/m³, 17.94 μ g/m³ and 9.50 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was $1.19 \ \mu g/m^3$. Well below the permissible limit of $5.0 \ \mu g/m^3$. , HC's were below the detectable limit and Carbon Monoxide concentration was $1.76 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Table 3 : Results of Air Pollutant Concentration at Estate Office											
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µ	ıg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3	
					1.32		25.41		14.04		
AL3 – 1	04.08.2021	159	97	35	2.20	2.05	33.66	23.92	17.36	16.68	
					2.64		12.70		18.64		
					3.96		12.70		8.68	_	
AL3 – 2	06.08.2021	473	176	60	21.98	9.96	10.80	13.13	7.15	7.40	
					3.96		15.88		6.38		
					3.96		15.24		8.42	_	
AL3 – 3	11.08.2021	379	253	74	5.28	4.25	20.96	20.75	7.15	6.47	
					3.52		26.04		3.83		
					4.84		9.53		12.76		
AL3 – 4	13.08.2021	652	331	67	1.76	2.49	9.53	9.32	9.70	9.62	
					0.88		8.89		6.38		
					4.84		24.14		9.70		
AL3 – 5	18.08.2021	643	457	92	3.52	3.52	34.30	24.77	10.47	38.21	
					2.20		15.88		94.45		
					4.84		20.96		10.21		
AL3 – 6	20.08.2021	721	389	75	2.20	4.25	15.88	20.96	9.45	8.25	
					5.71		26.04		5.11		
					4.40		22.23		12.00		
AL3 – 7	25.08.2021	298	208	68	3.52	3.22	17.78	19.05	12.00	11.66	
					1.76		17.15		10.98		
					2.64		16.51		11.49		
AL3 – 8	27.08.2021	574	300	96	4.40	2.93	17.15	17.57	9.45	8.76	
					1.76		19.05		5.36		
Monthly	Average	488	276	71		4.08		18.68		13.38	
Standard	Deviation	196	117	19		2.50		5.26		10.53	

Location 3: Kandla Colony – Estate Office (AL-3)

NS: Not Specified

Table 3E	Table 3B : Results of Air Pollutant Concentration at Kandla Port Colony									
Parameter		С ₆ Н ₆ [µg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]					
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling					
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS					
AL3 -1	04.08.2021	1.12	BDL	1.84	480					
AL3 -2	06.08.2021	1.16	BDL	1.76	488					
AL3 -3	11.08.2021	1.22	BDL	1.8	496					
AL3 -4	13.08.2021	1.26	BDL	1.74	490					
AL3 – 5	18.08.2021	1.2	BDL	1.79	496					
AL3 – 6	20.08.2021	1.06	BDL	1.82	499					
AL3 – 7	25.08.2021	1.11	BDL	1.8	500					
AL3 – 8	27.08.2021	1.07	BDL	1.76	490					
Monthly	y Average	1.15	-	1.79	492					
Standard	Deviation	0.07	-	0.03	7					

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPM values at Oil Jetty were 488 μ g/m³, The mean PM₁₀ values were 276 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly above the permissible limit (mean = 71 μ g/m³). The average values of SO₂, NO_x and NH3 were 4.08 μ g/m³, 18.68 μ g/m³ and 13.38 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was $1.15 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.79 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Table 4 : Results of Air Pollutant Concentration at Gopalpuri Hospital										
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3] NOx [μg/m3		µg/m3]	NH3 [µg/m3]		
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					3.08		7.62		9.70	
AL4 -1	04.08.2021	128	77	28	2.64	3.08	17.15	12.70	10.21	8.76
					3.52		13.34		6.38	
					3.52		6.35		5.36	
AL4 -2	06.08.2021	180	115	38	0.88	2.05	11.43	10.16	5.11	5.02
					1.76		12.70		4.60	
					1.76		11.43		4.34	
AL4 -3	11.08.2021	228	110	48	3.96	3.08	6.35	9.95	5.36	4.85
					3.52		12.07		4.85	
					3.08		11.43		7.15	
AL4 -4	13.08.2021	327	260	60	3.52	3.08	10.80	9.74	4.08	5.62
					2.64		6.99		5.62	
					2.20		15.88		5.36	
AL4 – 5	18.08.2021	269	156	70	3.96	3.08	8.89	14.61	8.93	6.89
					3.08		19.05		6.38	
					3.52		13.97		5.36	
AL4 – 6	20.08.2021	228	113	86	2.20	2.34	8.89	12.91	9.70	9.02
					1.32		15.88		12.00	
					2.20		19.05		6.89	
AL4 – 7	25.08.2021	222	116	49	3.52	2.78	14.61	17.15	8.42	6.72
					2.64		17.78		4.85	
					2.64		12.07		7.91	
AL4 – 8	27.08.2021	249	119	30	3.08	3.08	12.70	12.07	9.19	8.93
					3.52		11.43		9.70	
Monthly Average		229	133	51		2.82		12.41		6.98
Standard	Deviation	59	56	20		0.41		2.56		1.75

Location 4: Gopalpuri Hospital (AL-4)

NS: Not Specified

Table 4B : Results of Air Pollutant Concentration at Gopalpuri Hospital							
Parameter		C6H6 [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]		
Sampling Period	Date	8 hr Grab Sampling		Grab Sampling	Grab Sampling		
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS		
AL4 -1	04.08.2021	1.12	BDL	1.88	490		
AL4 -2	06.08.2021	1.18	BDL	1.76	488		
AL4 -3	11.08.2021	1.26	BDL	1.72	496		
AL4 -4	13.08.2021	1.21	BDL	1.8	500		
AL4 – 5	18.08.2021	1.28	BDL	1.79	482		
AL4 – 6	20.08.2021	1.2	BDL	1.84	493		
AL4 – 7	25.08.2021	1.18	BDL	1.86	498		
AL4 – 8	27.08.2021	1.16	BDL	1.8	490		
Monthly Average		1.20	-	1.81	492		
Standard Deviation		0.05	-	0.05	6		

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPMvalues at Oil Jetty were 229 μ g/m³, The mean PM₁₀ values were 133 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly above the permissible limit (mean= 51 μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.82 μ g/m³, 12.41 μ g/m³ and 6.98 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.20 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.81 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 5 : Results of Air Pollutant Concentration at Coal Storage Area										
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3] NOx [μg/m		ug/m3]	NH3 [µg/m3]		
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					3.08		22.23		9.45	
AL5 – 1	04.08.2021	312	167	69	3.52	3.66	23.50	22.23	7.15	9.53
					4.40		20.96		12.00	
					9.23		20.96		16.59	
AL5 – 2	06.08.2021	530	333	77	5.71	6.15	24.77	20.11	17.87	17.02
					3.52		14.61		16.59	
					10.99		24.14		8.42	
AL5 – 3	11.08.2021	759	394	92	7.47	9.23	25.41	27.74	7.15	7.74
					9.23		33.66		7.66	
					1.76		17.78		13.02	
AL5 – 4	13.08.2021	813	435	94	1.32	1.61	19.05	18.84	8.93	10.30
					1.76		19.69		8.93	
					4.40		21.60		12.00	
AL5 – 5	18.08.2021	700	471	79	4.40	3.96	19.05	22.02	10.47	11.66
					3.08		25.41		12.51	
					3.08		16.51		16.85	
AL5 – 6	20.08.2021	566	427	80	3.52	3.96	15.24	18.00	16.34	15.66
					5.28		22.23		13.79	
					3.96		13.97		10.47	
AL5 – 7	25.08.2021	456	224	76	4.40	4.10	19.69	17.15	9.70	7.04
					3.96		17.78		0.94	
					4.40		23.50		11.49	
AL5 – 8	27.08.2021	249	164	70	3.52	3.66	28.58	27.52	14.04	13.44
					3.08		30.49		14.81	
Monthly Average		548	327	80		4.54		21.70		11.55
Standard	Deviation	204	125	9		2.26		4.07		3.60

Location 5: Coal Storage Area (AL-5)

NS: Not Specified

Table 5B : Results of Air Pollutant Concentration at Coal Storage Area							
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO ₂ [ppm] Grab Sampling		
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling			
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS		
AL5 – 1	04.08.2021	1.06	BDL	1.96	460		
AL5 – 2	06.08.2021	1.11	BDL	1.88	458		
AL5 – 3	11.08.2021	1.26	BDL	1.9	456		
AL5 – 4	13.08.2021	1.3	BDL	1.82	460		
AL5 – 5	18.08.2021	1.26	BDL	1.96	456		
AL5 – 6	20.08.2021	1.22	BDL	1.93	474		
AL5 – 7	25.08.2021	1.38	BDL	1.89	470		
AL5 – 8	27.08.2021	1.30	BDL	1.9	468		
Monthl	y Average	1.24	-	1.91	463		
Standard	Deviation	0.11	-	0.05	7		

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPM values at Coal storage were 548 µg/m³. The mean PM₁₀ values were 327 µg/m³, which is well above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 80 µg/m³). The average values of SO₂, NO_x and NH₃ were 4.54 µg/m³, 21.70 µg/m³ and 11.55 µg/m³

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was $1.24 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.91 \ m g/m^3$, well below the permissible limit of 4.0 mg/m³.

DCPL/DPT/20-21/16 -AUGUST - 2021

Location 6: Tuna Port (AL-6)

	1	Table 6 : Res	ults of Air F	Pollutant Co	oncentra	tion at Tu	ına Port			
Parameters	Date	TSPM [µg/m3]	ΡM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.96		22.23		15.06	
AL6 -1	04.08.2021	133	75	26	2.64	2.93	13.34	15.46	12.25	12.17
					2.20		10.80		9.19	
					2.20		8.26		5.87	
AL6 – 2	06.08.2021	203	149	67	2.20	2.05	10.16	9.10	6.38	6.81
					1.76		8.89		8.17	
					5.28		17.78		6.89	
AL6 – 3	11.08.2021	316	166	44	4.84	4.40	22.23	18.63	4.60	6.47
					3.08		15.88		7.91	
					3.08		5.72		5.36	
AL6 – 4	13.08.2021	530	342	83	1.32	2.05	9.53	7.83	7.91	6.55
					1.76		8.26		6.38	
					0.88		20.96		12.76	
AL6 – 5	18.08.2021	468	291	84	1.76	2.05	12.70	17.15	12.25	12.08
					3.52		17.78		11.23	
					4.40		33.03		10.47	
AL6 – 6	20.08.2021	319	181	63	1.32	3.08	22.87	28.58	15.57	12.93
					3.52		29.85		12.76	
					3.08		15.88		9.96	
AL6 – 7	25.08.2021	256	156	58	2.64	3.22	17.78	17.15	9.45	10.21
					3.96		17.78		11.23	
					2.64		17.15		10.47	
AL6 – 8	27.08.2021	554	375	80	3.08	3.08	12.07	16.30	8.42	9.96
					3.52		19.69		10.98	
Monthly	Average	347	217	63		2.86		16.28		9.65
Standard	Standard Deviation 155		106	20		0.81		6.35		2.71

Table	e 6B : Results of	Air Pollutar	nt Concentra	tion at Tuna	Port
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL6 -1	04.08.2021	1.11	BDL	1.74	460
AL6 – 2	06.08.2021	1.26	BDL	1.89	470
AL6 – 3	11.08.2021	1.2	BDL	1.88	472
AL6 – 4	13.08.2021	1.16	BDL	1.9	466
AL6 – 5	18.08.2021	1.07	BDL	1.97	460
AL6 – 6	20.08.2021	1.11	BDL	1.89	451
AL6 – 7	25.08.2021	1.2	BDL	1.8	460
AL6 – 8	27.08.2021	1.21	BDL	1.82	470
Monthly	Monthly Average		-	1.86	464
Standard Deviation		0.06	-	0.07	7

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm) NS- Not Specified

The mean TSPM values at Tuna Port were 347 μ g/m³, The mean PM₁₀ values were 217 μ g/m³, which is above the permissible limit. PM_{2.5} values were slightly the permissible limit (mean = 63 μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.86 μ g/m³, 16.28 μ g/m³ and 9.65 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was $1.17 \ \mu g/m^3$, well below the permissible limit of $5.0 \ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.86 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Location 7: Signal Building (Vadinar) (AL-7)

	Та	able 7 : Res	sults of Air	Pollutant (Concentr	ation at S	ignal Buildi	ing		
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	ug/m3]	NOx [µ	g/m3]	ΝНЗ [μ	g/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.08		7.62		7.66	
AL7 -1	04.08.2021	144	97	30	2.64	3.08	14.61	11.86	5.36	5.53
					3.52		13.34		3.57	
					3.96		28.58		4.60	
AL7 -2	06.08.2021	180	120	38	4.84	4.98	14.61	17.78	10.47	6.55
					6.15		10.16		4.60	
					2.20		8.89		5.36	
AL7 -3	11.08.2021	148	85	29	3.08	2.34	26.04	16.51	11.49	8.68
					1.76		14.61		9.19	
					2.64		20.33		9.19	
AL7 -4	13.08.2021	165	115	32	0.48	2.07	13.34	14.19	3.57	6.47
					3.08		8.89		6.64	
					4.84		14.61		8.93	
AL7 -5	18.08.2021	151	99	35	3.08	3.96	21.60	16.30	6.38	7.49
					3.96		12.70		7.15	
					3.96		9.53		4.85	
AL7 -6	20.08.2021	173	104	64	3.08	3.81	8.89	11.22	3.57	4.68
					4.40		15.24		5.62	
					3.96		13.34		16.85	
AL7 -7	25.08.2021	168	114	44	0.44	1.67	6.99	13.55	12.00	10.89
					0.62		20.33		3.83]
					6.15		7.62		9.70	
AL7 -8	27.08.2021	113	54	37	1.76	2.78	17.15	12.70	9.45	8.76
					0.44		13.34		7.15	1
Monthly	Monthly Average		98	39		3.1		14.3		7.4
Standard	Deviation	21	21	11		1.1		2.4		2.0

NS: Not Specified

DCPL/DPT/20-21/16 -AUGUST - 2021

Table 7	B : Results of A	ir Pollutant C	oncentratior	at Signal Bu	ilding
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL7 -1	04.08.2021	1.11	BDL	1.9	460
AL7 – 2	06.08.2021	1.2	BDL	1.86	472
AL7 – 3	11.08.2021	1.18	BDL	1.79	460
AL7 – 4	13.08.2021	1.08	BDL	1.86	461
AL7 – 5	18.08.2021	1.12	BDL	1.96	456
AL7 – 6	20.08.2021	1.2	BDL	1.9	460
AL7 – 7	25.08.2021	1.18	BDL	1.88	470
AL7 – 8	27.08.2021	1.1	BDL	1.82	465
Monthly	Monthly Average		-	1.87	463
Standard Deviation		0.05	-	0.05	6

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit - NMHC : 0.5 ppm)

NS_Not Specified

The mean TSPM values at Vadinar Port were 155 μ g/m³. The mean PM₁₀ values were 98 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 39 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.1 μ g/m³, 14.3 μ g/m³ and 7.4 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was $1.15 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.87 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table	8 : Results	of Air Poll	utant Conc	entratio	on at Adn	nin Build	ing		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [ļ	ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					4.84		19.05		7.15	
AL8 -1	04.08.2021	119	55	28	2.64	3.52	22.87	18.42	6.64	6.30
					3.08		13.34		5.11	
					17.58		17.78		7.91	
AL8 -2	06.08.2021	111	56	47	0.44	6.30	19.05	16.73	5.62	8.00
					0.88		13.34		10.47	
					1.76		15.24		4.34	
AL8 -3	11.08.2021	180	100	56	3.52	2.78	22.87	15.24	4.85	5.19
					3.08		7.62		6.38	
					3.96		13.97		8.17	
AL8 -4	13.08.2021	130	77	42	6.15	4.54	10.16	11.86	10.47	7.15
					3.52		11.43		2.81	
					3.96		7.62		7.40	
AL8 -5	18.08.2021	100	68	29	0.88	2.64	8.89	8.89	9.45	7.40
					3.08		10.16		5.36	
					3.52		12.70		8.93	
AL8 -6	20.08.2021	160	97	58	5.28	4.98	10.80	12.70	9.19	8.42
					6.15		14.61		7.15	
					3.52		6.99		12.00	
AL8 -5	25.08.2021	143	65	49	3.96	3.96	17.15	12.49	4.34	8.42
					4.40		13.34		8.93	
					2.20		7.62		8.17	
AL8-6	27.08.2021	160	100	53	3.08	2.93	19.05	11.43	4.60	6.30
					3.52		7.62		6.13	
Monthly	Average	138	77	45		4.0		13.5		7.1
Standard	Standard Deviation		19	12		1.3		3.1		1.2

Location 8: Admin Building (Vadinar) (AL-8)

Table 8	Table 8B : Results of Air Pollutant Concentration at Admin Building									
Parameter		C ₆ H ₆ [μg/m ³] ΗC*		CO [mg/m ³]	CO₂ [ppm]					
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling					
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS					
AL8 -1	04.08.2021	1.12	BDL	1.96	460					
AL8-2	06.08.2021	1.06	BDL	1.86	456					
AL8 -3	11.08.2021	1.11	BDL	1.88	466					
AL8-4	13.08.2021	1.18	BDL	1.9	470					
AL8 -5	18.08.2021	1.26	BDL	1.92	466					
AL8-6	20.08.2021	1.16	BDL	1.96	460					
AL8-7	25.08.2021	1.2	BDL	1.86	456					
AL8-8	27.08.2021	1.26	BDL	1.8	462					
Monthly	Monthly Average		-	1.89	462					
Standard	Standard Deviation		-	0.05	5					

* NMHC- Non- Methane Hydrocarbons

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPM values at Vadinar Port were 138 μ g/m³. The mean PM₁₀ values were 77 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 45.0 μ g/m³). The average values of SO₂, NO_x and NH₃ were 4.0 μ g/m³, 13.5 μ g/m³ and 7.1 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.17 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.89 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various gaseous pollutants. However, Particulate matter as PM₁₀ and PM_{2.5} was found to exceed the limits at locations like Near Coal storage area, Marine Bhavan, Estate Office, Tuna Port and Oil Jetty area.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - IS 10500:2012. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.4	7.3	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	930	1250	890	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1850	2460	1700	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	626	656	541	250.0	1000.0
9	Ca as Ca	mg/l	68.14	60.12	76.15	75.0	200.0
10	Mg as Mg	mg/l	58.32	72.90	68.04	30.0	100.0
11	Total Hardness	mg/l	390	410	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.34	0.41	0.13	1.0	1.5
14	Sulphate as SO4	mg/l	290.4	175.2	200.4	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	6.27	8.10	13.38	45.0	No Relaxation
17	Salinity	%	1.13	1.19	0.98	NS*	NS*
18	Sodium as Na	mg/l	160	178	150	NS*	NS*
19	Potassium as K	mg/l	2.2	2.3	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 9: Drinking Water Quality Monitoring Parameters for Nirman Building 1, P & C building &Main Gate (North) at Kandla

Table 10: Drinking Water Quality Monitoring Parameters for Canteen, West Gate – I & Wharf Area at Kandla

Sr. No.	Parameter	Unit	Canteen	West Gate – I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.6	7.3	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1320	990	1030	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2590	1890	2010	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	717	596	616	250.0	1000.0
9	Ca as Ca	mg/l	64.13	60.12	56.11	75.0	200.0
10	Mg as Mg	mg/l	72.90	70.47	68.04	30.0	100.0
11	Total Hardness	mg/l	390	360	390	200.0	600.0
12	Iron as Fe	mg/l	<0.01	< 0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.44	0.49	0.51	1.0	1.5
14	Sulphate as SO4	mg/l	190.8	198	289.2	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	8.80	10.42	9.50	45.0	No Relaxation
17	Salinity	%	1.29	1.08	1.11	NS*	NS*
18	Sodium as Na	mg/l	130	168	158	NS*	NS*
19	Potassium as K	mg/l	3	2.2	2.4	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	SewaSadan – 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.3	7.8	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	950	1050	1100	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1890	2080	2150	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	742	692	576	250.0	1000.0
9	Ca as Ca	mg/l	76.15	60.12	52.10	75.0	200.0
10	Mg as Mg	mg/l	58.32	68.04	68.04	30.0	100.0
11	Total Hardness	mg/l	400	400	380	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.88	0.59	0.59	1.0	1.5
14	Sulphate	mg/l	219.6	207.6	174	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	13.73	10.21	12.88	45.0	No Relaxation
17	Salinity	%	1.34	1.25	1.04	NS*	NS*
18	Sodium as Na	mg/l	148	150	166	NS*	NS*
19	Potassium as K	mg/l	2.3	2.4	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 11: Drinking Water Quality Monitoring Parameters for Sewa sadan – 3, Workshop I & Custom Building at Kandla

Sr. No.	Parameter	Unit	Port Colony Kandla	Hospital Kandla	A.O. Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.4	7.1	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1080	1350	950	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2100	2670	1890	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	767	712	641	250.0	1000.0
9	Ca as Ca	mg/l	60.12	64.13	56.11	75.0	200.0
10	Mg as Mg	mg/l	70.47	72.90	82.62	30.0	100.0
11	Total Hardness	mg/l	370	410	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.85	0.65	0.93	1.0	1.5
14	Sulphate	mg/l	178.8	202.8	207.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.50	10.21	11.62	45.0	No Relaxation
17	Salinity	%	1.39	1.29	1.16	NS*	NS*
18	Sodium as Na	mg/l	170	164	178	NS*	NS*
19	Potassium as K	mg/l	2.7	2.3	2.8	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 12: Drinking Water Quality Monitoring Parameters for Port Colony Kandla, Hospital Kandla& A.O. Building at Gandhidham

Table 13: Drinking Water Quality Monitoring Parameters for School Gopalpuri, Guest House &E - Type Quarter at Gopalpuri, Gandhidham

Sr. No.	Parameter	Unit	School Gopalpuri	Guest House	E - Type Quarter	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.5	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1010	1350	1080	500	2000
3	Turbidity	NTU	1	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1990	2670	2120	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	697	496	586	250.0	1000.0
9	Ca as Ca	mg/l	56.11	64.13	72.14	75.0	200.0
10	Mg as Mg	mg/l	70.47	53.46	58.32	30.0	100.0
11	Total Hardness	mg/l	380	360	390	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.58	0.80	1.05	1.0	1.5
14	Sulphate	mg/l	175.2	170.4	165.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.50	10.70	9.50	45.0	No Relaxation
17	Salinity	%	1.26	0.90	1.06	NS*	NS*
18	Sodium as Na	mg/l	190	186	189	NS*	NS*
19	Potassium as K	mg/l	2.4	2.3	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 14: Drinking Water Quality Monitoring Parameters for F - Type Quarter, Hospital Gopalpuri& Tuna Port

Sr. No.	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.7	7.5	7.32	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1050	1080	1020	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Unit	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1990	2150	2000	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	626	641	604	250.0	1000.0
9	Ca as Ca	mg/l	76.15	80.16	80.16	75.0	200.0
10	Mg as Mg	mg/l	51.03	60.75	60.75	30.0	100.0
11	Total Hardness	mg/l	430	360	330	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	1.05	0.92	0.46	1.0	1.5
14	Sulphate	mg/l	138	190.8	180	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	10.00	7.96	8.2	45.0	No Relaxation
17	Salinity	%	1.13	1.16	1.09	NS*	NS*
18	Sodium as Na	mg/l	190	186	188	NS*	NS*
19	Potassium as K	mg/l	2.5	2.4	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty & Port Colony at	
Vadinar	

Sr. No.	Parameter	Unit	Vadinar Jetty	Port Colony Vadinar	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.6	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1010	990	500	2000
3	Turbidity	NTU	ND	ND	1.0	5.0
4	Odor	-	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	210.0	990.0	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	NS*	NS*
8	Chloride	mg/l	476	491	250.0	1000.0
9	Ca as Ca	mg/l	64.13	56.11	75.0	200.0
10	Mg as Mg	mg/l	75.33	68.04	30.0	100.0
11	Total Hardness	mg/l	470	420	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.99	0.94	1.0	1.5
14	Sulphate	mg/l	16.80	17.64	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	11.48	9.50	45.0	No Relaxation
17	Salinity	%	0.86	0.89	NS*	NS*
18	Sodium as Na	mg/l	140.0	146.0	NS*	NS*
19	Potassium as K	mg/l	2.2	2.3	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent

2.3 Results & Discussion

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 7.0 to 8.0 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 600 -1800 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards .

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of August ranged from 1000-3300 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was less than 2.0 mg/L. Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 400-800 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 45 - 80 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

DCPL/DPT/20-21/16 -AUGUST - 2021

Magnesium

Magnesium value in the studied area varied between 30 - 85 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 330-470 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was below 0.01mg/L and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 - 1.0 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 10 - 300 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were <0.1. There are no specified standard values for Nitrites in Drinking water. The mean Nitrate values in drinking water of KPT was 6.27 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.8 to 1.3 %. There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 100 - 2000 mg/l and Potassium salts ranged from 2.2 to 3.0 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well below the permissible limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 Conclusions

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (Db).

3.2 Results

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

Sr. No.	Location	Day Time Average Noise Level (SPL) in dB(A)	Night Time Average Noise Level (SPL) in dB(A)
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM
1	Marine Bhavan	52.0	48.9
2	Nirman Building 1	52.7	46.9
3	Tuna Port	56.2	49.8
4	Main Gate North	66.8	60.7
5	West Gate 1	70.4	63.0
6	Canteen Area	54.8	44.7
7	Main Road	65.9	51.1
8	ATM Building	66.4	56.6
9	Wharf Area /Jetty Area	72.2	67.7
10	Port & Custom Office	51.5	46.3
		Vadinar Port	
11	Entrance Gate of Vadinar Port	66.8	53.7
12	Nr. Port Colony, Vadinar	60.4	52.8
13	Nr. Vadinar Jetty	72.5	63.7

3.3 Conclusions- Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all ten locations at Deendayal Port ranged from 52.0 dB(A) to 72.2 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all ten locations of Deendayal Port ranged from 44.7 dB to 67.7 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

4.1 Methodology

The soil samples were collected in the month of August 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 Results

Table-17: Chemical Characteristics of Soil in the Study Area

					Station N	lame		
			SL1	SL2	SL3	SL4	SL5	SL6
Sr. No.	Parameter	Unit	Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony
			Near main gate of Port	10 m away from main gate	Sand from creek at low tide		Vad	dinar
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	рН	-	8.60	8.10	8.42	8.30	8.09	8.32
3	Electrical Conductivity	μs/cm	23,400.0	20,420.0	23,700.0	17,200.0	510.0	400.0
4	Moisture	%	20.42	21.16	23.22	20.12	9.04	8.22
5	Total Organic Carbon	%	0.18	0.18	0.25	0.11	0.21	0.16
6	Alkalinity	mg/kg	60.06	140.04	140.04	60.06	100.10	80.04
7	Total Nitrogen	%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Chloride	mg/kg	4,010.0	4,324.0	5,982.0	4,001.0	42.2	67.8
9	Sulphate	mg/kg	188.0	179.2	110.0	100.0	14.0	16.2
10	Phosphorus	mg/kg	0.90	0.86	1.04	1.62	0.78	0.88
11	Potassium	mg/kg	786.0	656.0	1,162.0	780.0	130.0	182.0
12	Sodium	mg/kg	2,341.0	3,618.0	4,220.0	3,122.0	1,224.0	1,400.0
13	Calcium	mg/kg	160.00	130.00	170.00	220.00	110.00	68.00
14	Copper as Cu	mg/kg	32.2	58.2	42.2	23.4	17.4	23
15	Lead as Pb	mg/kg	3.8	3.8	3.6	4.1	BQL	BQL
16	Nickel as Ni	mg/kg	37.2	32.4	41.2	24.5	19.3	20.4
17	Zinc as Zn	mg/kg	59.36	38.32	53.4	48.50	49.20	40.40
18	Cadmium as Cd	mg/kg	ND	ND	ND	ND	ND	ND

4.3 Discussion

- The data shows that value of pH ranges from 8.42 at Nakti Creek to 8.60 at Tuna Creek indicating that all soil samples are neutral to slight basic. Tuna port samples showed maximum conductivity of 23,400µmhos/cm, while Nakti Creek location showed minimum conductivity of 17,200 µmhos/cm. Conductivity at Vadinar Port was 510 and 400 µmhos/cm at Admin site and Vadinar Port colony respectively.
- Total organic Carbon ranged from 0.1 % to 0.3 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.1 % to 0.2 %.
- The concentration of Phosphorus and Potassium in the soil samples varies from 0.8 to 1.62 mg/kg and 600.0 to 1170 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 0.80 mg/kg and mean concentration of Potassium at Vadinar site was 156 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel and Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was not detected in the Soil.

4.4 Conclusion

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 Methodology for STP Monitoring

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. Carboys and were analyzed in laboratory for various parameters.

5.2 Results

• Kandla STP

Г

Table 18: Sewage Water Monitoring at Kandla STP (1st Week)

Т

Date of Sampling			05.08.202	1		
	D		Results			
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L		
1	рН	pH unit	7.9	7.5		
2	Total Suspended Solids	mg/l	107	101		
3	Residual Chlorine	mg/l	<1.0	<0.5		
4	COD	mg/l	334	108		
5	BOD @ 27 °C	mg/l	118.0	27.0		
Aeration Tank						
6	MLSS	mg/l	12.0			
7	MLVSS	%	88.0			

Date of Sampling			12.08.202	1			
Sr. No.	Parameters	Unit	Results				
1	211		KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.6	7.68			
2	Total Suspended Solids	mg/l	193	101			
3	Residual Chlorine	mg/l	<1.0	<0.5			
4	COD	mg/l	414	104			
5	BOD @ 27 °C	mg/l	136.0	27.0			
	Aeration Tank						
6	MLSS	mg/l	9.0				
7	MLVSS	%	97.0				

Table 19: Sewage Water Monitoring at Kandla STP (2nd Week)

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

D	ate of Sampling		19.08.202	1		
	Damanatana	Results	sults			
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L		
1	рН	pH unit	7.86	7.48		
2	Total Suspended Solids	mg/l	204	104		
3	Residual Chlorine	mg/l	<1.0	<0.5		
4	COD	mg/l	261	70		
5	BOD @ 27 °C	mg/l	87.0	20.0		
	Aeration Tank					
6	MLSS	mg/l	10.0			
7	MLVSS	%	90.0			

Date of Sampling			23.08.202	1			
	_		Results				
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.43	7.16			
2	Total Suspended Solids	mg/l	403.3	150.4			
3	Residual Chlorine	mg/l	<1.0	<1.0			
4	COD	mg/l	313.1	151.5			
5	BOD @ 27 °C	mg/l	106.0	52.0			
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600			
	Aeration Tank						
7.	MLSS	mg/l	33.0				
8	MLVSS	%	8	1.0			

 Table 21: Sewage Water Monitoring at Kandla STP (4th Week)

• Gopalpuri Colony STP

Г

Date of Sampling			05.08.202	1
			Re	sults
Sr. No.	Parameters	Unit	Gopalpuri	Gopalpuri

			Gopalpuri STP I/L	Gopalpuri STP O/L		
1	рН	pH unit	7.76	7.34		
2	Total Suspended Solids	mg/l	98.1	62.4		
3	Residual Chlorine	mg/l	<1.0	<0.5		
4	COD	mg/l	324	102		
5	BOD @ 27 °C	mg/l	110.0	28.0		
Aeration Tank						
6	MLSS	mg/l	12.0			
7	MLVSS	%	92.0			

12.08.2021

			Res	sults	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.72	7.37	
2	Total Suspended Solids	mg/l	406	107	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	320	103	
5	BOD @ 27 °C	mg/l	110.0	26.0	
Aeration Tank					
6	MLSS	mg/l	14.0		
7	MLVSS	%	90.0		

Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date of Sampling		19.08.2021				
			Results			
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L		
1	рН	pH unit	7.71	7.34		
2	Total Suspended Solids	mg/l	404	107		
3	Residual Chlorine	mg/l	<1.0	<0.5		
4	COD	mg/l	351 101			
5	BOD @ 27 °C	mg/l	115.0 23.0			
·	Ae	ration Tank				
6	MLSS	mg/l	16.0			
7	MLVSS	%	88.0			

DCPL/DPT/20-21/16 -AUGUST - 2021

Date of Sampling			23.08.202	1	
			Results		
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.7	7.35	
2	Total Suspended Solids	mg/l	405	107	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	242	101	
5	BOD @ 27 °C	mg/l	80.0	23.0	
6.	Fecal Coliform	MPN Index / 100 ml	- >1600		
	Aer	ation Tank			
7.	MLSS	mg/l	18.0		
8.	MLVSS	%	88.0		

Table 25: Sewage Water Monitoring at Gopalpuri STP (4th Week)

• Vadinar STP

Table 26: Sewage Water Monitoring at Vadinar STP (1st Week)

Date of Sampling			05.08.2021		
			Results		
Sr. No.	Sr. No. Parameters		Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.23		
2	Total Suspended Solids	mg/l	18		
3	Residual Chlorine	mg/l	<1.0	NOT	
4	COD	mg/l	89.0	WORKING	
5	BOD @ 27 °C	mg/l	28.0		

DCPL/DPT/20-21/16 -AUGUST - 2021

Table 27: Sewage Wate	r Monitoring at Vadinar STP	(2 nd Week)
-----------------------	-----------------------------	------------------------

			Re	sults
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.28	
2	Total Suspended Solids	mg/l	60	
3	Residual Chlorine	mg/l	<1.0	NOT
4	COD	mg/l	78.0	WORKING
5	BOD @ 27 °C	mg/l	28.0	

Table 28: Sewage Water Monitoring at Vadinar STP (3rd Week)

Date of Sampling			19.08.2021		
			Results		
Sr. No.	Sr. No. Parameters		Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.32		
2	Total Suspended Solids	mg/l	60		
3	Residual Chlorine	mg/l	<1.0	NOT WORKING	
4	4 COD		80.0		
5	BOD @ 27 °C	mg/l	26.0		

DCPL/DPT/20-21/16 -AUGUST - 2021

Date of Sampling			23.08.2021		
Sr. No. Parameters		Unit	Resi Vadinar STP I/L	ults Vadinar O/L	
1	рН	pH unit	7.18		
2	Total Suspended Solids	mg/l	72		
3	Residual Chlorine	mg/l	<1.0	NOT WORKING	
4	COD	mg/l	80.0		
5	BOD @ 27 °C	mg/l	26.0		

Table 29: Sewage Water Monitoring at Vadinar STP (4th Week)

5.3 Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea. Also, the STP at Vadinar is also non-functional and thus, steps should be taken to commission the STP at Vadinar Port. Hence, currently only inlet samples are collected and analysed.

6. Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decisionmaking. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 9th & 10th August-2021 in harbor regions of KPT and on 9th August-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 16th & 17th August 2021 in harbor regions of KPT. 16th August -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month .Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek
	2 in Nakti creek
	1 in Khori creek
	1 near Vadinar Jetty
	1 near 1 st SBM
Total Number of locations	8

Sampling Locations

6.1 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

DCPL/DPT/20-21/16 -AUGUST - 2021

	Parameters	Unit	Kandla Creek Near KPT colony (1)				
Sr.	raiameters	onic	23°0'58"N 70°13'22."E				
No.			Spring Tide		-	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.16	7.14	7.3	7.26	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.2	32.0	32.0	31.8	
5	Turbidity	NTU	39	28	32	29	
6	Total Dissolved Solids	mg/l	42660	41056	37802.0	43665.0	
7	Total Suspended Solids	mg/l	675	979	614.2	372.4	
8	Total Solids	mg/l	46346	44350	46346.0	44369.4	
9	DO	mg/l	4.5	3.9	4.6	5.1	
10	COD	mg/l	80.0	78.0	78.0	80.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	7.82	6.09	0.49	0.73	
13	Phosphate	mg/l	0.57	0.14	0.16	0.17	
14	Sulphate	mg/l	2628	1656	2352	2076	
15	Nitrate	mg/l	2.22	2.03	2.53	3.77	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	1322.64	1242.48	601.2	480.96	
18	Magnesium	mg/l	1239.3	1336.5	1749.6	1773.9	
19	Sodium	mg/l	11012.0	10828.0	11022.0	10202.0	
20	Potassium	mg/l	340.0	300.0	320.0	302.0	
21	Iron	mg/l	1.32	1.40	1.20	1.30	
22	Chromium	mg/l	0.16	0.14	0.12	0.11	
23	Copper	mg/l	0.06	0.07	0.14	0.18	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.05	0.06	0.07	0.06	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.11	0.12	0.18	0.19	
28	Zinc	mg/l	0.08	0.06	0.07	0.06	

Table 30: Marine Water Quality Monitoring Parameters for location near KPT colony

				Near passenge	er Jetty One (2)	
Sr.	Parameters	Unit	23° 0'18 "N 70°13'31"E			
No.			Sprin	g Tide	Neap	o Tide
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.28	7.25	7.39	7.42
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	31.7	32.6	32.0	32.2
5	Turbidity	NTU	37	27	42	47
6	Total Dissolved Solids	mg/l	41612	45181	41735.0	36900.0
7	Total Suspended Solids	mg/l	717	808	414	432.9
8	Total Solids	mg/l	47224	44028	37224.0	44028.0
9	DO	mg/l	4.4	4.1	5.4	4.8
10	COD	mg/l	90.0	86.0	86.0	82.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	9.44	7.84	0.53	0.64
13	Phosphate	mg/l	0.06	0.11	0.18	0.19
14	Sulphate	mg/l	2760	1572	2652	2616
15	Nitrate	mg/l	2.36	2.25	3.45	4.29
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	1202.40	1122.24	561.12	480.96
18	Magnesium	mg/l	1336.5	1385.1	1798.2	1749.6
19	Sodium	mg/l	11752.0	10652.0	11120.0	12120.0
20	Potassium	mg/l	306.0	290.0	289.0	322.0
21	Iron	mg/l	1.56	1.66	1.50	1.40
22	Chromium	mg/l	0.13	0.12	0.10	0.12
23	Copper	mg/l	0.08	0.09	0.15	0.16
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.06	0.07	0.07	0.08
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.10	0.09	0.18	0.17
28	Zinc	mg/l	0.07	0.06	0.08	0.06

Table 31: Marine Water Quality Monitoring Parameters for location near passenger Jetty One atKandla

			Near Coal Berth 22°59'12"N 70°13'40"E				
Sr.	Parameters	Unit					
No.			Spring Tide		Near	o Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.30	7.51	7.53	7.32	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.0	32.5	32.0	31.8	
5	Turbidity	NTU	33	25	37	45	
6	Total Dissolved Solids	mg/l	48590	39430	45812.0	35363.0	
7	Total Suspended Solids	mg/l	555	809	587.3	591.2	
8	Total Solids	mg/l	45108	41100	41720.0	40200.0	
9	DO	mg/l	3.8	4	4.9	5.1	
10	COD	mg/l	88.0	90.0	90.0	82.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	5.98	3.98	0.42	0.85	
13	Phosphate	mg/l	0.10	0.08	0.15	0.19	
14	Sulphate	mg/l	2856	2988	2736	2208	
15	Nitrate	mg/l	2.73	2.33	4.75	3.79	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	1362.72	1322.64	480.96	601.2	
18	Magnesium	mg/l	1190.7	1239.3	1822.5	1846.8	
19	Sodium	mg/l	11452.0	10890.0	11125.0	10890.0	
20	Potassium	mg/l	311.0	269.0	345.0	400.0	
21	Iron	mg/l	1.80	1.92	1.30	2.01	
22	Chromium	mg/l	0.11	0.12	0.18	0.19	
23	Copper	mg/l	0.07	0.06	0.18	0.16	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.05	0.06	0.06	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.10	0.11	0.20	0.19	
28	Zinc	mg/l	0.08	0.06	0.07	0.06	

Table 32: Marine Water Quality Monitoring Parameters for location Near Coal Berth

Sr. No.	Parameters Tide →		КРТ 4				
		Unit	Near 15/16 Berth				
			Spring Tide		Neap Tide		
			High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.37	7.42	7.26	7.22	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.6	31.6	31.8	31.6	
5	Turbidity	NTU	45	37	52	28	
6	Total Dissolved Solids	mg/l	42420	38440	33550.0	33133.0	
7	Total Suspended Solids	mg/l	654	624	701.5	490.4	
8	Total Solids	mg/l	44940	40080	44940.0	40080.0	
9	DO	mg/l	4.4	4.3	5.3	5.9	
10	COD	mg/l	92.0	88.0	88.0	92.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	2.45	7.45	0.69	0.51	
13	Phosphate	mg/l	0.10	0.02	0.24	0.16	
14	Sulphate	mg/l	1668	2268	2616	2580	
15	Nitrate	mg/l	1.96	1.53	3.34	4.86	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	1242.48	1282.56	521.04	480.96	
18	Magnesium	mg/l	1287.9	1336.5	1725.3	1725.3	
19	Sodium	mg/l	12152.0	13020.0	12162.0	11782.0	
20	Potassium	mg/l	288.0	316.0	389.0	380.0	
21	Iron	mg/l	1.60	1.55	1.48	1.38	
22	Chromium	mg/l	0.15	0.16	0.20	0.18	
23	Copper	mg/l	0.08	0.10	0.15	0.11	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.08	0.06	0.08	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.09	0.11	0.18	0.17	
28	Zinc	mg/l	0.07	0.05	0.08	0.06	

Table 33: Marine Water Quality Monitoring Parameters for location Khori creek at Kandla

	Parameters		Nakti Creek Near Tuna Port				
Sr. No.		Unit	22°57'49."N 70° 7'0.67"E				
			Sprin	g Tide	Neap Tide		
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.18	7.30	7.3	7.37	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.6	33.0	31.8	31.6	
5	Turbidity	NTU	36	48	36	28	
6	Total Dissolved Solids	mg/l	47540	37880	38200.0	37205.0	
7	Total Suspended Solids	mg/l	885	852	332.5	474	
8	Total Solids	mg/l	46280	38780	38280.0	49040.0	
9	DO	mg/l	4.2	4.3	5.3	5.2	
10	COD	mg/l	76.0	78.0	90.0	92.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	4.33	2.45	0.91	0.73	
13	Phosphate	mg/l	0.08	0.10	0.18	0.18	
14	Sulphate	mg/l	2052	4500	2628	2268	
15	Nitrate	mg/l	2.17	2.47	5.14	5.70	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	1362.72	1282.56	561.12	561.12	
18	Magnesium	mg/l	1215	1239.3	1773.9	1773.9	
19	Sodium	mg/l	11582.0	11262.0	10589.0	10110.0	
20	Potassium	mg/l	326.0	366.0	347.0	311.0	
21	Iron	mg/l	2.02	2.00	1.60	1.58	
22	Chromium	mg/l	0.20	0.19	0.16	0.15	
23	Copper	mg/l	0.10	0.08	0.12	0.10	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.06	0.07	0.08	0.06	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.11	0.12	0.32	0.62	
28	Zinc	mg/l	0.06	0.07	0.07	0.06	

Table 34: Marine Water Quality Monitoring Parameters for location Nakti Creek near Tuna Port

Table 35: Marine Water Quality Monitoring Parameters for location Nakti Creek Near NH-8A atKandla

	Parameters		Nakti Creek Near NH-8A				
Sr. No.		Unit	23° 02'01"N 70° 09'31"E				
			Spring Tide		Neap Tide		
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.39		7.39		
2	Color	-	Colorless		Colorless		
3	Odor	-	Odorless		Odorless		
4	Salinity	ppt	32.9		31.8		
5	Turbidity	NTU	36		35		
6	Total Dissolved Solids	mg/l	36020		35465.0		
7	Total Suspended Solids	mg/l	666		380.3		
8	Total Solids	mg/l	44660		46002.0		
9	DO	mg/l	4.7		5.5		
10	COD	mg/l	80.0		88.0		
11	BOD	mg/l	<2.0		<2.0		
12	Silica	mg/l	7.73		0.45		
13	Phosphate	mg/l	0.08	Consuling	0.17	Consuling mot	
14	Sulphate	mg/l	3660	Sampling not possible	2280	Sampling not possible	
15	Nitrate	mg/l	2.74	during Low Tide	4.15	during Low Tide	
16	Nitrite	mg/l	<0.05	Tide	<0.05	nde	
17	Calcium	mg/l	1402.80		561.12		
18	Magnesium	mg/l	1190.7		1773.9		
19	Sodium	mg/l	13030.0		11120.0		
20	Potassium	mg/l	348.0		320.0		
21	Iron	mg/l	1.89		1.50		
22	Chromium	mg/l	0.17		0.17		
23	Copper	mg/l	0.09	1	0.11		
24	Arsenic	mg/l	<0.01]	<0.01		
25	Cadmium	mg/l	0.08		0.07		
26	Mercury	mg/l	<0.001		<0.001		
27	Lead	mg/l	0.09		0.2		
28	Zinc	mg/l	0.08]	0.08		

Sr. No.	Parameters Tide →		Nr.Vadinar Jetty				
		Unit	22°26'25.26"N 69°40'20.41"E				
			Spring Tide		Neap Tide		
			High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.60	7.90	7.38	7.25	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	33.0	32.5	32.0	32.0	
5	Turbidity	NTU	48	37	47	40	
6	Total Dissolved Solids	mg/l	38810	36220	37902.0	35080.0	
7	Total Suspended Solids	mg/l	405	380	456.9	395.5	
8	Total Solids	mg/l	42180	42020	38990.0	38620.0	
9	DO	mg/l	4.3	4.7	4.5	4.9	
10	COD	mg/l	90.0	88.0	82.0	78.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	6.00	7.65	0.76	0.93	
13	Phosphate	mg/l	0.56	0.68	0.20	0.17	
14	Sulphate	mg/l	2628	2268	2520	2376	
15	Nitrate	mg/l	2.05	2.15	3.03	3.04	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	1242.48	1362.72	641.28	521.04	
18	Magnesium	mg/l	1239.3	1239.3	1798.2	1798.2	
19	Sodium	mg/l	14025.0	13879.0	11012.0	11212.0	
20	Potassium	mg/l	326.0	300.0	342.0	333.0	
21	Iron	mg/l	1.88	1.79	1.60	1.30	
22	Chromium	mg/l	0.18	0.18	0.18	0.12	
23	Copper	mg/l	0.08	0.08	0.18	0.20	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.06	0.07	0.06	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.10	0.09	0.16	0.2	
28	Zinc	mg/l	0.06	0.06	0.06	0.07	

Table 36: Marine Water Quality Monitoring Parameters for locations Nr. Vadinar Jetty

6.1.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

6.2 Results

The Sediment Quality results are given in below from table no. 34 A & B.

Table 34A: Results of Analysis of Sediment of Kandla & Vadi	nar Port (Spring Tide)
---	------------------------

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 2	KPT – 3	КРТ - 5	Jetty
1	Texture	-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	1.20	1.08	1.20	1.86	1.46
3	Organic Carbon	mg/kg	0.70	0.96	0.87	0.65	0.68
4	Inorganic Phosphate	mg/kg	120.0	132.0	142.0	162.0	160.0
5	Moisture	%	20.20	23.10	21.88	21.2	23.80
6	Aluminium	mg/kg	ND	ND	ND	ND	ND
7	Silica	mg/kg	28.0	21.0	24.0	36.0	23.0
8	Phosphate	mg/kg	10.50	11.20	9.80	9.60	10.20
9	Sulphate	mg/kg	210.0	242.0	160.0	170.0	140.0
10	Nitrite	mg/kg	0.11	0.12	0.1	0.11	0.12
11	Nitrate	mg/kg	9.80	7.44	10.80	9.20	8.40
12	Calcium	mg/kg	342.0	270.0	325.0	309.0	322.0
13	Magnesium	mg/kg	186.0	145.0	178.0	152.0	202.0
14	Sodium	mg/kg	8824.0	7242.0	9452.0	7122.0	8777.0
15	Potassium	mg/kg	396.0	388.0	460.0	680.0	780.0
16	Chromium	mg/kg	88	60	72.2	68.8	70.2
17	Nickel	mg/kg	20.4	30.4	19.5	21.3	30
18	Copper	mg/kg	60	34	21.5	18.2	23.4
19	Zinc	mg/kg	30.20	32.50	33.20	40.00	28.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND
21	Lead	mg/kg	2.8	2.4	3.9	5.2	3.8
22	Mercury	mg/kg	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND

*Grab samples could not be collected due high current at KPT 3, Natki Creek Near Tuna port & Vadinar SBM

Sr. No.	Parameters	Unit	KPT - 1	KPT - 2	KPT - 3	КРТ - 4	KPT - 5	Jetty
1	Texture	-	Sandy Ioam	Sandy Ioam	Sandy Ioam	Sandy Ioam	Sandy Ioam	Sandy Ioam
2	Organic Matter	mg/kg	1.20	1.12	1.20	1.80	1.62	1.10
3	Organic Carbon	mg/kg	0.69	0.65	0.69	1.04	0.94	0.64
4	Inorganic Phosphate	mg/kg	120.0	142.0	116.0	136.0	142.0	152.0
5	Moisture	%	20.08	21.52	23.05	24.55	28.88	22.02
6	Aluminium	mg/kg	ND	ND	ND	ND	ND	ND
7	Silica	mg/kg	21.20	18.88	21.0	18.8	16.20	13.60
8	Phosphate	mg/kg	8.8	8.9	7.70	8.20	8.40	6.2
9	Sulphate	mg/kg	180.0	196.0	142.0	166.0	120.0	210.0
10	Nitrite	mg/kg	0.1	0.11	0.1	0.12	0.11	0.13
11	Nitrate	mg/kg	9.80	6.89	8.99	8.80	7.93	10
12	Calcium	mg/kg	322.0	266.0	320.0	296.0	300.0	288.0
13	Magnesium	mg/kg	180.0	145.0	180.0	142.0	212.0	196.0
14	Sodium	mg/kg	8242.0	7002.0	8942.0	6641.0	8041.0	9424.0
15	Potassium	mg/kg	380.0	396.0	422.0	644.0	621.0	386.0
16	Chromium	mg/kg	79	54	74.2	64.7	58.4	66
17	Nickel	mg/kg	18.2	28.2	20.6	19.4	28.4	18.8
18	Copper	mg/kg	54	20	22.5	16.8	18.6	74.2
19	Zinc	mg/kg	28.20	18.80	28.40	34.50	18.60	75.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND	ND
21	Lead	mg/kg	2	2.1	2.8	3.8	2.4	ND
22	Mercury	mg/kg	ND	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND	ND

Table 34B: Results of Analysis of Sediment of Kandla & Vadinar Port (Neap Tide)

REPORT

ON

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPTHARBOURAREA, NEAR BY CREEKS

For

DEENDAYAL PORT TRUST

AUGUST,2021

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on9th August, 2021 in harbour region of DPT, and on 10thAugust,2021 in creeks near by the port during spring tide. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 15thAugust, 2021 in harbour region of DPT and on 16thAugust, 2021 in creeks near by the port during neap tidal condition.

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of DPT harbour area andone stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative & quantitative evaluation of phytoplankton, qualitative & quantitative evaluation zooplanktons (density and their population).

TABLE #1 SAMPLING LOCATIONS

monitoring requirement	Number of locations		
Kandla creek	3 in Kandla creek		
Nakti creek	2 in Nakti creek		
Khori Creek	1 in Khori creek		
Total Number of locations	6		

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval.

50 litres of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litres of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of 20µm mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litres of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone.

The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos*meaning "passively drifting or wandering") is defined as drifting or free-floating organisms are categorised into phytoplankton (organisms having an autotrophic mode of nutrition) and zooplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae).The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts.

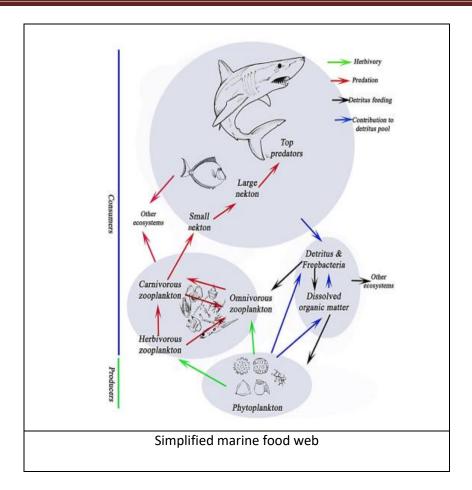
Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryProduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are organisms which live a brief planktonic life, such as the benthic crustaceans (cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.


Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of fish, DCPL/DPT/20-21/16 -AUGUST - 2021

shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda), and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton may also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 15-30minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton in each microscopic field was thus counted. When first microscopic field row was finished the next consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated

plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sediment–water interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining:

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (*S*) and evenness (*J*)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species

The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

- relatively few successful species in the habitat
- the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment
- food webs which are relatively simple
- change in the environment would probably have quite serious effects

High species diversity suggests:

- a greater number of successful species and a more stable ecosystem
- more ecological niches are available and the environment is less likely to be hostile complex food webs
- environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness(*S*) is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic human-induced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness(*S*) is simply the number of species present in an ecosystem. This index makes no use of relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduce community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 are characterized as heavily polluted

$$H' = -\sum_{j=1}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin –a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.305 -0.543mg/m³.in harbour region of DPT during sampling done in spring tide period of August, 2021. In the nearby creeks chlorophyll-a was varying from 0.290-0.732 mg/m³.Pheophytin –a level was below detectable limit- the all the sampling stations during springtide in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.220 -0.748mg/m³.in harbour region of DPT during sampling done in neap tide period of August, 2021. In the nearby creeks chlorophyll-a was varying from BDL-0.862 mg/m³. Pheophytin –a level was below detectable limit- the all the sampling stations during neap tide in the harbour region of DPT.

TABLE #2 VARIATIONS IN CHLOROPHYLL -a PHEOPHYTIN- a AND ALGAL BIOMASS FROMSAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Sr. No.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHAI	RBOUR AREA		
1	KPT1	High tide	0.425	BDL	28.48
	KPTI	Low tide	0.307	BDL	20.57
2		High tide	0.305	BDL	20.43
	KPT 2	Low tide	0.543	BDL	36.38
3	КРТ З	High tide	0.527	BDL	35.31
	KPT 3	Low tide	0.425	BDL	28.47
		C	REEKS		
4	KPT-4 Khori-l	High tide	0.543	BDL	36.38
		Low tide	0.527	BDL	35.31
5	KPT-5 Nakti-I	High tide	0.409	BDL	27.40
	NPI-S NAKU-I	Low tide	0.732	BDL	49.04
6	KPT-5 Nakti-II	High tide	0.290	BDL	19.43

AUGUST,2021

BDL: Below Detectable Limit.

TABLE #3 VARIATIONS IN CHLOROPHYLL -a PHEOPHYTIN- a AND ALGAL BIOMASS FROM

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

AUGUST,2021

Sr. No.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHA	RBOUR AREA		
-	KDT4	High tide	0.220	BDL	14.74
T	1 KPT1	Low tide	0.308	BDL	20.64
2	KDT 2	High tide	0.748	BDL	50.11
Z	KPT 2	Low tide	0.731	BDL	48.98
3	KPT 3	High tide	0.307	BDL	20.56
5	NPT 5	Low tide	0.221	BDL	14.81
		C	REEKS		
4	KPT-4 Khori-l	High tide	0.543	BDL	36.38
4	KF 1-4 KH0H-I	Low tide	0.221	BDL	14.81
5	KPT-5 Nakti-I	High tide	0.862	BDL	57.75
5		Low tide	0.216	BDL	14.47
6	KPT-5 Nakti-II	High tide	BDL	BDL	-

BDL: Below Detectable Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide and neap tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by,Diatoms blue green algae and dinoflagellates during spring tide period.Diatoms were represented by 14genera. Blue green were represented by threegenera and two genera of Dinoflagellates during the sampling conducted in spring tide in August,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 98-226 units/ L during high tide period and 191-259 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms ,Blue green algae and Dinoflagellates duringNeap tide period.Diatoms were represented by 15genera and Blue green algae were represented two genera and Dinoflagellates were represented by three genera during the sampling conducted in Neap tide in August, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from65-307units/ L during high tide period and 238-281 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.527-3.091 with an average of 2.420during the sampling conducted in High tide period of spring tide.While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from 1.679-2.621 with an average of 2.225 during the consecutive low tide period.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 2.344 -3.188 with an average of 2.887 during the sampling conducted in High tide period of Neaptide While .Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 2.526-3. 246with an average of 2.887 during the consecutive low tide period.

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.728 -0.860 (H'(log10)) between selected sampling stations with an average value of 0.807 during high tide period of spring tide .Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.726-0.836 (H'(log10)) between selected sampling stations with an average value of 0.773 during consecutive lowtide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.880-0.959 (H'(log10)) between selected sampling stations with an average value of 0.909 during high tide period of neap tide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.819-0.911 (H'(log10)) between selected sampling stations with an average value of 0.887 during consecutive low tide. Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.785- 0.823 between selected sampling stations with an average of 0.801 during high tide period of spring tide . Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.770- 0.820 between selected sampling stations with an average of 0.787 during consecutive low tide . Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tide period during neap tide also, which was varying from 0.811-0.886 with an average value of 0.836 between selected sampling stations during high tide period and varying from 0.774-0.826 with an average

value of 0.813 between selected sampling stations during consecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE INAUGUST,2021

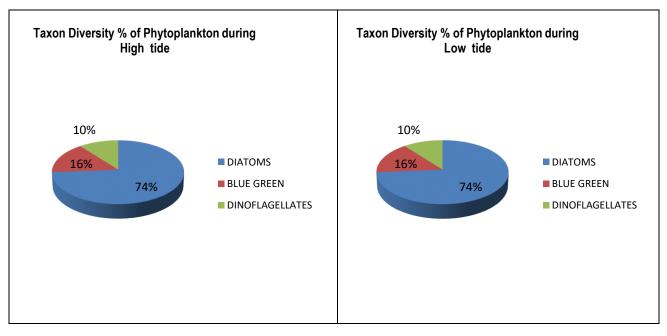
Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	210	14/19	73.68	2.431	0.7923	0.7938
TIDE	2	177	17/19	89.47	3.091	0.8603	0.8182
	3	226	12/19	63.16	2.029	0.7883	0.7853
	4	221	17/19	89.47	2.964	0.8243	0.7993
	5	190	14/19	73.68	2.478	0.8531	0.8227
	6	98	8/19	42.11	1.527	0.7279	0.7886
LOW	1	191	13/19	68.42	2.285	0.7812	0.7901
TIDE	2	233	13/19	68.42	2.201	0.7658	0.7795
	3	209	15/19	78.94	2.621	0.8367	0.8208
	4	213	10/19	52.63	1.679	0.7264	0.7732
	5	259	14/19	73.68	2.339	0.7547	0.7702

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

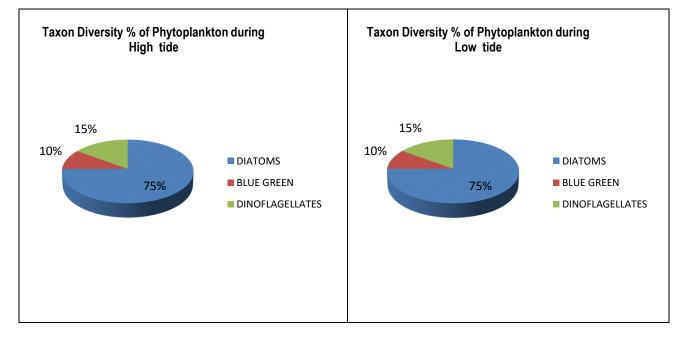
Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	221	18/20	90	3.149	0.9462	0.8522
TIDE	2	283	19/20	95	3.188	0.8844	0.811
	3	268	17/20	85	2.862	0.899	0.8255
	4	256	14/20	70	2.344	0.8803	0.8328
	5	307	19/20	95	3.143	0.8857	0.8113
	6	65	12/20	60	2.635	0.9594	0.8861
LOW	1	238	15/20	75	2.558	0.8192	0.7738
TIDE	2	281	19/20	95	3.192	0.9106	0.8188
	3	256	19/20	95	3.246	0.9023	0.8241
	4	242	17/20	85	2.915	0.9102	0.8263
	5	255	15/20	75	2.526	0.8939	0.824

AUGUST,2021


Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	6	DIATOMS	94-215	14/19	73.68
HIGH	surface	°,	BLUE GREEN	4-13	3/19	15.79
TIDE			DINOFLAGELLATES	0-1	2/19	10.53
			TOTAL PHYTO PLANKTON	98-226	19	-
LOW			DIATOMS	182-250	14/19	73.68
TIDE	Sub	5	BLUE GREEN	8-12	3/19	15.79
	surface		DINOFLAGELLATES	0-1	2/19	10.53
			TOTAL PHYTO PLANKTON	191-259	19	-

AREA, NEAR BY CREEKS DURING SPRING TIDEIN AUGUST, 2021


Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOURAREA, NEAR BY CREEKS DURING NEAPTIDE IN AUGUST,2021

Tide	Surface	No of	Group of	Phytoplankton	Genera or	Taxon
		Sampling	phytoplankton	Group range	species	Diversity %
		location		Units/L	/total	(Group
					Phyto	level)
					plankton	
			DIATOMS	64-298	15/20	75
	Sub	6	BLUE GREEN	0-6	2/20	10
HIGH	surface				-	
TIDE			DINOFLAGELLATES	0-5	3/20	15
			TOTAL PHYTO	65-307	20	-
			PLANKTON			
LOW			DIATOMS	236-274	15/20	75
TIDE	Sub	5	BLUE GREEN	1-5	2/20	10
	surface		DINOFLAGELLATES	0-4	3/20	15
			TOTAL PHYTO	238-281	20	-
			PLANKTON			

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide

Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khoricreek) during high tide period and low tide period of spring tide and Neap tide in August,2021. The Zooplankton community of the sub surface water in the harbour and nearby creeks during spring tide was represented by mainly five groups, Tintinids, Copepods,

Ciliates Foraminiferans and larval forms of Crustacea, Molluscans and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly four groups, Tintinids, Copepods, Mysids and larval forms of Crustaceans, Molluscansand Polychaetes,.

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 34-109x10³ N/ m³ during high tide and 109-123 x10³ N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 23-109 x10³ N/ m³ during high tide and86-103x10³ N/ m³ during low tide of Neap Tide period.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla Harbour region and nearby creeks was varying from 2.269-3.505 with an average of 3.009 during the sampling conducted in High tide period.Margalef's diversity index (Species Richness) S of Zooplankton communities varying from.2.701-3.354 with an average of 3.033 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla Harbour region and nearby creeks sampling stations was varying from1.914- 3.962 with an average of 2.754 during the sampling conducted in high tide and varying from. 1.972-3.236 with an average of 2.640 during the sampling conducted in low tide during Neap tide period**Shannon-Wiener's index:**

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.813-1.052 (H'(log10)) between selected sampling stations with an average value of 0.995 (H'(log10)) during high tide period of spring tide . Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.991-1.067(H'(log10)) between selected sampling stations with an average value of 1.035 (H'(log10)) during consecutive low tide period .

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.696-1.007 (H'(log10)) between selected sampling stations with an average value of 0.897 (H'(log10)) during high tide period of Neap tide. Shannon-**DCPL/DPT/20-21/16 -AUGUST - 2021**

Wiener's Index (H) of Zooplankton communities in the samplingstations in Kandla Harbour region and nearby creeks was in the range of 0.785-0.983 (H'(log10)) between selected sampling stations with an average value of 0.883 (H'(log10)) during consecutive low tide period .Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 most of sampling stations in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period, which was varying from 0.839-0.899between selected sampling stations with an average of 0.884 during high tide period and was varying from 0.887- 0.908 with an average value of 0.897 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks during high tide and low tide period except few, which was varying from 0.771-0.869 between selected sampling stations with an average of 0.833 during high tide period and was varying from 0.787- 0.863 with an average value of 0.826 between selected sampling stations during consecutive low tide

This low species diversity suggests a relatively low number of successful species in this habitat. Environment is quite stressful with relatively few ecological niches and only few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Table # 8 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

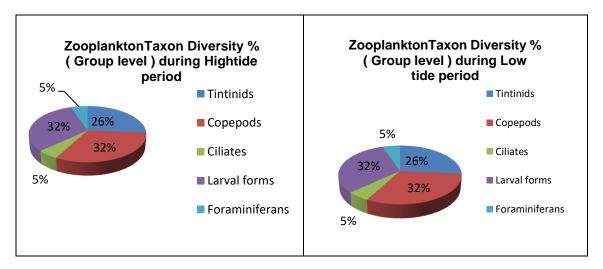
Tide	Sampling Station	Abundance In No / m ³	No of Species/groups observed /total species/group	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	93 X10 ³	16/19	84.21	3.309	1.052	0.8955
	2	96 X10 ³	17/19	89.47	3.505	1.032	0.8899
HIGH	3	105 X10 ³	15/19	78.95	3.008	1.031	0.8958
TIDE	4	109 X10 ³	15/19	78.95	2.984	1.037	0.8991
	5	109 X10 ³	15/19	78.95	2.984	1.008	0.8865
	6	34 X10 ³	9/19	47.37	2.269	0.8131	0.8396
	1	110 X10 ³	15/19	78.95	2.978	1.001	0.8881
	2	118 X10 ³	17/19	89.47	3.354	1.067	0.8984
LOW TIDE	3	123 X10 ³	14/19	73.68	2.701	0.9911	0.887
TIDE	4	117 X10 ³	16/19	84.21	3.15	1.065	0.9088
	5	109 X10 ³	15/19	78.95	2.984	1.051	0.904

STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS DURING SPRING TIDE IN AUGUST, 2021

Table # 9 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

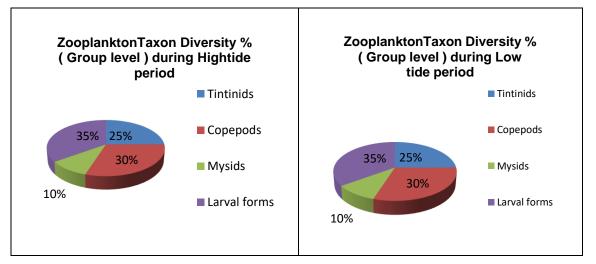
STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS DURING NEAP TIDE IN AUGUST, 2021

Tide	Sampling Station	Abundance In No / m ³	No of Species/groups observed /total species/group	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
	1	99 X10 ³	14/20	70	2.829	0.9755	0.8695
	2	94 X10 ³	19/20	95	3.962	1.007	0.8646
HIGH	3	91 X10 ³	13/20	65	2.66	0.9544	0.8698
TIDE	4	101 X10 ³	14/20	70	2.817	0.8993	0.8176
	5	109 X10 ³	12/20	60	2.345	0.8501	0.8089
	6	23 X10 ³	7/20	35	1.914	0.6965	0.7708
	1	89 X10 ³	11/20	55	2.228	0.8172	0.7878
	2	103 X10 ³	16/20	80	3.236	0.9831	0.8633
LOW TIDE	3	96 X10 ³	14/20	70	2.848	0.92	0.8412
TIDE	4	86 X10 ³	14/20	70	2.918	0.9071	0.8375
	5	96 X10 ³	10/20	50	1.972	0.7875	0.7987


Table # 10 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPTHARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN AUGUST,2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	1-28	5/19	26.32
			Copepods	17-49	6/19	31.58
			Ciliates	1-6	1/19	5.26
HIGH TIDE	Sub surface	6	Larval forms	9-46	6/19	31.58
HIGHTIDE			Foraminiferans	0-2	1/19	5.26
			TOTAL ZOOPLANKTON NO/L	34-109	19	
			Tintinids	20-27	5/19	26.32
			Copepods	39-55	6/19	31.58
			Ciliates	1-7	1/19	5.26
	Sub	5	Larval forms	40-46	6/19	31.58
LOW TIDE		5	Foraminiferans	0-1	1/19	5.26
	surface		TOTAL ZOOPLANKTON NO/L	109-123	19	

Table # 11 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


HARBOUR AREA , NEAR BY CREEKS DURING NEAPTIDE IN AUGUST,2021

Tide	Surface	No of Sampling locations	Group of Group and Group a		Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	1-11	5/20	25
	Sub surface	6	Copepods	7-26	6/20	30
			Mysids	0-6	2/20	10
HIGH TIDE			Larval forms	15-84	7/20	35
			TOTAL ZOOPLANKTON NO/L	23-109	20	-
			Tintinids	6-12	5/20	25
			Copepods	5-23	6/20	30
	Sub		Mysids	1-4	2/20	10
LOW TIDE	surface	5	Larval forms	57-74	7/20	35
	Surrace		TOTAL ZOOPLANKTON NO/L	86-103	20	-

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURINGSPRING

TIDE OF AUGUST, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
BLUE GREEN ALGAE Cya				Oscillatoriaceae	Arthospirasp.	B1	Rare
	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	Lyngbya sp.	B2	Rare
		-,	Stigonematales	Stigonemataceae	Stigonema sp.	B3	Occasional
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Rare
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
				_	Odontellasp	D3	Occasional
		Coscinodiscophyceae	Triceratiales	Triceratiaceae	Triceratiumsp.	D4	Rare
			Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Dominant
			Hemiaulales	Bellerocheaceae	Bellerocheasp	D6	Rare
DIATOMS	Bacillariophyta		Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D7	Occasional
	. ,		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D8	Abundant
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D9	Rare
				Thelessienemetersee	Thalassiothrix sp.	D10	Abundant
			Thalassionematales	Thalassionemataceae	Thalassionema sp.	D11	Rare
		Fragilariophyceae			Asterionelopsis sp	D12	Rare
			Fragilariales	Fragilariaceae	Fragilariasp	D13	Occasional
					Synedrasp	D14	Rare
DINO	Dinoflagellata		Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare
FLAGELLATES	/ Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Rare

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURING AND NEAP TIDE OF AUGUST, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance	
BLUE GREEN			Nostocales	Oscillatoriaceae	Oscillatoria sp.	B1	Rare	
ALGAE	LGAE Cyanophyta	Cyanophyceae	Stigonematales	Stigonemataceae	Stigonema sp.	B2	Rare	
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D1	Dominant	
			Triccasticles	Tuissantissass	Odontellasp	D2	Occasional	
			Triceratiales	Triceratiaceae	Triceratiumsp.	D3	D3 Rare D4 Abundant	
		Coscinodiscophyceae	Biddulphiales	Biddulphiaceae	Biddulphiasp	D4	Abundant	
		Bacillariophyceae Fragilariophyceae	Hemiaulales	Bellerocheaceae	Bellerocheasp	D5	Rare	
DIATOMS Bacil			Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D6	Occasional	
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D7	Occasional	
	Bacillariophyta		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D8	Abundant	
			Naviculales	Pleurosigmataceae	Pleurosigmasp	D9	Occasional	
			Naviculaics	Pinnulariaceae	Pinnulariasp	D10	Rare	
			Thalassionematales	Thelessienemetersee	Thalassiothrix sp.	D11	Dominant	
				Thalassionemataceae	Thalassionema sp.	D12	Rare	
					Asterionella sp.	D13	Occasional	
			Fragilariales	Fragilariaceae	Fragilariasp	D14	Frequent	
					Synedrasp	D15	Rare	
DINO			Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare	
FLAGELLATES	Dinoflagellata / Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Rare	
	7 0110200		Gunyaulacales	Ceraliaceae	Ceratiumtripos	DF3	Rare	

TABLE #13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING SPRING

TIDE OF AUGUST,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Frequent
TINTINIDS	PROTOZOA				Tintinnopsisaccuminata	T2	Rare
	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisfailakkaensis	Т3	Rare
	CILIOI HOIKA			Couoneniuae	Tintinnopsisgracilis	T4	Occasional
					Tintinnopsis radix	T5	Rare
			Calanoida	Paracalanidae	Acrocalanus sp.	C1	Frequent
			Calanolua	Temoridae	Temora sp.	C2	Rare
		Crustacea	Cyclopoida	Oithonidae	Oithona sp.	C3	Frequent
COPEPODS	ATHROPODA	Sub class copepoda	Harpaticaida	Ectinosomatidae	Microsetellasp.	C4	Abundant
			Harpacticoida	Euterpinidae	Euterpina sp.	C5	Rare
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C6	Rare
CILIATES	CILIOPHORA	Oligohymenophorea	Sessilida	Zoothamniidae	Zoothamniumsp.	CI1	Occasional
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Occasional
POLYCHAETE LARVA	ANNELIDA	Polychaeta			Trochophore larvae	L3	Occasional
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L4	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L5	Occasional
BRYOZOA					Cyphonautes larvae	L6	Occasional
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Rotalliidae	<i>Rotalia</i> sp.	F1	Rare

DCPL/DPT/20-21/16 -AUGUST - 2021

Detox Corporation Pvt.Ltd.,Surat

TABLE # 13 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING NEAP

TIDE OF AUGUST,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Occasional
	PROTOZOA				Tintinnopsisaccuminata	T2	Rare
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisfailakkaensis	T3	Rare
	CILIOFTIONA			Codonenidae	Tintinnopsisgracilis	T4	Occasional
					Tintinnopsis radix	T5	Rare
			Calanoida	Paracalanidae	Acrocalanus sp.	C1	Frequent
			Calanolua	Temoridae	Temora sp.	C2	Rare
		Crustacea	Cyclopoida	Oithonidae	Oithona sp.	C3	Occasional
COPEPODS	ATHROPODA	Sub class copepoda	Harpacticoida	Ectinosomatidae	Microsetellasp.	C4	Occasional
				Euterpinidae	Euterpina sp.	C5	Rare
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C6	Rare
	ATHROPODA CRUSTACEA	Malacostraca	Mysida,	Solenoceridae	Solenocerasp.	M1	Rare
MYSIDS			Decapoda	Penaeidae	Metapenaeussp.	M2	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Occasional
POLYCHAETE LARVA	ANNELIDA	Polychaeta			Trochophore larvae	L3	Occasional
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L4	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L5	Abundant
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L6	Occasional
ECHINODERMATA larave	ECHINODERMATA	Ophiuroidea			Ophiopluetus larvae	L7	Rare

DCPL/DPT/20-21/16 -AUGUST - 2021

Detox Corporation Pvt.Ltd.,Surat

BENTHIC ORGANISMS:

Few Benthic organisms were observed in the collected sediments by using the Van-veen grabs during the sampling conducted during spring tide period and Neap tide period from DPT harbour region and nearby creek. The benthic organisms during spring tide were represented by Polychaetes, Nematodes and Amphipods. The polychaetes were represented by *Syllis sp. Polydorasp*, and *Pondodorasp*, during spring tide sampling. The benthic organisms in the collected samples were varying from 0-300 N/M² during spring tide and 10-140 NO/M² during neap tide sampling.

	ABUNDANCE IN NO/M ² DIFFERENT SAMPLING STATIONS								
Benthic fauna	REPRESENTATION BY GROUP								
	D	PT HARBO	UR		CREEKS				
POLYCHATES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6			
Family : lospilidae	0	70	0	0	0				
Pondodora sp.									
						NS			
Family : Spionidae	10	10	0	20	0				
Polydora sp						NS			
Family : Syllidae	0	10	0	10	0				
Syllis sp.						NS			
Total Polychates N/M ²	10	90	0	30	0	NS			
Un identified Nematode									
worms	40	200	0	10	30	NS			
Amhipods									
	0	10	0	10	0	NS			
TOTAL Benthic Fauna									
NUMBER/ M ²	50	300	0	50	30	NS			

Table # 14 BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPT HARBOUR AREA CREEKSDURING NEAP TIDE IN AUGUST ,2021

NS: No sample

	ABUNDAN	NCE IN NO/	M ² DIFFER	ENT SAMP	LING STATI	ONS			
		REPRESENTATION BY GROUP							
Benthic fauna	DF	T HARBO	JR		CREEKS				
POLYCHATES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6			
Family : Spionidae	20	10	0	40	20	NS			
Polydora sp									
Family : Syllidae	10	10	0	20	60	NS			
Syllis sp.									
Total Polychates N/M ²	30	20	0	60	80	NS			
Un identified Nematode									
worms	40	30	10	40	40	NS			
Amhipods									
	10	10	0	10	20	NS			
TOTAL Benthic Fauna									
NUMBER/ M ²	80	60	10	110	140	NS			

Table # 15BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPT HARBOUR AREA CREEKSDURING NEAP TIDE IN AUGUST ,2021

NS : No sample

7. Meteorological Data

Automatic Weather station have been installed in SevaSadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 30.5 °C. The day-time maximum temperature was 34.1 °C. The mean night time temperature was 27.4 °C. The minimum mean night time temperature recorded was 26.1 °C.

Air Pressure

The mean absolute air pressure for the month of August was 1004.7 hpa, whereas the mean relative pressure was 1001.2 hpa. The maximum absolute air pressure recorded for the month of August was 1008.3 hpa.

Heat Index

The mean day-time heat index for the month of August was 34.7 °C. The maximum heat index recorded was 42° C.

Solar Radiation

The mean Solar Radiation in August was 232.4 w/m². The maximum solar radiation recorded in the month of August was 682.8 w/m^2 .

Humidity

The mean day-time humidity was 73.0 % for the month of August and mean night time humidity was 83.2%. Maximum humidity recorded during day-time was 88.0 % and maximum humidity recorded during night-time was 90.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of August was 10.8 km/hour. Maximum wind velocity recorded was 34.9 Km/hr. The wind direction was mostly S to SW.

Conclusive Summary and Remedial measures Suggested

- The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM₁₀ values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 μg/m³)andPM_{2.5}was above permissible limits at Coal storage location(Limit 60 μg/m³).
- Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).
- Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.
- The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board. The STP at Deendayal Port is not fully operational and STP at Vadinar Port was found non-operational.

Reasons for higher Values of PM₁₀

- Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.
- Also, the coal laden trucks are not always covered with tarpaulin sheets and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM₁₀ during the month of August, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

- Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)
- Sewage Treatment Plan at Vadinar Port is not working. Hence, it is recommended to commission the sewage treatment plant at Vadinar immediately.
- Except for the higher values of PM₁₀ at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- 2) BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae Indian Council of Agricultural research New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north –West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A.,NAIRK.K.C., VENUGOPL,P.
 BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- 19) KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.
- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- 21) Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.

- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.
- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology, Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de franceA. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi. M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.

DCPL/DPT/20-21/15 - AUGUST -2021

ENVIRONMENTAL MONITORING REPORT FOR DEENDAYAL PORT TRUST

7			
REPORT NO.	:	DCPL/DPT/20-21/17	
Month	:	September 2021	
Issue No	:	01	
Revision No	:	00	
Prepared by	:	DETOX CORPORATION PVT. LTD., SURAT	

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Quality Monitoring	1 - 17
2	Drinking Water Quality Monitoring	18 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 79
7	Meteorological Observations	80
8	Conclusive Summary & Remedial Measures	81-82
	References	83- 84

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformity in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_X, NH₃ & Benzene, and Grab-sampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_X. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}.

The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of September 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

	Tal	ole 1 : Resu	Its of Air P	ollutant Co	oncentra	tion at M	arine Bł	navan		
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [ug/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3		80 μg/m3		80 μg/m3		400 μg/m3
					3.96		10.80		5.36	
AL1 – 1	03.09.2021	412	314	76	6.59	5.13	32.39	29.22	13.02	9.53
					4.84		44.46		10.21	
					3.52		13.34		12.25	
AL1 – 2	08.09.2021	673	579	50	3.08	3.81	49.54	26.25	12.76	12.85
					4.84		15.88		13.53	
					3.08		11.43		15.32	
AL1 – 3	10.09.2021	706	552	53	6.15	4.25	17.15	17.78	14.55	16.17
					3.52		24.77		18.64	
					6.15		17.78		18.12	
AL1 – 4	15.09.2021	357	260	82	3.52	4.84	52.72	39.80	16.34	15.06
					4.84		48.91		10.72	
					1.76		17.78		16.34	
AL1 – 5	17.09.2021	297	178	89	5.28	4.40	24.77	28.58	15.57	15.49
					6.15		43.19		14.55	
					3.52		40.02		5.36	
AL1 - 6	22.09.2021	387	309	72	3.96	3.08	45.10	38.53	11.23	9.53
					1.76		30.49		12.00	
					3.08		12.70		20.42	
AL1 - 7	24.09.2021	288	176	67	4.84	3.52	23.50	19.27	22.46	21.95
					2.64		21.60		22.98	
					17.14		27.95		20.68	
AL1 – 8	28.09.2021	471	299	163	18.90	13.48	33.66	27.31	19.66	21.53
					4.40		20.33		24.25	
Monthly	Average	449	333	81		5.31		28.34		15.26
Standard	Deviation	160	153	36		3.37		7.89		4.73

Location 1: Marine Bhavan (AL1)

Table 1E	B : Results of A	Air Pollutant	Concentra	tion at Marin	ne Bhavan
Parameter		C ₆ H ₆ [µg/m ³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL1 – 1	03.09.2021	1.11	BDL	1.89	492
AL1 – 2	08.09.2021	1.2	BDL	1.92	499
AL1 – 3	10.09.2021	1.3	BDL	1.9	486
AL1 – 4	15.09.2021	1.22	BDL	1.86	496
AL1 – 5	17.09.2021	1.27	BDL	1.88	501
AL1 - 6	22.09.2021	1.16	BDL	1.79	492
AL1 – 7	24.09.2021	1.18	BDL	1.86	496
AL1 – 8	28.09.2021	1.22	BDL	1.92	488
Monthly Average		1.21	-	1.88	494
Standard	Deviation	0.06	-	0.04	5

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm) NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_X and NH₃ is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM₁₀. The mean TSPM value at Marine Bhavan was 449 μ g/m³, The mean PM₁₀ values were 333.0 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 81 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit. These were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Marine Bhavan. The mean Benzene concentration was 1.21 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.88 mg/m³, well below the permissible limit of 4.0 mg/m³.

	т	able 2 : Res	ults of Air	Pollutant C	oncentra	ation at O	il Jetty			
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [μg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					6.15		23.50		17.87	
AL2 – 1	03.09.2021	645	423	158	3.52	4.84	13.34	16.30	16.08	14.72
					4.84		12.07		10.21	
					4.40		12.07		13.53	
AL2 – 2	08.09.2021	697	594	45	5.28	4.40	45.73	37.26	10.21	13.87
					3.52		53.99		17.87	
					3.52		28.58		9.45	
AL2 – 3	10.09.2021	673	561	62	4.40	4.25	21.60	18.84	13.02	10.81
					4.84		6.35		9.96	
					2.20		28.58		16.59	
AL2 – 4	15.09.2021	604	481	103	3.08	3.52	46.37	42.56	17.87	16.93
					5.28		52.72		16.34	
					6.15		46.37		11.74	
AL2 – 5	17.09.2021	616	571	38	3.08	3.81	55.89	38.53	6.13	8.34
					2.20		13.34		7.15	
					2.20		57.16		10.47	
AL2 – 6	22.09.2021	673	563	102	5.28	4.54	45.10	51.66	9.70	9.02
					6.15		52.72		6.89	
					6.15		23.50		10.47	
AL2 – 7	24.09.2021	245	159	71	3.08	3.52	50.81	38.11	15.32	14.81
					1.32		40.02		18.64	
					4.40		15.88		13.02	
AL2 – 8	28.09.2021	280	178	82	8.79	8.94	13.34	18.42	8.42	15.06
					13.63		26.04		23.74	
Monthly	Average	554	442	83		4.73		32.71		12.94
Standard	Deviation	183	177	39		1.77		13.12		3.14

Location 2: Oil Jetty (AL2)

NS: Not Specified

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

Tab	le 2B : Results	of Air Polluta	nt Concentra	ation at Oil Jet	ty	
Parameter		C₀H₀ [µg/m³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]	
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling	
NAAQMS limit		5.0 µg/m³	NS	4.0 mg/m ³	NS	
AL2 -1	03.09.2021	1.12	BDL	1.56	490	
AL2 -2	08.09.2021	1.16	BDL	1.62	488	
AL2 -3	10.09.2021	1.06	BDL	1.66	496	
AL2 -4	15.09.2021	1.13	BDL	1.72	501	
AL2 – 5	17.09.2021	1.23	BDL	1.76	490	
AL2 – 6	22.09.2021	1.06	BDL	1.7	488	
AL2 -7	24.09.2021	1.19	BDL	1.68	486	
AL2 – 8	28.09.2021	1.22	BDL	1.74	493	
Monthly	Monthly Average		-	1.68	492	
Standard	Deviation	0.07	-	0.07	5	

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 554 μ g/m³. The mean PM₁₀ values were 442 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 83 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit; The mean concentration of SO₂, NO_x and NH₃ were 4.73 μ g/m³, 32.71 μ g/m³ and 12.94 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was $1.15 \ \mu g/m^3$. Well below the permissible limit of $5.0 \ \mu g/m^3$. , HC's were below the detectable limit and Carbon Monoxide concentration was $1.68 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

	Tak	ole 3 : Resu	Ilts of Air P	ollutant Co	oncentra	tion at Es	tate Offi	ce		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [μg/m3]	NH3 [µ	ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.96		41.29		9.45	
AL3 – 1	03.09.2021	239	162	61	4.40	4.54	38.11	37.69	11.49	11.49
					5.28		33.66		13.53	
					2.64		20.96		12.00	
AL3 – 2	08.09.2021	412	288	97	4.40	3.37	40.02	35.36	15.57	12.59
					3.08		45.10		10.21	
					5.28		17.78		15.06	
AL3 – 3	10.09.2021	248	121	41	5.71	4.69	28.58	23.08	16.08	15.57
					3.08		22.87		15.57	
					4.40		15.88		12.00	
AL3 – 4	15.09.2021	195	123	68	1.76	3.08	11.43	17.15	7.15	9.36
					3.08		24.14		8.93	
					3.08		32.39		16.59	
AL3 – 5	17.09.2021	256	194	55	2.20	3.22	30.49	31.55	16.85	14.81
					4.40		31.76		10.98	
					3.52		24.14		18.12	
AL3 – 6	22.09.2021	554	153	39	3.08	3.52	40.02	35.78	12.25	15.06
					3.96		43.19		14.81	
					2.64		27.31		5.36	
AL3 – 7	24.09.2021	467	399	52	1.76	3.08	32.39	34.72	6.38	6.72
					4.84		44.46		8.42	
					8.79		7.62		14.04	
AL3 – 8	28.09.2021	355	253	64	34.73	16.41	14.61	14.19	6.13	10.55
					5.71	1	20.33		11.49	
Monthly Average		341	211	60		5.24		28.69		12.02
Standard	Deviation	128	96	18		4.56		9.22		3.11

Location 3: Kandla Colony – Estate Office (AL-3)

Table 3B	8 : Results of Air	Pollutant C	oncentration	at Kandla Por	t Colony
Parameter		С ₆ Н ₆ [µg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL3 -1	03.09.2021	1.1	BDL	1.77	492
AL3 -2	08.09.2021	1.06	BDL	1.82	480
AL3 -3	10.09.2021	1.11	BDL	1.86	479
AL3 -4	15.09.2021	1.16	BDL	1.8	482
AL3 – 5	17.09.2021	1.18	BDL	1.92	477
AL3 – 6	22.09.2021	1.26	BDL	1.96	486
AL3 – 7	24.09.2021	1.22	BDL	1.86	478
AL3 – 8	28.09.2021	1.21	BDL	1.78	482
Monthly Average		1.16	-	1.85	482
Standard Deviation		0.07	-	0.07	5

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPM values at Oil Jetty were 341 μ g/m³, The mean PM₁₀ values were 211 μ g/m³, which is above the permissible limit. PM_{2.5} values within the permissible limit (mean = 60 μ g/m³). The average values of SO₂, NO_x and NH3 were 5.24 μ g/m³, 28.69 μ g/m³ and 12.02 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was 1.16 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.85 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 4	: Results o	of Air Pollut	ant Conce	ntratior	n at Gopa	lpuri Hos	spital		
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2	[µg/m3]	NOx [µg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					4.40		13.34		8.42	
AL4 -1	03.09.2021	167	118	37	2.64	3.52	23.50	14.40	5.36	6.30
					3.52		6.35		5.11	
					3.08		13.34		8.42	
AL4 -2	08.09.2021	256	178	63	1.76	3.66	36.84	21.17	5.36	8.85
					6.15		13.34		12.76	
					1.32		30.49		12.25	
AL4 -3	10.09.2021	165	122	26	3.96	2.34	36.20	30.06	8.17	9.36
					1.76		23.50		7.66	
					3.08		48.91		5.62	
AL4 -4	15.09.2021	189	124	54	4.40	4.54	40.02	41.29	9.45	8.59
					6.15		34.93		10.72	
					2.20		11.43		12.00	
AL4 – 5	17.09.2021	185	104	48	6.15	4.40	22.23	24.56	7.91	11.15
					4.84		40.02		13.53	
					1.76		17.15		9.19	
AL4 – 6	22.09.2021	249	101	45	3.08	3.08	12.07	14.40	6.89	8.59
					4.40		13.97		9.70	
					2.20		24.14		9.70	
AL4 – 7	24.09.2021	167	116	43	0.88	2.49	15.88	16.94	13.53	11.83
					4.40		10.80		12.25	
					0.88		5.08		5.87	
AL4 – 8	28.09.2021	177	122	48	1.32	0.88	5.72	6.14	7.15	5.87
					0.44		7.62		4.60	
Monthly	Average	194	123	46		3.11		21.12		8.82
-	Deviation	37	24	11		1.20		10.89		2.07
						-				-

Location 4: Gopalpuri Hospital (AL-4)

Table 4E	B : Results of Ai	r Pollutant Co	ncentration	at Gopalpuri Ho	ospital
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m ³ NS		4.0 mg/m ³	NS
AL4 -1	03.09.2021	1.01	BDL	1.76	485
AL4 -2	08.09.2021	1.1	BDL	1.62	480
AL4 -3	10.09.2021	1.06	BDL	1.7	490
AL4 -4	15.09.2021	1.11	BDL	1.59	494
AL4 – 5	17.09.2021	1.18	BDL	1.7	486
AL4 – 6	22.09.2021	1.16	BDL	1.81	490
AL4 – 7	24.09.2021	1.08	BDL	1.79	487
AL4 – 8	28.09.2021	1.06	BDL	1.73	497
Monthly Average		1.10	-	1.71	489
Standard	Deviation	0.06	-	0.08	5

BDL- Below Detection Limit (Detection Limit - NMHC: 0.5 ppm)

NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPM values at Oil Jetty were 194 μ g/m³, The mean PM₁₀ values were 123 μ g/m³, which is above the permissible limit. PM_{2.5} values were in within the permissible limit (mean= 46 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.11 μ g/m³, 21.12 μ g/m³ and 8.82 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.10 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.71 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 5	i : Results o	of Air Pollu	tant Conce	entratior	n at Coal	Storage /	Area		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µ	ug/m3]	NOx [ug/m3]	NH3 [ļ	ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.52		32.39		13.79	
AL5 – 1	03.09.2021	380	115	86	3.96	4.10	37.47	30.28	12.25	14.30
					4.84		20.96		16.85	
					2.64		18.42		6.38	
AL5 – 2	08.09.2021	275	176	80	6.59	4.40	33.66	30.06	5.11	5.79
					3.96		38.11		5.87	
					2.20		52.72		9.45	
AL5 – 3	10.09.2021	302	225	74	4.84	3.66	31.12	48.91	6.38	10.64
					3.96		62.88		16.08	
					3.08		13.34		9.70	
AL5 – 4	15.09.2021	378	242	97	5.28	4.98	50.81	31.33	12.76	10.72
					6.59		29.85		9.70	
					4.84		12.07		9.70	
AL5 – 5	17.09.2021	210	138	70	3.52	4.10	48.91	27.31	10.21	10.98
					3.96		20.96		13.02	
					5.28		19.05		14.55	
AL5 – 6	22.09.2021	402	305	92	6.15	5.71	26.04	28.37	12.25	12.08
					5.71		40.02		9.45	
					2.64		32.39		18.64	
AL5 – 7	24.09.2021	268	151	73	4.84	4.69	31.76	33.66	16.08	17.61
					6.59		36.84		18.12	
					5.71		26.04		15.32	
AL5 – 8	28.09.2021	375	248	70	6.15	6.15	5.72	18.00	19.91	16.00
					6.59]	22.23		12.76	
Monthly	Average	324	200	80		4.73		30.99		12.26
Standard	Deviation	69	65	10		0.96		8.61		3.69

Location 5: Coal Storage Area (AL-5)

NS: Not Specified

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

Table 5B	Table 5B : Results of Air Pollutant Concentration at Coal Storage Area											
Parameter		С6Н6 [µg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]							
Sampling Period	Date	Date 8 hr		Grab Sampling	Grab Sampling							
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS							
AL5 – 1	03.09.2021	1.22	BDL	1.9	489							
AL5 – 2	08.09.2021	1.26	BDL	1.86	499							
AL5 – 3	10.09.2021	1.3	BDL	1.79	501							
AL5 – 4	15.09.2021	1.22	BDL	1.88	486							
AL5 – 5	17.09.2021	1.21	BDL	1.86	488							
AL5 – 6	22.09.2021	1.35	BDL	1.8	492							
AL5 – 7	24.09.2021	1.34	BDL	1.92	496							
AL5 – 8	28.09.2021	1.30	BDL	1.93	502							
Monthly Average		1.28	-	1.87	494							
Standard	Deviation	0.06	-	0.05	6							

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPM values at Coal storage were 324 µg/m³. The mean PM₁₀ values were 200 µg/m³, which is well above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 80 µg/m³). The average values of SO₂, NO_x and NH₃ were 4.73 µg/m³, 30.99 µg/m³ and 12.26 µg/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was $1.28 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.87 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Location 6: Tuna Port (AL-6)

	1	Table 6 : Res	ults of Air F	Pollutant Co	oncentra	tion at Tu	ına Port			
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					7.03		12.70		14.30	
AL6 -1	03.09.2021	186	104	52	4.40	5.13	57.16	38.11	16.85	16.34
					3.96		44.46		17.87	
					4.40		11.43		6.38	
AL6 – 2	08.09.2021	253	123	75	6.15	4.69	18.42	17.36	14.04	10.64
					3.52		22.23		11.49	
					3.52		25.41		9.96	
AL6 – 3	10.09.2021	214	128	57	5.28	3.66	32.39	23.29	21.70	13.87
					2.20		12.07		9.96	
					2.20		30.49		9.70	
AL6 – 4	15.09.2021	166	108	49	4.84	4.54	19.05	20.96	9.19	9.70
					6.59		13.34		10.21	
					3.08		52.72		12.25	
AL6 – 5	17.09.2021	253	177	50	4.84	4.69	45.10	45.52	15.57	12.51
					6.15		38.74		9.70	
					1.32		27.31		13.02	
AL6 – 6	22.09.2021	441	135	49	3.08	3.22	38.74	31.97	15.57	13.79
					5.28		29.85		12.76	
					3.08		33.66		16.08	
AL6 – 7	24.09.2021	216	130	46	5.28	3.81	44.46	40.44	10.47	12.00
					3.08		43.19		9.45	
					1.76		13.34		5.87	
AL6 – 8	28.09.2021	179	106	62	3.96	3.37	4.45	7.20	5.36	7.23
					4.40		3.81		10.47	
Monthly	Average	238	126	55		4.14		28.11		12.01
Standard Deviation		88	24	10		0.71		13.08		2.82

NS: Not Specified

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

Table	e 6B : Results of	Air Pollutar	nt Concentra	tion at Tuna	Port
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit	•		NS	4.0 mg/m ³	NS
AL6 -1	03.09.2021	1.19	BDL	1.86	478
AL6 – 2	08.09.2021	1.16	BDL	1.92	492
AL6 – 3	10.09.2021	1.21	BDL	1.78	486
AL6 – 4	15.09.2021	1.06	BDL	1.92	482
AL6 – 5	17.09.2021	1.1	BDL	1.86	478
AL6 – 6	22.09.2021	1.02	BDL	1.8	492
AL6 – 7	24.09.2021	1.21	BDL	1.79	488
AL6-8 28.09.2021		1.2	BDL	1.86	478
Monthly	/ Average	1.14	-	1.85	484
Standard	Deviation	0.07	-	0.05	6

BDL- Below Detection Limit (Detection Limit – NMHC : 0.5 ppm)

NS- Not Specified

The mean TSPM values at Tuna Port were 238 μ g/m³, The mean PM₁₀ values were 126 μ g/m³, which is above the permissible limit. PM_{2.5} values were within the permissible limit (mean = 55 μ g/m³). The average values of SO₂, NO_x and NH₃ were 4.14 μ g/m³, 28.11 μ g/m³ and 12.01 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was $1.14 \ \mu g/m^3$, well below the permissible limit of $5.0 \ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.85 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

Location 7: Signal Building (Vadinar) (AL-7)

	Т	able 7 : Res	sults of Air	Pollutant (Concentr	ation at S	ignal Build	ing		
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	ug/m3]	NOx [µ	g/m3]	NH3 [μ	g/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.96		9.53		5.62	
AL7 -1	03.09.2021	158	88	43	30.77	12.60	8.89	10.80	4.60	6.21
					3.08		13.97		8.42	
					3.96		13.97		9.96	
AL7 -2	08.09.2021	158	93	59	4.40	3.52	17.78	14.61	6.64	9.28
					2.20	-	12.07	-	11.23	
					3.08		19.05		5.62	
AL7 -3	10.09.2021	180	108	53	3.52	3.22	10.80	12.28	4.85	4.51
					3.08		6.99	-	3.06	
					5.28		13.97		6.13	
AL7 -4	15.09.2021	169	102	33	3.52	4.25	10.16	12.70	9.96	8.85
					3.96		13.97		10.47	
					5.28		10.80		8.42	
AL7 -5	17.09.2021	160	87	27	2.64	3.66	8.26	9.74	5.62	5.87
					3.08		10.16		3.57	
					3.52		13.97		10.47	
AL7 -6	22.09.2021	177	95	64	3.96	4.40	10.80	8.79	9.96	9.87
					5.71		1.59		9.19	
					2.20		13.97		6.38	
AL7 -7	24.09.2021	139	94	32	4.40	3.52	12.70	12.91	8.42	6.72
					3.96	1	12.07	1	5.36	1
					2.64		14.61		8.68	
AL7 -8	28.09.2021	168	107	43	3.08	3.08	8.89	12.49	6.13	7.40
					3.52	1	13.97	1	7.40	
Monthly	Average	164	97	44		5		12		7
Standard Deviation		13	8	13		3		2		2

NS: Not Specified

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

Table 7	B : Results of A	ir Pollutant C	oncentratior	n at Signal Bu	ilding
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL7 -1	03.09.2021	1.12	BDL	1.8	456
AL7 – 2	08.09.2021	1.06	BDL	1.78	462
AL7 – 3	10.09.2021	1.11	BDL	1.86	470
AL7 – 4	15.09.2021	1.18	BDL	1.8	455
AL7 – 5	17.09.2021	1.25	BDL	1.72	469
AL7 – 6	22.09.2021	1.16	BDL	1.68	460
AL7 – 7	24.09.2021	1.2	BDL	1.77	463
AL7 – 8 28.09.2021		1.26	BDL	1.7	460
Monthly	Monthly Average		-	1.76	462
Standard	Deviation	0.07	-	0.06	5

BDL- Below Detection Limit (Detection Limit - NMHC : 0.5 ppm)

NS_Not Specified

The mean TSPM values at Vadinar Port were 164 μ g/m³. The mean PM₁₀ values were 97 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 44 μ g/m³). The average values of SO₂, NO_x and NH₃ were 5.0 μ g/m³, 12.0 μ g/m³ and 7.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was 1.17 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.76 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table	8 : Results	of Air Poll	utant Conc	entratio	on at Adr	nin Build	ing		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	ΝНЗ [ļ	ug/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					3.96		13.34		5.87	
AL8 -1	03.09.2021	164	83	24	3.96	4.25	12.07	12.28	5.87	4.77
					4.84		11.43		2.55	
					4.40		20.96		5.11	
AL8 -2	08.09.2021	198	130	35	6.15	5.28	17.78	20.54	4.85	5.70
					5.28		22.87		7.15	
					2.64		8.89		8.42	
AL8 -3	10.09.2021	177	86	64	3.96	3.81	13.97	12.91	9.19	8.34
					4.84		15.88		7.40	
					2.64		20.96		8.42	
AL8 -4	15.09.2021	150	78	25	3.08	2.07	17.78	16.94	4.08	6.98
					0.48		12.07		8.42	
					2.20		247.71		5.62	
AL8 -5	17.09.2021	156	84	46	3.96	3.52	12.70	91.46	6.89	6.72
					4.40		13.97		7.66	
					3.52		11.43		4.60	
AL8 -6	22.09.2021	198	123	55	4.40	4.10	14.61	13.97	4.34	4.85
					4.40		15.88		5.62	
					3.08		9.53		8.68	
AL8 -5	24.09.2021	172	101	54	3.52	2.34	6.99	9.10	11.23	7.83
					0.44		10.80		3.57	
					4.84		7.62		3.57	
AL8-6	28.09.2021	135	79	34	5.71	5.57	9.53	9.95	5.62	6.30
					6.15		12.70		9.70	
Monthly	Average	169	95	42		4		23		6
Standard	Deviation	22	20	15		1		28		1

Location 8: Admin Building (Vadinar) (AL-8)

Table 8	B : Results of A	ir Pollutant	Concentratio	on at Admin	Building
Parameter		С6Н6 [µg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit	•		NS	4.0 mg/m ³	NS
AL8 -1	03.09.2021	1.06	BDL	1.78	460
AL8-2	08.09.2021	1.1	BDL	1.8	472
AL8 -3	10.09.2021	1.02	BDL	1.68	460
AL8-4	15.09.2021	1.1	BDL	1.72	461
AL8 -5	17.09.2021	1.17	BDL	1.81	452
AL8-6	22.09.2021	1.06	BDL	1.76	460
AL8-7	24.09.2021	1.1	BDL	1.66	470
AL8-8 28.09.2021		1.11	BDL	1.6	465
Monthly	Monthly Average		-	1.73	463
Standard	Standard Deviation		-	0.07	6

BDL- Below Detection Limit (Detection Limit – NMHC: 0.5 ppm)

NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPM values at Vadinar Port were 169 μ g/m³. The mean PM₁₀ values were 95 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 42.0 μ g/m³). The average values of SO₂, NO_x and NH₃ were 4.0 μ g/m³, 23.0 μ g/m³ and 6.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.09 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.73 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various gaseous pollutants. However, Particulate matter as PM₁₀ and PM_{2.5} was found to exceed the limits at locations like Near Coal storage area, Marine Bhavan, Estate Office , Tuna Port and Oil Jetty area.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - IS 10500:2012. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Table 9: Drinking Water Quality Monitoring Parameters for Nirman Building 1, P & C building &Main Gate (North) at Kandla

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.36	7.31	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1343	1312	1350	500	2000
3	Turbidity	NTU	0	1	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2630	2600	2690	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	420.94	365.81	370.82	250.0	1000.0
9	Ca as Ca	mg/l	72.14	56.11	52.10	75.0	200.0
10	Mg as Mg	mg/l	85.05	72.90	65.61	30.0	100.0
11	Total Hardness	mg/l	350	300	270	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.35	0.54	0.21	1.0	1.5
14	Sulphate as SO4	mg/l	228	210	258	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	6.27	8.10	13.38	45.0	No Relaxation
17	Salinity	%	0.76	0.66	0.67	NS*	NS*
18	Sodium as Na	mg/l	301	243	265	NS*	NS*
19	Potassium as K	mg/l	3.24	3.68	3.51	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 10: Drinking Water Quality Monitoring Parameters for Canteen, West Gate – I & Wharf Area	
at Kandla	

1 pH pH Unit 7.55 7.6 7.83 6.5 to 8.5 6.5 to 8.5 2 Total Dissolved Solids mg/l 1390 1360 1500 500 2000 3 Turbidity NTU 0 0 1 1.0 5.0 4 Odor - Odorless Odorless Odorless Agreeable Agreeable 5 Color Hazen Units Colorless Colorless Colorless 5.0 15.0 6 Conductivity µs/cm 2700 2680 2950 NS* NS* 7 Biochemical Oxygen Demand mg/l <2 <2 <2 NS* NS* 8 Chloride as Cl mg/l 430.96 360.80 380.85 250.0 1000.0 9 Ca as Ca mg/l 60.12 56.11 60.12 75.0 200.0 10 Mg as Mg mg/l <0.01 <0.01 <0.01 0.3 No Relaxation <th>Sr. No.</th> <th>Parameter</th> <th>Unit</th> <th>Canteen</th> <th>West Gate – I</th> <th>Wharf Area</th> <th>Acceptable Limits as per IS 10500 : 2012</th> <th>Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012</th>	Sr. No.	Parameter	Unit	Canteen	West Gate – I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
2 Solids mg/l 1390 1360 1500 500 2000 3 Turbidity NTU 0 0 1 1.0 5.0 4 Odor - Odorless Odorless Agreeable Agreeable 5 Color Hazen Units Colorless Colorless Colorless S.0 15.0 6 Conductivity µs/cm 2700 2680 2950 NS* NS* 7 Biochemical Oxygen Demand mg/l <2	1	рН	pH Unit	7.55	7.6	7.83	6.5 to 8.5	6.5 to 8.5
4 Odor - Odorless Odorless Odorless Agreeable Agreeable 5 Color Hazen Units Colorless Colorless Colorless 5.0 15.0 6 Conductivity µs/cm 2700 2680 2950 NS* NS* 7 Biochemical Oxygen Demand mg/l <2	2		mg/l	1390	1360	1500	500	2000
5 Color Hazen Units Colorless Colorless Colorless 5.0 15.0 6 Conductivity µs/cm 2700 2680 2950 NS* NS* 7 Biochemical Oxygen Demand mg/l <2	3	Turbidity	NTU	0	0	1	1.0	5.0
5 Color Units Colorless Colorless Colorless 5.0 15.0 6 Conductivity µs/cm 2700 2680 2950 NS* NS* 7 Biochemical Oxygen Demand mg/l <2	4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
7 Biochemical Oxygen Demand mg/l <2 <2 <2 <2 NS* NS* 8 Chloride as Cl mg/l 430.96 360.80 380.85 250.0 1000.0 9 Ca as Ca mg/l 60.12 56.11 60.12 75.0 200.0 10 Mg as Mg mg/l 63.18 80.19 85.05 30.0 100.0 11 Total Hardness mg/l 260 330 350 200.0 600.0 12 Iron as Fe mg/l <0.01	5	Color		Colorless	Colorless	Colorless	5.0	15.0
7 Oxygen Demand mg/l <2 <2 <2 <2 <2 NS* NS* 8 Chloride as Cl mg/l 430.96 360.80 380.85 250.0 1000.0 9 Ca as Ca mg/l 60.12 56.11 60.12 75.0 200.0 10 Mg as Mg mg/l 63.18 80.19 85.05 30.0 100.0 11 Total Hardness mg/l 260 330 350 200.0 600.0 12 Iron as Fe mg/l <0.01	6	Conductivity	µs/cm	2700	2680	2950	NS*	NS*
9 Ca as Ca mg/l 60.12 56.11 60.12 75.0 200.0 10 Mg as Mg mg/l 63.18 80.19 85.05 30.0 100.0 11 Total Hardness mg/l 260 330 350 200.0 600.0 12 Iron as Fe mg/l <0.01	7		mg/l	<2	<2	<2	NS*	NS*
10 Mg as Mg mg/l 63.18 80.19 85.05 30.0 100.0 11 Total Hardness mg/l 260 330 350 200.0 600.0 12 Iron as Fe mg/l <0.01	8	Chloride as Cl	mg/l	430.96	360.80	380.85	250.0	1000.0
11 Total Hardness mg/l 260 330 350 200.0 600.0 12 Iron as Fe mg/l <0.01	9	Ca as Ca	mg/l	60.12	56.11	60.12	75.0	200.0
12 Iron as Fe mg/l <0.01 <0.01 <0.01 <0.01 0.3 No Relaxation 13 Fluorides as F mg/l 0.58 0.79 0.25 1.0 1.5 14 Sulphate as SO4 mg/l 164.4 282 276 200.0 400 15 Nitrite as NO2 mg/l <0.01	10	Mg as Mg	mg/l	63.18	80.19	85.05	30.0	100.0
13 Fluorides as F mg/l 0.58 0.79 0.25 1.0 1.5 14 Sulphate as SO4 mg/l 164.4 282 276 200.0 400 15 Nitrite as NO2 mg/l <0.01	11	Total Hardness	mg/l	260	330	350	200.0	600.0
14 Sulphate as SO4 mg/l 164.4 282 276 200.0 400 15 Nitrite as NO2 mg/l <0.01	12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
15 Nitrite as NO2 mg/l <0.01 <0.01 <0.01 NS* NS* 16 Nitrate as NO3 mg/l 8.80 10.42 9.50 45.0 No Relaxation 17 Salinity % 0.78 0.65 0.69 NS* NS* 18 Sodium as Na mg/l 274 251 263 NS* NS* 19 Potassium as K mg/l 4.23 3.88 4.21 NS* NS* 20 Manganese mg/l <0.04	13	Fluorides as F	mg/l	0.58	0.79	0.25	1.0	1.5
16 Nitrate as NO3 mg/l 8.80 10.42 9.50 45.0 No Relaxation 17 Salinity % 0.78 0.65 0.69 NS* NS* 18 Sodium as Na mg/l 274 251 263 NS* NS* 19 Potassium as K mg/l 4.23 3.88 4.21 NS* NS* 20 Manganese mg/l <0.04	14	Sulphate as SO4	mg/l	164.4	282	276	200.0	400
17 Salinity % 0.78 0.65 0.69 NS* NS* 18 Sodium as Na mg/l 274 251 263 NS* NS* 19 Potassium as K mg/l 4.23 3.88 4.21 NS* NS* 20 Manganese mg/l <0.04	15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
18 Sodium as Na mg/l 274 251 263 NS* NS* 19 Potassium as K mg/l 4.23 3.88 4.21 NS* NS* 20 Manganese mg/l <0.04	16	Nitrate as NO3	mg/l	8.80	10.42	9.50	45.0	No Relaxation
19 Potassium as K mg/l 4.23 3.88 4.21 NS* NS* 20 Manganese mg/l <0.04	17	Salinity	%	0.78	0.65	0.69	NS*	NS*
20 Manganese mg/l <0.04 <0.04 <0.04 0.1 0.3 21 Hexavalent Chromium mg/l <0.03	18	Sodium as Na	mg/l	274	251	263	NS*	NS*
21 Hexavalent Chromium mg/l <0.03 <0.03 <0.03 NS* NS* 22 Copper mg/l <0.05	19	Potassium as K	mg/l	4.23	3.88	4.21	NS*	NS*
21 mg/l <0.03 <0.03 <0.03 NS* NS* 22 Copper mg/l <0.05	20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
23 Cadmium mg/l <0.002 <0.002 <0.002 0.003 0.003 24 Arsenic mg/l <0.01	21		mg/l	<0.03	<0.03	<0.03	NS*	NS*
24 Arsenic mg/l <0.01 <0.01 <0.01 0.01 0.05 25 Mercury mg/l <0.001	22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
25 Mercury mg/l <0.001 <0.001 0.001 0.001 0.001 26 Lead mg/l <0.01	23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
26 Lead mg/l <0.01 <0.01 <0.01 0.01 0.01 27 Zinc mg/l <0.1	24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
27 Zinc mg/l <0.1 <0.1 5.0 15.0	25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
	26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
28 Bacterial Count CELI/100ml Abcont Abcont Abcont Abcont Absent	27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28 Bacterial Count Croy toonin Absent Absent Absent Absent Absent	28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	SewaSadan – 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.61	7.57	7.45	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1326	1320	1520	500	2000
3	Turbidity	NTU	2	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2650	2610	3010	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	410.91	320.71	425.95	250.0	1000.0
9	Ca as Ca	mg/l	48.10	56.11	48.10	75.0	200.0
10	Mg as Mg	mg/l	77.76	82.62	77.76	30.0	100.0
11	Total Hardness	mg/l	320	340	320	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.16	0.20	0.77	1.0	1.5
14	Sulphate	mg/l	213.6	195.6	276	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	13.73	10.21	12.88	45.0	No Relaxation
17	Salinity	%	0.74	0.58	0.77	NS*	NS*
18	Sodium as Na	mg/l	215	206	166	NS*	NS*
19	Potassium as K	mg/l	3.87	3.73	3.56	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 11: Drinking Water Quality Monitoring Parameters for Sewa sadan – 3, Workshop I & Custom Building at Kandla

Sr. No.	Parameter	Unit	Port Colony Kandla	Hospital Kandla	A.O. Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.53	7.56	7.59	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1370	1350	1450	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2690	2700	2990	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	335.75	375.84	821.83	250.0	1000.0
9	Ca as Ca	mg/l	76.15	52.10	72.14	75.0	200.0
10	Mg as Mg	mg/l	87.48	70.47	92.34	30.0	100.0
11	Total Hardness	mg/l	360	290	380	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.48	0.14	0.81	1.0	1.5
14	Sulphate	mg/l	336	228	237.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.50	10.21	11.62	45.0	No Relaxation
17	Salinity	%	0.61	0.68	1.48	NS*	NS*
18	Sodium as Na	mg/l	211	196	202	NS*	NS*
19	Potassium as K	mg/l	4.08	4.01	3.99	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 12: Drinking Water Quality Monitoring Parameters for Port Colony Kandla, Hospital Kandla& A.O. Building at Gandhidham

Table 13: Drinking Water Quality Monitoring Parameters for School Gopalpuri, Guest House &E - Type Quarter at Gopalpuri, Gandhidham

Sr. No.	Parameter	Unit	School Gopalpuri	Guest House	E - Type Quarter	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.64	7.61	7.69	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1400	1850	1190	500	2000
3	Turbidity	NTU	2	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorles s	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorles s	5.0	15.0
6	Conductivity	μs/cm	2780	3670	2310	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	410.91	471.05	385.86	250.0	1000.0
9	Ca as Ca	mg/l	64.13	76.15	44.09	75.0	200.0
10	Mg as Mg	mg/l	85.05	99.63	80.19	30.0	100.0
11	Total Hardness	mg/l	350	410	330	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.34	0.22	0.48	1.0	1.5
14	Sulphate	mg/l	252	284.4	303.6	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.50	10.70	9.50	45.0	No Relaxation
17	Salinity	%	0.74	0.85	0.70	NS*	NS*
18	Sodium as Na	mg/l	202	184	192	NS*	NS*
19	Potassium as K	mg/l	3.49	3.50	3.56	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 14: Drinking Water Quality Monitoring Parameters for F - Type Quarter, Hospital Gopalpuri& Tuna Port

Sr. No.	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.56	7.42	7.32	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1230	1590	1020	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Unit	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2450	3150	2000	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	375.84	511.14	604	250.0	1000.0
9	Ca as Ca	mg/l	40.08	60.12	80.16	75.0	200.0
10	Mg as Mg	mg/l	85.05	97.20	60.75	30.0	100.0
11	Total Hardness	mg/l	350	400	330	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.59	0.36	0.46	1.0	1.5
14	Sulphate	mg/l	260.4	174	180	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	10.00	7.96	8.2	45.0	No Relaxation
17	Salinity	%	0.68	0.92	1.09	NS*	NS*
18	Sodium as Na	mg/l	162	206	210	NS*	NS*
19	Potassium as K	mg/l	2.18	4.01	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty & Port Colony at	
Vadinar	

Sr. No.	Parameter	Unit	Vadinar Jetty	Port Colony Vadinar	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.4	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1160	1150	500	2000
3	Turbidity	NTU	ND	ND	1.0	5.0
4	Odor	-	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2390	2300	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	NS*	NS*
8	Chloride	mg/l	425.95	415.92	250.0	1000.0
9	Ca as Ca	mg/l	56.11	64.13	75.0	200.0
10	Mg as Mg	mg/l	75.33	70.47	30.0	100.0
11	Total Hardness	mg/l	310	290	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.71	0.62	1.0	1.5
14	Sulphate	mg/l	30.60	28.80	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.85	9.71	45.0	No Relaxation
17	Salinity	%	0.76	0.75	NS*	NS*
18	Sodium as Na	mg/l	192.0	183.0	NS*	NS*
19	Potassium as K	mg/l	2.2	2.7	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	5.0	15.0
28	Bacterial Count *NS: Not Specified	CFU/100ml	Absent	Absent	Absent	Absent

2.3 Results & Discussion

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 7.0 to 8.0 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 1000 -1800 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards .

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of September ranged from 2000-3700 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was less than 2.0 mg/L. Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 400-900 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 40 - 80 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

Magnesium

Magnesium value in the studied area varied between 60 - 99 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 260-410 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was below 0.01mg/L and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 - 1.0 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 30 - 350 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were <0.1. There are no specified standard values for Nitrites in Drinking water. The mean Nitrate values in drinking water of KPT was 6.27 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.5 to 1.4 %. There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 100 - 300 mg/l and Potassium salts ranged from 2.2 to 4.0 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well below the permissible limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 Conclusions

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (Db).

3.2 Results

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

Sr. No.	Location	Day Time Average Noise Level (SPL) in dB(A)	Night Time Average Noise Level (SPL) in dB(A)
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM
1	Marine Bhavan	58.0	50.4
2	Nirman Building 1	55.3	49.1
3	Tuna Port	52.8	46.5
4	Main Gate North	60.3	55.2
5	West Gate 1	67.2	60.6
6	Canteen Area	58.7	50.9
7	Main Road	70.5	59.5
8	ATM Building	69.2	62.3
9	Wharf Area /Jetty Area	73.7	65.4
10	Port & Custom Office	55.2	49.6
		Vadinar Port	
11	Entrance Gate of Vadinar Port	69.6	58.4
12	Nr. Port Colony, Vadinar	61.3	55.8
13	Nr. Vadinar Jetty	68.2	61.5

3.3 Conclusions- Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all 13 locations at Deendayal Port ranged from 52.0 dB(A) to 73.7 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all 13 locations of Deendayal Port ranged from 46.5 dB to 65.4 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

4.1 Methodology

The soil samples were collected in the month of September 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 Results

Table-17: Chemical Characteristics of Soil in the Study Area

	Parameter		Station Name					
		Unit	SL1	SL2	SL3	SL4	SL5	SL6
Sr. No.			Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony
			Near main gate of Port	10 m away from main gate	Sand from creek at low tide		Vadinar	
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	рН	-	8.58	8.16	8.46	8.26	8.02	8.56
3	Electrical Conductivity	μs/cm	18,400.0	25,620.0	17,880.0	16,520.0	523.0	420.0
4	Moisture	%	21.00	22.20	24.10	18.80	8.66	9.02
5	Total Organic Carbon	%	0.48	1.24	0.48	3.93	0.18	0.21
6	Alkalinity	mg/kg	72.07	36.04	190.19	90.09	60.06	100.10
7	Total Nitrogen	%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Chloride	mg/kg	1,506.6	6,381.0	1,701.0	1,878.9	52.0	67.8
9	Sulphate	mg/kg	202.0	196.0	112.0	112.0	12.0	18.0
10	Phosphorus	mg/kg	0.89	0.92	1.05	1.10	0.78	0.86
11	Potassium	mg/kg	386.0	820.0	345.0	422.0	110.0	172.0
12	Sodium	mg/kg	1,585.0	3,386.0	2,303.0	1,990.0	990.0	810.0
13	Calcium	mg/kg	228.46	741.50	248.50	468.94	118.00	72.00
14	Copper as Cu	mg/kg	52.2	78.2	46.2	33.8	18.6	28
15	Lead as Pb	mg/kg	4.9	5.6	3.2	4.8	3.2	1.1
16	Nickel as Ni	mg/kg	46.2	28	33.2	26.1	18.2	16.2
17	Zinc as Zn	mg/kg	66.20	41.60	68	49.55	24.00	38.50
18	Cadmium as Cd	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

4.3 Discussion

- The data shows that value of pH ranges from 8.02 at Nakti Creek to 8.58 at Tuna Creek indicating that all soil samples are neutral to slight basic. Iffco Plant samples showed maximum conductivity of 25,620µmhos/cm, while Nakti Creek location showed minimum conductivity of 16,520 µmhos/cm. Conductivity at Vadinar Port was 523 and 420 µmhos/cm at Admin site and Vadinar Port colony respectively.
- Total organic Carbon ranged from 0.1 % to 3.9 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.1 % to 0.2 %.
- The concentration of Phosphorus and Potassium in the soil samples varies from 0.8 to 1.10 mg/kg and 300.0 to 800 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 0.82 mg/kg and mean concentration of Potassium at Vadinar site was 145 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel and Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was not detected in the Soil.

4.4 Conclusion

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 Methodology for STP Monitoring

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. Carboys and were analyzed in laboratory for various parameters.

5.2 Results

• Kandla STP

Table 18: Sewage Water Monitoring at Kandla STP (1st Week)

D	ate of Sampling	04.09.2021					
Sr. No.	-	Unit	Results				
SI. NO.	Parameters		KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.56	7.44			
2	2 Total Suspended Solids		64.2	26.6			
3	3 Residual Chlorine		<1.0	<0.5			
4	4 COD		424.2	103.0			
5	5 BOD @ 27 °C		141.0	29.0			
6.	Fecal Coliform	MPN Index / 100 ml	-	20.0			
Aeration Tank							
7.	MLSS	mg/l	e	5.0			
8. MLVSS		%	93.0				

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

D	ate of Sampling	09.09.2021						
Sr.	Parameters	Unit	Results					
No.	Parameters		KPT STP I/L	KPT STP O/L				
1	рН	pH unit	7.6	7.2				
2	Total Suspended Solids	mg/l	152.2	72.4				
3	Residual Chlorine	mg/l	<1.0	<0.5				
4	COD	mg/l	384	103.0				
5	BOD @ 27 °C	mg/l	120.0	24.0				
6.	6. Fecal Coliform		-	31.0				
Aeration Tank								
7.	MLSS	mg/l	9.0					
8. MLVSS		%	89.0					

Table 19: Sewage Water Monitoring at Kandla STP (2nd Week)

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

D	ate of Sampling	16.09.2021						
	Parameters	Unit	Results					
Sr. No.			KPT STP I/L	KPT STP O/L				
1	рН	pH unit	7.71	7.18				
2	Total Suspended Solids	mg/l	417.8	159.8				
3	Residual Chlorine	mg/l	<1.0	<0.5				
4	COD	mg/l	383.8	102				
5	BOD @ 27 °C	mg/l	128.0	23.0				
6. Fecal Coliform		MPN Index / 100 ml	-	<1.8				
Aeration Tank								
7.	MLSS	mg/l	g	0.0				
8. MLVSS		%	89.0					

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

21.09.2021

Γ		1			
Sr. No.	Davamatava	11	Res	sults	
Sr. NO.	Parameters	Unit	KPT STP I/L	KPT STP O/L	
1	рН	pH unit	7.53	7.32	
2	Total Suspended Solids	mg/l	172.4	75.9	
3	Residual Chlorine	mg/l	<1.0	<1.0	
4	COD	mg/l	151.5	102.0	
5	BOD @ 27 °C	mg/l	106.0	52.0	
6.	Fecal Coliform	MPN Index / 100 ml	-	110.0	
	Aeration Tank				
7.	MLSS	mg/l	16.0		
8	MLVSS	%	8	2.0	

Table 21: Sewage Water Monitoring at Kandla STP (4th Week)

Date of Sampling

• Gopalpuri Colony STP

Table 22: Sewage Water Monitoring at Gopalpuri STP (1st Week)

Date of Sampling	04.09.2021

			Re	sults	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.35	7.21	
2	Total Suspended Solids	mg/l	108.8	26	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	316.0	98.0	
5	BOD @ 27 °C	mg/l	110.0	28.0	
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600.0	
	Aeration Tank				
7.	MLSS	mg/l	11.0		
8	MLVSS	%	8	7.0	

09.09.2021

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.6	7.41
2	Total Suspended Solids	mg/l	406	107.4
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	414.1	101
5	BOD @ 27 °C	mg/l	139.0	28.0
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600.0
Aeration Tank				
7.	MLSS	mg/l	14.0	
8	MLVSS	%	90	0.0

Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date of Sampling			16.09.202	1
			Results	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.7	7.36
2	Total Suspended Solids	mg/l	276.6	92.1
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	373.7	104
5	BOD @ 27 °C	mg/l	125.0	28.0
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600.0
	Aer	ation Tank		
7.	MLSS	mg/l	12.0	
8	MLVSS	%	86.0	

Date of Sampling			05.09.202	1	
			Res	sults	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.4	7.22	
2	Total Suspended Solids	mg/l	182.4	117.8	
3	Residual Chlorine	mg/l	<1.0	<0.5	
4	COD	mg/l	171.7	101	
5	BOD @ 27 °C	mg/l	80.0	23.0	
6.	Fecal Coliform	MPN Index / 100 ml	-	920.0	
	Aeration Tank				
7.	MLSS	mg/l	12.0		
8.	MLVSS	%	8	8.0	

Table 25: Sewage Water Monitoring at Gopalpuri STP (4th Week)

• Vadinar STP

Table 26: Sewage Water Monitoring at Vadinar STP (1st Week)

Date of Sampling			05.09.2021	
			Resu	lts
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.22	7.10
2	Total Suspended Solids	mg/l	62	28.0
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	88.0	56.0
5	BOD @ 27 °C	mg/l	26.0	15.0

09.09.2021

			Re	sults
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.33	7.10
2	Total Suspended Solids	mg/l	72	24.0
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	88.0	60.0
5	BOD @ 27 °C	mg/l	29.0	18.0

Table 27: Sewage	Water	Monitoring at	: Vadinar	STP	(2 nd Week)	
------------------	-------	---------------	-----------	-----	------------------------	--

Date of Sampling

Table 28: Sewage Water Monitoring at Vadinar STP (3rd Week)

Date of Sampling			16.09.2021	
			Resi	ults
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.32	7.12
2	Total Suspended Solids	mg/l	60	58.0
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	80.0	55.0
5	BOD @ 27 °C	mg/l	26.0	16.0

21.09.2021

			Resu	ults
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.18	7.10
2	Total Suspended Solids	mg/l	72	42.0
3	Residual Chlorine	mg/l	<1.0	<0.5
4	COD	mg/l	80.0	58.0
5	BOD @ 27 °C	mg/l	26.0	12.0

Table 29: Sewage Water Monitoring at Vadinar STP (4th Week)

Date of Sampling

5.3 Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea.

6. Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decisionmaking. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 7th& 8th September-2021 in harbor regions of KPT and on 7th September-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 14th& 15th September 2021 in harbor regions of KPT. 15th September -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month .Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek
	2 in Nakti creek
	1 in Khori creek
	1 near Vadinar Jetty
	1 near 1 st SBM
Total Number of locations	8

Sampling Locations

6.1 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

	Parameters	Unit	H	andla Creek Ne	ear KPT colony (1)	
Sr.	Falameters	Onic	23°0'58"N 70°13'22."E				
No.			Sprin	g Tide	Neaj	o Tide	
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.20	7.35	7.31	7.27	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.6	32.0	31.0	31.8	
5	Turbidity	NTU	37	35	32	28	
6	Total Dissolved Solids	mg/l	59704	58025	34000.0	37060.0	
7	Total Suspended Solids	mg/l	282	357	382	303.5	
8	Total Solids	mg/l	59986	58382	34382.0	37363.5	
9	DO	mg/l	4.5	4.7	4.7	5.3	
10	COD	mg/l	78.0	82.0	80.0	86.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	6.09	7.49	0.53	0.42	
13	Phosphate	mg/l	0.17	0.16	0.18	0.18	
14	Sulphate	mg/l	2640	2280	2808	2568	
15	Nitrate	mg/l	2.60	1.43	2.26	2.29	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	761.52	921.84	521.04	721.44	
18	Magnesium	mg/l	1409.4	1263.6	1749.6	1749.6	
19	Sodium	mg/l	11280.0	10920.0	11360.0	11062.0	
20	Potassium	mg/l	289.0	320.0	296.0	310.0	
21	Iron	mg/l	1.95	1.89	1.85	1.79	
22	Chromium	mg/l	0.11	0.13	0.11	0.12	
23	Copper	mg/l	0.07	0.08	0.08	0.07	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.05	0.04	0.05	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.17	0.18	0.13	0.14	
28	Zinc	mg/l	0.05	0.06	0.05	0.07	

Table 30: Marine Water Quality Monitoring Parameters for location near KPT colony

Table 31: Marine Water Quality Monitoring Parameters for location near passenger Jetty One atKandla

	Kandla								
					er Jetty One (2)				
Sr.	Parameters	Unit			70°13'31"E				
No.			Sprin	Spring Tide		o Tide			
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide			
1	рН	pH unit	7.40	7.28	7.4	7.43			
2	Color	-	Colorless	Colorless	Colorless	Colorless			
3	Odor	-	Odorless	Odorless	Odorless	Odorless			
4	Salinity	ppt	31.8	31.6	32.5	32.0			
5	Turbidity	NTU	26	27	36	27			
6	Total Dissolved Solids	mg/l	55555	51116	34060.0	33780.0			
7	Total Suspended Solids	mg/l	363	174	242	582.9			
8	Total Solids	mg/l	55918	51290	34302.0	34362.9			
9	DO	mg/l	4.9	5.2	5.5	4.6			
10	COD	mg/l	96.0	90.0	90.0	88.0			
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0			
12	Silica	mg/l	5.16	6.84	0.67	0.71			
13	Phosphate	mg/l	0.20	0.18	0.16	0.19			
14	Sulphate	mg/l	2820	2376	2832	2496			
15	Nitrate	mg/l	2.36	2.89	4.00	3.37			
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05			
17	Calcium	mg/l	721.44	961.92	601.2	681.36			
18	Magnesium	mg/l	1409.4	1215	1822.5	1773.9			
19	Sodium	mg/l	11862.0	11060.0	11652.0	11110.0			
20	Potassium	mg/l	290.0	312.0	299.0	310.0			
21	Iron	mg/l	1.96	1.93	1.86	1.93			
22	Chromium	mg/l	0.13	0.13	0.13	0.14			
23	Copper	mg/l	0.09	0.08	0.06	0.05			
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01			
25	Cadmium	mg/l	0.06	0.05	0.06	0.04			
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001			
27	Lead	mg/l	0.19	0.16	0.17	0.18			
28	Zinc	mg/l	0.08	0.08	0.07	0.06			

				Near Co	al Berth		
Sr.	Parameters	Unit		22°59'12"N	70°13'40"E	40"E	
No.			Spring Tide		Neap Tide		
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.19	7.38	7.53	7.34	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.5	32.2	32.6	31.6	
5	Turbidity	NTU	35	36	34	33	
6	Total Dissolved Solids	mg/l	48086	54880	41460.0	39690.0	
7	Total Suspended Solids	mg/l	220	220	376.6	359.9	
8	Total Solids	mg/l	48306	55100	41836.6	40049.9	
9	DO	mg/l	5.0	5.1	4.8	5.2	
10	COD	mg/l	89.0	92.0	81.0	78.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	4.67	4.95	0.47	0.71	
13	Phosphate	mg/l	0.16	0.21	0.18	0.19	
14	Sulphate	mg/l	2376	2964	2376	2352	
15	Nitrate	mg/l	2.04	2.26	4.82	4.60	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	801.60	921.84	440.88	521.04	
18	Magnesium	mg/l	1336.5	1287.9	1701	1773.9	
19	Sodium	mg/l	12042.0	11910.0	12150.0	11956.0	
20	Potassium	mg/l	366.0	372.0	358.0	376.0	
21	Iron	mg/l	2.11	2.30	1.96	2.01	
22	Chromium	mg/l	0.12	0.15	0.12	0.16	
23	Copper	mg/l	0.07	0.09	0.08	0.07	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.07	0.05	0.07	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.19	0.19	0.17	0.2	
28	Zinc	mg/l	0.07	0.07	0.05	0.07	

Table 32: Marine Water Quality Monitoring Parameters for location Near Coal Berth

				KF	КРТ 4			
Sr.	Parameters	Unit	Near 15/16 Berth					
No.			Sprin	Spring Tide		p Tide		
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide		
1	рН	pH unit	7.40	7.38	7.27	7.22		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	32.4	31.8	31.8	31.6		
5	Turbidity	NTU	27	23	39	45		
6	Total Dissolved Solids	mg/l	53390	47930	42746.0	35470.0		
7	Total Suspended Solids	mg/l	262	354	561.7	520.9		
8	Total Solids	mg/l	53652	48284	43307.7	35990.9		
9	DO	mg/l	4.8	4.9	5.5	4.7		
10	COD	mg/l	78.0	80.0	86.0	82.0		
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0		
12	Silica	mg/l	6.98	6.35	0.98	0.85		
13	Phosphate	mg/l	0.23	0.21	0.21	0.19		
14	Sulphate	mg/l	2220	2268	2412	2568		
15	Nitrate	mg/l	2.87	2.03	2.81	3.32		
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05		
17	Calcium	mg/l	801.60	881.76	601.2	480.96		
18	Magnesium	mg/l	1312.2	1360.8	1773.9	1773.9		
19	Sodium	mg/l	12220.0	12052.0	12012.0	12110.0		
20	Potassium	mg/l	300.0	278.0	289.0	280.0		
21	Iron	mg/l	2.31	2.22	1.88	2.02		
22	Chromium	mg/l	0.16	0.14	0.18	0.16		
23	Copper	mg/l	0.06	0.08	0.06	0.05		
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01		
25	Cadmium	mg/l	0.06	0.08	0.06	0.07		
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001		
27	Lead	mg/l	0.19	0.17	0.19	0.16		
28	Zinc	mg/l	0.09	0.07	0.06	0.08		

Table 33: Marine Water Quality Monitoring Parameters for location Khori creek at Kandla

				Nakti Creek N	Near Tuna Port		
Sr.	Parameters	Unit	22°57'49."N 70° 7'0.67"E				
No.			Sprin	Spring Tide		Tide	
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.47	7.45	7.22	7.39	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.6	31.9	32.0	31.9	
5	Turbidity	NTU	35	37	36	48	
6	Total Dissolved Solids	mg/l	52041	55010	35620.0	38755.0	
7	Total Suspended Solids	mg/l	360	425	387.9	525.7	
8	Total Solids	mg/l	52401	55435	36007.9	39280.7	
9	DO	mg/l	4.5	4.7	5.4	5.1	
10	COD	mg/l	86.0	82.0	92.0	90.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	8.67	9.40	0.82	0.53	
13	Phosphate	mg/l	0.17	0.18	0.22	0.18	
14	Sulphate	mg/l	2820	2844	2268	2136	
15	Nitrate	mg/l	2.56	1.91	2.42	3.81	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	761.52	721.44	521.04	601.2	
18	Magnesium	mg/l	1409.4	1458	1676.7	1749.6	
19	Sodium	mg/l	11958.0	11628.0	11990.0	11558.0	
20	Potassium	mg/l	366.0	376.0	360.0	320.0	
21	Iron	mg/l	2.35	2.36	2.05	2.10	
22	Chromium	mg/l	0.19	0.20	0.18	0.16	
23	Copper	mg/l	0.08	0.09	0.05	0.06	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.06	0.08	0.05	0.08	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.19	0.21	0.17	0.18	
28	Zinc	mg/l	0.09	0.08	0.07	0.08	

Table 34: Marine Water Quality Monitoring Parameters for location Nakti Creek near Tuna Port

Table 35: Marine Water Quality Monitoring Parameters for location Nakti Creek Near NH-8A atKandla

				Nakti Creek	Near NH-8A		
Sr.	Parameters	Unit	23° 02'01"N 70° 09'31"E				
No.			Spring Tide		Nea	p Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.36		7.39		
2	Color	-	Colorless		Colorless		
3	Odor	-	Odorless		Odorless		
4	Salinity	ppt	31.6		31.8		
5	Turbidity	NTU	38		37		
6	Total Dissolved Solids	mg/l	54144		35040.0		
7	Total Suspended Solids	mg/l	394		327		
8	Total Solids	mg/l	54538		35367.0		
9	DO	mg/l	4.9		5.6		
10	COD	mg/l	78.0		90.0	Sampling not possible during Low Tide	
11	BOD	mg/l	<2.0		<2.0		
12	Silica	mg/l	6.96		0.67		
13	Phosphate	mg/l	0.19	Compling	0.20		
14	Sulphate	mg/l	2964	Sampling not possible	2340		
15	Nitrate	mg/l	2.21	during Low Tide	25.70		
16	Nitrite	mg/l	<0.05	nue	<0.05	Tide	
17	Calcium	mg/l	921.84		641.28		
18	Magnesium	mg/l	1263.6		1725.3		
19	Sodium	mg/l	13125.0		13052.0		
20	Potassium	mg/l	360.0		388.0		
21	Iron	mg/l	2.41		2.30		
22	Chromium	mg/l	0.20		0.19		
23	Copper	mg/l	0.09		0.08		
24	Arsenic	mg/l	<0.01]	<0.01		
25	Cadmium	mg/l	0.08		0.07		
26	Mercury	mg/l	<0.001]	<0.001		
27	Lead	mg/l	0.18		0.2		
28	Zinc	mg/l	0.09]	0.05		

				Nr.Vadi	nar Jetty		
Sr.	Parameters	Unit	22°26'25.26"N 69°40'20.41"E				
No.			Sprin	g Tide	Near	o Tide	
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.72	7.56	7.4	7.52	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.6	32.0	32.0	32.0	
5	Turbidity	NTU	33	34	35	31	
6	Total Dissolved Solids	mg/l	41457	45920	34437.0	38630.0	
7	Total Suspended Solids	mg/l	299	267	512.6	396	
8	Total Solids	mg/l	41756	46187	34949.6	39026.0	
9	DO	mg/l	4.7	4.8	5.5	4.8	
10	COD	mg/l	90.0	86.0	86.0	89.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	7.27	8.55	0.78	0.77	
13	Phosphate	mg/l	0.17	0.18	0.19	0.20	
14	Sulphate	mg/l	2316	2388	2388	2532	
15	Nitrate	mg/l	3.03	3.15	3.32	2.59	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	841.68	961.92	561.12	601.2	
18	Magnesium	mg/l	1385.1	1263.6	1846.8	1822.5	
19	Sodium	mg/l	13820.0	13962.0	13762.0	13888.0	
20	Potassium	mg/l	310.0	285.0	316.0	296.0	
21	Iron	mg/l	1.96	1.99	1.89	2.00	
22	Chromium	mg/l	0.19	0.21	0.17	0.16	
23	Copper	mg/l	0.08	0.07	0.07	0.06	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.07	0.05	0.07	0.06	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.21	0.16	0.17	0.18	
28	Zinc	mg/l	0.08	0.07	0.06	0.05	

Table 36: Marine Water Quality Monitoring Parameters for locations Nr. Vadinar Jetty

6.1.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

6.2 Results

The Sediment Quality results are given in below from table no. 34 A & B.

Table 34A: Results of Analysis of Sediment of Kandla & Vadinar Port (Spring Tide)

Sr. No.	Parameters	Unit	KPT - 1	KPT - 2	КРТ - 4	KPT - 5	Jetty
1	Texture	-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	1.16	1.12	0.83	0.75	0.86
3	Organic Carbon	mg/kg	0.67	0.65	0.48	0.44	0.50
4	Inorganic Phosphate	mg/kg	111.0	126.0	132.0	142.0	175.0
5	Moisture	%	26.00	27.20	42.60	41	28.20
6	Aluminium	mg/kg	ND	ND	ND	ND	ND
7	Silica	mg/kg	18.0	16.0	13.0	16.0	20.0
8	Phosphate	mg/kg	9.20	10.60	10.66	8.40	8.60
9	Sulphate	mg/kg	219.0	253.0	189.0	211.0	186.0
10	Nitrite	mg/kg	0.12	0.13	0.11	0.12	0.13
11	Nitrate	mg/kg	10.20	8.88	9.25	8.69	9.74
12	Calcium	mg/kg	362.0	322.0	410.0	365.0	310.0
13	Magnesium	mg/kg	210.0	192.0	265.0	196.0	188.0
14	Sodium	mg/kg	3824.0	4012.0	2611.0	2978.0	3777.0
15	Potassium	mg/kg	240.0	202.0	160.0	145.0	178.0
16	Chromium	mg/kg	42.5	16	79	19.2	28.7
17	Nickel	mg/kg	24	20.4	16.9	11	19.3
18	Copper	mg/kg	31.8	36.4	34.2	16.8	31.2
19	Zinc	mg/kg	37.10	32.60	28.00	10.20	24.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND
21	Lead	mg/kg	3.2	3.9	4.8	3	ND
22	Mercury	mg/kg	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND

*Grab samples could not be collected due high at KPT – 3 & Vadinar SBM location.

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 2	КРТ - 3	КРТ - 4	KPT - 5	Jetty
1	Texture	-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	1.78	0.90	1.03	2.03	0.81	1.31
3	Organic Carbon	mg/kg	1.03	0.52	0.60	1.18	0.47	0.76
4	Inorganic Phosphate	mg/kg	116.0	136.0	142.0	146.0	149.0	166.0
5	Moisture	%	27.00	19.00	27.0	19.0	27.00	19.00
6	Aluminium	mg/kg	ND	ND	ND	ND	ND	ND
7	Silica	mg/kg	22.20	19.62	18.0	20.2	18.00	16.66
8	Phosphate	mg/kg	7.6	8.2	8.90	10.60	11.20	9.8
9	Sulphate	mg/kg	234.0	268.0	245.0	210.0	265.0	206.0
10	Nitrite	mg/kg	0.11	0.13	0.12	0.1	0.11	0.12
11	Nitrate	mg/kg	8.88	9.20	7.66	9.75	8.88	7.82
12	Calcium	mg/kg	378.0	325.0	389.0	378.0	378.0	296.0
13	Magnesium	mg/kg	216.0	206.0	233.0	186.0	210.0	198.0
14	Sodium	mg/kg	4428.0	3971.0	4554.0	2491.0	3036.0	3798.0
15	Potassium	mg/kg	221.0	152.0	167.0	149.0	116.0	160.30
16	Chromium	mg/kg	38.5	12.1	34.9	77.8	18.7	29.4
17	Nickel	mg/kg	27.3	20.4	36.9	21.6	13.1	19.3
18	Copper	mg/kg	11.8	33.5	40.7	20.2	11	41.2
19	Zinc	mg/kg	47.10	61.00	64.10	38.70	5.20	24.00
20	Cadmium	mg/kg	ND	ND	ND	ND	ND	ND
21	Lead	mg/kg	4.4	4.4	5.6	5.7	2.8	ND
22	Mercury	mg/kg	ND	ND	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND	ND	ND

Table 34B: Results of Analysis of Sediment of Kandla & Vadinar Port (Neap Tide)

REPORT

ON

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPTHARBOURAREA, NEAR BY CREEKS

For

DEENDAYAL PORT TRUST

SEPTEMBER,2021

INTRODUCTION:

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on8thSeptember 2021 in harbour region of DPT, and on 9thSeptember2021 in creeks near by the port during spring tide. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 14thSeptember 2021 in harbour region of DPT and on 15thSeptember 2021 in creeks near by the port during neap tidal condition.

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of DPT harbour area andone stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons(density and their population).

monitoring requirement	Number of locations		
Kandla creek	3 in Kandla creek		
Nakti creek	2 in Nakti creek		
Khori Creek	1 in Khori creek		
Total Number of locations	6		

TABLE #1 SAMPLING LOCATIONS

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval.

50 litres of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litres of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of 20µm mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone.

The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos* meaning "passively drifting or wandering") is defined as drifting or free-floating organisms are categorised into phytoplankton (organisms having an autotrophic mode of nutrition) and zooplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae). The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

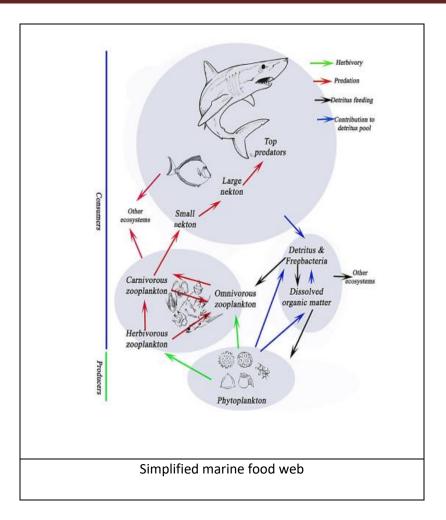
Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts.

Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryproduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.


Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are organisms which live a brief planktonic life, such as the benthic crustaceans (cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.

Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of fish, shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda) and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton may also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 10-15 minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton in each microscopic field was thus counted. When first microscopic field row was finished the next consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated

plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sediment–water interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining:

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different **DCPL/DPT/20-21/17 -SEPTEMBER - 2021**

species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (*S*) and evenness (*J*)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species

The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

- relatively few successful species in the habitat
- the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment
- food webs which are relatively simple
- change in the environment would probably have quite serious effects

High species diversity suggests:

- a greater number of successful species and a more stable ecosystem
- more ecological niches are available and the environment is less likely to be hostile complex food webs
- environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness(*S*) is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic human-induced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness**(S)** is simply the number of species present in an ecosystem. This index makes no use of relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduce community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 are characterized as heavily polluted

$$H' = -\sum_{j=1}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin –a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.366 -0.613mg/m³.in harbour region of DPT during sampling done in spring tide period of September 2021. In the nearby creeks chlorophyll-a was varying from 0.101-0.851mg/m³.Pheophytin –a level was below detectable limit- the all the sampling stations during springtide in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.322 -0.645mg/m³.in harbour region of DPT during sampling done in neap tide period of September 2021. In the nearby creeks chlorophyll-a was varying from 0.291-0.614 mg/m³. Pheophytin –a level was below detectable limit- the all the sampling stations during neap tide in the harbour region of DPT.

TABLE #2 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Sr. No.	Station	Tide	Chlorophyll-a (mg/m ³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPT HA	RBOUR AREA		
1	KDT1	High tide	0.410	BDL	27.47
T	KPT1	Low tide	0.366	BDL	24.52
2	2 KPT 2	High tide	0.409	BDL	27.40
Z		Low tide	0.467	BDL	31.29
3	КРТ З	High tide	0.512	BDL	34.30
5	KFT 5	Low tide	0.613	BDL	41.07
		C	REEKS		
4	KPT-4 Khori-I	High tide	0.645	BDL	43.22
4		Low tide	0.748	BDL	50.12
5	KPT-5 Nakti-I	High tide	0.818	BDL	54.81
5		Low tide	0.851	BDL	57.02
6	KPT-5 Nakti-II	High tide	0.101	BDL	6.76

SEPTEMBER,2021

BDL: Below Detectable Limit.

TABLE #3 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

SEPTEMBER,2021

Sr. No.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPT HA	RBOUR AREA		
1		High tide	0.322	BDL	21.57
T	1 KPT1	Low tide	0.323	BDL	21.64
2	2 // 07 2	High tide	0.630	BDL	42.21
2	KPT 2	Low tide	0.615	BDL	41.21
3		High tide	0.527	BDL	35.31
3	KPT 3	Low tide	0.645	BDL	43.22
		C	CREEKS		
4	KPT-4 Khori-I	High tide	0.511	BDL	34.24
4	KP1-4 KII0II-I	Low tide	0.599	BDL	40.13
5	KPT-5 Nakti-I	High tide	0.529	BDL	35.44
5	NPI-D INdKU-I	Low tide	0.614	BDL	41.14
6	KPT-5 Nakti-II	High tide	0.291	BDL	19.50

BDL: Below Detectable Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide and neap tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by,Diatoms andblue green algae during spring tide period.Diatoms were represented by 18 genera. Blue green were represented by 3 generaduring the sampling conducted in spring tide in September,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 85-116 units/ L during high tide period and103-133 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms and Blue green algae duringNeap tide period.Diatoms were represented by 15genera and Blue green algae were represented 3 genera during the sampling conducted in Neap tide in September, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from45 -155 units/ L during high tide period and 131-182 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.801-3.197 with an average of 2.642 during the sampling conducted in High tide period of spring tide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from 12.458-2.904 with an average of 2.697 during the consecutive low tide period.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.808-2.461 with an average of 2.087 during the sampling conducted in High tide period of Neaptide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla Harbour region and nearby creeks was varying from. 1.961-2.882 with an average of 2.371 during the consecutive low tide period.

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.771-0.988 (H'(log10)) between selected sampling stations with an average value of 0.934during high tide period of spring tide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.893-0.932 (H'(log10)) between selected sampling stations with an average value of 0.916 during consecutive lowtide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.781-0.911 (H'(log10)) between selected sampling stations with an average value of 0.862 during high tide period of neap tide. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.823-0.969 (H'(log10)) between selected sampling stations with an average value of 0.904during consecutive low tide. Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.797- 0.882 between selected sampling stations with an average of 0.862 during high tide period of spring tide . Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.845- 0.867 between selected sampling stations with an average of 0.854during consecutive low tide . Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tide period during neap tide also, which was varying from 0.821-0.857 with an average value of 0.845 between selected sampling stations during high tide period and varying from 0.824-0.870 with an average

value of 0.853 between selected sampling stations during consecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	109	16/21	76.19	3.197	0.9854	0.8739
TIDE	2	110	13/21	61.90	2.553	0.9544	0.8754
	3	107	13/21	61.90	2.568	0.9737	0.8824
	4	105	14/21	66.66	2.793	0.9885	0.8811
	5	116	15/21	71.43	2.945	0.9317	0.8627
	6	85	9/21	42.86	1.801	0.7711	0.7978
LOW TIDE	1	103	13/21	61.90	2.589	0.9277	0.8667
	2	132	13/21	61.90	2.458	0.9324	0.8648
	3	124	15/21	71.43	2.904	0.91	0.8451
	4	130	14/21	66.66	2.671	0.8926	0.8458
	5	133	15/21	71.43	2.863	0.9185	0.8479

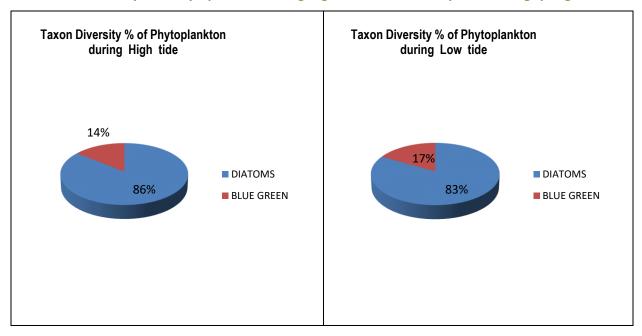
SEPTEMBER,2021

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS DURING NEAP TIDE IN

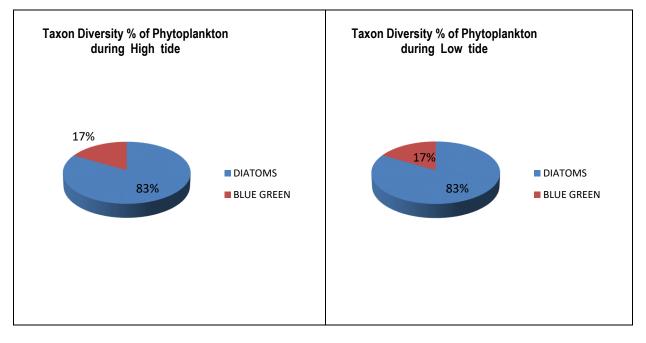
SEPTEMBER,2021

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	131	13/18	72.22	2.461	0.881	0.8452
TIDE	2	144	12/18	66.66	2.213	0.8693	0.8503
	3	145	10/18	55.55	1.808	0.8678	0.8511
	4	155	11/18	61.11	1.983	0.8653	0.8484
	5	153	12/18	66.66	2.187	0.911	0.8573
	6	42	8/18	44.44	1.873	0.7809	0.8211
LOW	1	131	11/18	61,11	2.051	0.8234	0.8243
TIDE	2	153	12/18	66.66	2.187	0.8951	0.8542
	3	182	16/18	88.88	2.882	0.9697	0.8703
	4	155	15/18	83.33	2.776	0.9374	0.8618
	5	164	11/18	61.11	1.961	0.8971	0.8564


Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	6	DIATOMS	83-110	18/21	85.71
HIGH	surface	Ũ	BLUE GREEN	2-12	3/21	14.29
TIDE			TOTAL PHYTO	85-116	21	-
			PLANKTON			
LOW			DIATOMS	93-129	18/21	85.71
TIDE	Sub	5	BLUE GREEN	4-13	3/12	14.29
	surface		TOTAL PHYTO	103-133	21	-
			PLANKTON			

AREA, NEAR BY CREEKS DURING SPRING TIDE IN SEPTEMBER, 2021


Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOURAREA, NEAR BY CREEKS DURING NEAPTIDE IN SEPTEMBER,2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total	Taxon Diversity % (Group
					Phyto	level)
					plankton	
	Sub	6	DIATOMS	38-154	15/18	83.33
HIGH	surface	Ũ	BLUE GREEN	1-4	3/18	16.67
TIDE			TOTAL PHYTO PLANKTON	42-155	18	-
LOW			DIATOMS	131-177	15/18	83.33
TIDE	Sub	5	BLUE GREEN	0-5	3/18	16.67
	surface		TOTAL PHYTO PLANKTON	131-182	18	-

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide

Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khori creek) during high tide period and low tide period of spring tide and Neap tide in September,2021. The Zooplankton community of the sub surface water in the harbour and nearby creeks during spring tide was represented by mainly five groups, Tintinids, Copepods, Ciliates ,Foraminiferans and larval forms of Crustacea, Molluscans and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Ciliates and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Ciliates and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Ciliates and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Ciliates and Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly five groups, Ciliates and Polychaetes.

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 32-86x10³ N/ m³ during high tide and 64-100 x103 N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 43-173 x103 N/ m³ during high tide and115-184x10³ N/ m³ during low tide of Neap Tide period.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla Harbour region and nearby creeks was varying from 2.825-3.507 with an average of 3.009during the sampling conducted in High tide period.Margalef's diversity index (Species Richness) S of Zooplankton communities varying from. 2.645-3.423 with an average of 3.020 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla Harbour region and nearby creeks sampling stations was varying from3.722- 4.463with an average of 4.061 during the sampling conducted in high tide and varying from. 4.163-4.647 with an average of 4.458 during the sampling conducted in low tide during Neap tide period **Shannon-Wiener's index:**

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.909-1.014 (H'(log10)) between selected sampling stations with an average value of 0.966 (H'(log10)) during high tide period of spring tide. Shannon-**DCPL/DPT/20-21/17 -SEPTEMBER - 2021**

Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.929-0.989(H'(log10)) between selected sampling stations with an average value of 0.963 (H'(log10)) during consecutive low tide period.

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.925-1.248 (H'(log10)) between selected sampling stations with an average value of 1.155 (H'(log10)) during high tide period of Neap tide. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 1.185-1.254 (H'(log10)) between selected sampling stations with an average value of 1.214 (H'(log10)) during consecutive low tide period .Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 most of sampling stations in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period, which was varying from 0.849-0.889between selected sampling stations with an average of 0.872 during high tide period and was varying from 0.845- 0.880 with an average value of 0.868 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was above 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks except few during high tide and low tide period, which was varying from 0.834-0.939 between selected sampling stations with an average of 0.914 during high tide period and was varying from 0.920- 0.939 with an average value of 0.929 between selected sampling stations during consecutive low tide

This high species diversity suggests a relatively more number of successful species in this habitat during September ,2021 sampling.

Table #8 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit Y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	72 X10 ³	16/23	69.56	3.507	0.9864	0.8725
TIDE	2	70 X10 ³	13/23	56.52	2.825	0.9094	0.8584
	3	81 X10 ³	14/23	60.87	2.958	0.9324	0.8494
	4	82 X10 ³	15/23	65.22	3.177	1.014	0.8871
	5	86 X10 ³	14/23	60.87	2.918	1.008	0.8892
	6	32 X10 ³	12/23	52.17	3.174	0.9456	0.875
	1	80 X10 ³	16/23	69.56	3.423	0.9692	0.8661
	2	64 X10 ³	12/23	52.17	2.645	0.9299	0.873
LOW	3	70 X10 ³	13/23	56.52	2.825	0.9384	0.8451
TIDE	4	82 X10 ³	14/23	60.87	2.95	0.9894	0.8802
	5	100 X10 ³	16/23	69.56	3.257	0.9872	0.8772

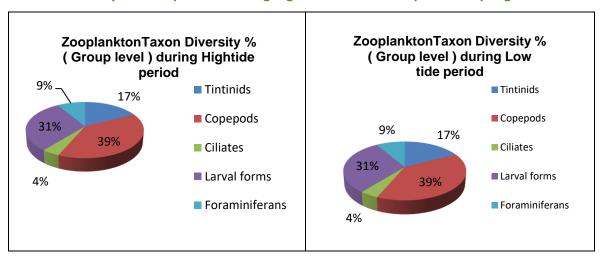
STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS DURING SPRING TIDE IN SEPTEMBER, 2021

Table # 9 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit Y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	107 X10 ³	21/29	72.41	4.28	1.16	0.9185
TIDE	2	123 X10 ³	19/29	65.52	3.741	1.19	0.9315
	3	168 X10 ³	22/29	75.86	4.098	1.205	0.9328
	4	173 X10 ³	24/29	82.76	4.463	1.248	0.9389
	5	137 X10 ³	21/29	72.41	4.065	1.203	0.9342
	6	43 X10 ³	15/29	51.72	3.722	0.9255	0.8339
	1	115 X10 ³	22/29	75.86	4.426	1.185	0.9202
	2	122 X10 ³	21/29	72.41	4.163	1.19	0.9252
LOW	3	175 X10 ³	25/29	86.21	4.647	1.254	0.9395
TIDE	4	184 X10 ³	25/29	86.21	4.602	1.23	0.9342
	5	140 X10 ³	23/29	79.31	4.452	1.21	0.9274

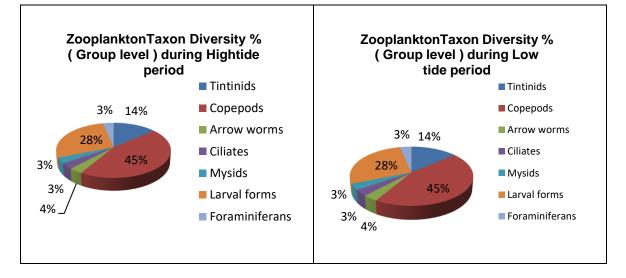
STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS DURING NEAP TIDE IN SEPTEMBER, 2021

Table # 10 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	0-8	4/23	17.39
			Copepods	16-51	9/23	39.13
			Ciliates	0-1	1/23	4.35
	Sub	Larval forms	14-35	7/23	30.44	
			Foraminiferans	0-3	2/23	8.69
HIGH TIDE	surface	6	TOTAL			
	Surface		ZOOPLANKTON	32-86	23	23
			NO/L			
			Tintinids	2-6	4/23	17.39
			Copepods	29-53	9/23	39.13
			Ciliates	0-1	1/23	4.35
			Larval forms	26-39	7/23	30.44
	Sub		Foraminiferans	1-4	2/23	8.69
LOW TIDE	surface	5	TOTAL			
	Surrace		ZOOPLANKTON	64-100	23	23
			NO/M3			

HARBOUR AREA ,NEAR BY CREEKS DURING SPRING TIDE IN SEPTEMBER,2021

Table # 11 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT


HARBOUR AREA, NEAR BY CREEKS DURING NEAP TIDE IN SEPTEMBER, 2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	1-8	4/29	13.79
			Copepods	17-71	13/29	44.83
			Arrow worms	0-1	1/29	3.45
HIGH TIDE	Sub	6	Ciliates	1-7	1/29	3.45
	surface	rface	Mysids	0-4	1/29	3.45
			Larval forms	22-87	8/29	27.58
			Foraminiferans	0-2	1/29	3.45
			TOTAL ZOOPLANKTON	43-173	29	-
			Tintinids	2-8	4/29	13.79
			Copepods	38-70	13/29	44.83
			Arrow worms	0-1	1/29	3.45
LOW TIDE	Sub	5	Ciliates	3-7	1/29	3.45
	surface		Mysids	1-4	1/29	3.45
			Larval forms	67-106	8/29	27.58
			Foraminiferans	0-1	1/29	3.45
			TOTAL ZOOPLANKTON NO/M3	115-184	29	-

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide

TABLE # 12 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURINGSPRING

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
BLUE GREEN			Nostocales	Oscillatoriaceae	Oscillatoria sp.	B1	Occasional
	LGAE Cyanophyta	Cyanophyceae	NUSLUCAIES	Uscillatoriaceae	Arthrospira sp.	B2	Rare
ALGAL			Stigonematales	Stigonemataceae	Stigonema sp.	B3	Rare
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Occasional
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
			Triconsticles	Tricorationese	Odontella sp	D3	Frequent
		Cassingdisagnhusaga	Triceratiales	Triceratiaceae	Triceratium sp.	D4	Rare
		Coscinodiscophyceae	Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Dominant
			Hemiaulales	Bellerocheaceae	Bellerochea sp	D6	Rare
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D7	Rare
			Chaetocerotales	Chaetocerotaceae	Chaetoceros sp	D8	Occasional
DIATOMS	Bacillariophyta		Lithodesmiales	Lithodesmiaceae	Ditylum sp	D9	Abundant
	васшапорнута		Naviculales	Plaurosigmatasaaa	Pleurosigma sp	D10	Rare
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Navicula sp	D11	Rare
			Surirellales	Surirellaceae	<i>Surirella</i> sp	D12	Rare
			Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D13	Frequent
			Indidestionematales	Indidssionemataceae	Thalassionema sp.	D14	Rare
		Fragilarianhucasa			Asterionellopsis sp.	D15	Rare
		Fragilariophyceae	Fragilariales	Fragilariaceae	<i>Fragilaria</i> sp	D16	Occasional
					Synedrasp	D17	Rare
			Tabellariales	Tabellariaceae	<i>Tabellaria</i> sp	D18	Rare

TABLE # 13 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AND NEARBY CREEKS DURING ANDNEAP TIDE OF SEPTEMBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
			Nostocales	Oscillatoriaceae	Oscillatoria sp.	B1	Rare
	ATOMS PHYLUM Bacillariophyta	Cyanophyceae	NOSLOCAIES	Oscillatoriaceae	Arthrospira sp.	B2	Rare
ALOAL			Stigonematales	Stigonemataceae	Stigonema sp.	B3	Occasional
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Rare
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
			Triceratiales	Triceratiaceae	Odontella sp	D3	Frequent
		Coscinodiscophyceae	Theratiales	Theratlaceae	Triceratium sp.	D4	Occasional
			Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Dominant
			Hemiaulales	Bellerocheaceae	Bellerochea sp	D6	Occasional
			Chaetocerotales	Chaetocerotaceae	Chaetoceros sp	D7	Rare
DIATONIS	Bacillariophyta		Lithodesmiales	Lithodesmiaceae	Ditylum sp	D8	Abundant
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma sp	D9	Occasional
			Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D10	Abundant
			malassionematales	Indiassionemataceae	Thalassionema sp.	D11	Rare
		Fragilarionhycoao			Asterionellopsis sp.	D12	Rare
		Fragilariophyceae	Fragilariales	Fragilariaceae	<i>Fragilaria</i> sp	D13	Occasional
					Synedrasp	D14	Frequent
			Tabellariales	Tabellariaceae	<i>Tabellaria</i> sp	D15	Rare

TABLE #14 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING SPRINGTIDEOF SEPTEMBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnus sp.	T1	Rare
	PROTOZOA	Chirotrichoo	Tintinnido		Tintinnopsis gracilis	T2	Occasional
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsis radix	T3	Rare
					Tintinnopsis tocantinensis	T4	Rare
			Calanoida (Paracalanidae	Acrocalanus sp.	C1	Abundant
				Eucalanidae	Pareucalanus sp.	C2	Rare
				Clausocalanidae	Clausocalanus sp.	C3	Occasional
COPEPODS		Crustaga		Acartiidae	Acartia sp.	C4	Rare
	ATHROPODA	Crustacea Sub class copepoda		Temoridae	Temora sp.	C5	Occasional
	ATHROPODA		Cyclopoida	Oithonidae	Oithona sp.	C6	Frequent
			Harpacticoida	Ectinosomatidae	Microsetella sp.	C7	Frequent
				Euterpinidae	Euterpina sp.	C8	Rare
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C9	Rare
CILIATES	CILIOPHORA	Oligohymenophorea	Sessilida	Zoothamniidae	Zoothamnium sp.	CI1	Rare
CRUSTACEAN LARVAE	ARTHROPODA	Copepoda			Nauplius larvae of	L1	Dominant
CRUSTACEAN LARVAE	(CRUSTACEA)	Сорероца			Copepods	LI	Dominant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Occasional
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L3	Rare
BARNACLE LARVAE	ATHROPODA	Maxillopoda			Cirripede larvae	L4	Rare
DARNACLE LARVAE	CRUSTACEA	Thecostraca			Cirripede larvae	L4	Raie
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda,Streptoneura			Opisthobranchia larvae	L5	Occasional
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L6	Rare
BRACHYURA LARVAE	ARTHROPODA	Malacostraca			Brachyuran Zoea larvae	L7	Rare
	(CRUSTACEA)	Decapoda			Diacilyuldii 20ed idi Vde	L/	Nale
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Globigerinidae	Globigerina sp.	F1	Rare
				Rotalliidae	<i>Rotalia</i> sp.	F2	Rare

TABLE # 15 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS IN DPT HARBOUR AREA, AND NEAR BY CREEKS DURING NEAP
TIDE OF SEPTEMBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnus sp.	T1	Rare
	PROTOZOA				Tintinnopsis gracilis	T2	Occasional
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsis radix	Т3	Rare
	CILIOPHORA			Couoneniuae	Tintinnopsis	T4	Rare
					failakkaensis	14	Rare
				Paracalanidae	Acrocalanus sp.	C1	Frequent
				Paracalalliuae	Parvocalanus sp.	C2	Rare
				Eucalanidae	Pareucalanus sp.	C3	Rare
		Crustacea Sub class copepoda			Subeucalanus sp.	C4	Rare
	ATHROPODA		Calanoida	Clausocalanidae	Clausocalanus sp.	C5	Occasional
				Centropagidae	Centropages sp.	C6	Rare
COPEPODS				Tortanidae	Tortanus sp.	C7	Rare
COPEPODS				Acartiidae	Acartia sp.	C8	Frequent
				Temoridae	Temora sp.	C9	Occasional
			Cyclopoida	Oithonidae	Oithona sp.	C10	Abundant
			Harpatiasida	Ectinosomatidae	Microsetella sp.	C11	Frequent
			Harpacticoida	Euterpinidae	Euterpina sp.	C12	Occasional
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C13	Rare
ARROW WORMS	CHAETOGNATHA	Sagittoidea	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
CILIATES	CILIOPHORA	Oligohymenophorea	Sessilida	Zoothamniidae	Zoothamnium sp.	CI1	Occasional
MYSIDS	ATHROPODA	Malacostraca	Mysida,	Penaeidae	Dengeusen	M1	Occasional
IVITSIDS	CRUSTACEA	Malacostraca	Decapoda	Penaeluae	Penaeus sp.	IVII	Occasional
CRUSTACEAN LARVAE	ARTHROPODA	Cononada			Nauplius larvae of	L1	Dominant
	(CRUSTACEA)	Copepoda			Copepods		Dominant
BRACHYURA LARVAE	ARTHROPODA	Malacostraca			Brachyuran Zoea	L2	Abundant
	(CRUSTACEA)	Decapoda			larvae		Abunuant

DCPL/DPT/20-21/17 -SEPTEMBER - 2021

Detox Corporation Pvt.Ltd.,Surat

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Frequent
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L4	Occasional
ECHINODERMATA LARVAE	ECHINODERMATA				Ophipluutes larvae/ Echinoplutes larvae	L5	Occasional
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L6	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L7	Frequent
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L8	Frequent
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Rotalliidae	<i>Rotalia</i> sp.	F1	Rare

BENTHIC ORGANISMS:

Few Benthic organismswere observed in the collected sediments by using the Van-veen grabs during the sampling conducted during spring tide period and while no benthic organisms were observed during sampling conducted in Neap tide period from DPT harbour region and nearby creek except few dead shells. The meiobenthic organisms during spring tide were represented by Polychaetes, and Nematodes. The polychaetes were represented by *Scyphoproctus sp.* and *Branchiocapitelida* sps, during spring tide sampling. The meiobenthic organisms in the collected samples were varying from 0-80N/M².

Table # 16 BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPT HARBOUR AREA CREEKSDURING SPRING TIDE IN SEPTEMBER ,2021

	ABUNDAN	NCE IN NO/	M ² DIFFERE	ENT SAMP	LING STATI	ONS					
		REPRESENTATION BY GROUP									
	DI	PT HARBO	UR		CREEKS						
Benthic fauna											
POLYCHAETES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6					
Family : Capitellidae	40	0	0	0	0						
Scyphoproctus sp.											
						NS					
Family : Capitellidae	0	20	0	0	0						
Branchiocapitelida sp.											
Total Polychates N/M ²	40	20	0	00	0	NS					
Un identified Nematode											
worms	40	20	0	10	0	NS					
TOTAL Benthic Fauna											
NUMBER/ M ²	80	40	0	10	0	-					

NS : No sample

7. Meteorological Data

Automatic Weather station have been installed in SevaSadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 29.0 °C. The day-time maximum temperature was 36.2 °C. The mean night time temperature was 26.7 °C. The minimum mean night time temperature recorded was 29.4 °C.

Air Pressure

The mean absolute air pressure for the month of September was 1003.7 hpa, whereas the mean relative pressure was 1002.3 hpa. The maximum absolute air pressure recorded for the month of September was 1010.1 hpa.

Heat Index

The mean day-time heat index for the month of September was 33.5 °C. The maximum heat index recorded was 49°C.

Solar Radiation

The mean Solar Radiation in September was 136.4 w/m². The maximum solar radiation recorded in the month of September was 808.9 w/m^2 .

Humidity

The mean day-time humidity was 83.5 % for the month of September and mean night time humidity was 98.0%. Maximum humidity recorded during day-time was 90.3 % and maximum humidity recorded during night-time was 96.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of September was 6.88 km/hour. Maximum wind velocity recorded was 43.2 Km/hr . The wind direction was mostly S to SW.

Conclusive Summary and Remedial measures Suggested

- The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM₁₀ values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 μg/m³)andPM_{2.5}was above permissible limits at Coal storage location(Limit 60 μg/m³).
- Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).
- Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.
- The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board. The STP at Deendayal Port is not fully operational and STP at Vadinar Port was found non-operational.

Reasons for higher Values of PM₁₀

- Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.
- Also, the coal laden trucks are not always covered with tarpaulin sheets and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM₁₀ during the month of September, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

- Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)
- Except for the higher values of PM₁₀ at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- 2) BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae Indian Council of Agricultural research New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north –West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A.,NAIRK.K.C., VENUGOPL,P.
 BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- 19) KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.
- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- 21) Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.

- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.
- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology, Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de franceA. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi. M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.

ENVIRONMENTAL MONITORING REPORT FOR DEENDAYAL PORT TRUST

(
REPORT NO.	:	DCPL/DPT/20-21/18	
Month	:	October 2021	
Issue No	:	01	
Revision No	:	00	
Prepared by	:	DETOX CORPORATION PVT. LTD., SURAT	

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Quality Monitoring	1 - 17
2	Drinking Water Quality Monitoring	18 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 92
7	Meteorological Observations	93
8	Conclusive Summary & Remedial Measures	94-95
	References	96- 97

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformity in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_x, NH₃ & Benzene, and Grab-sampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_x. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}.

The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of October 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

	Tal	ole 1 : Resu	Its of Air P	ollutant Co	oncentra	ition at M	arine Bh	navan		
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3		80 μg/m3		80 μg/m3		400 μg/m3
					2.20		26.04		12.76	
AL1 – 1	06.10.2021	349	165	80	3.96	2.64	24.14	25.19	12.25	13.44
					1.76		25.41		15.32	
					4.40		15.24		12.51	
AL1 – 2	08.10.2021	474	229	103	3.08	3.22	16.51	19.27	13.02	13.02
					2.20		26.04		13.53	
					7.47		28.58		10.72	
AL1 – 3	13.10.2021	280	162	58	8.79	7.33	31.12	26.04	12.51	10.81
					5.71		18.42		9.19	
					3.08		16.51		13.79	
AL1 – 4	15.10.2021	404	227	95	2.64	2.49	13.97	15.24	15.83	14.89
					1.76		15.24		15.06	
					3.52		18.42		5.87	
AL1 – 5	20.10.2021	336	156	73	4.84	3.96	20.96	20.54	10.72	9.28
					3.52		22.23		11.23	
					2.64		15.88		10.72	
AL1 - 6	22.10.2021	453	267	85	5.28	3.52	19.69	15.67	5.62	6.47
					2.64		11.43		3.06	
					3.52		12.07		10.47	
AL1 - 7	27.10.2021	338	163	76	3.96	3.37	20.96	16.73	11.49	10.55
					2.64		17.15		9.70	
					2.64		24.14		12.51	
AL1 – 8	29.10.2021	275	152	88	2.20	3.08	29.22	25.19	6.64	9.02
					4.40		22.23		7.91	
Monthly	Average	364	190	82		3.70		20.48		10.93
Standard	Deviation	74	44	14		1.54		4.50		2.75

Location 1: Marine Bhavan (AL1)

NS: Not Specified

DCPL/DPT/20-21/18 -OCTOBER - 2021

Table 1E	B : Results of A	Air Pollutant	t Concentra	tion at Marin	ne Bhavan
Parameter		С6Н6 [µg/m³]	HC* ppm	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL1 – 1	06.10.2021	1.12	BQL	1.89	492
AL1 – 2	08.10.2021	1.11	BQL	1.75	489
AL1 – 3	13.10.2021	1.32	BQL	1.82	499
AL1 – 4	15.10.2021	1.15	BQL	1.76	492
AL1 – 5	20.10.2021	1.13	BQL	1.84	493
AL1 - 6	22.10.2021	1.15	BQL	1.86	501
AL1 – 7	27.10.2021	1.21	BQL	1.88	488
AL1 – 8	29.10.2021	1.13	BQL	1.95	511
Monthly Average		1.17	-	1.84	496
Standard	Standard Deviation		-	0.07	8

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_X and NH₃ is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM₁₀. The mean TSPM value at Marine Bhavan was 364 μ g/m³, The mean PM₁₀ values were 190.0 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 82 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit. The average values of SO₂, NO_x and NH₃ were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Marine Bhavan. The mean Benzene concentration was $1.17 \ \mu g/m^3$, well below the permissible limit of 5.0 $\mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.84 mg/m³, well below the permissible limit of 4.0 mg/m³.

Location 2: Oil Jetty (AL2)

	т	able 2 : Res	ults of Air I	Pollutant C	oncentra	ation at O	il Jetty			
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [μg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					4.40		33.66		8.93	
AL2 – 1	06.10.2021	380	162	82	5.28	5.28	36.84	33.66	10.21	9.96
					6.15		30.49		10.72	
					1.76		8.89		6.38	
AL2 – 2	08.10.2021	486	284	103	4.84	3.96	9.53	11.01	10.98	9.62
					5.28		14.61		11.49	
					7.47		32.39		3.57	
AL2 – 3	13.10.2021	451	300	89	9.23	9.52	18.42	24.35	6.13	6.30
					11.87		22.23		9.19	
					2.20		16.51		7.40	
AL2 – 4	15.10.2021	480	335	100	2.64	2.05	14.61	14.82	10.47	8.93
					1.32		13.34		8.93	
					2.64		20.33		9.19	
AL2 – 5	20.10.2021	464	190	76	1.76	2.49	24.77	19.48	4.85	7.32
					3.08		13.34		7.91	
					4.84		20.96		5.62	
AL2 – 6	22.10.2021	509	280	100	7.03	5.28	10.16	14.82	7.91	8.00
					3.96		13.34		10.47	
					1.76		22.87		9.19	
AL2 – 7	27.10.2021	448	215	71	1.32	1.76	14.61	19.48	12.51	10.04
					2.20		20.96		8.42	
					1.32		14.61		6.38	
AL2 – 8	29.10.2021	504	204	92	2.20	2.49	22.87	17.36	9.96	9.10
					3.96		14.61	1	10.98	1
Monthly	Average	465	246	89		4.10		19.37		8.66
Standard	Deviation	41	61	12		2.59		7.01		1.34

NS: Not Specified

Tab	le 2B : Results	of Air Polluta	nt Concentra	ation at Oil Jet	ty	
Parameter		С6Н6 [µg/m³]	HC* ppm	CO [mg/m³]	CO₂ [ppm]	
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling	
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS	
AL2 -1	06.10.2021	1.11	BQL	1.88	499	
AL2 -2	08.10.2021	1.21	BQL	1.78	495	
AL2 -3	13.10.2021	1.26	BQL	1.86	468	
AL2 -4	15.10.2021	1.11	BQL	1.83	466	
AL2 – 5	20.10.2021	1.22	BQL	1.89	458	
AL2 – 6	22.10.2021	1.18	BQL	1.87	488	
AL2 -7	27.10.2021	1.01	BQL	1.77	498	
AL2 – 8	29.10.2021	1.14	BQL	1.82	501	
Monthly	Monthly Average		-	1.84	484	
Standard	Deviation	0.08	-	0.05	17	

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 465 μ g/m³. The mean PM₁₀ values were 246 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 89 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit, The mean concentration of SO₂, NO_x and NH₃ were 4.10 μ g/m³, 19.37 μ g/m³ and 8.66 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was $1.16 \ \mu g/m^3$. Well below the permissible limit of $5.0 \ \mu g/m^3$. , HC's were below the detectable limit and Carbon Monoxide concentration was $1.84 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

	Tak	ole 3 : Resu	Ilts of Air P	ollutant Co	oncentra	tion at Es	tate Offi	ice		
Parameters	Date	TSPM [µg/m3]	ΡM10 [µg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]	NOx [µg/m3]	NH3 [µ	ւg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					4.84		12.70		14.30	
AL3 – 1	06.10.2021	355	161	79	3.52	3.37	24.14	23.08	12.25	12.00
					1.76		32.39		9.45	
					3.96		13.34		10.47	
AL3 – 2	08.10.2021	280	121	76	1.32	2.64	9.53	12.49	11.49	9.10
					2.64		14.61		5.36	
					3.08		13.97		7.91	
AL3 – 3	13.10.2021	420	282	98	4.84	3.52	19.69	19.48	6.38	5.87
					2.64		24.77		3.32	
					4.40		8.89		12.25	
AL3 – 4	15.10.2021	530	287	101	2.64	2.93	8.26	8.05	9.19	9.10
					1.76		6.99		5.87	
					5.28		18.42		8.93	
AL3 – 5	20.10.2021	401	239	98	3.08	3.66	32.39	23.50	9.70	9.19
					2.64		19.69		8.93	
					5.28		18.42		10.47	
AL3 – 6	22.10.2021	381	244	93	1.76	4.40	14.61	19.27	8.93	8.25
					6.15		24.77		5.36	
					4.84		19.69		11.23	
AL3 – 7	27.10.2021	466	194	90	2.64	2.93	16.51	17.36	10.72	10.81
					1.32		15.88		10.47	
					1.76		15.88		12.00	
AL3 – 8	29.10.2021	380	222	87	4.40	2.93	15.24	16.94	9.70	9.10
					2.64		19.69		5.62	
Monthly	Average	402	219	90		3.30		17.52		9.18
Standard	Deviation	74	58	9		0.56		5.20		1.79

Location 3: Kandla Colony – Estate Office (AL-3)

NS: Not Specified

Table 3E	B : Results of Air	Pollutant C	oncentration	at Kandla Por	t Colony
Parameter		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL3 -1	06.10.2021	1.01	BQL	1.85	489
AL3 -2	08.10.2021	1.12	BQL	1.98	496
AL3 -3	13.10.2021	1.02	BQL	1.79	488
AL3 -4	15.10.2021	1.11	BQL	1.81	499
AL3 – 5	20.10.2021	1.06	BQL	1.88	480
AL3 – 6	22.10.2021	1.18	BQL	1.79	485
AL3 – 7	27.10.2021	1.26	BQL	1.96	472
AL3 – 8	29.10.2021	1.14	BQL	1.88	498
Monthly	Monthly Average		-	1.87	488
Standard	Deviation	0.08	-	0.07	9

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPM values at Oil Jetty were 402 μ g/m³, The mean PM₁₀ values were 219 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 90 μ g/m³). The average values of SO₂, NO_x and NH3 were 3.30 μ g/m³, 17.52 μ g/m³ and 9.18 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was $1.11 \ \mu g/m^3$, well below the permissible limit of 5.0 $\mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.87 \ m g/m^3$, well below the permissible limit of $4.0 \ m g/m^3$.

	Table 4	: Results o	of Air Pollut	ant Concer	ntratior	n at Gopa	lpuri Hos	spital		
Parameter	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2	μg/m3]	NOx [µg/m3]	NH3 [μg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 µg/m3
					6.15		18.42		3.83	
AL4 -1	06.10.2021	158	96	40	3.96	4.40	25.41	25.83	7.40	5.87
					3.08		33.66		6.38	
					3.96		12.70		4.85	
AL4 -2	08.10.2021	246	115	77	5.28	5.28	9.53	10.37	5.11	5.70
					6.59		8.89		7.15	
					2.20		10.16		3.83	
AL4 -3	13.10.2021	302	129	66	3.08	2.64	12.70	11.22	4.85	4.25
					2.64		10.80		4.08	
					2.20		10.16		6.38	
AL4 -4	15.10.2021	414	267	89	2.64	2.20	9.53	8.68	4.60	5.45
					1.76		6.35		5.36	
					2.64		14.61		4.85	
AL4 – 5	20.10.2021	268	128	90	3.08	2.64	9.53	14.61	8.42	6.64
					2.20		19.69		6.64	
					2.64		13.34		4.85	
AL4 – 6	22.10.2021	219	114	93	3.08	2.49	9.53	12.49	9.19	8.51
					1.76		14.61		11.49	
					2.64		17.78		6.38	
AL4 – 7	27.10.2021	274	132	84	3.08	3.08	13.34	15.88	7.91	6.55
					3.52		16.51		5.36	
					2.20		13.34		7.40	
AL4 – 8	29.10.2021	311	142	96	3.52	3.22	13.97	12.70	8.42	8.25
					3.96		10.80		8.93	
Monthly	Average	274	140	79		3.24		13.97		6.40
Standard	Deviation	75	53	18		1.06		5.30		1.43

Location 4: Gopalpuri Hospital (AL-4)

NS: Not Specified

Table 4E	B : Results of Ai	r Pollutant Co	ncentration	at Gopalpuri Ho	ospital
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m ³]	CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL4 -1	06.10.2021	1.02	BQL	1.88	496
AL4 -2	08.10.2021	1.11	BQL	1.68	482
AL4 -3	13.10.2021	1.32	BQL	1.65	501
AL4 -4	15.10.2021	1.25	BQL	1.79	499
AL4 – 5	20.10.2021	1.52	BQL	1.65	501
AL4 – 6	22.10.2021	1.32	BQL	1.82	508
AL4 – 7	27.10.2021	1.23	BQL	1.7	487
AL4 – 8	29.10.2021	1.58	BQL	1.76	496
Monthly	Monthly Average		-	1.74	496
Standard	Deviation	0.19	-	0.08	8

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPM values at Oil Jetty were 274 μ g/m³, The mean PM₁₀ values were 140 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean= 79 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.24 μ g/m³, 13.97 μ g/m³ and 6.40 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.29 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.74 mg/m³, well below the permissible limit of 4.0 mg/m³.

Location 5: Coal Storage Area (AL-5)

	Table 5	5 : Results o	of Air Pollu	tant Conce	entratior	n at Coal	Storage /	Area		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	ug/m3]	NOx [Dx [μg/m3] NH3 [μg/m3]		ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 µg/m3	-	400 µg/m3
					4.40		44.46		15.32	
AL5 – 1	06.10.2021	266	122	92	6.15	5.71	49.54	49.33	13.53	14.04
					6.59		53.99		13.27	
					3.96		20.33		15.57	
AL5 – 2	08.10.2021	360	208	79	2.64	3.96	22.23	18.84	17.61	16.25
					5.28		13.97		15.57	
					10.11		22.23		7.91	
AL5 – 3	13.10.2021	647	226	110	6.15	8.65	26.04	22.87	6.13	7.32
					9.67		20.33		7.91	
					1.32		16.51		12.51	
AL5 – 4	15.10.2021	760	217	118	3.52	2.93	19.69	18.84	8.42	9.62
					3.96		20.33		7.91	
					4.84		19.69		10.72	
AL5 – 5	20.10.2021	597	244	110	4.40	4.25	17.78	20.75	10.98	11.32
					3.52		24.77		12.25	
					3.52		14.61		14.30	
AL5 – 6	22.10.2021	647	206	106	3.96	4.54	15.88	17.15	15.06	14.47
					6.15		20.96		14.04	
					4.40		13.34		9.96	
AL5 – 7	27.10.2021	614	249	107	4.84	4.25	17.78	16.51	9.19	9.36
					3.52		18.42		8.93	
					4.84		22.87		12.51	
AL5 – 8	29.10.2021	324	151	117	3.96	4.10	27.95	25.41	14.30	14.04
					3.52	1	25.41	1	15.32	1
Monthly	/ Average	527	203	105		4.80		23.71		12.05
Standard	Deviation	182	44	13		1.73		10.76		3.11

NS: Not Specified

Table 5B	: Results of Air F	Pollutant Cor	centration	at Coal Stora	ge Area
Parameter		C₀H₀ [µg/m³]	HC*		CO₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL5 – 1	06.10.2021	1.22	BQL	1.85	498
AL5 – 2	08.10.2021	1.32	BQL	1.86	488
AL5 – 3	13.10.2021	1.22	BQL	1.89	485
AL5 – 4	15.10.2021	1.16	BQL	1.84	501
AL5 – 5	20.10.2021	1.33	BQL	1.86	496
AL5 – 6	22.10.2021	1.24	BQL	1.9	500
AL5 – 7	27.10.2021	1.15	BQL	1.84	490
AL5 – 8	29.10.2021	1.18	BQL	1.98	498
Monthly Average		1.23	-	1.88	495
Standard	Deviation	0.07	-	0.05	6

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPM values at Coal storage were $527\mu g/m^3$. The mean PM₁₀ values were 203 $\mu g/m^3$, which is well above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 105 $\mu g/m^3$). The average values of SO₂, NO_x and NH₃ were 4.80 $\mu g/m^3$, 23.71 $\mu g/m^3$ and 12.05 $\mu g/m^3$

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was $1.23 \ \mu g/m^3$, well below the permissible limit of 5.0 $\ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was 1.88 mg/m³, well below the permissible limit of 4.0 mg/m³.

DCPL/DPT/20-21/18 -OCTOBER - 2021

Location 6: Tuna Port (AL-6)

Table 6 : Results of Air Pollutant Concentration at Tuna Port										
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]	NOx [µg/m3]		g/m3] NH3 [µg/m3	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 µg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					4.40		15.88		5.62	
AL6 -1	06.10.2021	280	134	98	6.15	4.10	33.66	29.85	7.66	7.40
					1.76		40.02		8.93	
					1.76		13.34		13.53	
AL6 – 2	08.10.2021	293	130	92	3.08	3.22	13.97	12.49	12.25	11.49
					4.84		10.16		8.68	
					6.15		16.51		6.38	
AL6 – 3	13.10.2021	438	251	103	5.71	4.69	20.96	16.94	4.08	5.96
					2.20		13.34		7.40	
					2.20		5.08		5.62	
AL6 – 4	15.10.2021	466	153	100	1.76	1.76	8.26	6.78	7.15	6.47
					1.32		6.99		6.64	
					1.32		20.33		12.25	
AL6 – 5	20.10.2021	480	180	94	2.64	2.64	13.97	16.94	11.49	11.57
					3.96		16.51		10.98	
					4.84		32.39		9.96	
AL6 – 6	22.10.2021	310	123	88	2.20	3.22	20.96	27.31	15.57	12.76
					2.64		28.58		12.76	
					2.20		15.24		9.19	
AL6 – 7	27.10.2021	275	140	93	1.76	2.49	16.51	15.88	8.42	9.36
					3.52		15.88		10.47	
					2.20		15.88		10.72	
AL6 – 8	29.10.2021	352	191	98	2.64	2.93	10.80	15.03	8.93	10.30
					3.96		18.42		11.23	
Monthly	Average	362	163	96		3.13		17.65		9.41
Standard	Deviation	86	43	5		0.92		7.54		2.55

NS: Not Specified

Table 6B : Results of Air Pollutant Concentration at Tuna Port									
Parameter		С ₆ Н6 НС*		CO [mg/m ³]	CO₂ [ppm]				
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling				
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS				
AL6 -1	06.10.2021	1.03	BQL	1.79	510				
AL6 – 2	08.10.2021	1.11	BQL	1.84	502				
AL6 – 3	13.10.2021	1.14	BQL	1.72	511				
AL6 – 4	15.10.2021	1.11	BQL	1.69	496				
AL6 – 5	20.10.2021	1.18	BQL	1.88	499				
AL6 – 6	22.10.2021	1.06	BQL	1.87	502				
AL6 – 7	27.10.2021	1.10	BQL	1.74	506				
AL6 – 8	29.10.2021	1.01	BQL	1.7	512				
Monthly	/ Average	1.09	-	1.78	505				
Standard	Deviation	0.06	-	0.08	6				

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS- Not Specified

The mean TSPM values at Tuna Port were 362 μ g/m³, The mean PM₁₀ values were 163 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 96 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.13 μ g/m³, 17.65 μ g/m³ and 9.41 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was 1.09 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.78 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 7 : Results of Air Pollutant Concentration at Signal Building										
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µ	ug/m3]	NOx [µg/m3]		NH3 [µg/m3]	
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					4.40	-	19.69		6.89	
AL7 -1	06.10.2021	115	73	30	3.52	3.52	22.23	18.63	6.38	6.21
					2.64		13.97		5.36	
					3.96	_	16.51		8.42	
AL7 -2	08.10.2021	111	62	34	1.76	2.78	20.33	16.94	6.13	8.42
					2.64		13.97		10.72	
					3.08		16.51		4.60	
AL7 -3	13.10.2021	198	107	52	3.96	3.08	23.50	16.51	5.11	5.45
					2.20		9.53		6.64	
					3.96		15.24		7.91	
AL7 -4	15.10.2021	146	72	50	5.28	4.40	11.43	12.91	9.96	7.06
					3.96		12.07		3.32	
					3.08		8.89		6.89	
AL7 -5	20.10.2021	171	85	44	2.20	2.64	8.26	9.32	8.93	7.23
					2.64		10.80		5.87	
					3.08		14.61		8.42	
AL7 -6	22.10.2021	178	88	71	4.84	4.54	9.53	12.49	8.68	8.17
					5.71		13.34		7.40	
					3.08		6.35		10.98	
AL7 -7	27.10.2021	160	80	52	2.64	3.81	15.24	11.22	5.36	8.25
					5.71		12.07		8.42	
					2.20		9.53		8.42	
AL7 -8	29.10.2021	177	89	56	3.96	3.52	12.07	10.16	3.32	5.96
					4.40		8.89		6.13	
Monthly	Average	157	82	49		3.5		13.5		7.1
Standard	Deviation	31	14	13		0.7		3.4		1.1

Location 7: Signal Building (Vadinar) (AL-7)

NS: Not Specified

Table 7B : Results of Air Pollutant Concentration at Signal Building									
Parameter		C ₆ H ₆ [µg/m³]	HC*	CO [mg/m³]	CO₂ [ppm]				
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling				
NAAQMS		5.0 μg/m³	NS	4.0 mg/m ³	NS				
AL7 -1	06.10.2021	1.10	BQL	1.71	466				
AL7 – 2	08.10.2021	1.13	BQL	1.62	488				
AL7 – 3	13.10.2021	1.06	BQL	1.66	479				
AL7 – 4	15.10.2021	1.11	BQL	1.72	480				
AL7 – 5	20.10.2021	1.16	BQL	1.59	486				
AL7 – 6	22.10.2021	1.17	BQL	1.66	477				
AL7 – 7	27.10.2021	1.04	BQL	1.79	468				
AL7 – 8	29.10.2021	1.10	BQL	1.64	470				
Monthly	Average	1.11	-	1.67	477				
Standard	Deviation	0.04	-	0.06	8				

*NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm)

NS_Not Specified

The mean TSPM values at Vadinar Port were 157 μ g/m³. The mean PM₁₀ values were 82 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 49 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.5 μ g/m³, 13.5 μ g/m³ and 7.1 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was 1.11 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.67 mg/m³, well below the permissible limit of 4.0 mg/m³.

Table 8 : Results of Air Pollutant Concentration at Admin Building										
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [ug/m3]	NH3 [µ	ıg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					2.64		8.89		7.40	
AL8 -1	06.10.2021	221	113	82	3.08	3.22	14.61	12.28	5.87	5.79
					3.96		13.34		4.08	
					4.40		27.95		4.08	
AL8 -2	08.10.2021	218	126	73	5.28	5.42	15.88	18.21	10.72	6.81
					6.59		10.80		5.62	
					3.08		10.16		5.87	
AL8 -3	13.10.2021	197	104	72	3.96	3.22	26.68	17.57	11.74	9.02
					2.64		15.88		9.45	
					2.20		20.96		8.42	
AL8 -4	15.10.2021	227	111	75	4.40	3.37	14.61	15.24	4.08	6.30
					3.52		10.16		6.38	
					4.40		15.24		8.42	
AL8 -5	20.10.2021	185	88	54	2.64	3.52	20.96	16.73	6.64	6.98
					3.52		13.97		5.87	
					3.96		8.89		5.36	
AL8 -6	22.10.2021	248	121	94	2.20	3.81	8.26	10.37	4.08	5.19
					5.28		13.97		6.13	
					3.08		13.97		15.06	
AL8 -5	27.10.2021	210	138	62	1.32	3.66	6.35	13.76	11.49	10.64
					6.59		20.96		5.36	
					3.08		15.88		4.08	
AL8-6	29.10.2021	186	128	50	2.20	3.23	8.89	11.01	5.87	5.53
					4.40		8.26		6.64	
Monthly	/ Average	211	116	70		3.7		14.4		7.0
Standard	Deviation	22	16	15		0.7		3.0		1.9

Location 8: Admin Building (Vadinar) (AL-8)

NS: Not Specified

Table 8	Table 8B : Results of Air Pollutant Concentration at Admin Building									
Parameter		C ₆ H ₆ [μg/m ³]					CO₂ [ppm]			
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling					
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS					
AL8 -1	06.10.2021	1.30	BQL	1.86	451					
AL8-2	08.10.2021	1.09	BQL	1.79	450					
AL8 -3	13.10.2021	1.20	BQL	1.71	462					
AL8-4	15.10.2021	1.11	BQL	1.82	455					
AL8 -5	20.10.2021	1.16	BQL	1.69	469					
AL8-6	22.10.2021	1.06	BQL	1.77	470					
AL8-7	27.10.2021	1.30	BQL	1.82	459					
AL8-8	29.10.2021	1.10	BQL	1.74	466					
Monthly	Monthly Average		-	1.78	460					
Standard	Deviation	0.09	-	0.06	8					

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPM values at Vadinar Port were 211 μ g/m³. The mean PM₁₀ values were 116 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 70.0 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.7 μ g/m³, 14.4 μ g/m³ and 7.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.17 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.78 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various gaseous pollutants. However, Particulate matter as PM₁₀ and PM_{2.5} was found to exceed the limits at locations like Near Coal storage area, Marine Bhavan, Estate Office, Tuna Port and Oil Jetty area.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - IS 10500:2012. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.3	7.4	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	970	1310	1250	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1860	2560	2430	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	476.06	440.98	506.13	250.0	1000.0
9	Ca as Ca	mg/l	64.13	68.14	72.14	75.0	200.0
10	Mg as Mg	mg/l	63.18	70.47	65.61	30.0	100.0
11	Total Hardness	mg/l	420	460	450	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.32	0.35	0.17	1.0	1.5
14	Sulphate as SO4	mg/l	286.8	289.2	194.4	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	6.41	7.88	13.02	45.0	No Relaxation
17	Salinity	%	0.86	0.80	0.91	NS*	NS*
18	Sodium as Na	mg/l	199	193	258	NS*	NS*
19	Potassium as K	mg/l	3.24	3.68	3.51	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 9: Drinking Water Quality Monitoring Parameters for Nirman Building 1, P & C building &Main Gate (North) at Kandla

*NS: Not Specified

Table 10: Drinking Water Quality Monitoring Parameters for Canteen, West Gate – I & Wharf Area	
at Kandla	

Sr. No.	Parameter	Unit	Canteen	West Gate – I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.7	7.4	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1340	980	1040	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2600	1940	2040	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride as Cl	mg/l	526.17	496.10	481.07	250.0	1000.0
9	Ca as Ca	mg/l	60.12	64.13	56.11	75.0	200.0
10	Mg as Mg	mg/l	70.47	65.61	70.47	30.0	100.0
11	Total Hardness	mg/l	440	430	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	< 0.01	0.3	No Relaxation
13	Fluorides as F	mg/l	0.46	0.50	0.52	1.0	1.5
14	Sulphate as SO4	mg/l	186	194.4	288	200.0	400
15	Nitrite as NO2	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate as NO3	mg/l	8.59	10.21	9.22	45.0	No Relaxation
17	Salinity	%	0.95	0.90	0.87	NS*	NS*
18	Sodium as Na	mg/l	215	209	231	NS*	NS*
19	Potassium as K	mg/l	4.23	3.88	4.21	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	< 0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Sr. No.	Parameter	Unit	SewaSadan – 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.4	7.8	7.5	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1190	1420	1160	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1920	2870	2180	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	616.37	591.31	491.09	250.0	1000.0
9	Ca as Ca	mg/l	64.13	68.14	60.12	75.0	200.0
10	Mg as Mg	mg/l	68.04	58.32	65.61	30.0	100.0
11	Total Hardness	mg/l	440	410	420	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.90	0.57	0.63	1.0	1.5
14	Sulphate	mg/l	217.2	205.2	289.2	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	13.52	9.93	12.74	45.0	No Relaxation
17	Salinity	%	1.11	1.07	0.89	NS*	NS*
18	Sodium as Na	mg/l	265	218	323	NS*	NS*
19	Potassium as K	mg/l	3.87	3.73	3.56	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 11: Drinking Water Quality Monitoring Parameters for Sewa sadan – 3, Workshop I & Custom Building at Kandla

Sr. No.	Parameter	Unit	Port Colony Kandla	Hospital Kandla	A.O. Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.3	7.6	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1090	1460	940	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2090	2850	1860	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	445.99	466.04	496.10	250.0	1000.0
9	Ca as Ca	mg/l	56.11	68.14	60.12	75.0	200.0
10	Mg as Mg	mg/l	75.33	72.90	80.19	30.0	100.0
11	Total Hardness	mg/l	450	470	480	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.87	0.68	0.92	1.0	1.5
14	Sulphate	mg/l	294	318	210	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.29	10.14	11.69	45.0	No Relaxation
17	Salinity	%	0.81	0.84	0.90	NS*	NS*
18	Sodium as Na	mg/l	101	221	402	NS*	NS*
19	Potassium as K	mg/l	4.08	4.01	3.99	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 12: Drinking Water Quality Monitoring Parameters for Port Colony Kandla, Hospital Kandla& A.O. Building at Gandhidham

Table 13: Drinking Water Quality Monitoring Parameters for School Gopalpuri, Guest	t House &
E - Type Quarter at Gopalpuri, Gandhidham	

Sr. No.	Parameter	Unit	School Gopalpuri	Guest House	E - Type Quarter	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.4	7.4	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1020	1340	1100	500	2000
3	Turbidity	NTU	1	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2010	2660	2140	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	466.04	506.13	466.04	250.0	1000.0
9	Ca as Ca	mg/l	52.10	72.14	68.14	75.0	200.0
10	Mg as Mg	mg/l	77.76	55.89	63.18	30.0	100.0
11	Total Hardness	mg/l	450	410	430	200.0	600.0
12	Iron as Fe	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.60	0.81	1.08	1.0	1.5
14	Sulphate	mg/l	291.6	294	283.2	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.29	10.63	9.36	45.0	No Relaxation
17	Salinity	%	0.84	0.91	0.84	NS*	NS*
18	Sodium as Na	mg/l	275	300	130	NS*	NS*
19	Potassium as K	mg/l	3.49	3.50	3.56	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 14: Drinking Water Quality Monitoring Parameters for F - Type Quarter, Hospital Gopalpuri& Tuna Port

Sr. No.	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.7	7.4	7.38	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1120	1090	1080	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Unit	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2210	2190	2160	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	<2	NS*	NS*
8	Chloride	mg/l	576.28	521.16	520	250.0	1000.0
9	Ca as Ca	mg/l	72.14	76.15	78.56	75.0	200.0
10	Mg as Mg	mg/l	55.89	65.61	54.92	30.0	100.0
11	Total Hardness	mg/l	410	460	422	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	1.05	0.93	0.46	1.0	1.5
14	Sulphate	mg/l	265.2	238.8	180	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	9.86	7.88	8.2	45.0	No Relaxation
17	Salinity	%	1.04	0.94	0.98	NS*	NS*
18	Sodium as Na	mg/l	235	235	260	NS*	NS*
19	Potassium as K	mg/l	2.18	4.01	2.6	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent	Absent

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty & Port Colony at	
Vadinar	

Sr. No.	Parameter	Unit	Vadinar Jetty	Port Colony Vadinar	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.6	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1030	1010	500	2000
3	Turbidity	NTU	ND	ND	1.0	5.0
4	Odor	-	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2020	1960	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<2	<2	NS*	NS*
8	Chloride	mg/l	425.95	415.92	250.0	1000.0
9	Ca as Ca	mg/l	60.12	52.10	75.0	200.0
10	Mg as Mg	mg/l	75.33	94.26	30.0	100.0
11	Total Hardness	mg/l	460	440	200.0	600.0
12	Iron as Fe+3	mg/l	<0.01	<0.01	0.3	No Relaxation
13	Fluorides	mg/l	0.92	0.67	1.0	1.5
14	Sulphate	mg/l	22.44	22.20	200.0	400
15	Nitrite	mg/l	<0.01	<0.01	NS*	NS*
16	Nitrate	mg/l	7.39	9.99	45.0	No Relaxation
17	Salinity	%	0.90	0.92	NS*	NS*
18	Sodium as Na	mg/l	51.1	44.1	NS*	NS*
19	Potassium as K	mg/l	2.2	<2.0	NS*	NS*
20	Manganese	mg/l	<0.04	<0.04	0.1	0.3
21	Hexavalent Chromium	mg/l	<0.03	<0.03	NS*	NS*
22	Copper	mg/l	<0.05	<0.05	0.05	1.5
23	Cadmium	mg/l	<0.002	<0.002	0.003	0.003
24	Arsenic	mg/l	<0.01	<0.01	0.01	0.05
25	Mercury	mg/l	<0.001	<0.001	0.001	0.001
26	Lead	mg/l	<0.01	<0.01	0.01	0.01
27	Zinc	mg/l	<0.1	<0.1	5.0	15.0
28	Bacterial Count	CFU/100ml	Absent	Absent	Absent	Absent

2.3 Results & Discussion

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 7.0 to 8.0 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 900 -1500 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards.

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of October ranged from 1800-3000 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was less than 2.0 mg/L. Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 400-650 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 50 - 80 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

Magnesium

Magnesium value in the studied area varied between 50 - 99 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 400-480 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was below 0.01mg/L and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 - 1.0 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 20 - 350 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were <0.1. There are no specified standard values for Nitrites in Drinking water. The mean Nitrate values in drinking water of KPT was 6.41 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.5 to 1.4 %. There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 50 - 400 mg/l and Potassium salts ranged from 2.0 to 4.5 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well below the permissible limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 Conclusions

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (Db).

3.2 Results

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

Sr. No.	Location	Location Day Time Average Noise Level (SPL) in dB(A)	
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM
1	Marine Bhavan	73.9	53.4
2	Nirman Building 1	62.3	51.0
3	Tuna Port	57.2	50.9
4	Main Gate North	67.0	61.8
5	West Gate 1	70.5	65.1
6	Canteen Area	64.5	51.0
7	Main Road	68.4	51.5
8	ATM Building	80.4	57.3
9	Wharf Area /Jetty Area	72.9	68.1
10	Port & Custom Office	67.8	41.8
		Vadinar Port	
11	Entrance Gate of Vadinar Port	66.4	53.2
12	Nr. Port Colony, Vadinar	60.7	54.1
13	Nr. Vadinar Jetty	72.4	66.5

3.3 Conclusions- Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all 13 locations at Deendayal Port ranged from 57.0 dB(A) to 73.9 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all 13 locations of Deendayal Port ranged from 41.8 dB to 68.4 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

4.1 Methodology

The soil samples were collected in the month of October 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 Results

Table-17: Chemical Characteristics of Soil in the Study Area

			Station Name					
			SL1	SL2	SL3	SL4	SL5	SL6
Sr. No.	Parameter	Unit	Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony
			Near main gate of Port	10 m away from main gate		n creek at tide	Vadinar	
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	рН	-	8.62	8.10	8.75	8.33	8.10	8.22
3	Electrical Conductivity	μs/cm	16,200.0	26,820.0	16,252.0	17,520.0	560.0	480.0
4	Moisture	%	17.00	18.20	19.10	20.22	7.26	8.22
5	Total Organic Carbon	%	0.52	1.02	0.62	3.10	0.12	0.20
6	Alkalinity	mg/kg	60.06	80.44	140.20	80.44	60.06	80.44
7	Total Nitrogen	%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Chloride	mg/kg	1,620.0	5,380.0	1,820.0	2,078.0	62.0	77.0
9	Sulphate	mg/kg	230.0	198.0	120.0	118.0	16.0	20.0
10	Phosphorus	mg/kg	0.90	0.82	0.96	1.02	0.80	0.72
11	Potassium	mg/kg	396.0	810.0	366.0	460.0	120.0	160.0
12	Sodium	mg/kg	1,620.0	3,400.0	2,122.0	2,012.0	910.0	888.0
13	Calcium	mg/kg	230.32	722.20	252.00	470.42	110.00	82.00
14	Copper as Cu	mg/kg	17.40	38.80	21.20	35.10	16.6	17.0
15	Lead as Pb	mg/kg	6.40	7.90	29.10	7.60	4.8	2.0
16	Nickel as Ni	mg/kg	33.50	13.90	34.50	13.20	13.2	12.2
17	Zinc as Zn	mg/kg	55.90	91.90	77.9	81.90	28.00	36.22
18	Cadmium as Cd	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL

4.3 Discussion

- The data shows that value of pH ranges from 8.10 at IFFCO Plant to 8.75 at Khori Creek indicating that all soil samples are neutral to slight basic. Iffco Plant samples showed maximum conductivity of 26,820 µmhos/cm, while Tuna Port location showed minimum conductivity of 16,200 µmhos/cm. Conductivity at Vadinar Port was 560 and 480 µmhos/cm at Admin site and Vadinar Port colony respectively.
- Total organic Carbon ranged from 0.5 % to 3.1 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.1 % to 0.2 %.
- The concentration of Phosphorus and Potassium in the soil samples varies from 0.7 to 1.0 mg/kg and 300.0 to 800 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 0.76 mg/kg and mean concentration of Potassium at Vadinar site was 140 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel and Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was not detected in the Soil.

4.4 Conclusion

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

08 10 2021

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 Methodology for STP Monitoring

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. Carboys and were analyzed in laboratory for various parameters.

5.2 Results

Kandla STP

Table 18: Sewage Water Monitoring at Kandla STP (1st Week)

Date of Sampling

	ate of Sampling	08.10.2021							
Sr. No.	Parameters	Unit	Res	sults					
51. NO.	raiameters	Onic	KPT STP I/L	KPT STP O/L					
1	рН	pH unit	7.62	7.4					
2	Total Suspended Solids	mg/l	99.2	64.7					
3	Residual Chlorine	mg/l	-	<0.5					
4	COD	mg/l	424.2	98.0					
5	BOD @ 27 °C	mg/l	141.0	23.0					
6.	Fecal Coliform	MPN Index / 100 ml	-	79.0					
Aeration Tank									
7.	MLSS	mg/l	6.0						
8.	MLVSS	%	9	3.0					

C	Date of Sampling		12.10.202	21		
Sr.	Darameters	Unit	Results			
No.	Parameters	Unit	KPT STP I/L	KPT STP O/L		
1	рН	pH unit	7.6	7.2		
2	Total Suspended Solids	mg/l	152.2	72.4		
3	Residual Chlorine	mg/l	-	<0.5		
4	COD	mg/l	384	103.0		
5	BOD @ 27 °C	mg/l	120.0	24.0		
6.	Fecal Coliform	MPN Index / 100 ml	-	8.0		
	Aeration Tank					
7.	MLSS	mg/l	1	2.0		
8.	MLVSS	%	8	4.0		

Τ

Table 19: Sewage Water Monitoring at Kandla STP (2nd Week)

г

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

Date of Sampling		21.10.2021		
			Res	ults
Sr. No.	Parameters	Unit	KPT STP I/L	KPT STP O/L
1	рН	pH unit	7.65	7.41
2	Total Suspended Solids	mg/l	223.4	99.8
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	181.8	101
5	BOD @ 27 °C	mg/l	68.0	24.0
6.	Fecal Coliform	MPN Index / 100 ml	-	11.0
	Aer	ration Tank	2	
7.	MLSS	mg/l	9.0	
8.	MLVSS	%	8	7.0

	D	ate of Sampling		25.10.202	1		
i							
	Cr. No.	Parameters	Unit	sults			
	Sr. No.	Parameters		KPT STP O/L			
	1	рН	pH unit	7.72	7.5		
	2	Total Suspended Solids	mg/l	284.6	113.6		
	3	Residual Chlorine	mg/l	-	<0.5		
	4	COD	mg/l	212	101.0		

mg/l

MPN

Index /

100 ml **Aeration Tank**

mg/l

%

98.0

-

26.0

3.6

14.0

84.0

Table 21: Sewage Water Monitoring at Kandla STP (4th Week) Т

Gopalpuri Colony STP

5

6.

7.

8

BOD @ 27 °C

Fecal Coliform

MLSS

MLVSS

Г

Table 22: Sewage Water Monitoring at Gopalpuri STP (1st Week)

Date of Sampling	08.10.2021

			Re	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.6	7.4
2	Total Suspended Solids	mg/l	195.6	84.0
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	304.0	104.0
5	BOD @ 27 °C	mg/l	120.0	26.0
6.	Fecal Coliform	MPN Index / 100 ml	-	49.0
Aeration Tank				
7.	MLSS	mg/l	1	.0.0
8	MLVSS	%	8	57.0

Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling	12.10.2021
------------------	------------

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.7	7.5
2	Total Suspended Solids	mg/l	388	131.8
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	414.1	106.00
5	BOD @ 27 °C	mg/l	139.0	28.0
6.	Fecal Coliform	MPN Index / 100 ml	-	6.0
	Aer	ation Tank	c	
7.	MLSS	mg/l	14	4.0
8	MLVSS	%	90	0.0

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date of Sampling 21.10.2021

			Res	sults
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.52	7.21
2	Total Suspended Solids	mg/l	354.2	103.3
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	161.6	90.9
5	BOD @ 27 °C	mg/l	80.0	26.0
6.	Fecal Coliform	MPN Index / 100 ml	-	46.0
Aeration Tank				
7.	MLSS	mg/l	14	4.0
8	MLVSS	%	84	4.0

DCPL/DPT/20-21/18 -OCTOBER - 2021

Table 25: Sewage Water Monitoring at Gopalpuri STP (4th Week)

Date of Sampling			25.10.2021			
		Results		sults		
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L		
1	рН	pH unit	7.45	7.19		
2	Total Suspended Solids	mg/l	345.8	105		
3	Residual Chlorine	mg/l	-	<0.5		
4	COD	mg/l	232	106		
5	BOD @ 27 °C	mg/l	82.0	28.0		
6.	Fecal Coliform	MPN Index / 100 ml	-	32.0		
	Aeration Tank					
7.	MLSS	mg/l	10.0			
8.	MLVSS	%	8	9.0		

Vadinar STP •

Date of Sampling		08.10.2021		
			Resu	lts
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.62	7.4
2	Total Suspended Solids	mg/l	99.2	64.7
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	88.0	60.0
5	BOD @ 27 °C	mg/l	32.0	16.0

 Table 27: Sewage Water Monitoring at Vadinar STP (2nd Week)

			Results		
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.7	7.5	
2	Total Suspended Solids	mg/l	133.5	59.9	
3	Residual Chlorine	mg/l	-	<0.5	
4	COD	mg/l	188.0	60.0	
5	BOD @ 27 °C	mg/l	60.0	16.0	

Table 28: Sewage Water Monitoring at Vadinar STP (3rd Week)

D	ate of Sampling	21.10.2021			
			Results		
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.7	7.5	
2	Total Suspended Solids	mg/l	105	38	
3	Residual Chlorine	mg/l	-	<0.5	
4	COD	mg/l	161.6	70.7	
5	BOD @ 27 °C	mg/l	62.0	20.0	

Date of Sampling	25.10.2021

Table 29: Sewage Water Monitoring at Vadinar STP (4th Week)

			Results		
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L	
1	рН	pH unit	7.7	7.2	
2	Total Suspended Solids	mg/l	105	58.8	
3	Residual Chlorine	mg/l	-	<0.5	
4	COD	mg/l	202	80.8	
5	BOD @ 27 °C	mg/l	60.0	20.0	

5.3 Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea.

6. Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decisionmaking. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at "integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 6th& 7th October-2021 in harbor regions of KPT and on 7th October-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 13th& 14th October 2021 in harbor regions of KPT. 14th October -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month.Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative & quantitative evaluation of phytoplankton, qualitative & quantitative evaluation zooplanktons (density and their population).

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek
	2 in Nakti creek
	1 in Khori creek
	1 near Vadinar Jetty
	1 near 1 st SBM
Total Number of locations	8

Sampling Locations

6.1 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

	Parameters	Unit	Kandla Creek Near KPT colony (1) 23°0'58"N 70°13'22."E			
Sr.	Falameters	Onic				
No.			Sprin	g Tide	Nea	p Tide
	Tide →		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.14	7.16	7.42	7.36
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	32.5	32.0	32.6	32.0
5	Turbidity	NTU	38	29	36	31
6	Total Dissolved Solids	mg/l	42450	39030	42122.0	41187.0
7	Total Suspended Solids	mg/l	685	950	764.9	558.1
8	Total Solids	mg/l	43135	39980	42886.9	41745.1
9	DO	mg/l	4.1	4	4.3	4.2
10	COD	mg/l	78.0	80.0	80.0	78.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.75	0.64	0.65	0.53
13	Phosphate	mg/l	0.36	0.26	0.16	0.18
14	Sulphate	mg/l	3060	2892	2256	2532
15	Nitrate	mg/l	2.89	2.46	2.50	3.48
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	601.20	521.04	561.12	521.04
18	Magnesium	mg/l	1628.1	1603.8	0	0
19	Sodium	mg/l	9473.0	8438.0	9368	8523
20	Potassium	mg/l	362.1	314.0	360.8	302.8
21	Iron	mg/l	1.63	1.34	1.35	1.24
22	Chromium	mg/l	0.11	0.13	0.12	0.13
23	Copper	mg/l	0.06	0.05	0.06	0.06
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.04	0.05	0.04	0.04
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.09	0.11	0.11	0.09
28	Zinc	mg/l	0.07	0.06	0.06	0.05

Table 30: Marine Water Quality Monitoring Parameters for location near KPT colony

	Kandia							
			Near passenger Jetty One (2) 23° 0'18 "N 70°13'31"E					
Sr.	Parameters	Unit						
No.				g Tide	-	Tide		
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide		
1	рН	pH unit	7.25	7.21	7.51	7.1		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	31.8	31.9	31.8	31.9		
5	Turbidity	NTU	36	25	39	45		
6	Total Dissolved Solids	mg/l	33930	47550	40323.0	40031.0		
7	Total Suspended Solids	mg/l	658	769	569.8	528.6		
8	Total Solids	mg/l	34588	48319	40892.8	40559.6		
9	DO	mg/l	4.4	3.8	4.4	4.1		
10	COD	mg/l	82.0	86.0	88.0	80.0		
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0		
12	Silica	mg/l	0.51	0.60	0.80	0.75		
13	Phosphate	mg/l	0.23	0.26	0.18	0.19		
14	Sulphate	mg/l	2784	3252	2388	2652		
15	Nitrate	mg/l	3.03	3.59	2.89	4.04		
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05		
17	Calcium	mg/l	561.12	641.28	480.96	561.12		
18	Magnesium	mg/l	1555.2	1628.1	0	0		
19	Sodium	mg/l	9670.0	9156.0	9686	9192		
20	Potassium	mg/l	380.0	326.1	354.2	278.2		
21	Iron	mg/l	1.90	1.73	1.68	1.33		
22	Chromium	mg/l	0.13	0.11	0.11	0.15		
23	Copper	mg/l	0.07	0.05	0.07	0.07		
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01		
25	Cadmium	mg/l	0.05	0.04	0.04	0.05		
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001		
27	Lead	mg/l	0.12	0.12	0.09	0.11		
28	Zinc	mg/l	0.05	0.06	0.08	0.09		

Table 31: Marine Water Quality Monitoring Parameters for location near passenger Jetty One atKandla

				Near Co	al Berth	
Sr.	Parameters	Unit	22°59'12"N 70°13'40"E			
No.			Sprin	g Tide	Neap	o Tide
	$Tide \rightarrow$		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.40	7.52	7.2	7.41
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	32.2	32.0	32.0	31.7
5	Turbidity	NTU	36	28	33	41
6	Total Dissolved Solids	mg/l	45010	41120	40162.0	42404.0
7	Total Suspended Solids	mg/l	586	838	492.9	627.8
8	Total Solids	mg/l	45596	41958	40654.9	43031.8
9	DO	mg/l	4.1	5	4.5	5.2
10	COD	mg/l	88.0	90.0	79.0	74.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.69	0.76	0.53	0.71
13	Phosphate	mg/l	0.27	0.37	0.16	0.19
14	Sulphate	mg/l	3300	1872	2688	2256
15	Nitrate	mg/l	3.87	4.36	2.96	2.59
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	601.20	681.36	521.04	480.96
18	Magnesium	mg/l	1676.7	1652.4	0	0
19	Sodium	mg/l	9421.0	8958.0	9328	8688
20	Potassium	mg/l	354.2	343.7	283.8	332.6
21	Iron	mg/l	1.56	1.88	1.93	1.57
22	Chromium	mg/l	0.14	0.14	0.14	0.11
23	Copper	mg/l	0.06	0.07	0.06	0.06
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.05	0.04	0.06	0.05
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.13	0.10	0.08	0.10
28	Zinc	mg/l	0.07	0.08	0.06	0.07

Table 32: Marine Water Quality Monitoring Parameters for location Near Coal Berth

			KPT 4 Near 15/16 Berth			
Sr.	Parameters	Unit				
No.			Sprin	g Tide	Nea	o Tide
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.28	7.40	7.3	7.4
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	31.5	32.6	32.4	32.0
5	Turbidity	NTU	46	36	50	30
6	Total Dissolved Solids	mg/l	42910	48900	40963.0	41643.0
7	Total Suspended Solids	mg/l	660	562	711.1	509.7
8	Total Solids	mg/l	43570	49462	41674.1	42152.7
9	DO	mg/l	4.7	4.6	5.8	5.6
10	COD	mg/l	72.0	76.0	82.0	78.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.73	0.62	0.65	0.49
13	Phosphate	mg/l	0.28	0.24	0.22	0.19
14	Sulphate	mg/l	1500	3336	2412	2124
15	Nitrate	mg/l	1.76	2.89	2.78	2.02
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	521.04	601.20	440.88	601.2
18	Magnesium	mg/l	1676.7	1555.2	0	0
19	Sodium	mg/l	9979.0	9708.0	9808	9629
20	Potassium	mg/l	373.2	343.9	327.8	305.6
21	Iron	mg/l	1.73	1.67	1.02	1.68
22	Chromium	mg/l	0.15	0.17	0.09	0.09
23	Copper	mg/l	0.05	0.08	0.07	0.07
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.03	0.06	0.07	0.04
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.09	0.01	0.09	0.08
28	Zinc	mg/l	0.06	0.08	0.07	0.05

Table 33: Marine Water Quality Monitoring Parameters for location Khori creek at Kandla

				Nakti Creek N	Near Tuna Port	
Sr.	Parameters	Unit	22°57'49."N 70° 7'0.67"E			
No.			Sprin	g Tide	Near	o Tide
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.20	7.40	7.2	7.4
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	32.1	31.9	31.6	31.2
5	Turbidity	NTU	34	46	33	29
6	Total Dissolved Solids	mg/l	48700	49900	40306.0	38117.0
7	Total Suspended Solids	mg/l	867	848	441.1	513
8	Total Solids	mg/l	49567	50748	40747.1	38630.0
9	DO	mg/l	4.2	4.8	4.8	4.7
10	COD	mg/l	96.0	98.0	90.0	92.0
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0
12	Silica	mg/l	0.53	0.84	0.73	0.60
13	Phosphate	mg/l	0.25	0.24	0.20	0.17
14	Sulphate	mg/l	3504	3780	2772	2364
15	Nitrate	mg/l	3.24	3.59	2.74	4.60
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	521.04	601.20	480.96	521.04
18	Magnesium	mg/l	1652.4	1676.7	0	0
19	Sodium	mg/l	10156.0	10254.0	10268	10438
20	Potassium	mg/l	336.9	336.4	278.6	297.8
21	Iron	mg/l	1.54	1.83	1.55	1.50
22	Chromium	mg/l	0.12	0.11	0.14	0.16
23	Copper	mg/l	0.08	0.07	0.05	0.05
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01
25	Cadmium	mg/l	0.04	0.06	0.06	0.04
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
27	Lead	mg/l	0.12	0.13	0.11	0.13
28	Zinc	mg/l	0.08	0.09	0.05	0.09

Table 34: Marine Water Quality Monitoring Parameters for location Nakti Creek near Tuna Port

Table 35: Marine Water Quality Monitoring Parameters for location Nakti Creek Near NH-8A atKandla

			Nakti Creek Near NH-8A				
Sr.	Parameters	Unit		23° 02'01"N	70° 09'31"E		
No.			Sprin	g Tide	Nea	p Tide	
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.50		7.5		
2	Color	-	Colorless		Colorless		
3	Odor	-	Odorless		Odorless		
4	Salinity	ppt	31.8		31.0		
5	Turbidity	NTU	34		34		
6	Total Dissolved Solids	mg/l	43730		40522.0		
7	Total Suspended Solids	mg/l	635		432.9		
8	Total Solids	mg/l	44365		40954.9		
9	DO	mg/l	4.6		5.2		
10	COD	mg/l	98.0		90.0		
11	BOD	mg/l	<2.0		<2.0		
12	Silica	mg/l	1.00		0.51		
13	Phosphate	mg/l	0.24	Complian	0.17	Compliance	
14	Sulphate	mg/l	3576	Sampling not possible	2352	Sampling not possible	
15	Nitrate	mg/l	3.03	during Low Tide	3.37	during Low Tide	
16	Nitrite	mg/l	<0.05	nde	<0.05	nde	
17	Calcium	mg/l	561.12		601.2		
18	Magnesium	mg/l	1725.3		0		
19	Sodium	mg/l	10760.0		10536		
20	Potassium	mg/l	335.1		335.1		
21	Iron	mg/l	1.80		1.33		
22	Chromium	mg/l	0.16		0.10		
23	Copper	mg/l	0.07		0.06		
24	Arsenic	mg/l	<0.01		<0.01		
25	Cadmium	mg/l	0.03		0.05		
26	Mercury	mg/l	<0.001		<0.001		
27	Lead	mg/l	0.12		0.11		
28	Zinc	mg/l	0.09		0.07		

		Unit	Nr.Vadinar Jetty				
Sr.	Parameters		22°26'25.26"N 69°40'20.41"E				
No.			Sprin	g Tide	Neap Tide		
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.50	7.80	7.54	7.45	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.0	32.0	32.1	31.9	
5	Turbidity	NTU	46	36	46	42	
6	Total Dissolved Solids	mg/l	47700	46610	37421.0	38258.0	
7	Total Suspended Solids	mg/l	483	476	553.6	490	
8	Total Solids	mg/l	48183	47086	37974.6	38748.0	
9	DO	mg/l	4.3	4.5	4.6	4.8	
10	COD	mg/l	86.0	88.0	88.0	86.0	
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0	
12	Silica	mg/l	0.85	0.93	0.71	0.89	
13	Phosphate	mg/l	0.23	0.25	0.18	0.17	
14	Sulphate	mg/l	2784	2556	2532	2448	
15	Nitrate	mg/l	2.46	2.89	3.60	3.37	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	641.28	561.12	561.12	521.04	
18	Magnesium	mg/l	1506.6	1579.5	0	0	
19	Sodium	mg/l	10233.0	10490.0	10860.0	10880.0	
20	Potassium	mg/l	331.3	363.9	336.0	333.0	
21	Iron	mg/l	1.38	1.69	1.34	1.2	
22	Chromium	mg/l	0.15	0.19	0.11	0.12	
23	Copper	mg/l	0.06	0.08	0.06	0.06	
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01	
25	Cadmium	mg/l	0.04	0.04	0.06	0.05	
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001	
27	Lead	mg/l	0.11	0.11	0.09	0.09	
28	Zinc	mg/l	0.06	0.08	0.06	0.05	

Table 36: Marine Water Quality Monitoring Parameters for locations Nr. Vadinar Jetty

			Nr.Vadinar SPM					
Sr.	Parameters	Unit	22°30'56.15"N 69°42'12.07"E					
No.			Sprin	g Tide	Neap Tide			
	Tide \rightarrow		High Tide	Low Tide	High Tide	Low Tide		
1	рН	pH unit	7.70	7.50	7.42	7.36		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	31.5	32.6	32.0	31.8		
5	Turbidity	NTU	34	32	38	44		
6	Total Dissolved Solids	mg/l	40230	39870	40119.0	40011.0		
7	Total Suspended Solids	mg/l	470	447	496.1	457.4		
8	Total Solids	mg/l	40700	40317	40615.1	40468.4		
9	DO	mg/l	4.2	4.1	4.4	4.5		
10	COD	mg/l	88.0	90	88.0	86		
11	BOD	mg/l	<2.0	<2.0	<2.0	<2.0		
12	Silica	mg/l	0.82	0.93	0.62	0.76		
13	Phosphate	mg/l	0.24	0.25	0.17	0.17		
14	Sulphate	mg/l	2688	2340	2352	2472		
15	Nitrate	mg/l	2.68	2.82	3.27	3.60		
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05		
17	Calcium	mg/l	601.20	641.28	0	0		
18	Magnesium	mg/l	1579.5	1652.4	0	0		
19	Sodium	mg/l	10575	10639	10936.0	10886.0		
20	Potassium	mg/l	370.1	367.9	331	402		
21	Iron	mg/l	1.57	1.81	1.07	1.63		
22	Chromium	mg/l	0.17	0.18	0.09	0.11		
23	Copper	mg/l	0.06	0.08	0.06	0.04		
24	Arsenic	mg/l	<0.01	<0.01	<0.01	<0.01		
25	Cadmium	mg/l	0.04	0.05	0.04	0.06		
26	Mercury	mg/l	<0.001	<0.001	<0.001	<0.001		
27	Lead	mg/l	0.13	0.12	0.08	0.08		
28	Zinc	mg/l	0.06	0.07	0.07	0.08		

Table 36 (a): Marine Water Quality Monitoring Parameters for locations Nr. Vadinar SPM

6.1.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

6.2 Results

The Sediment Quality results are given in below from table no. 34 A & B.

Table 34A: Results of Analysis of Sediment of Kandla & Vadinar Port (Spring Tide)

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 2	КРТ - З	КРТ - 4	KPT - 5	Jetty	SPM
1	Texture	-	Sandy Loam						
2	Organic Matter	mg/kg	1.10	1.08	1.01	1.02	0.98	2.03	0.81
3	Organic Carbon	mg/kg	0.65	0.52	0.60	0.56	0.56	1.08	0.47
4	Inorganic Phosphate	mg/kg	110.0	131.0	132.0	145.0	145.0	132.0	149.0
5	Moisture	%	18.96	19.65	21.0	22.10	23.5	17.7	27.00
6	Aluminium	mg/kg	ND						
7	Silica	mg/kg	16.5	15.6	12.0	16.3	15.5	18.7	18.00
8	Phosphate	mg/kg	8.02	10.99	7.22	11.00	7.65	9.52	11.20
9	Sulphate	mg/kg	205.0	265.0	266.0	198.0	221.0	197.6	265.0
10	Nitrite	mg/kg	0.1	0.15	0.11	0.13	0.13	0.09	0.11
11	Nitrate	mg/kg	9.35	7.32	7.06	8.65	8.99	7.65	8.88
12	Calcium	mg/kg	325.0	306.0	396.0	388.0	324.0	324.0	378.0
13	Magnesium	mg/kg	195.0	185.0	243.0	244.0	188.0	175.0	210.0
14	Sodium	mg/kg	3745.0	3945.0	4660.0	2566.0	2899.0	2253.0	2854.0
15	Potassium	mg/kg	238.0	194.0	186.0	178.0	138.0	152.0	110.0
16	Chromium	mg/kg	8.1	48.3	30.7	40.3	23.3	36.4	6.6
17	Nickel	mg/kg	16.4	31.8	22.9	25.8	14	46.6	3.7
18	Copper	mg/kg	27.7	36.9	8.7	14.3	4.2	19.2	1.9
19	Zinc	mg/kg	32.40	40.50	35.10	36.20	21.20	21.30	5.00
20	Cadmium	mg/kg	ND						
21	Lead	mg/kg	3.8	5.8	3.3	4.4	4.9	ND	1.2
22	Mercury	mg/kg	ND						
23	Arsenic	mg/kg	ND						

*ND - Not Detected

Sr. No.	Parameters	Unit	KPT – 1	KPT - 2	KPT - 4	SPM
1	Texture	-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	Organic Matter	mg/kg	1.99	0.85	1.11	1.08
3	Organic Carbon	mg/kg	1.12	0.41	0.65	0.65
4	Inorganic Phosphate	mg/kg	120.0	130.0	148.0	152.0
5	Moisture	%	19.20	18.50	17.7	17.56
6	Aluminium	mg/kg	ND	ND	ND	ND
7	Silica	mg/kg	21.88	18.00	17.5	14.72
8	Phosphate	mg/kg	5.62	8	7.65	8.65
9	Sulphate	mg/kg	225.0	240.0	211.5	195.0
10	Nitrite	mg/kg	0.1	0.11	0.09	0.1
11	Nitrate	mg/kg	7.66	8.11	6.65	6.85
12	Calcium	mg/kg	321.0	310.0	345.0	265.0
13	Magnesium	mg/kg	205.0	197.0	202.0	169.0
14	Sodium	mg/kg	4120.0	3842.0	4465.0	3589.0
15	Potassium	mg/kg	201.0	147.0	154.0	154.00
16	Chromium	mg/kg	13.3	10.5	13	16.8
17	Nickel	mg/kg	8.8	6	8.2	10.5
18	Copper	mg/kg	4.3	2	2.2	5.5
19	Zinc	mg/kg	18.20	9.90	10.30	12.10
20	Cadmium	mg/kg	ND	ND	ND	ND
21	Lead	mg/kg	2.1	2.5	2.8	1.8
22	Mercury	mg/kg	ND	ND	ND	ND
23	Arsenic	mg/kg	ND	ND	ND	ND

Table 34B: Results of Analysis of Sediment of Kandla & Vadinar Port (Neap Tide)

*Grab samples could not be collected due high current at KPT – 3,KPT – 5 Location.

*ND - Not Detected

REPORT

ON

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPT HARBOUR AREA, NEAR BY CREEKS

AND

VADINAR JETTY AND SPM

FOR

DEENDAYAL PORT TRUST

OCTOBER, 2021

INTRODUCTION:

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on6thOctober, 2021 in harbour region of DPT at Kandla Creek, and on 7thOctober, 2021 in creeks near by the port during spring tide. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 13thOctober ,2021 in harbour region of DPT at Kandla Creek and on 14thOctober 2021 in creeks near by the port during neap tidal condition.

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and one stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. The same sampling schedule was repeated during consecutive Neap tide and spring tide in same month.

Plankton samples from sub surface layer were collected during high tide period and low tide period from monitoring station near Vadinar jetty at Path Finder Creek during spring tide period and during neap tide. Sampling was conducted at only during Neap tide period nearSPM both during High tide period and low tide period. Collected water samples were processed for estimation of Chlorophyll-a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

monitoring requirement	Number of locations
Kandla creek	3 in Kandla creek
Nakti creek	2 in Nakti creek
Khori Creek	1 in Khori creek
Vadinar jetty	1 near Vadinar Jetty
SPM	1 near I st SPM
Total Number of locations	8

TABLE #1 SAMPLING LOCATIONS

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval.

50 litres of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litres of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of 20μ m mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone.

The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos*meaning "passively drifting or wandering") is defined as drifting or free-floating organisms are categorised into phytoplankton (organisms having an autotrophic mode of nutrition) and zooplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae).The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction rates and very short life cycles, making them valuable indicators of short-term impacts.

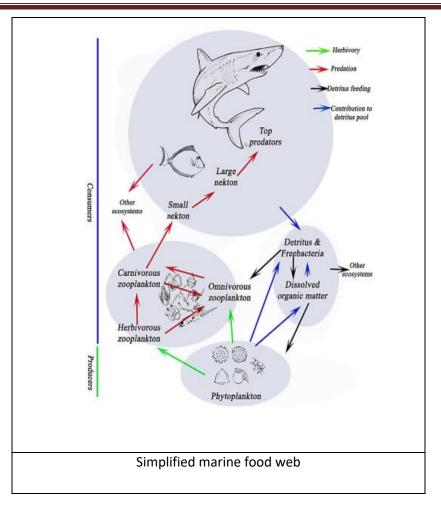
Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine Zooplankton community plays a pivotal role in the pelagic food web as the primary ecosystem. consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryProduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.

Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are organisms which live a brief planktonic life, such as the benthic crustaceans (Cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.


Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of fish,

shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda) and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly Calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton may also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 15-30minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton in each microscopic field was thus counted. When first microscopic field row was finished the next consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated

plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sediment–water interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining:

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different

species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (*S*) and evenness (*J*)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species

The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

- relatively few successful species in the habitat
- the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment
- food webs which are relatively simple
- change in the environment would probably have quite serious effects

High species diversity suggests:

- a greater number of successful species and a more stable ecosystem
- more ecological niches are available and the environment is less likely to be hostile complex food webs
- environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness(*S*) is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic human-induced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness**(S)** is simply the number of species present in an ecosystem. This index makes no use of relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduces community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 are characterized as heavily polluted

$$H' = -\sum_{j=1}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin –a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.615 -1.459mg/m³.in harbour region of DPT in Kandla Creek during sampling done in spring tide period of October, 2021. In the nearby creeks chlorophyll-a was varying from 0.153 -1.497mg/m³.Pheophytin –a level was below detectable limit-the all the sampling stations during springtide except at KPT-I in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.204 -0.749mg/m³.in harbour region of DPT in Kandla Creek during sampling done in neap tide period of October, 2021. In the nearby creeks chlorophyll-a was varying from 0.184-0.610 mg/m³. Pheophytin –a level was below detectable limit-the all the sampling stations during neap tide in the harbour region of DPT.

In the sub surface water chlorophyll-a was varying from 0.527 -0.733 mg/m³.in harbour region of DPT OOT in path finder Creek during sampling done in spring tide period of October, 2021. In the sub surface water chlorophyll-a was varying from 0.750 -1.175 mg/m³.in harbour region of DPT OOT in path finder Creek during sampling done in Neap Tide period of October, 2021

TABLE #2 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA IN KANDLA CREEK, NEAR BY CREEKS AND DPT OOT JETTY IN PATH FINDER CREEK AND SPM NEAR VADINAR DURING SPRING TIDE IN OCTOBER, 2021

Sr.N o.	Station	Tide	Chlorophyll-a (mg/m³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHARBOUR	AREAKANDLA CREEK		
1	KDT1	High tide	1.459	0.821	97.75
	KPT1	Low tide	1.187	0.661	79.53
2		High tide	0.765	BQL	51.25
	KPT 2	Low tide	0.852	BQL	57.08
3		High tide	0.968	BQL	64.85
	KPT 3	Low tide	0.615	BQL	41.20
		(REEKS		
4	KPT-4 Khori-l	High tide	1.056	BQL	70.75
		Low tide	1.497	BQL	100.2
5	KPT-5 Nakti-I	High tide	0.764	BQL	51.19
	KPT-5 Naku-i	Low tide	0.612	BQL	41.00
6	KPT-5 Nakti-II	High tide	0.153	BQL	10.24
		PATHFINDE	R CREEK VADINAR		
7		Low tide	0.527	BQL	35.31
8	VADINAR-I jetty	High tide	0.733	BQL	49.11
9	SPM	High tide	No sample		
10	SPM	Low tide	No sample	-	

BDL: Below Quantification Limit.

TABLE #3 VARIATIONS IN CHLOROPHYLL –a PHEOPHYTIN- a AND ALGAL BIOMASS FROM

SAMPLING STATIONS IN DPT HARBOUR AREA ,NEAR BY CREEKS AND DPT OOT JETTY IN PATH

Sr.N o.	Station	Tide	Chlorophyll-a (mg/m ³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chlorophyll method) mg/m ³
		DPTHARBOUI	R AREA KANDLA CREE	ΕK	
1	KPT1	High tide	0.307	BQL	20.57
	KPTI	Low tide	0.529	BQL	35.44
2	KPT 2	High tide	0.749	BQL	50.18
		Low tide	0.614	BQL	41.14
3		High tide	0.204	BQL	13.67
	KPT 3	Low tide	0.542	BQL	36.31
			CREEKS		
4	KPT-4 Khori-l	High tide	0.441	BQL	29.54
	KP1-4 KN011-1	Low tide	0.426	BQL	28.54
5	KPT-5 Nakti-I	High tide	0.610	BQL	40.87
	KPT-5 Nakti-I	Low tide	0.441	BQL	29.55
6	KPT-5 Nakti-II	High tide	0.184	BQL	12.33
		PATHFIND	ER CREEK VADINAR		
7		Low tide	0.750	0.435	50.25
8	VADINAR-I jetty	High tide	0.820	0.484	54.94
9	SPM	High tide	1.071	0.610	71.76
10	SPM	Low tide	1.175	0.680	78.73

FINDER CREEK AND SPM NEAR VADINAR DURING NEAP TIDE IN OCTOBER,2021

BDL: Below Quantification Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide and neap tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by,Diatoms blue green algae and dinoflagellatesduring spring tide period.Diatoms were represented by 19genera. Blue green were represented by 3 genera and dinoflagellates were represented by two generaduring the sampling conducted in spring tide in OCTOBER,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 46-209units/ L during high tide period and183-229 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms.Blue green algae and Dinoflagellates duringNeap tide period.Diatoms were represented by 20genera Blue green algae were represented 3 genera and dinoflagellates with two genera during the sampling conducted in Neap tide in October,2021. Phytoplankton of the sampling

stations at sub surface layer in the harbour area and nearby creeks was varying from88-170units/ L during high tide period and 120-157 units/ L during low tide of Neap Tide.

For the evaluation of the Phytoplankton population in DPT OOT jetty area in Path Finder creek sampling was conducted from one sampling locations ; jetty area during high tide period and low tide of spring tide. For the evaluation of the Phytoplankton population in DPT OOT jetty area in Path Finder creek in Vadinar sampling was conducted from 2 sampling locations ; jetty area and one near SPM during high tide period and low tide of Neap tide.

The phytoplankton community of the sub surface water in the path finder creeks was represented by only Diatoms spring tide period.Diatoms were represented by 9 genera during the sampling conducted in spring tide in October, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from 131 units/ L during high tide period and 147 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the path finder creeks was represented by Diatoms, Blue green algae and Dinoflagellatesduring Neap tide period.Diatoms were represented by 10 genera Blue green algae were represented single genera and dinoflagellates by four genera during the sampling conducted in Neap tide in October, 2021. Phytoplankton of the sampling stations at sub surface path finder creek was varying from 203-427 units/ L during high tide period and 544-744 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek and nearby creeks sampling stations was varying from 2.059-3.212 with an average of 2.632during the sampling conducted in High tide period of spring tide.While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek region and nearby creeks was varying from2.687-3.144 with an average of 2.923 during the consecutive low tide period.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations in Kandla creek and nearby creeks was varying from 1.582-3.384 with an average of 2.477 during the sampling conducted in High tide period of Neaptide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek region and nearby creeks was varying from 1.582-3.040 with an average of 2.141 during consecutive low tide.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was 1.641 during the sampling conducted in High tide period of spring tide at Path Finder Creek, Vadinar . While Margalef's diversity index (Species Richness) S of phytoplankton communities in the path

finder creek was1.603 during the consecutive low tide period at Path Finder Creek, Vadinar .

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was varying from 1.981-2.064 during the sampling conducted in consecutive High tide period and low tide period of Neap Tide at jetty area of Path finder Creek. While Margalef's diversity index (Species Richness) S of phytoplankton communities near the SPM was varying from 2.259- 1.512 during the consecutive high tide and low tide period of Neap tide.

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.802- 0.935 (H'(log10)) between selected sampling stations with an average value of 0.860 during high tide period of spring tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.858-0.979 (H'(log10)) between selected sampling stations with an average value of 0.909 during consecutive lowtide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the range of 0.774 -0.934 (H'(log10)) between selected sampling stations was in the range of 0.868 during high tide period of neap tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.774 -0.934 (H'(log10)) between selected sampling stations with an average value of 0.868 during high tide period of neap tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.773 -0.927 (H'(log10)) between selected sampling stations with an average value of 0.842during consecutive low tideat Kandla creek and nearby creeks.

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations in the stations was 0.684 during the sampling conducted in High tide period of spring tide at Path Finder Creek, Vadinar. Shannon-Wiener's Index (H)of phytoplankton communities in the path finder creek was 0.695 during the consecutive low tide period at Path Finder Creek, Vadinar.

Shannon-Wiener's Index (H) of phytoplankton communities in the stations was varying from 0.356-0.255 during the sampling conducted in consecutive High tide period and low tide period of Neap Tide at jetty area of Path finder Creek. While Shannon-Wiener's Index (H) of phytoplankton communities near the SPM was varying from 0.508-0.234 during the consecutive high tide and low tide period of Neap tide.

Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region

and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.809- 0.852 between selected sampling stations with an average of 0.827 during high tide period of spring tide. Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.819- 0.865 between selected sampling stations with an average of 0.840during consecutive low tide .

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tide period during neap tide also, which was varying from 0.809-0.853 with an average value of 0.835 between selected sampling stations during high tide period and varying from 0.809-0.852 with an average value of 0.831 between selected sampling stations during consecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in path finder Creek, which was 0-720 during high tide period and 0.751 during low tide period of spring tide at Jetty region . Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the in path finder Creek, which was varying from 0.720-0.751 at jetty region of path finder creek during consecutive high tide and low tide period of Spring Tide and recorded below 9 at SPM during consecutive high tide and low tide period of Neap tide also , 0.329 - 0.499 during high tide and 0.218-0.201 during low tide

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND ,NEAR BY CREEKS DURINGSPRING TIDE IN OCTOBER,2021

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	199	18/24	75	3.212	0.9355	0.8519
TIDE	2	209	12/24	50	2.059	0.8018	0.8091
	3	204	14/24	58.3	2.444	0.8451	0.8244
	4	204	17/24	70.83	3.009	0.9095	0.837
	5	199	14/24	58.3	2.456	0.8497	0.8167
	6	46	11/24	45.83	2.612	0.8208	0.8232
LOW	1	223	18/24	75	3.144	0.9797	0.8653
TIDE	2	214	17/24	70.83	2.982	0.9126	0.8446
	3	193	17/24	70.83	3.04	0.919	0.8416
	4	229	16/24	66.66	2.761	0.8806	0.8312
	5	183	15/24	62.5	2.687	0.858	0.8193

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND ,NEAR BY CREEKS DURING

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	170	18/25	72	3.31	0.9214	0.8451
TIDE	2	133	14/25	56	2.658	0.8621	0.8308
	3	142	11/25	44	2.018	0.8693	0.847
	4	152	18/25	72	3.384	0.9173	0.8463
	5	128	12/25	48	2.267	0.8398	0.828
	6	88	14/25	56	2.904	0.9345	0.8406
LOW	1	143	11/25	44	2.015	0.8355	0.832
TIDE	2	149	13/25	52	2.398	0.8822	0.842
	3	139	16/25	64	3.04	0.9274	0.8526
	4	157	9/25	36	1.582	0.7937	0.8176
	5	120	9/25	36	1.671	0.7738	0.8094

NEAP TIDE IN OCTOBER,2021

Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR

AREA AT KANDLA CREEK AND , NEAR BY CREEKS DURING SPRING TIDE IN OCTOBER, 2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	6	DIATOMS	39-204	19/24	79.2
HIGH	surface	Ū	BLUE GREEN	3-8	3/24	12.5
TIDE	0011000		DINOFLAGELLATES	2-9	2/24	8.3
			TOTAL PHYTO PLANKTON	46-209	24	-
LOW			DIATOMS	176-222	19/24	79.2
TIDE	Sub	5	BLUE GREEN	3-8	3/24	12.5
	surface		DINOFLAGELLATES	2-6	2/24	8.3
			TOTAL PHYTO PLANKTON	183-229	24	_

 Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT HARBOUR

AREA AT KANDLA CREEK AND , NEAR BY CREEKS DURING NEAP TIDE IN OCTOBER,2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	6	DIATOMS	81-164	20/25	80
HIGH	surface	Ū	BLUE GREEN	1-6	3/25	12
TIDE			DINOFLAGELLATES	0-4	2/25	8
			TOTAL PHYTO	88-170		
			PLANKTON			
LOW			DIATOMS	117-157	20/25	80
TIDE	Sub	5	BLUE GREEN	0-7	3/25	12
	surface		DINOFLAGELLATES	0-4	2/25	8
			TOTAL PHYTO	120-157		
			PLANKTON			

Table # 8 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT OOTAT PATH FINDER CREEK, VADINAR &NEAR BY SPM, DURINGSPRING TIDE IN OCTOBER, 2021

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH TIDE	jetty	131	9/9	100	1.641	0.6874	0.7201
LOW TIDE	jetty	147	9/9	100	1.603	0.6956	0.7508

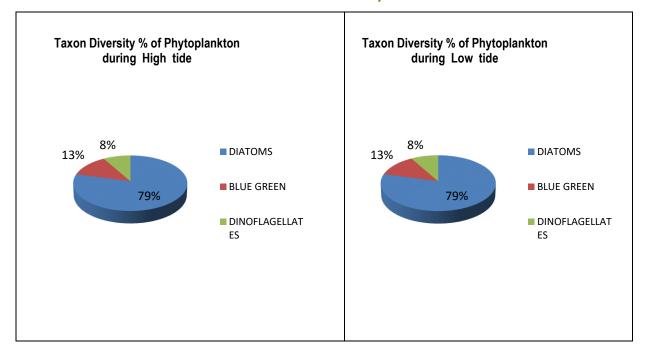
Table # 9 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT OOTAT PATH FINDER CREEK, VADINAR & NEAR BY SPM, DURING NEAP TIDE IN OCTOBER, 2021

Tide	Sampling Station	Abundance In units/L	No of Species observed /total species	% of diversity	Margalef's diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	jetty	427	13/15	86.67	1.981	0.3559	0.3291
TIDE	SPM	203	13/15	86.67	2.259	0.5079	0.499
LOW	jetty	544	14/15	93.33	2.064	0.2555	0.2188
TIDE	SPM	744	11/15	73.33	1.512	0.2343	0.2011

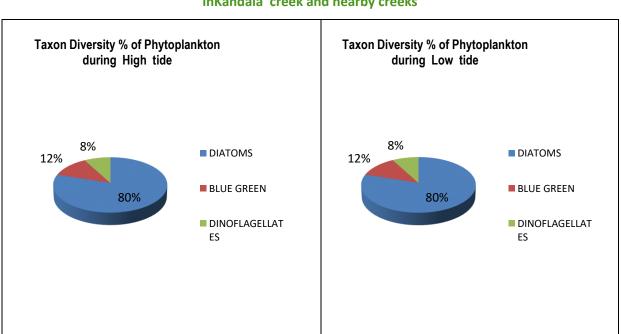
Table # 10 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT DPTOOT

AT PATH FINDER CREEK, VADINAR & NEAR BY SPM, DURING SPRING TIDE IN OCTOBER, 2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
			DIATOMS	131	9/9	100
HIGH TIDE	Sub surface	1	TOTAL PHYTO PLANKTON	131	9	
LOW			DIATOMS	147	9/9	100
TIDE	Sub surface	1	TOTAL PHYTO PLANKTON	147	9	

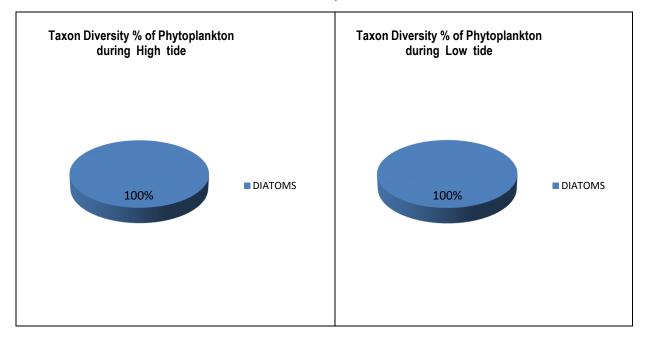

Table # 11 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT DPTOOT

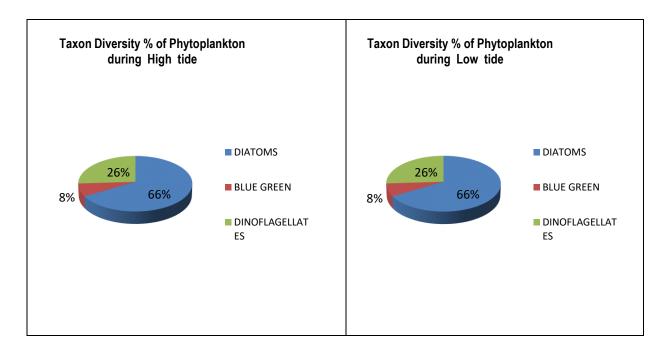
AT PATH FINDER CREEK , VADINAR & NEAR BY SPM, DURING NEAP TIDE IN OCTOBER, 2021


Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankton Group range Units/L	Genera or species /total Phyto plankton	Taxon Diversity % (Group level)
	Sub	2	DIATOMS	189-424	10/15	66.5
HIGH	surface	2	BLUE GREEN	1-4	1/15	7.5
TIDE	0011000		DINOFLAGELLATES	4-10	4/15	26.0
			TOTAL PHYTO	203-427		
			PLANKTON			
LOW			DIATOMS	480-664		
TIDE	Sub	2	BLUE GREEN	2	10/15	66.5
	surface		DINOFLAGELLATES	5-10	1/15	7.5
			TOTAL PHYTO	544-744	4/15	26.0
			PLANKTON			

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide in

Kandala creek and nearby creeks


Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide


inKandala creek and nearby creeks

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide in Path

Finder Creek, Vadinar

Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide in Path Finder Creek, Vadinar

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khoricreek) during high tide period and low tide period of spring tide DCPL/DPT/20-21/18 -OCTOBER - 2021

and Neap tide in October,2021. The Zooplankton community of the sub surface water in the harbour and nearby creeks during spring tide was represented by mainly 9 groups, and 7 larval forms; Tintinids, Copepods,Rotifers, Arrow worms, Mysids, Urochordates, Ciliates, Unidentified medusa and Foraminiferans.Larval forms represented from the group of Crustacea, Molluscansand Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly 9groups, and Eight larval forms. The major zooplankton group was Tintinids, Copepods, Rotifers, Arrow worms, Mysids, Urochordata, Ciliates, Medusa and Foraminiferans. Larval forms were represented from the group of Crustaceans, Echinodermata, Bryozoans, Molluscansand Polychaetes,

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 33-132 x10³ N/ m³ during high tide and 81-107x10³ N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 47-167x10³ N/ m³ during high tide and9-112x10³ N/ m³ during low tide of Neap Tide period.

For the evaluation of the Zoo plankton population in DPT OOT jetty area in Path Finder creek and SPM in Vadinar selected 2 sampling locations (1 in jetty area and one near SPM) Duringspring tide sampling plankton sample were collected only at Jetty area during consecutive high tide period and low tide period. During Neap tide sampling Plankton samples were collected from jetty area and SPM during consecutive high tide period and low tide period.

The Zooplankton community of the sub surface water in the path finder creek creeks during spring tide was represented by mainly two groups, Tintinids, Copepods, and larval forms of Crustacea and Molluscans. The Zooplankton community of the sub surface water in the path Finder creeks at Jetty region and SPM during neap tide was represented by mainly Five groups, Tintinids, Copepods, Arrow worms, Urochordata and ,Mysids .Larval forms were represented from the major group of Crustaceans, Molluscans, Echinodremataand Polychaetes,.

Zooplankton of the sampling stations at sub surface layer in the DPT OOTjetty area of path finder creek was 76 x10³ N/ m³ during high tide and 74 x10³ N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT OOTjetty area in path finder creekwas recorded $54x10^3$ N/ m³ during high tide and 73 x10³ N/ m³ during consecutive low tide period of Neap . Zooplankton of the sampling stations at sub surface layer in the DPT SPM area in path finder creek was recorded 78×10^3 N/ m³ during high tide and 82×10^3 N/ m³ during consecutive low tide period of Neap Tide .

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla creek region and nearby creeks was varying from 3.146-4.804 with an average of 3.874during the sampling conducted in High tide period.Margalef's diversity index (Species Richness) S of Zooplankton communities varying from.2.842-4.280 with an average of 3.393 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla creek region and nearby creeks sampling stations was varying from3.117- 6.839 with an average of 5.036 during the sampling conducted in high tide and varying from. 3.034 -4.570 with an average of 3.769 during the sampling conducted in low tide during Neap tide period

Margalef's diversity index (Species Richness) S of Zooplankton communities in the sampling stationnear jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 1.847 and 1.859 respectively..

Margalef's diversity index (Species Richness) S of Zooplankton communities in the two stations at Path finder creek was varying from 3.259-3.443 during the sampling conducted in High tide period of Neap tide. While Margalef's diversity index (Species Richness) S of Zooplankton communities in the two stations at Path finder creekwas varying from 2.797-4.085 during the consecutive low tide period.

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.912 -1.060 (H'(log10)) between selected sampling stations with an average value of 0.992 (H'(log10)) during high tide period of spring tide. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.844-0.965(H'(log10)) between selected sampling stations with an average value of 0.894 (H'(log10)) during consecutive low tide period .

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.834 -1.336 (H'(log10)) between selected sampling stations with an average value of 1.146 (H'(log10)) during high tide period of Neap tide. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region

and nearby creeks was in the range of 0.949-1.139 (H'(log10)) between selected sampling stations with an average value of 1.043 (H'(log10)) during consecutive low tide period.

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 0.775 and 0.822 respectively..

Shannon-Wiener's Index (H)of Zooplankton communities in the two stations at Path finder creek was varying from 0.991-0.927 during the sampling conducted in High tide period of Neap tide. While Shannon-Wiener's Index (H)of Zooplankton communities in the two stations at Path finder creek was varying from 0.815-1.004 during the consecutive low tide period.

Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 most of sampling stations in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period, which was varying from 0.848-0.881between selected sampling stations with an average of 0.865 during high tide period and was varying from 0.812- 0.845 with an average value of 0.827 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was blow 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks except few during high tide and low tide period, which was varying from 0.793- 0.937 between selected sampling stations with an average of 0.894 during high tide period and was varying from 0.861- 0.910 with an average value of 0.884 between selected sampling stations during consecutive low tide

This high species diversity suggests a relatively more number of successful species in this habitat during October ,2021 sampling.

Simpson diversity index (1-D) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 0.800 and 0.827 respectively..

Simpson diversity index (1-D) of Zooplankton communities in the two stations at Path finder creek was varying from 0.884 -0.838 during the sampling conducted in High tide period of Neap tide. While Shannon-Wiener's Index (H)of Zooplankton communities in the two stations at Path finder creek was varying from 0.816 -0.863 during the consecutive low tide period.

Table # 12 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND NEAR BY CREEKS DURING SPRING TIDE IN OCTOBER,2021

Tide	Sampling Station	Abundance In N / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	120 x10 ³	24/32	75	4.804	1.06	0.8695
TIDE	2	105 x10 ³	21/32	65.62	4.297	1.045	0.8753
	3	132 x10 ³	18/32	56.25	3.482	0.9555	0.8523
	4	117 x10 ³	18/32	56.25	3.57	1.032	0.8811
	5	123 x10 ³	20/32	62.50	3.948	0.9513	0.8481
	6	33 x10 ³	12/32	37.5	3.146	0.9125	0.8636
	1	97 x10 ³	14/32	43.75	2.842	0.8439	0.8174
	2	107 x10 ³	21/32	65.63	4.28	0.9654	0.8455
LOW	3	81 x10 ³	15/32	46.87	3.186	0.9009	0.8315
TIDE	4	93 x10 ³	16/32	50	3.309	0.8669	0.8125
	5	88 x10 ³	16/32	50	3.35	0.8971	0.8325

Table # 13 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACESAMPLING STATIONS IN DPT HARBOUR AREAAT KANDLA CREEK AND NEAR BY CREEKS DURING

NEAP TIDE IN OCTOBER,2021

Tide	Sampling Station	Abundance In No / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	1	167 x10 ³	36/37	97.30	6.839	1.336	0.9367
TIDE	2	124 x10 ³	28/37	75.68	5.601	1.282	0.9373
	3	133 x10 ³	24/37	64.86	4.703	1.163	0.9108
	4	144 x10 ³	29/37	78.38	5.634	1.19	0.8993
	5	102 x10 ³	21/37	56.75	4.324	1.075	0.8893
	6	47 x10 ³	13/37	35.13	3.117	0.834	0.7928
	1	112 x10 ³	18/37	48.65	3.603	0.9973	0.8637
	2	90 x10 ³	19/37	51.35	4	1.065	0.8974
LOW	3	99 x10 ³	22/37	59.46	4.57	1.139	0.9105
TIDE	4	107 x10 ³	18/37	48.65	3.638	1.068	0.8889
	5	101 x10 ³	15/37	40.54	3.034	0.9498	0.861

Table # 14 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT

HARBOUR AREAATKANDLA CREEK AND ,NEAR BY CREEKS DURING SPRING TIDE IN OCTOBER,2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton ×10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	3-21	6/32	18.75
			Copepods	13-68	10/32	31.25
			Rotifers	0-4	1/32	3.13
HIGH TIDE	Sub	6	Arrow worms	0-2	1/32	3.13
	surface		Mysids	0-2	2/32	6.25
			Urochordata	0-1	1/32	3.12
			Ciliates	1-7	1/32	3.12
			Medusa	0-1	1/32	3.12
			Larval forms	11-43	7/32	21.88
			Foraminiferans	0-1	2/32	6.25
			TOTAL ZOOPLANKTON N/ M ³	33-132	32	
			Tintinids	4-15	6/32	18.75
			Copepods	45-59	10/32	31.25
			Rotifers	0-1	1/32	3.13
LOW TIDE	Sub	5	Arrow worms	0-1	1/32	3.13
	surface		Mysids	0-1	2/32	6.25
			Urochordata	0-1	1/32	3.12
			Ciliates	1-6	1/32	3.12
			Medusa	0	1/32	3.12
			Larval forms	22-33	7/32	21.88
			Foraminiferans	0-2	2/32	6.25
			TOTAL ZOOPLANKTON N/M ³	81-107	32	

Table # 15 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT

HARBOUR AREA IN KANDLA CREEK AND , NEAR BY CREEKS DURING NEAP TIDE IN OCTOBER, 2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	2-26	6/37	16.22
			Copepods	18-76	11/37	29.73
			Rotifers	0-2	1/37	2.70
HIGH TIDE	Sub	6	Mysids	0-6	4/37	10.81
	surface		Arrow worms	0-4	1/37	2.70
			Urochordata	0-4	1/37	2.70
			Ciliates	0-8	1/37	2.70
			Medusa	0-4	1/37	2.70
			Larval forms	20-46	9/37	24.32
			Foraminiferans	0-6	2/37	5.42
			TOTAL ZOOPLANKTON N/M ³	47-165		
			Tintinids	13-22	6/37	16.22
			Copepods	42-47	11/37	29.73
			Rotifers	0	1/37	2.70
LOW TIDE	Sub	5	Mysids	0-4	4/37	10.81
	surface		Arrow worms	0-1	1/37	2.70
			Urochordata	0-2	1/37	2.70
			Ciliates	1-5	1/37	2.70
			Medusa	0	1/37	2.70
			Larval forms	21-40	9/37	24.32
			Foraminiferans	0-5	2/37	5.42
			TOTAL ZOOPLANKTON N/M ³	89-112		

 Table # 16
 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE

SAMPLING STATIONS IN DPT OOT AREA AT PATH FINDER CREEK AND NEAR BY SPM DURING

SPRING TIDE IN OCTOBER,2021

Tide	Sampling Station	Abundance In N / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit Y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH TIDE	Jetty	76 x10 ³	9/9	100	1.847	0.7749	0.8004
LOW TIDE	Jetty	74 x10 ³	9/9	100	1.859	0.8222	0.8278

Table # 17 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT OOT AREA AT PATH FINDER CREEK AND NEAR BY SPM DURING NEAP TIDE IN OCTOBER,2021

Tide	Sampling Station	Abundance In N / m ³	No of Species/gr oups observed /total species/gr oup	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson's Index) 1-D
HIGH	Jetty	54 x10 ³	14/23	60.87	3.259	0.9911	0.884
TIDE	SPM	78 x10 ³	16/23	69.56	3.443	0.9276	0.8385
LOW	Jetty	73 x10 ³	13/23	56.52	2.797	0.8156	0.8166
TIDE	SPM	82 x10 ³	19/23	82.61	4.085	1.004	0.863

Table # 18 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT OOT AREAAT PATH FINDER CREEK AND NEAR BY SPM DURING SPRING TIDE IN OCTOBER, 2021

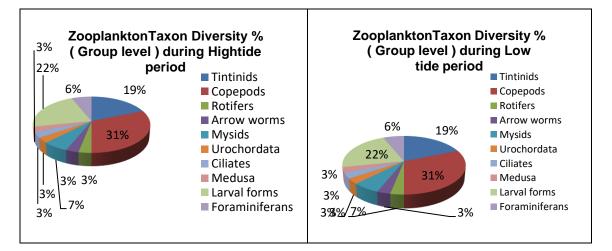
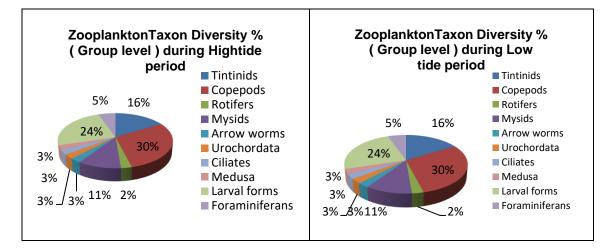
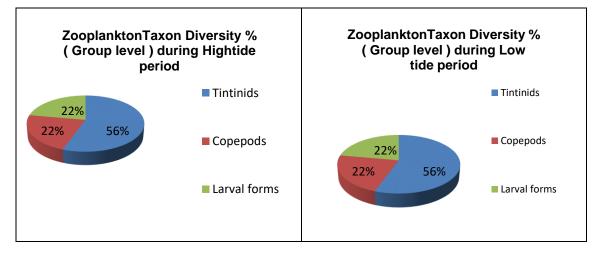

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	40	5/9	55.56
			Copepods	18	2/9	22.22
			Larval forms	18	2/9	22.22
HIGH TIDE	Sub surface	1	TOTAL ZOOPLANKTON NO/L	76	9	
			Tintinids	38	5/9	55.56
			Copepods	16	2/9	22.22
			Larval forms	20	2/9	22.22
LOW TIDE	Sub surface	1	TOTAL ZOOPLANKTON NO/M3	74	9	

Table # 19 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLING STATIONS IN DPT OOT

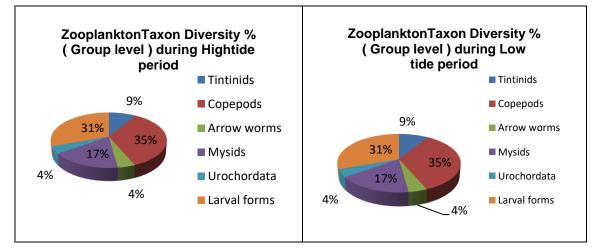
Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankton	Taxon Diversity % (Group level)
			Tintinids	1-2	2/23	8.70
		2	Copepods	30-45	8/23	34.78
			Arrow worms	0-1	1/23	4.35
HIGH TIDE	Sub		Mysids	4-9	4/23	17.39
	surface		Urochordata	2-4	1/23	4.35
			Larval forms	12-22	7/23	30.43
			TOTAL ZOOPLANKTON	41-60		
			Tintinids	1-2	2/23	8.70
			Copepods	49-53	8/23	34.78
			Arrow worms	1	1/23	4.35
LOW TIDE	Sub	2	Mysids	2-5	4/23	17.39
	surface		Urochordata	1	1/23	4.35
			Larval forms	19-20	7/23	30.43
			TOTAL ZOOPLANKTON NO/M3	73-82		


AREAAT PATH FINDER CREEK AND NEAR BY SPM DURING NEAP TIDE IN OCTOBER, 2021

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide In Kandla Creek and nearby Creeks


Taxon Diversity % of Zooplankton during High tide and Low tide period of Neap tide In Kandla

Creek and nearby Creeks


Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide In Path

Finder Creek and near Jetty

Taxon Diversity % of Zooplankton during High tide and Low tide period of Neap tide In Path Finder

Creek near jetty and nearby SPM

DCPL/DPT/20-21/18 -OCTOBER - 2021

TABLE # 20SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBY CREEKS

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
			Nastaglas	Oscillatoriaceae	Oscillatoria sp.	B1	Occasional
BLUE GREEN ALGAE	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	Arthrospira sp.	B2	Rare
ALGAE			Stigonematales	Stigonemataceae	Stigonema sp.	B3	Occasional
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Occasional
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Dominant
			Triconsticles		Odontellasp	D3	Occasional
		Triceratiales	Triceratiaceae	Triceratiumsp.	D4	Rare	
		Coscinodiscophyceae	Biddulphiales	Biddulphiaceae	Biddulphiasp	D5	Abundant
		Hemiaulales	Bellerocheaceae	Bellerocheasp	D6	Rare	
		Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D7	Rare	
		Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D8	Frequent	
DIATOMS			Leptocylindrales	Leptocylindraceae	Leptocylindrussp	D9	Occasional
DIATONIS	Bacillariophyta		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D10	Dominant
			Melosirales	Melosiraceae	Melosirasp	D11	Rare
		Desillerierekusses	Naviculales	Pleurosigmataceae	Pleurosigmasp	D12	Rare
		Bacillariophyceae	Surirellales	Surirellaceae	Surirellasp	D13	Rare
			Thelessienemetales	Thelessienemetersee	Thalassiothrix sp.	D14	Abundant
			Thalassionematales	Thalassionemataceae	Thalassionema sp.	D15	Rare
		Fragilarianhycoac			Asterionellopsis sp.	D16	Occasional
		Fragilariophyceae	Fragilariales	Fragilariaceae	Fragilariasp	D17	Frequent
					Synedrasp	D18	Rare
			Tabellariales	Tabellariaceae	Tabellariasp	D19	Rare
DINO	Dinoflagellata	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare
FLAGELLATES	/ Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Occasional

TABLE # 21 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBYCREEKS DURING AND NEAP TIDE OF OCTOBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
			Nostocales	Oscillatoriaceae	Oscillatoria sp.	B1	Rare
BLUE GREEN	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	Arthrospira sp.	B2	Rare
ALGAE			Stigonematales	Stigonemataceae	Stigonema sp.	B3	Rare
			Thelessissiveles	Thelessiesinesses	Planktoniellasp	D1	Occasional
			Thalassiosirales	Thalassiosiraceae	Thalassiosirasp	D2	Rare
		Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D3	Dominant	
		Coscinodiscophyceae		- ····	Odontellasp	D4	Occasional
			Triceratiales	Triceratiaceae	Triceratiumsp.	D5	Rare
		,	Biddulphiales	Biddulphiaceae	Biddulphiasp	D6	Abundant
			Hemiaulales	Bellerocheaceae	Bellerocheasp	D7	Rare
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D8	Rare
			Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D9	Frequent
DIATOMS	Bacillariophyta		Leptocylindrales	Leptocylindraceae	Leptocylindrussp	D10	Occasional
	Bacinariophyta		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D11	Dominant
				Naviculaceae	Naviculasp	D12	Rare
		Destillenten hunsen	Naviculales	Diaurasigmatasaa	Gyrosigmasp	D13	Rare
		Bacillariophyceae		Pleurosigmataceae	Pleurosigmasp	D14	Rare
			Surirellales	Surirellaceae	Surirellasp	D15	Rare
			Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D16	Abundant
			Inalassionematales	Inalassionemataceae	Thalassionema sp.	D17	Rare
		Fragilariophyceae	Freedlarielee	Fracilarianaa	Fragilariasp	D18	Frequent
			Fragilariales	Fragilariaceae	Synedrasp	D19	Rare
			Tabellariales	Tabellariaceae	Tabellariasp	D20	Rare
DINO	Dinoflagellata	Dinonhycopo	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare
FLAGELLATES	/ Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Occasional

DCPL/DPT/20-21/18 -OCTOBER - 2021

Detox Corporation Pvt.Ltd.,Surat

TABLE # 22 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT OOT AREA AT PATH FINDER CREEK AND NEARBY

SPM AT VADINAR DURING SPRING TIDE OF OCTOBER 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D1	Occasional
			Triceratiales	Triceratiaceae	Triceratiumsp.	D2	Rare
		Coscinodiscophyceae ophyta	Biddulphiales	Biddulphiaceae	Biddulphiasp	D3	Rare
DIATOMS			Hemiaulales	Bellerocheaceae	Bellerocheasp	D4	Rare
DIATONIS	Bacillariophyta		Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D5	Rare
			Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D6	Dominant
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D7	Occasional
			Bacillariales	Bacillariaceae	Pseudo-Nitzschiasp	D8	Abundant
		Fragilariophyceae	Thalassionematales	Thalassionemataceae	Thalassiothrix sp.	D9	Frequent

TABLE # 23 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT OOT AREA AT PATH FINDER CREEK AND NEARBY

SPM AT VADINAR DURING AND NEAP TIDE OF OCTOBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
BLUE GREEN ALGAE	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	<i>Oscillatoria</i> sp.	B1	Rare
			Thalassiosirales	Thalassiosiraceae	Planktoniellasp	D1	Occasional
		Indidestiostrates	Lauderiaceae	Lauderiasp	D2	Rare	
		Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D3	Abundant
			Hemiaulales	Bellerocheaceae	Bellerocheasp	D4	Occasional
DIATOMS	Bacillariophyta		Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D5	Rare
	Bacinanopinyta		Chaetocerotales	Chaetocerotaceae	Chaetocerossp	D6	Dominant
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D7	Occasional
		Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigmasp	D8	Rare
			Bacillariales	Bacillariaceae	Pseudo-Nitzschiasp	D9	Frequent
			Fragilariales	Fragilariaceae	Synedrasp	D10	Rare

Environmental Monitoring Report of Deendayal Port Trust, OCTOBER-2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	Relative Abundance
		lata Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare
DINO	Dinoflagellata		Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Occasional
FLAGELLATES	FLAGELLATES / Dinozoa				Ceratiumfusus	DF3	Rare
				Ceratiumtripos	DF4	Rare	

TABLE #24 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBY

CREEKSDURING SPRING TIDE OF OCTOBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Occasional
TINTINIDS					Tintinnopsisdadayi		Rare
	PROTOZOA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisgracilis	T3	Occasional
	CILIOPHORA	Spirotricited	Tintinina	Couoneniuae	Tintinnopsis radix	T4	ABUNDANCE Occasional Rare
					Tintinnopsisfailakkaensis	T5	Occasional
				Xystonellidae	<i>Favella</i> sp.	Т6	Rare
				Paracalanidae	Acrocalanus sp.	C1	Abundant
				Falacalalliuae	Bestiolina sp.	C2	T1OccasionalT2RareT3OccasionalT4RareT5OccasionalT6RareC1AbundantC2RareC3RareC4OccasionalC5RareC6RareC7DominantC8RareC9FrequentC10RareR1Rare
			Calanoida	Eucalanidae	Subeucalanus sp.	C3	Rare
		Criviata ana	Calaliolua	Clausocalanidae	Clausocalanus sp.	C4	Occasional
		Crustacea Subclass:		Centropagidae	Centropages sp.	C5	RareOccasionalRareOccasionalRareAbundantRareAbundantRareRareDoccasionalRareRarePareRareRareRareRareRareRareRareRareFrequentRareRareRareRareRareRareRareRareRareRareRareRareRare
COPEPODS	ATHROPODA	Copepoda		Acartiidae	Acartia sp.	C6	
		Сорероца	Cyclopoida	Oithonidae	Oithona sp.	C7	Dominant
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C8	Rare
			паграсисониа	Euterpinidae	Euterpina sp.	C9	Frequent
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C10	Rare
ROTIFERS	ROTIFERA	Rotifera Subclass: Eurotatoria	Superorder: Monogononta Order:Ploimida	Brachionidae	Brachionusplicatilis	R1	Rare
ARROW WORMS	CHAETOGNATHA	Sagittoidea	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
MYSIDS	ATHROPODA	Malacostraca	Mysida,	Penaeidae	Metapenaeussp.	M1	Rare
	CRUSTACEA	ivialacosti ded	Decapoda	rendelude	Penaeussp.	M2	OccasionalRareOccasionalRareAbundantRareRareOccasionalRareDominantRareFrequentRare

DCPL/DPT/20-21/18 -OCTOBER - 2021

Detox Corporation Pvt.Ltd.,Surat

Environmental Monitoring Report of Deendayal Port Trust, OCTOBER-2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDATA	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CILIATES	CILIOPHORA	Oligohymenophorea	Sessilida	Zoothamniidae	Zoothamniumsp.	CI1	Occasional
MEDUSA	PHYLUM CNIDARIA	Hydrozoa			Unidentified medusa	ME1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea larvae	L2	Rare
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L4	Rare
CHORDATA	VERTEBRATA	Pisces			Fish larvae	L5	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L6	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L7	Rare
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Globigerinidae	Globigerina sp.	F1	Rare
				Rotalliidae	<i>Rotalia</i> sp.	F2	Rare

TABLE # 25 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBY CREEKSDURING

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Frequent
					Tintinnopsisdadayi	T2	Rare
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisgracilis	Т3	Rare
TINTINIDS	CILIOPHORA	Sphotnenea	Tintinita	Couoneniuae	Tintinnopsis radix	T4	Occasional
					Tintinnopsisfailakkaensis	T5	Rare
				Codonellopsidae	Codonellopsis sp.	T6	Rare
				Paracalanidae	Acrocalanus sp.	C1	Abundant
				Eucalanidae	Pareucalanus sp.	C2	Rare
				Eucalalliuae	Subeucalanus sp.	C3	Rare
		Crustacea Subclass: Copepoda	Calanoida	Clausocalanidae	Clausocalanus sp.	C4	Occasional
	ATHROPODA			Centropagidae	Centropages sp.	C5	Rare
COPEPODS				Temoridae	Temora sp.	C6	Rare
COPEPODS				Acartiidae	Acartia sp.	C7	Occasional
			Cyclopoida	Oithonidae	Oithona sp.	C8	Abundant
			Harpacticoida	Ectinosomatidae	Microsetellasp.	C9	Occasional
				Euterpinidae	Euterpina sp.	C10	Frequent
			Poicilostomatatoida	Oncaeidae	Oncaea sp.	C11	Rare
ROTIFERS	ROTIFERA	Rotifera Subclass: Eurotatoria	Superorder: Monogononta Order:Ploimida	Brachionidae	Brachionusplicatilis	R1	Rare
ARROW WORMS	CHAETOGNATHA	Sagittoidea	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
				Solenoceridae	Solenocerasp.	M1	Rare
MYSIDS	ATHROPODA	Malagastraga	Mysida,	Donacidao	Metapenaeussp.	M2	Rare
IVIYSIDS	CRUSTACEA	Malacostraca	Decapoda	Penaeidae	Penaeussp.	M3	Rare
				Luciferidae	Lucifer sp.	M4	Rare
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDATA	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CILIATES	CILIOPHORA	Oligohymenophorea	Sessilida	Zoothamniidae	Zoothamniumsp.	CI1	Occasional

NEAP TIDE OF OCTOBER,2021

Environmental Monitoring Report of Deendayal Port Trust, OCTOBER-2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
MEDUSA	PHYLUM CNIDARIA	Hydrozoa			Unidentified medusa	ME1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea larvae	L2	Occasional
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Rare
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L4	Occasional
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L5	Rare
ECHINODERMATA LARVAE	ECHINODERMATA				Ophipluutes larvae/ Echinoplutes larvae	L6	Rare
CHORDATA	VERTEBRATA	Pisces			Fish larvae	L7	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L8	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L9	Rare
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Globigerinidae	Globigerina sp.	F1	Occasional
		Clobethalamed	notanidu	Rotalliidae	<i>Rotalia</i> sp.	F2	Rare

TABLE # 26 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT OOT AREA AT PATH FINDER CREEK AND NEARBY SPM

AT VADINAR DURING SPRING TIDE OF OCTOBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
				Tintinnidiidae	Leprotintinnussp.	T1	Dominant
	PROTOZOA				Tintinnopsisgracilis	T2	Occasional
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsis radix	T3 Occa	Occasional
	CILIOFTIONA				Tintinnopsistocantinensis	T4	Occasional
				Xystonellidae	Favella sp.	T5	Rare
		Crustacea	Calanoida	Paracalanidae	Acrocalanus sp.	C1	Occasional
COPEPODS	ATHROPODA	Subclass: Copepoda	Cyclopoida	Oithonidae	Oithona sp.	C2	Frequent
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Abundant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Rare

TABLE # 27 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT OOT AREA AT PATH FINDER CREEK AND NEARBY SPM

AT VADINAR DURING NEAP TIDE OF OCTOBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida	Tintinnidiidae	Leprotintinnussp.	T1	Rare
	CILIOPHORA	Spirotricitea	Tintininua	Xystonellidae	Favella sp.	T2	Rare
				Paracalanidae	Acrocalanus sp.	C1	Dominant
				Eucalanidae	Pareucalanus sp.	C2	Rare Rare
		Criveta and	Calanoida	Eucalaniuae	Subeucalanus sp.	C3	
		Crustacea Subclass:		Clausocalanidae	Clausocalanus sp.	C4	Occasional
COPEPODS	ATHROPODA			Tortanidae	Tortanus sp.	C5	Rare Dominant Rare Rare Occasional Rare Abundant Frequent
		Copepoda	Cyclopoida	Oithonidae	Oithona sp.	C6	Abundant
			Harpacticoida	Euterpinidae	Euterpina sp.	C7	Frequent
			Poicilostomatatoida	Corycaeidae	Corycaeus sp.	C8	Rare

Environmental Monitoring Report of Deendayal Port Trust, OCTOBER-2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDANCE
ARROW WORMS	CHAETOGNATHA	Sagittoidea	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare
				Solenoceridae	Solenocerasp.	M1	Rare
	ATHROPODA		Mysida,	Davaaidaa	Metapenaeussp.	M2	Rare
MYSIDS	CRUSTACEA	Malacostraca	Decapoda	Penaeidae	Penaeussp.	M3	Rare Rare
				Luciferidae	Lucifer sp.	M4	Rare
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDATA	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Frequent
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea larvae	L2	Rare
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L4	Rare
ECHINODERMATA LARVAE	ECHINODERMATA				Ophipluutes larvae/ Echinoplutes larvae	L5	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L6	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L7	Rare

Environmental Monitoring Report Of Deendayal Port Trust, OCTOBER-2021

BENTHIC ORGANISMS:

Few Benthic organismswere observed in the collected sediments by using the Van-veen grabs during the sampling conducted during spring tide period and while no Benthic organisms were observed during sampling conducted in Neap tide period from DPT harbour region and nearby creek except few dead shells. The meiobenthic organisms during spring tide were represented by Polychaetes, and Nematodes. The polychaetes were represented by *Scyphoproctus sp.*, during spring tide sampling. The meiobenthic organisms in the collected samples were varying from 40-60N/M ²during spring tide

Table # 28BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPT HARBOUR AREA CREEKS

	ABUNDAN	NCE IN NO/	M ² DIFFERE REPRESEN			ONS	
Benthic fauna	DI	PT HARBO	UR				
POLYCHAETES	KPT-1 KPT-2 KPT-3 KPT-4 KPT-5 KPT-6						
Family : Capitellidae Scyphoproctus sp.	20	40	20	20	20	NS	
Total Polychates N/M ²	20	40	20	20	20	NS	
Un identified Nematode worms	40	20	20	40	20	NS	
TOTAL Benthic Fauna NUMBER/ M ²	60	60	40	60	40	-	

DURING NEAP TIDE IN OCTOBER ,2021

NS : No sample

7. Meteorological Data

Automatic Weather station have been installed in Seva Sadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 30.3 °C. The day-time maximum temperature was 38.6 °C. The mean night time temperature was 26.5 °C. The minimum mean night time temperature recorded was 30.6 °C.

Air Pressure

The mean absolute air pressure for the month of October was 1009.9 hpa, whereas the mean relative pressure was 1009.3 hpa. The maximum absolute air pressure recorded for the month of October was 1016.5 hpa.

Heat Index

The mean day-time heat index for the month of October was 33.8 °C. The maximum heat index recorded was 55°C.

Solar Radiation

The mean Solar Radiation in October was 252.2 w/m². The maximum solar radiation recorded in the month of October was 746.6 w/m².

Humidity

The mean day-time humidity was 60.0 % for the month of October and mean night time humidity was 72.4%. Maximum humidity recorded during day-time was 94.0 % and maximum humidity recorded during night-time was 93.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of October was 4.6 km/hour. Maximum wind velocity recorded was 29.2 Km/hr. The wind direction was mostly S to N.

Conclusive Summary and Remedial measures Suggested

- The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM₁₀ values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 μg/m³)andPM_{2.5}was above permissible limits at Coal storage location(Limit 60 μg/m³).
- Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).
- Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.
- The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board. The STP at Deendayal Port is not fully operational and STP at Vadinar Port was found non-operational.

Reasons for higher Values of PM₁₀

- Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.
- Also, the coal laden trucks are not always covered with tarpaulin sheets and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM₁₀ during the month of October, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

- Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)
- Except for the higher values of PM₁₀ at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- 2) BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae Indian Council of Agricultural research New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north –West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A.,NAIRK.K.C., VENUGOPL,P.
 BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- 19) KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.
- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.

- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.
- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology, Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de franceA. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi. M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.

ENVIRONMENTAL MONITORING REPORTFOR DEENDAYAL PORT TRUST

REPORT	:	DCPL/DPT/20-21/19	
Mont	:	November	
Issue	:	01	
Revision	:	00	
Prepare	:	DETOX CORPORATION PVT. LTD., SURAT	

TABLE OF CONTENTS

Sr. No.	Particulars	Page No.
1	Ambient Air Qualit Monitoring	1 - 18
2	Drinking Water Quality Monitoring	19 - 28
3	Noise Monitoring	29
4	Soil Monitoring	30 - 31
5	Sewage Treatment Plant Monitoring	32 - 38
6	Marine Water Monitoring	39 - 98
7	Meteorological Observations	99
8	Conclusive Summary & Remedial Measures	100
	References	102- 103

Introduction

Monitoring of various environmental aspects of the Deendayal port by M/s Detox Corporation Pvt. Ltd. has been carried out through collection of samples, analysis of the same, comparing results with respect to the national standards and any other relevant standards by GBCB/CPCB/MoEF to identify non conformity in the Environment of the Deendayal Port. The results shall address the identified impacts and suggest measures to minimize the environmental impact due to various operations at Deendayal Port.

The environmental monitoring is carried out as per the Environment Management and Monitoring Plan submitted by Detox Corporation Pvt. Ltd.

1. Ambient Air Quality Monitoring

As per the Environmental Monitoring Plan of Deendayal Port Trust, Air monitoring was carried out at six identified locations at Deendayal Port and two locations at Vadinar Port.

1.1 Air Quality Monitoring Methodology

Air quality is measured in all the stations, for 24 hour for Total Suspended Particulate Matter (TSPM), PM₁₀, PM_{2.5}, SO₂, NO_X, NH₃ & Benzene, and Grabsampling for CO & CO₂ measurements. The Air samplers are operated for a period of 24 hours and after a continuous operation of 8 hours of the sampler, the reagents were replaced to obtain 3 samples per day for each parameter namely, SO₂, NO_X. The EPM 2000 filter paper and PTFE Membrane bound filter paper are used for a period of 24 hours to obtain one sample each of TSPM, PM₁₀ & PM_{2.5}. The AAQ samples are collected twice a week from all the eight locations as per the EMP.

1.2 Results

The ambient air quality monitoring data for six stations, viz. Marine Bhavan, Oil Jetty, Port Colony,Gopalpuri Hospital,Tuna Port and Nr. Coal Storage Area for the month of November 2021 are given in Tables 1A to 6B. The ambient air quality monitoring data for two stations at Vadinar (Nr. Admin Building &Nr. Signal Building) are given in Tables 7A to 8B.

Location 1: Marine Bhavan (AL1)

Environmental Monitoring Report of Deendayal Port Trust, November-2021

Tak	ole 1 : Res	sults of ,	Air Pollu	tant Coi	ncentr	ration a	t Mariı	ne Bhav	an	_
Parameter	Date	TSPM [µg/m3]	ΡM10 [μg/m3]	PM2.5 [μg/m 3]	SO2 [[µg/m3]	NOx [[µg/m3]	NH3	[µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3		80 μg/m3		80 μg/m3		400 μg/m3
					3.52		22.23		9.70	
AL1 - 1	01.11.21	326	193	86	4.84	3.96	19.69	21.60	9.96	10.21
					3.52	-	22.87	-	10.98	
					5.71		15.88		13.02	
AL1 - 2	09.11.21	303	156	90	6.15	6.15	17.15	20.54	12.76	13.36
					6.59	-	28.58		14.30	
					7.47		28.58		11.49	
AL1 - 3	12.11.21	402	191	96	7.03	6.74	32.39	27.31	13.27	11.49
					5.71	-	20.96	-	9.70	
					3.08		19.69		15.57	
AL1 - 4	17.11.21	438	180	90	2.20	2.64	14.61	16.73	18.12	16.00
					2.64	-	15.88		14.30	
					4.40		20.96		5.62	
AL1 - 5	19.11.21	530	156	88	5.28	4.40	18.42	20.54	11.49	9.19
ALI - J					3.52	-	22.23	-	10.47	
					2.64		14.61		10.98	
AL1 - 6	24.11.21	468	182	90	5.28	3.52	20.96	16.30	6.64	7.49
ALI-0					2.64	-	13.34	-	4.85	
					3.52		14.61		14.30	
AL1 - 7	26.11.21	597	274	92	3.08	2.93	19.69	17.78	9.96	10.89
ALI - /					2.20		19.05		8.42	
					2.20		26.04		10.47	
AL 1 0	29.11.21	613	210	90	2.64	2.78	29.22	24.98	6.38	8.00
AL1 - 8					3.52	-	19.69		7.15	
N		460	193	90		4.14		20.72		10.83
Monthly Ave	-	116	38	3		1.55		3.90		2.82
Standard Devi NS: Not Specif										2.02

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table	1B : Resul		Pollutant Bhavan	Concentra	ation at
Paramet er		С ₆ Н ₆ [µg/m ³]	HC* ppm	CO [mg/m³]	CO ₂ [ppm]
Samplin g Period	Date	8 hr	Grab Sampli ng	Grab Samplin g	Grab Sampling
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS
AL1 - 1	1.11.21	1.27	BQL	2.15	581
AL1 – 2	9.11.21	1.12	BQL	1.9	497
AL1 - 3	12.11.21	1.11	BQL	1.94	361
AL1 - 4	17.11.21	1.05	BQL	2.04	357
AL1 - 5	19.11.21	1.12	BQL	1.85	541
AL1 - 6	24.11.21	1.38	BQL	1.91	561
AL1 - 7	26.11.21	1.07	BQL	1.98	567
AL1 - 8	29.11.21	1.14	BQL	2.21	541
Monthly	Average	1.16	-	2.00	501
Standard	Deviation	0.11	-	0.13	91

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit - NMHC: 0.5 ppm)

NS -Not Specified

At Marine Bhavan, the overall values of TSPM, PM_{10} , $PM_{2.5}$, SO_2 , NO_X and NH_3 is attributed mainly by motor vehicle emission produced from various types of automobiles (both diesel and petrol driven). Moreover, the loading and unloading of Food Grains and Timber at Jetty no. 1 and 2 also contributes to the high levels of TSPM and PM_{10} . The mean TSPM value at Marine Bhavan was 460 µg/m³, The mean PM_{10} values were 193.0 µg/m³, which is above the permissible limit. $PM_{2.5}$ values were above the permissible limit (mean 90.0 µg/m³). The average values of SO_2 , NO_x and NH_3 were within the permissible limit. The average values of SO_2 , NO_x and NH_3 were 4.14 µg/m³, 20.72 µg/m³ & 10.83 µg/m³ respectively. These were within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Marine Bhavan. The mean Benzene concentration was 1.16 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 2.0 mg/m³, well below the permissible limit of 4.0 mg/m³.

Location 2: Oil Jetty (AL2)

Parameter s	Date	TSPM [μg/m3]	ΡΜ10 [μg/m3]	ΡΜ2.5 [μg/m3]	SO2	[µg/m3]		Ox /m3]		H3 /m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m 3	-	80 μg/m3	-	400 μg/m3
					3.96		17.15		13.79	
AL2 - 1	01.11.21	421	151	92	4.40	3.66	13.34	15.67	15.06	14.81
					2.64		16.51		15.57	
					1.76		13.34		6.13	
AL2 - 2	09.11.21	532	176	89	2.64	2.93	11.43	12.49	11.23	9.70
					4.40	-	12.70		11.74	-
					7.03		32.39		4.85	
AL2 - 3	12.11.21	539	180	96	9.23	8.79	20.96	25.19	7.91	7.32
					10.11	-	22.23		9.19	-
					3.96		15.88		7.91	<u> </u>
AL2 - 4	17.11.21	510	200	101	2.20	2.93	16.51	15.24	11.49	9.79
					2.64	-	13.34	-	9.96	-
					3.52		17.78		9.19	
AL2 - 5	19.11.21	407	234	98	2.20	2.49	24.77	19.48	5.87	8.00
					1.76	-	15.88	-	8.93	-
					7.03		20.96		5.87	
AL2 - 6	24.11.21	520	152	100	8.35	6.45	11.43	15.88	8.93	8.42
					3.96	-	15.24		10.47	-
					1.32		22.87		9.19	
AL2 - 7	26.11.21	434	150	98	1.76	1.90	15.24	19.69	13.02	10.04
					2.64		20.96		7.91	-
					2.20		16.51		6.64	
AL2 - 8	29.11.21	551	278	100	2.64	2.93	22.87	18.42	9.45	9.02
					3.96		15.88		10.98	1
Monthly	Average	489	190	97		4.01		17.76		9.64
Standard	Deviation	59	46	4		2.37		3.86		2.29

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 2B	: Results	of Air Poll	utant Conc	entration a	t Oil Jetty
Parameter		C ₆ H ₆ [μg/m³]	HC* ppm	CO [mg/m ³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampling	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS
AL2 -1	1.11.21	1.12	BQL	2	618
AL2 -2	9.11.21	1.09	BQL	1.91	583
AL2 -3	12.11.21	1.07	BQL	2.08	509
AL2 -4	17.11.21	1.19	BQL	2.04	487
AL2 - 5	19.11.21	1.27	BQL	2.07	590
AL2 - 6	24.11.21	1.16	BQL	2.05	549
AL2 -7	26.11.21	1.17	BQL	1.99	578
AL2 - 8	29.11.21	1.09	BQL	1.98	624
Monthly A	Average	1.15	-	2.02	567
Standard [Deviation	0.07	-	0.06	49

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit - NMHC: 0.5 ppm)

NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Oil Jetty area was mainly by motor vehicle emission produced from various types of vehicles Oil Jetty Area. The mean TSPM values at Oil Jetty were 489 μ g/m³. The mean PM₁₀ values were 190 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 97 μ g/m³). The average values of SO₂, NO_x and NH₃ were within the permissible limit, The mean concentration of SO₂, NO_x and NH₃ were 4.01 μ g/m³, 17.76 μ g/m³ and 9.79 μ g/m³ respectively.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Oil Jetty. The mean Benzene concentration was 1.15 μ g/m³ .Well below the permissible limit of 5.0 μ g/m³. , HC's were below the detectable limit and Carbon Monoxide concentration was 2.02 mg/m³, well below the permissible limit of 4.0 mg/m³.

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Location 3: Kandla Colony - Estate Office (AL-3)

			Results of	Air Polluta	nt Conc	entration	at Estate	e Office		
Parameters	Date	TSPM [µg/m3 1	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx	[µg/m3]	NH3	[µg/m3]
Sampling Period		24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit		NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					2.20		22.87		13.79	
AL3 - 1	01.11.21	205	114	80	2.64	2.64	30.49	22.23	16.85	16.34
					3.08		13.34		18.38	
					3.08		13.97		9.70	
AL3 - 2	09.11.21	302	134	90	2.64	3.08	11.43	13.97	7.40	7.49
					3.52	-	16.51		5.36	
					3.52		13.34		8.93	
AL3 - 3	12.11.21	422	215	92	4.84	3.81	19.69	19.27	7.40	6.98
					3.08		24.77		4.60	
					5.28		10.80		13.02	
AL3 - 4	17.11.21	610	270	108	2.64	3.08	10.16	9.32	10.47	10.21
					1.32		6.99		7.15	
					5.28		26.04		8.93	
AL3 - 5	19.11.21	459	269	100	3.96	3.96	33.66	25.41	9.96	9.19
					2.64		16.51		8.68	
					5.71		19.69		10.47	
AL3 - 6	24.11.21	736	363	102	2.64	4.84	14.61	19.48	9.70	8.93
					6.15		24.14		6.64	
					5.28		20.96		11.49	
AL3 - 7	26.11.21	483	180	98	3.96	3.81	15.24	17.57	10.98	10.98
					2.20		16.51		10.47	
					2.20		15.88		12.25	
AL3 - 8	29.11.21	677	189	105	4.84	3.22	14.61	16.73	8.93	9.02
					2.64		19.69		5.87	
Monthly A	verage	487	217	97		3.55		18.00		9.89
Standard D	eviation	182	81	9		0.69		4.93		2.91

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table	3B : Result		Pollutant (ort Colony		ion at
Paramet er		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Samplin g	Grab Sampling	Grab Sampling
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS
AL3 -1	1.11.21	1.07	BQL	2.07	577
AL3 -2	9.11.21	1.1	BQL	1.91	583
AL3 -3	12.11.21	1.19	BQL	1.8	510
AL3 -4	17.11.21	1.11	BQL	1.91	480
AL3 - 5	19.11.21	1	BQL	2.1	652
AL3 - 6	24.11.21	1.1	BQL	1.84	672
AL3 - 7	26.11.21	1.26	BQL	2.12	364
AL3 - 8	29.11.21	1.26	BQL	2.01	426
Monthly	Monthly Average		-	1.97	533
Standard	Deviation	0.09	-	0.12	108

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS- Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Kandla Port Colony was attributed by vehicle emission produced from trucks and heavy duty vehicles that pass through the road outside Kandla Port Colony. The mean TSPM values at Oil Jetty were 487 μ g/m³, The mean PM₁₀ values were 217 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 97 μ g/m³). The average values of SO₂, NO_x and NH3 were 3.55 μ g/m³, 18.0 μ g/m³ and 9.89 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Kandla Port Colony. The mean Benzene concentration was 1.14 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.97 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table 4	: Results o			ntratio	n at Gop	alpuri H	ospital		
Parameter	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2	[µg/m3]	NOx	[µg/m3]	NH3 [µg/m3]
Sampling Period		24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit		NS	100 μg/m3	60 μg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m 3
					3.52		8.26		9.19	
AL4 -1	01.11.21	145	81	36	2.20	2.78	15.88	12.91	10.47	8.93
					2.64		14.61		7.15	
					2.64		9.53		5.87	
AL4 -2	09.11.21	254	132	89	1.32	2.05	13.34	12.28	5.36	5.36
					2.20		13.97		4.85	
					2.20		10.16		3.83	
AL4 -3	12.11.21	309	136	92	3.52	2.78	8.26	9.95	5.87	5.02
					2.64		11.43		5.36	
					3.52		9.53		6.64	
AL4 -4	17.11.21	474	249	101	2.64	2.78	11.43	10.16	4.60	5.70
					2.20		9.53	-	5.87	
					2.64		16.51		5.87	
AL4 - 5	19.11.21	298	127	90	3.52	2.64	10.16	15.46	8.42	6.81
					1.76		19.69	-	6.13	
					3.08		15.88		5.87	
AL4 - 6	24.11.21	351	170	98	2.64	2.49	10.16	13.13	9.19	8.85
					1.76		13.34		11.49	
					2.64		17.78		6.38	
AL4 - 7	26.11.21	285	132	87	3.96	3.22	16.51	16.73	7.91	6.55
					3.08		15.88	-	5.36	
					3.52		13.34		8.17	
AL4 - 8	29.11.21	738	469	104	3.96	3.37	14.61	13.34	8.93	8.34
					2.64		12.07		7.91	
Monthly	Average	357	187	87		2.77		12.99		6.95
Standard I	Deviation	180	124	21		0.41		2.33	<u> </u>	1.58

Location 4: Gopalpuri Hospital (AL-4)

NS: Not Specified

Table		ts of Air Po Gopalpuri		oncentratio	on at
Paramet er		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Samplin g	Grab Sampling	Grab Sampli ng
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS
AL4 -1	1.11.21	1.02	BQL	2.01	609
AL4 -2	9.11.21	1.15	BQL	2.04	509
AL4 -3	12.11.21	1.26	BQL	1.94	487
AL4 -4	17.11.21	1.09	BQL	1.73	450
AL4 - 5	19.11.21	1.08	BQL	1.88	544
AL4 - 6	24.11.21	1.2	BQL	2.13	580
AL4 - 7	26.11.21	1.18	BQL	1.91	559
AL4 - 8	29.11.21	1.14 BQL		2.2	505
Monthly	Average	1.14	-	1.98	530
Standard	Deviation	0.08	-	0.15	52

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Gopalpuri Hospital was attributed by vehicle emission produced from light motor vehicles of the colony residents. The mean TSPM values at Oil Jetty were 357 μ g/m³, The mean PM₁₀ values were 187 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean= 87 μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.77 μ g/m³, 12.99 μ g/m³ and 6.95 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Gopalpuri Hospital. The mean Benzene concentration was 1.14 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.98 mg/m³, well below the permissible limit of 4.0 mg/m³.

	Table	5 : Results	of Air Poll	utant Conce	entratio	n at Coal	Storage	Area		
Parameters	Date	TSPM [µg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [µg/m3]	NOx [µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 µg/m3	-	80 μg/m3	-	80 μg/m3	-	400 μg/m3
					2.20		20.96		8.93	
AL5 - 1	01.11.21	306	154	89	3.08	3.22	21.60	20.33	7.40	9.79
					4.40		18.42		13.02	
					9.67		19.69		15.83	
AL5 - 2	09.11.21	590	288	106	4.84	6.15	23.50	19.69	17.61	16.34
					3.96		15.88		15.57	
					10.5		22.87		8.68	
	12.11.21	680	351	104	5	9.08		26.68		7.83
AL5 - 3	12.11.21	080	551	104	7.03	9.00	26.04	20.00	6.64	7.05
					9.67		31.12		8.17	
					2.20		19.69		13.53	
AL5 - 4	17.11.21	712	355	108	1.76	2.49	20.96	20.96	9.19	10.21
					3.52		22.23	-	7.91	
					5.28		20.96		10.72	
AL5 - 5	19.11.21	696	380	110	6.15	5.13	19.69	22.44	9.96	11.23
					3.96		26.68	-	13.02	
					3.52		14.61		15.83	
AL5 - 6	24.11.21	622	352	101	3.96	4.40	18.42	17.57	15.06	14.64
AL3 - 0					5.71		19.69		13.02	
					3.52		16.51		10.98	
	26.11.21	578	218	106	4.84	3.96	20.96	18.63	9.19	9.36
AL5 - 7					3.52		18.42		7.91	
					5.28		22.23		10.98	
	29.11.21	596	241	108	2.64	3.37	27.31	26.25	13.02	12.76
AL5 - 8					2.20		29.22		14.30	
		598	292	104		4.73		21.57	1.50	11.52
Monthly A	lverage									
Standard D	Deviation	128	81	7		2.10		3.36		2.87

Location 5: Coal Storage Area (AL-5)

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Environmental Monitoring Report of Deendayal Port Trust, November-2021

Table 5B	: Results of Air	Pollutant Co	ncentration	at Coal Stor	age Area	
Parameter		C ₆ H ₆ [μg/m³]	HC*	CO [mg/m³]	CO ₂ [ppm]	
Sampling Period	Date	8 hr	Grab Samplin g	Grab Sampling	Grab Sampling	
NAAQMS limit	1	5.0 μg/m ³	NS	4.0 mg/m ³	NS	
AL5 - 1	1.11.21	1.1	BQL	1.97	593	
AL5 – 2	9.11.21	1.28	BQL	1.56	582	
AL5 - 3	12.11.21	1.07	BQL	2.1	453	
AL5 – 4	17.11.21	1.02	BQL	1.98	494	
AL5 - 5	19.11.21	1.17	BQL	2.07	544	
AL5 - 6	24.11.21	1	BQL	1.91	571	
AL5 - 7	26.11.21	1.23	BQL	1.78	636	
AL5 - 8	29.11.21	1.20	BQL	2.07	511	
Monthly	/ Average	1.13	-	1.93	548	
Standard	l Deviation	0.10	-	0.18	59	

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Coal Storage Area was comparatively highest among all the locations of Air Quality monitoring in Kandla Port. High values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x at this location was due to lifting of coal with grab and other coal handling processes near Berth no. 6 & 7. Moreover, the traffic was also heavy around this place for transport of coal thus emissions produced from heavy vehicles. The mean TSPM values at Coal storage were 598µg/m³. The mean PM₁₀ values were 292 µg/m³, which is well above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 104 µg/m³). The average values of SO₂, NO_x and NH₃ were 4.73 µg/m³, 21.57 µg/m³ and 11.52 µg/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Coal Storage Area. The mean Benzene concentration was 1.13 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.93 mg/m³, well below the permissible limit of 4.0 mg/m³.

Parameters	Date	TSPM	PM10	0 PM2.5 502 Fur			ntration at Tuna Port 2 [µg/m3] NOx [µg/m3]		NH3 [µg/m3]	
Sampling Period	-	[μg/m3] 24hr	[µg/m3] 24hr	[µg/m3] 24hr	8 hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr
NAAQMS	-	NS	100 μg/m3	60 μg/m3	-	(Avg.) 80 μg/m3	-	(Avg.) 80 μg/m3	-	(Avg.) 400 μg/m3
			F.9,	F.9,	3.52	" g,e	20.96	F . 9 , 2	14.04	P .9,
AL6 -1	01.11.21	214	97	61	2.64	2.64	12.07	14.82	12.51	12.08
					1.76		11.43		9.70	
					1.76		10.16		6.38	
AL6 - 2	09.11.21	314	149	102	2.64	1.90	11.43	10.59	6.64	7.15
					1.32		10.16		8.42	
					4.84		16.51		6.64	
AL6 - 3	12.11.21	425	208	104	5.28	4.25	20.96	17.57	4.85	6.55
					2.64		15.24		8.17	
					2.20		5.08		6.13	
AL6 - 4	17.11.21	504	280	110	1.76	2.34	7.62	7.20	8.42	7.06
					3.08		8.89		6.64	
					2.64		22.87		13.02	
AL6 - 5	19.11.21	432	242	106	2.20	2.20	13.34	18.21	11.74	11.74
					1.76		18.42		10.47	
					5.28		30.49		9.96	
AL6 - 6	24.11.21	315	149	96	1.76	3.66	22.23	26.89	15.57	12.76
ALU - U					3.96		27.95		12.76	
					2.20		13.34		9.19	
AL6 - 7	26.11.21	326	140	98	3.08	2.93	15.24	15.03	8.93	9.53
A -0 /					3.52		16.51		10.47	
					2.20		15.88		10.72	
AL6 - 8	29.11.21	569	298	104	2.64	2.93	13.34	15.88	8.93	10.30
					3.96		18.42		11.23	
Monthly Aver	age	387	195	98		2.86		15.77		9.65
Standard Deviation		116	73	15		0.78		5.79		2.48

NS: Not Specified

Table 6	6B : Results	s of Air Po Tuna l		Concentra	tion at
Paramet er		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]
Sampling Period	Date	8 hr	Grab Sampli ng	Grab Sampli ng	Grab Samplin g
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS
AL6 -1	01.11.21	1.2	BQL	1.91	586
AL6 – 2	09.11.21	1.02	BQL	2.1	600
AL6 – 3	12.11.21	1.08	1.91	1.91	452
AL6 - 4	17.11.21	1.26	BQL	1.94	507
AL6 – 5	19.11.21	1.21	BQL	2.08	593
AL6 - 6	24.11.21	1.01	BQL	1.98	568
AL6 - 7	26.11.21	1.203	BQL	2.08	577
AL6 - 8	29.11.21	1.19	BQL	2.04	517
Monthly A	verage	1.15	-	2.01	550
Standard [Deviation	0.10	-	0.08	52

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS- Not Specified

The mean TSPM values at Tuna Port were 387 μ g/m³, The mean PM₁₀ values were 195 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 98 μ g/m³). The average values of SO₂, NO_x and NH₃ were 2.86 μ g/m³, 15.77 μ g/m³ and 9.65 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Tuna Port. The mean Benzene concentration was 1.15 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 2.01 mg/m³, well below the permissible limit of 4.0 mg/m³.

					ncentra					
Parameters	Date	TSPM [μg/m3]	PM10 [μg/m3]	PM2.5 [μg/m3]	SO2 [ļ	1g/m3]	NOx	[µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m 3	-	80 μg/m3	-	400 μg/m 3
					2.20		7.62		6.89	
AL7 -1	01.11.21	251	137	109	3.96	3.22	13.34	11.86	6.13	5.70
					3.52		14.61		4.08	
					5.71		26.04		4.60	
AL7 -2	09.11.21	215	115	84	6.15	6.30	14.61	17.36	10.47	6.98
AL/ -2					7.03		11.43		5.87	-
					3.52		10.16		6.38	
AL7 -3	12.11.21	202	104	76	4.84	3.96	26.04	16.51	10.72	8.68
_					3.52	-	13.34		8.93	-
					2.64		19.69		7.91	
AL7 -4	17.11.21	200	103	84	5.28	3.96	13.34	14.40	4.60	6.13
					3.96	-	10.16	-	5.87	-
					5.71		13.97		9.19	
AL7 -5	19.11.21	224	104	94	3.52	3.96	19.69	16.30	7.15	7.66
					2.64	-	15.24	-	6.64	-
					4.40		10.16		5.87	
AL7 -6	24.11.21	238	118	77	2.64	4.40	6.99	10.59	4.60	5.96
AL, 0					6.15		14.61	-	7.40	-
					2.64		15.88		14.04	
AL7 -7	26.11.21	213	120	64	2.20	3.52	7.62	14.40	10.72	10.38
AE, ,					5.71	-	19.69		6.38	_
					5.71		10.16		8.17	
AL7 -8	29.11.21	207	115	84	2.64	3.22	15.24	13.34	7.91	7.66
					1.32		14.61		6.89	-
Monthly Avera	ade	219	115	84		4		14		7
Standard Deviation		18	11	13		1		2		2

Location 7: Signal Building (Vadinar) (AL-7)

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table	7B : Result	s of Air Po Signal B		oncentrat	ion at	
Paramet er		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m ³]	CO ₂ [ppm]	
Sampling Period	Date	8 hr	Grab Samplin g	Grab Samplin g	Grab Samplin g	
NAAQMS limit		5.0 μg/m ³	NS	4.0 mg/m ³	NS	
AL7 -1	01.11.21	1.03	BQL	1.75	569	
AL7 – 2	09.11.21	1.16	BQL	1.85	629	
AL7 – 3	15.11.2021	1.35	BQL	1.78	501	
AL7 – 4	18.11.2021	1.09	BQL	2	449	
AL7 – 5	19.11.2021	1	BQL	1.89	458	
AL7 – 6	22.11.2021	1.22	BQL	1.87	510	
AL7 – 7	25.11.2021	1.08	BQL	1.99	541	
AL7 – 8	29.11.2021	1.18	BQL	1.88	565	
Monthly	Average	1.14	-	1.88	528	
Standard	Deviation	0.11	-	0.09	60	

*NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit - NMHC: 0.5 ppm)

NS_ Not Specified

The mean TSPM values at Vadinar Port were 219 μ g/m³. The mean PM₁₀ values were 115 μ g/m³, which is below the permissible limit. PM_{2.5} values were also within the permissible limit (mean = 84 μ g/m³). The average values of SO₂, NO_x and NH₃ were 4.0 μ g/m³, 14.0 μ g/m³ and 7.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Vadinar Port. The mean Benzene concentration was $1.14 \ \mu g/m^3$, well below the permissible limit of $5.0 \ \mu g/m^3$. HC's were below the detectable limit and Carbon Monoxide concentration was $1.88 \ mg/m^3$, well below the permissible limit of $4.0 \ mg/m^3$.

		ТЅРМ	PM10	lutant Cond				-		
Parameters	Date	[μg/m3]	[μg/m3]	PM2.5 [μg/m3]	SO2 [μg/m3]	NOx [µg/m3]	NH3 [µg/m3]
Sampling Period	-	24hr	24hr	24hr	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)	8 hr	24hr (Avg.)
NAAQMS limit	-	NS	100 μg/m3	60 μg/m3	-	80 μg/m 3	-	80 μg/m 3	-	400 μg/m 3
					4.84		20.96		6.38	
AL8 -1	01.11.21	204	83	73	2.64	3.22	19.69	18.63	5.87	5.96
					2.20		15.24		5.62	
					4.40		13.34		8.93	
AL8 -2	09.11.21	193	86	75	2.64	3.08	20.33	15.67	6.64	8.85
					2.20		13.34		10.98	
					2.64		15.88		4.85	
AL8 -3	12.11.21	241	126	107	3.08	2.49	22.87	16.09	5.62	5.96
					1.76	-	9.53	-	7.40	-
					3.52		17.78		8.42	
AL8 -4	17.11.21	167	100	53	4.84	3.81	10.16	12.91	10.47	7.57
					3.08	-	10.80	_	3.83	-
					2.20		10.16		5.36	
AL8 -5	19.11.21	183	151	72	1.76	2.49	9.53	10.59	8.17	6.55
					3.52	-	12.07	_	6.13	-
					3.52		15.88		8.93	
AL8 -6	24.11.21	197	104	80	5.71	5.28	10.16	13.55	7.91	7.66
					6.59	-	14.61		6.13	-
					3.52		10.16		11.74	
AL8 -5	26.11.21	226	111	88	1.76	3.37	13.34	11.43	5.87	8.85
					4.84		10.80		8.93	-
					2.64		10.16		9.19	
AL8-6	29.11.21	226	104	106	3.52	2.78	20.96	13.13	5.87	7.40
					2.20		8.26		7.15	1
Monthly Avera	ige	205	108	82		3		14		7
Standard Devi	2		22	18		1		3		1

NS: Not Specified

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 8	B : Result	s of Air P Admin E		Concentra	tion at
Paramet er		C ₆ H ₆ [μg/m ³]	HC*	CO [mg/m³]	CO ₂ [ppm]
Samplin g Period			Grab Sampli ng	Grab Samplin g	Grab Samplin g
NAAQMS limit		5.0 μg/m³	NS	4.0 mg/m ³	NS
AL8 -1	01.11.21	1.23	BDL	1.88	571
AL8-2	09.11.21	1.09	BDL	2.04	581
AL8 -3	15.11.2021	1.29	BDL	2.17	465
AL8-4	18.11.2021	1.05	BDL	1.82	452
AL8 -5	19.11.2021	1.01	BDL	1.92	482
AL8-6	22.11.2021	1.28	BDL	1.73	496
AL8-7	25.11.2021	1.15	BDL	1.85	524
AL8-8	29.11.2021	1.13	BDL	2.02	561
Monthly	Average	1.15	-	1.93	517
Standard	Standard Deviation		-	0.14	50

* NMHC- Non- Methane Hydrocarbons

BQL- Below Quantification Limit (Quantification Limit – NMHC: 0.5 ppm) NS-Not Specified

The overall values of TSPM, PM₁₀, PM_{2.5}, SO₂, NO_x and NH₃ at Admin Building Vadinar was comparatively low among all the locations of Air Quality monitoring in Kandla Port and Vadinar Port. The mean TSPM values at Vadinar Port were 205 μ g/m³. The mean PM₁₀ values were 108 μ g/m³, which is above the permissible limit. PM_{2.5} values were above the permissible limit (mean = 82.0 μ g/m³). The average values of SO₂, NO_x and NH₃ were 3.0 μ g/m³, 14.0 μ g/m³ and 7.0 μ g/m³ respectively and were all within the permissible limit.

The levels of Benzene, Hydrocarbons (HC) and CO were within the permissible limit at Admin Building, Vadinar Port. The mean Benzene concentration was 1.15 μ g/m³, well below the permissible limit of 5.0 μ g/m³. HC's were below the detectable limit and Carbon Monoxide concentration was 1.93 mg/m³, well below the permissible limit of 4.0 mg/m³.

1.4 Observations and Conclusion

During the monitoring period, the overall Ambient Air Quality of the port area was found to be well within the desired levels for various gaseous pollutants. However, Particulate matter as PM₁₀ and PM_{2.5} was found to exceed the limits at locations like Near Coal storage area, Marine Bhavan, Estate Office, Tuna Port and Oil Jetty area.

2. Drinking Water Quality Monitoring

Drinking Water Quality Monitoring was carried out at twenty stations at Kandla, Vadinar & Township Area of Deendayal Port.

2.1 Drinking Water Monitoring Methodology

Drinking water samples were collected from 20 locations as prescribed in the tender document. Samples for physico-chemical analysis were collected in 1 liter carboys and samples for microbiological parameters were collected in sterilized bottles. These samples were then analyzed in laboratory for various drinking water parameters at Kandla Lab/Surat.

The Sampling and Analysis was done as per standard methods - IS 10500:2012. The water samples were analyzed for various parameters, viz. Color , Odor, Turbidity , Conductivity , pH , Chlorides , TDS, Total Hardness, Iron , Sulphate , Salinity , DO, BOD, Na, K, Ca, Mg, F, NO₃, NO₂, Mn, Cr-6, Cu, Cd, As, Hg, Pb, Zn, Bacterial Count (cfu) .

2.2 Results

The Drinking Water Quality monitoring data for 20 stations are given in below from table No. 9 to Table No. 15

Table 9: Drinking Water Quality Monitoring Parameters for NirmanBuilding 1, P & C building & Main Gate (North) at Kandla

Sr. No.	Parameter	Unit	Nirman Building 1	P & C building	Main Gate North	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.3	7.4	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	990	1280	1310	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1860	2430	2540	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	BQL	NS*	NS*
8	Chloride as Cl	mg/l	491.09	461.02	516.15	250.0	1000.0
9	Ca as Ca	mg/l	64.13	68.14	60.12	75.0	200.0
10	Mg as Mg	mg/l	63.18	70.47	68.04	30.0	100.0
11	Total Hardness	mg/l	420	460	430	200.0	600.0
12	Iron as Fe	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides as F	mg/l	0.32	0.35	0.34	1.0	1.5
14	Sulphate as SO4	mg/l	286.8	289.2	283.2	200.0	400
15	Nitrite as NO2	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate as NO3	mg/l	6.41	7.88	6.20	45.0	No Relaxation
17	Salinity	%	0.86	0.80	0.89	NS*	NS*
18	Sodium as Na	mg/l	202	225	277	NS*	NS*
19	Potassium as K	mg/l	5.08	3.26	5.26	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count Not Specified	CFU/100 ml	Absent	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l, Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

Table 10: Drinking Water Quality Monitoring Parameters for Canteen,West Gate - I & Wharf Area at Kandla

Sr. No	Parameter	Unit	Canteen	West Gate - I	Wharf Area	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.3	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1410	1350	1420	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2710	2560	2730	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	BQL	NS*	NS*
8	Chloride as Cl	mg/l	541.20	486.08	491.09	250.0	1000.0
9	Ca as Ca	mg/l	64.13	56.11	64.13	75.0	200.0
10	Mg as Mg	mg/l	68.04	68.04	72.90	30.0	100.0
11	Total Hardness	mg/l	440	420	460	200.0	600.0
12	Iron as Fe	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides as F	mg/l	0.41	0.29	0.34	1.0	1.5
14	Sulphate as SO4	mg/l	291.6	204.0	194.4	200.0	400
15	Nitrite as NO2	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate as NO3	mg/l	8.10	12.25	8.87	45.0	No Relaxation
17	Salinity	%	0.83	0.93	0.98	NS*	NS*
18	Sodium as Na	mg/l	201	195	279	NS*	NS*
19	Potassium as K	mg/l	4.28	4.08	4.69	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count	CFU/100 ml	Absent	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

Table 11: Drinking Water Quality Monitoring Parameters for Sewasadan - 3, Workshop I & Custom Building at Kandla

Sr. No	Parameter	Unit	Sewa Sadan - 3	Workshop	Custom Building	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.4	7.7	7.5	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1360	1325	1430	500	2000
3	Turbidity	NTU	1	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2530	2480	2680	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	BQL	NS*	NS*
8	Chloride	mg/l	656.46	611.36	516.15	250.0	1000.0
9	Ca as Ca	mg/l	56.11	60.12	64.13	75.0	200.0
10	Mg as Mg	mg/l	75.33	65.61	72.90	30.0	100.0
11	Total Hardness	mg/l	450	420	460	200.0	600.0
12	Iron as Fe	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides	mg/l	0.23	0.45	0.46	1.0	1.5
14	Sulphate	mg/l	198.0	290.4	230.4	200.0	400
15	Nitrite	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate	mg/l	10.42	9.57	13.94	45.0	No Relaxation
17	Salinity	%	0.88	0.89	1.19	NS*	NS*
18	Sodium as Na	mg/l	303	248	327	NS*	NS*
19	Potassium as K	mg/l	4.30	5.61	8.26	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count : Not Specified	CFU/100m l	Absent	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

Table 12: Drinking Water Quality Monitoring Parameters for Port ColonyKandla, Hospital Kandla & A.O. Building at Gandhidham

Sr No	Parameter	Unit	Port Colony Kandla	Hospita I Kandla	A.O. Buildin g	Accepta ble Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.6	7.3	7.2	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1310	1410	1430	500	2000
3	Turbidity	NTU	0	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorles s	Agreeabl e	Agreeable
5	Color	Hazen Units	Colorles s	Colorles s	Colorles s	5.0	15.0
6	Conductivity	μs/cm	2540	2690	2740	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	<0.1	<0.1	<0.1	NS*	NS*
8	Chloride	mg/l	481.07	531.18	516.15	250.0	1000.0
9	Ca as Ca	mg/l	72.14	76.15	64.13	75.0	200.0
10	Mg as Mg	mg/l	55.89	58.32	68.04	30.0	100.0
11	Total Hardness	mg/l	410	430	440	200.0	600.0
12	Iron as Fe	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides	mg/l	0.48	0.85	0.52	1.0	1.5
14	Sulphate	mg/l	210.0	291.6	301.2	200.0	400
15	Nitrite	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate	mg/l	10.28	13.24	9.79	45.0	No Relaxation
17	Salinity	%	1.10	0.93	0.87	NS*	NS*
18	Sodium as Na	mg/l	154	384	218	NS*	NS*
19	Potassium as K	mg/l	3.26	4.69	4.03	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count ot Specified	CFU/100 ml	Absent	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

Table 13: Drinking Water Quality Monitoring Parameters for SchoolGopalpuri, Guest House & E - Type Quarter at Gopalpuri, Gandhidham

Sr No	Parameter	Unit	School Gopalp uri	Guest House	E - Type Quarter	Accepta ble Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.4	7.6	7.5	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1400	1720	1090	500	2000
3	Turbidity	NTU	1	0	1	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorless	Agreeabl e	Agreeable
5	Color	Hazen Units	Colorless	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	2640	2730	2130	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	BQL	NS*	NS*
8	Chloride	mg/l	496.10	526.17	481.07	250.0	1000.0
9	Ca as Ca	mg/l	60.12	56.11	68.14	75.0	200.0
10	Mg as Mg	mg/l	80.19	77.76	65.61	30.0	100.0
11	Total Hardness	mg/l	480	460	440	200.0	600.0
12	Iron as Fe	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides	mg/l	0.60	0.81	0.63	1.0	1.5
14	Sulphate	mg/l	314.4	214.8	289.2	200.0	400
15	Nitrite	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate	mg/l	10.91	12.39	10.00	45.0	No Relaxation
17	Salinity	%	0.96	0.93	0.90	NS*	NS*
18	Sodium as Na	mg/l	287	106	246	NS*	NS*
19	Potassium as K	mg/l	5.28	6.29	2.25	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count Jot Specified	CFU/100 ml	Absent	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

Table 14: Drinking Water Quality Monitoring Parameters for F - TypeQuarter, Hospital Gopalpuri & Tuna Port

Sr. No	Parameter	Unit	F - Type Quarter	Hospital Gopalpuri	Tuna Port	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.6	7.3	7.42	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1020	1250	1150	500	2000
3	Turbidity	NTU	0	1	0	1.0	5.0
4	Odor	-	Odorless	Odorless	Odorle ss	Agreeable	Agreeable
5	Color	Hazen Unit	Colorless	Colorless	Colorl ess	5.0	15.0
6	Conductivity	μs/cm	1950	2380	2000	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	BQL	NS*	NS*
8	Chloride	mg/l	611.36	576.28	520	250.0	1000.0
9	Ca as Ca	mg/l	64.13	60.12	76.15	75.0	200.0
10	Mg as Mg	mg/l	55.89	72.90	55.89	30.0	100.0
11	Total Hardness	mg/l	390	450	420	200.0	600.0
12	Iron as Fe+3	mg/l	BQL	BQL	BQL	0.3	No Relaxation
13	Fluorides	mg/l	0.86	0.57	0.75	1.0	1.5
14	Sulphate	mg/l	301.2	285.6	274.8	200.0	400
15	Nitrite	mg/l	<0.1	<0.1	<0.1	NS*	NS*
16	Nitrate	mg/l	10.91	10.07	9.93	45.0	No Relaxation
17	Salinity	%	0.95	0.87	1.10	NS*	NS*
18	Sodium as Na	mg/l	235	235	248	NS*	NS*
19	Potassium as K	mg/l	3.98	5.54	4.8	NS*	NS*
20	Manganese	mg/l	BQL	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	BQL	5.0	15.0
28	Bacterial Count Not Specified	CFU/100 ml	Absent	Absent	Absen t	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 15: Drinking Water Quality Monitoring Parameters for Vadinar Jetty& Port Colony at Vadinar

Sr. No	Parameter	Unit	Vadinar Jetty	Port Colony Vadinar	Acceptable Limits as per IS 10500 : 2012	Permissible Limits in the absence of Alternate Source as per IS 10500 : 2012
1	рН	pH Unit	7.5	7.3	6.5 to 8.5	6.5 to 8.5
2	Total Dissolved Solids	mg/l	1060	1120	500	2000
3	Turbidity	NTU	ND	ND	1.0	5.0
4	Odor	-	Odorless	Odorless	Agreeable	Agreeable
5	Color	Hazen Units	Colorless	Colorless	5.0	15.0
6	Conductivity	μs/cm	1960	2150	NS*	NS*
7	Biochemical Oxygen Demand	mg/l	BQL	BQL	NS*	NS*
8	Chloride	mg/l	486.08	521.16	250.0	1000.0
9	Ca as Ca	mg/l	68.14	60.12	75.0	200.0
10	Mg as Mg	mg/l	68.04	68.04	30.0	100.0
11	Total Hardness	mg/l	450	430	200.0	600.0
12	Iron as Fe+3	mg/l	BQL	BQL	0.3	No Relaxation
13	Fluorides	mg/l	0.86	0.69	1.0	1.5
14	Sulphate	mg/l	23.04	22.56	200.0	400
15	Nitrite	mg/l	<0.1	<0.1	NS*	NS*
16	Nitrate	mg/l	7.88	10.63	45.0	No Relaxation
17	Salinity	%	0.88	0.94	NS*	NS*
18	Sodium as Na	mg/l	52.8	40.2	NS*	NS*
19	Potassium as K	mg/l	3.3	2.1	NS*	NS*
20	Manganese	mg/l	BQL	BQL	0.1	0.3
21	Hexavalent Chromium	mg/l	BQL	BQL	NS*	NS*
22	Copper	mg/l	BQL	BQL	0.05	1.5
23	Cadmium	mg/l	BQL	BQL	0.003	0.003
24	Arsenic	mg/l	BQL	BQL	0.01	0.05
25	Mercury	mg/l	BQL	BQL	0.001	0.001
26	Lead	mg/l	BQL	BQL	0.01	0.01
27	Zinc	mg/l	BQL	BQL	5.0	15.0
28	Bacterial Count	CFU/10 0ml	Absent	Absent	Absent	Absent

*NS: Not Specified

BQL- Below Quantification Limit, (BOD-2.0 mg/l, Fe-0.009 mg/l,Mn- 0.01 mg/l, Cr⁺⁶- 0.03 mg/l, Cu-0.004 mg/l, Cd-0.003 mg/l, As-0.003mg/l, Hg-0.001 mg/l, Pb-0.006mg/l, Zinc-0.021 mg/l).

DCPL/DPT/20-21/19 -NOVEMBER - 2021

2.3 **Results & Discussion**

The colour of all drinking water samples was < 5 Hazen unit and odour of the samples was also agreeable. All parameters are found to be within the specified limit of the Drinking water Standard.

рΗ

The limit of pH value for drinking water is specified as 6.5 to 8.5. pH value in the studied area varied from 7.1 to 7.7 pH unit. All the sampling points showed pH values within the prescribed limit by Indian Standards.

Total Dissolved Solids (TDS)

TDS values in the studied area varied between 900 -1800 mg/l. None of the sampling points showed higher TDS values than the prescribed limit by Indian standards.

Conductivity

Electrical Conductivity is the ability of a solution to transfer (conduct) electric current. Conductivity is used to measure the concentration of dissolved solids which have been ionized in a polar solution such as water. The conductivity in the samples collected during the month of November ranged from 1800-3000 μ s/cm. Electrical conductivity standards do not appear in BIS standards for drinking water.

BOD

BOD value in the studied area was found Below Quantification Limit (2.0 mg/l). Indian standards does not show any standard values for BOD in drinking water.

Chlorides

Excessive chloride concentration increase rates of corrosion of metals in the distribution system. This can lead to increased concentration of metals in the supply. Chloride value in the studied area varied between 400-700 mg/l and is found to be within the Permissible limit of the Drinking Water Standard.

Calcium

Calcium value in the studied area varied between 50 - 80 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. If calcium is present beyond the maximum acceptable limit, it causes incrustation of pipes.

Magnesium

Magnesium value in the studied area varied between 50-85 mg/l. All the locations had Magnesium within the prescribed limits of 30-100 mg/L.

Total Hardness

Hardness value in the studied area varied between 350-480 mg/l and is found to be within the Permissible limit of the Drinking Water Standard. The prescribed limit by Indian Standards is 200-600 mg/L.

Iron

Iron value in the studied area was found Below Quantification Limit (0.009 mg/l) and hence well below the permissible limit as per Indian Standards is 0.3 mg/L. The excess amount of iron causes slight toxicity; gives stringent taste to water.

Fluoride

Fluoride value in the studied area varied between 0.1 – 1.0 mg/l and hence well below the permissible limit as per Indian Standards is 1.0-1.5 mg/L. Moderate amounts lead to dental effects, but long-term ingestion of large amounts can lead to potentially severe skeletal problems.

Sulphates

Sulphate value in the studied area varied between 20 – 350 mg/l. All the sampling points showed sulphate values within the prescribed limits by Indian Standards (200-400 mg/L). Sulphate content in drinking water exceeding the 400 mg/L imparts bitter taste.

Nitrites (NO₂) and Nitrates (NO₃)

Nitrite values in all the water samples were found Below Quantification Limit (0.1 mg/l). There are no specified standard values for Nitrites in Drinking water. The minimim Nitrate value in drinking water of KPT was 6.20 mg/l which is well within the permissible limit of the Drinking water Standard.

Salinity

Salinity in drinking water in the present samples collected ranged from 0.5 to 1.4 %. There are no prescribed Indian standards for salinity in Drinking water.

Sodium and Potassium Salts

Sodium values in the samples collected ranged from 40 - 400 mg/l and Potassium salts ranged from 2.0 to 8.5 mg/l. There are no prescribed limits of Sodium and Potassium in Indian standards for Drinking water.

Heavy Metals in Drinking Water

In the present study period drinking water samples were analyzed for Mn, Cr, Cu, Cd, As, Hg, Pb and Zn. All these heavy metals were well Below the Quantification limits prescribed by the Indian Standards.

Bacteriological Study

Analysis of the bacteriological parameter at all location shows that Bacteria is not present and hence Bacterial count is in line with the permissible limit of drinking water. This shows that all the drinking water samples were safe from any bacteriological contamination.

2.4 **Conclusions**

These results are compared with acceptable limits as prescribed in IS 10500:2012 – Drinking Water Specification. It is seen from the analysis data that during the study period the water was safe for human consumption at all drinking water monitoring stations.

3. Noise Level Monitoring

Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. Noise Monitoring was done at 13 stations at Kandla, Vadinar and Township area.

3.1 Method of Monitoring

Sampling was done at all stations for 24 hour period. Data was recorded using automated sound level meter. The intensity of sound was measured in sound pressure level (SPL) and common unit of measurement is decibel (dB).

3.2 **Results**

Table 16: Noise Monitoring data for ten locations of Deendayal Port and two locations of Vadinar Port

Sr. No.	Location	Day Time Average Noise Level (SPL) in dB(A)	Night Time Average Noise Level (SPL) in dB(A)	
	Sampling Time	6:00 am to 10:00 PM	10:00PM to 6:00 AM	
1	Marine Bhavan	73.9	53.4	
2	Nirman Building 1	62.3	51.0	
3	Tuna Port	57.2	50.9	
4	Main Gate North	67.0	61.8	
5	West Gate I	70.5	65.1	

	Enviro	onmental Monitoring Repo	ort of Deendayal Port Trust, November-2021
6	Canteen Area	64.5	51.0
7	Main Road	68.4	51.5
8	ATM Building	74.4	57.3
9	Wharf Area /Jetty Area	72.9	68.1
10	Port & Custom Office	67.8	41.8
		Vadinar Port	
11	Entrance Gate of Vadinar Port	66.4	53.2
12	Nr. Port Colony, Vadinar	60.7	54.1
13	Nr. Vadinar Jetty	72.4	66.5

3.3 **Conclusions-** Noise sources in port operations include cargo handling, vehicular traffic, and loading / unloading containers and ships. The Day Time Average Noise Level (SPL)in all 13 locations at Deendayal Port ranged from 57.2 dB(A) to 74.4 dB(A) and it was within the permissible limits of 75 dB(A) for the industrial area for the daytime. The Night Time Average Noise Level (SPL) in all 13 locations of Deendayal Port ranged from 41.8 dB to 68.4 dB(A) and it was within the permissible limits of 70 dB(A) for the industrial area for the night time.

4. Soil Monitoring

Sampling and analysis of soil samples were undertaken at six locations within the study area (Deendayal Port and Vadinar Port) as a part of EMP. The soil sampling locations are initially decided based on the locations as provided in the tender document of the Deendayal Port.

Methodology 4.1

The soil samples were collected in the month of November 2021. The samples collected from the all locations are homogeneous representative of each location. At random locations were identified at each location and soil was dug from 30 cm below the surface. It was uniformly mixed before homogenizing the soil samples. The samples were filled in polythene bags, labeled in the field with number and site name and sent to laboratory for analysis.

4.2 **Results**

Table-17: Chemical Characteristics of Soil in the Study Area

			Station Name					
			SL1	SL2	SL3	SL4	SL5	SL6
Sr. No	Parameter	Unit	Tuna Port	IFFCO Plant	Khori Creek	Nakti Creek	KPT Admin Site	KPT Colony
			Near main 10 m away gate of from main Port gate Sand from creek at low tide		Vadinar			
1	Texture		Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
2	рН	-	8.42	7.92	8.44	8.23	7.79	8.43
3	Electrical Conductivity	μs/cm	14,070.0	16,210.0	13,680.0	9,240.0	387.0	314.0
4	Moisture	%	18.17	9.01	21.39	21.08	3.46	3.95
5	Total Organic Carbon	%	0.20	0.49	0.20	0.72	0.85	0.43
6	Alkalinity	mg/kg	80.08	120.12	60.06	100.10	60.06	80.08
7	Total Nitrogen	%	BQL	BQL	BQL	BQL	BQL	BQL
8	Chloride	mg/kg	1,956.8	4,112.2	1,800.9	514.7	21.7	113.4
9	Sulphate	mg/kg	212.0	279.0	93.3	165.1	44.7	27.7
10	Phosphorus	mg/kg	2.20	1.89	1.41	2.15	BQL	1.74
11	Potassium	mg/kg	539.0	327.4	409.2	667.6	70.4	62.0
12	Sodium	mg/kg	5,752.0	4,061.6	3,954.0	1,477.0	72.8	65.9
13	Calcium	mg/kg	200.40	488.98	252.00	470.42	436.87	256.51
14	Copper as Cu	mg/kg	14.90	29.50	9.80	27.60	88.4	48.4
15	Lead as Pb	mg/kg	5.80	6.40	3.50	8.20	BQL	4.2
16	Nickel as Ni	mg/kg	35.30	16.60	23.50	37.70	33.8	27.3
17	Zinc as Zn	mg/kg	40.60	104.80	25.4	55.20	66.00	30.50
18	Cadmium as Cd	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL

BQL- Below Quantification Limit, (TN:0.001%, Cd: 1.0mg/kg).

DCPL/DPT/20-21/19 -NOVEMBER - 2021

4.3 **Discussion**

The data shows that value of pH ranges from 7.92 at IFFCO Plant to 8.44 at Khori Creek indicating that all soil samples are neutral to slight basic. Iffco Plant samples showed maximum conductivity of 16,210.0 μ mhos/cm, while Tuna Port location showed minimum conductivity of 14,070.0 μ mhos/cm. Conductivity at Vadinar Port was 387 and 314 μ mhos/cm at Admin site and Vadinar Port colony respectively.

Total organic Carbon ranged from 0.2 % to 0.72 at Deendayal Port. At Vadinar Port, organic carbon content ranged from 0.85 % to 0.43 %.

The concentration of Phosphorus and Potassium in the soil samples varies from 1.41 to 2.15 mg/kg and 327.0 to 670.0 mg/kg respectively at Deendayal Port. The mean concentration of Phosphorous at Vadinar site was 1.74 mg/kg and mean concentration of Potassium at Vadinar site was 132 mg/kg.

These differences in NPK in soil at different locations are due to the dissimilar nature of soil at each of the locations. Samples SL3 & SL4 (Khori Creek & Nakti Creek) are of saline nature as they are coastal soil; where as other locations are inland locations and have different chemical properties.

Heavy Metals in the Soil

Traces of Copper, Lead, Nickel and Zinc were observed in the soil samples collected from all the four locations of Deendayal Port and two locations of Vadinar Port. Cadmium metal was below detection limit in the Soil.

4.4 **Conclusion**

The soils of Deendayal Port and Vadinar Port appears to be neutral to basic with varying levels of Chloride, Sulphate, NPK and Calcium. As the nature of soil at different locations are different with respect to its proximity to the sea, the samples showed high degree of variations in their chemical properties.

5. Sewage Treatment Plant Monitoring

This involves safe collection of waste water (spent/used water) from wash areas, bathroom, industrial units, etc., waste from toilets of various buildings and its conveyance to the treatment plant and final disposal in conformity with the requirement and guide lines of State Pollution Control Board and other statutory bodies.

5.1 **Methodology for STP Monitoring**

To monitor the working efficiency of Sewage Treatment Plant (STP), STP Inlet and Outlet Samples were collected once a week. Locations selected are namely Gopalpuri Township, Deendayal Port and Vadinar. Samples were collected in 1 lit. Carboys and were analyzed in laboratory for various parameters.

5.2 **Results**

Week)

Kandla STP

Table 18: Sewage Water Monitoring at Kandla STP (1 $^{ m st}$

Date of Sampling	02.11.2021

Sr.		Unit	Results			
No.	Parameters		KPT STP I/L	KPT STP O/L		
1	рН	pH unit	7.82	7.46		
2	Total Suspended Solids	mg/l	206	116.1		
3	Residual Chlorine	mg/l	-	<0.5		
4	COD	mg/l	393.0	152.0		
5	BOD @ 27 °C	mg/l	110.0	53.0		
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600.0		
Aeration Tank						
7.	MLSS	mg/l	35.0			
8.	MLVSS	%	6.0			

Date of Sampling 11.11.2021

Sr.	Parameters	Unit	Results				
No.			KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.6	7.2			
2	Total Suspended Solids	mg/l	152.2	72.4			
3	Residual Chlorine	mg/l	-	<0.5			
4	COD	mg/l	384	103.0			
5	BOD @ 27 °C	mg/l	120.0	24.0			
6.	Fecal Coliform	MPN Index / 100 ml	-	9.2			
	Aeration Tank						
7.	MLSS	mg/l	7.0				
8.	MLVSS	%	90.0				

Table 20: Sewage Water Monitoring at Kandla STP (3rd Week)

Date of Sampling	17.11.2021
------------------	------------

Sr.			Res	sults			
No.	Parameters	Unit	KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.35	7.14			
2	Total Suspended Solids	mg/l	204	144			
3	Residual Chlorine	mg/l	-	<0.5			
4	COD	mg/l	162	71			
5	BOD @ 27 °C	mg/l	60.0	20.0			
6.	Fecal Coliform	MPN Index / 100 ml	-	24.0			
Aeration Tank							
7.	MLSS	mg/l	12.0				
8.	MLVSS	%	93.0				

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 21: Sewage	e Water Monitoring	at Kandla STP (4 th Week)
------------------	--------------------	--------------------------------------

Date of Sampling 22.11.2021

Sr. No.	Parameters	Unit	Results				
51. NO.	Farameters		KPT STP I/L	KPT STP O/L			
1	рН	pH unit	7.82	7.46			
2	Total Suspended Solids	mg/l	306	116			
3	Residual Chlorine	mg/l	-	<0.5			
4	COD	mg/l	242	103.0			
5	BOD @ 27 °C	mg/l	86.0	26.0			
6.	Fecal Coliform	MPN Index / 100 ml	-	170.0			
Aeration Tank							
7.	MLSS	mg/l	9.0				
8	MLVSS	%	98.0				

Gopalpuri Colony STP

Table 22: Sewage Water Monitoring at Gopalpuri STP (1st Week)

Date of Sampling

02.11.2021

Sr.	Parameters	Unit	Results		
No.	Farameters	Onit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.50	7.20	
2	Total Suspended Solids	mg/l	210	120	
3	Residual Chlorine	mg/l	-	<0.5	
4	COD	mg/l	414.0	142.0	
5	BOD @ 27 °C	mg/l	122.0	53.0	
6.	Fecal Coliform	MPN Index / 100 ml	-	>1600.0	
Aeration Tank					
7.	MLSS	mg/l	80	6.0	
8	MLVSS	%	9.	7.0	

Table 23: Sewage Water Monitoring at Gopalpuri STP (2nd Week)

Date of Sampling 11.11.2021

Sr.	Parameters	Unit	Re	sults	
No.	ranameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L	
1	рН	pH unit	7.46	7.2	
2	Total Suspended Solids	mg/l	379.2	118	
3	Residual Chlorine	mg/l	-	<0.5	
4	COD	mg/l	454	163.00	
5	BOD @ 27 °C	mg/l	148.0	56.0	
6.	Fecal Coliform	MPN Index / 100 ml	-	21.0	
	Aeration Tank				
7.	MLSS	mg/l		94.0	
8	MLVSS	%		92.0	

Table 24: Sewage Water Monitoring at Gopalpuri STP (3rd Week)

Date	of	Sam	plina
Dutt	U .	Sam	Pilig

17.11.2021

			Results	
Sr. No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.35	7.14
2	Total Suspended Solids	mg/l	204	144
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	162	71
5	BOD @ 27 °C	mg/l	60.0	20.0
6.	Fecal Coliform	MPN Index / 100 ml	-	24.0
Aeration Tank				
7.	MLSS	mg/l	12	2.0
8	MLVSS	%	93	3.0

Table 25: Sewage Water Monitoring at Gopalpuri STP (4th Week)DCPL/DPT/20-21/19 -NOVEMBER - 2021

Date of Sampling	22.11.2021
------------------	------------

Sr.			Results	
No.	Parameters	Unit	Gopalpuri STP I/L	Gopalpuri STP O/L
1	рН	pH unit	7.82	7.46
2	Total Suspended Solids	mg/l	306	116
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	242	103.0
5	BOD @ 27 °C	mg/l	86.0	26.0
6.	Fecal Coliform	MPN Index / 100 ml	-	170.0
Aeration Tank				
7.	MLSS	mg/l	9.	0
8.	MLVSS	%	98	.0

Vadinar STP

Table 26: Sewage Water Monitoring at Vadinar STP (1st Week)

6	Date of Sampling		02.11.2021			
Sr.			Results			
No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L		
1	рН	pH unit	7.62	7.41		
2	Total Suspended Solids	mg/l	121	69		
3	Residual Chlorine	mg/l	-	<0.5		
4	COD	mg/l	89.0	72.0		
5	BOD @ 27 °C	mg/l	34.0	15.0		

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 27: Sewage Water Monitoring at Vadinar STP (2nd Week)

Date of Sampling	11.11.2021
------------------	------------

Sr.			Results	
No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.5	7.2
2	Total Suspended Solids	mg/l	109	31
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	173.0	62.0
5	BOD @ 27 °C	mg/l	48.0	20.0

Table 28: Sewage	Water Monitoring	at Vadinar STP	(3 rd Week)
Table Let Semage			\ U

Date of Sampling	17.11.2021
------------------	------------

Sr.			Res	ults
No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L
1	рН	pH unit	7.7	7.5
2	Total Suspended Solids	mg/l	105	38
3	Residual Chlorine	mg/l	-	<0.5
4	COD	mg/l	150	62
5	BOD @ 27 °C	mg/l	48.0	18.0

Table 29: Sewage Wate	er Monitoring at Vadinar STP (4 th Week)
-----------------------	---

Date of Sampling		25.10.2021				
6		Results				
Sr. No.	Parameters	Unit	Vadinar STP I/L	Vadinar O/L		
1	рН	pH unit	7.5	7.3		
2	Total Suspended Solids	mg/l	117	69		
3	Residual Chlorine	mg/l	-	<0.5		
4	COD	mg/l	192	101		
5	BOD @ 27 °C	mg/l	60.0	24.0		

5.3Conclusions:

The GPCB standards of BOD, TSS and Residual Chlorine for STP outlet are 20 mg/lit, 30 mg/lit & 0.5 mg/lit respectively. It is suggested to do treatment on regular basis to avoid flow of contaminated/polluted water into the sea.

Marine Water Monitoring

The Forty Second Amendment to the Constitution in 1976 underscored the importance of 'green thinking'. Article 48A enjoins the state to protect and improve the environment and safeguard the forests and wildlife in the country. Further, Article 51A(g) states that the "fundamental duty of every citizen is to protect and improve the natural environment including forests, lakes, rivers and wildlife and to have compassion for living creatures".

Policy Statement for Abatement of Pollution (1992) has suggested developing relevant legislation and regulation, fiscal incentives, voluntary agreements and educational programs and information campaigns. It emphasizes the need for integration by incorporating environmental considerations into decision making at all levels by adopting frameworks namely, pollution prevention at source, application of best practicable solution, ensure polluter pays for control of pollution, focus on heavily polluted areas and river stretches and involve public in decision-making. The National Conservation Strategy and Policy Statement on Environment and Development, (1992) aimed at

"integrating environmental concerns with developmental imperatives to meet the challenges by redirecting the thrust of our developmental process so that the basic needs of our people could be fulfilled by making judicious and sustainable use of natural resources." The priorities mentioned in this policy document include the sustainable use of land and water resources, prevention and control of pollution and preservation of biodiversity.

The National Water Policy, (2002) contains provisions for developing, conserving, sustainable utilizing and managing this important water resources and need to be governed by national perspectives.

Marine Environment

On national and state levels, we have several policies and regulation like Water (Prevention and Control of Pollution) Act, 1974, to regulate pollution discharges and restore water quality of our aquatic resources including the prescription of monitoring activities. One of the important provisions of the Water Act, 1974, is to maintain and restore the 'wholesomeness' of our aquatic resources. Water quality monitoring is one of the first steps required in the rational development and management of water resources. In the field of water quality management, there has been a steady evolution in procedures for designing system to obtain information on the changes of water quality. The monitoring comprises all activities to obtain 'information' with respect to the water system.

Sampling Stations

The monitoring of marine environment for the study of biological and ecological parameters was carried out on 19th& 20th November-2021 in harbor regions of KPT and on 19th November-2021 at Vadinar during spring tide period of New moon phase of Lunar Cycle. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 26th& 27th November 2021 in harbor regions of KPT. 26th November -2021 in Vadinar during Neap tide period first quarter of Lunar Cycle..

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and two stations in Nakti creek and one station in Khori creek. The same sampling schedule was repeated during consecutive spring tide and neap tide in same month. Plankton samples from sub surface layer was

collected both during high tide period and low tide period from 1 water quality monitoring stations near Vadinar jetty area during spring tide and neap tide in this month .Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

Sampling Locations

Offshore monitoring requirement	Number of locations
Offshore Installations	3 in Kandla creek 2 in Nakti creek 1 in Khori creek 1 near Vadinar Jetty 1 near 1 st SBM
Total Number of locations	8

5.4 Marine Water Quality

Marine water quality of marine waters of Deendayal Port Harbor waters, Khori and Nakti Creeks and two locations of Vadinar are monitored for various physico-chemical parameters during spring and neap tide of each month.

The results of marine water quality and Marine sediments are as below;

	Parameters	Unit	Kand	ar KPT colo	r KPT colony (1)	
Sr.	T arameters	Onic	23°0'58"N 70°13'22."E			
No.			Spring	g Tide	Neap	o Tide
nor	Tide		High Tide	Low Tide	High Tide	Low Tide
1	рН	pH unit	7.21	7.26	7.45	7.26
2	Color	-	Colorless	Colorless	Colorless	Colorless
3	Odor	-	Odorless	Odorless	Odorless	Odorless
4	Salinity	ppt	31.6	31.9	32.0	31.5
5	Turbidity	NTU	36	31	33	32
6	Total Dissolved Solids	mg/l	41592	42007	41300.0	41443.0

Table 30: Marine Water Quality Monitoring Parameters for location nearKPT colony

DCPL/DPT/20-21/19 -NOVEMBER - 2021

	Parameters	Unit	Kand	la Creek Ne	ar KPT colo 70°13'22."E	ony (1)
Sr.			Sprin	g Tide		o Tide
No.	Tide		High Tide	Low Tide	High Tide	Low Tide
7	Total Suspended Solids	mg/l	655	870	754.2	571.1
8	Total Solids	mg/l	42247	42877	42054.2	42014.1
9	DO	mg/l	4	4.2	4.1	4.3
10	COD	mg/l	82.0	90.0	80.0	78.0
11	BOD	mg/l	BQL	BQL	BQL	BQL
12	Silica	mg/l	0.65	0.60	0.76	0.65
13	Phosphate	mg/l	0.35	0.24	0.16	0.18
14	Sulphate	mg/l	2772	2700	2184	2580
15	Nitrate	mg/l	2.89	2.46	2.45	3.44
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05
17	Calcium	mg/l	561.12	480.96	480.96	521.04
18	Magnesium	mg/l	1725.3	1530.9	1676.7	1603.8
19	Sodium	mg/l	9038.0	8014.0	8629.0	9638.0
20	Potassium	mg/l	313.0	271.0	336.0	378.0
21	Iron	mg/l	1.42	1.30	1.32	1.10
22	Chromium	mg/l	0.12	0.11	0.13	0.12
23	Copper	mg/l	BQL	BQL	BQL	BQL
24	Arsenic	mg/l	BQL	BQL	BQL	BQL
25	Cadmium	mg/l	0.05	0.06	0.06	0.05
26	Mercury	mg/l	BQL	BQL	BQL	BQL
27	Lead	mg/l	0.07	0.09	0.06	0.08
28	Zinc	mg/l	BQL	BQL	BQL	BQL

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l, Zinc-0.1 mg/l).

Table 31: Marine Water Quality Monitoring Parameters for location nearpassenger Jetty One at Kandla

	Parameters		Near passenger Jetty One (2)				
Sr.		Unit	23° 0'18 "N 70°13'31"E Spring Tide Neap Tide				
No.	Tide		High Tide	Low Tide	High Tide	Low Tide	
1	pH	pH unit	7.12	7.31	7.30	7.20	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	32.0	31.6	32.2	31.4	
5	Turbidity	NTU	35	28	38	42	
6	Total Dissolved Solids	mg/l	39062	40035	40245.0	36627.0	
7	Total Suspended Solids	mg/l	784	773	528.3	504	
8	Total Solids	mg/l	39845	40808	40773.3	37131.0	
9	DO	mg/l	4.3	3.9	4.2	4	
10	COD	mg/l	88.0	86.0	92.0	90.0	
11	BOD	mg/l	BQL	BQL	BQL	BQL	
12	Silica	mg/l	0.56	0.53	0.76	0.69	
13	Phosphate	mg/l	0.24	0.26	0.19	0.20	
14	Sulphate	mg/l	2580	3132	2340	2700	
15	Nitrate	mg/l	3.03	3.31	2.80	3.98	
16	Nitrite	mg/l	BQL	BQL	BQL	BQL	
17	Calcium	mg/l	601.20	681.36	561.12	601.2	
18	Magnesium	mg/l	1555.2	1652.4	1676.7	1628.1	
19	Sodium	mg/l	9530.0	9278.0	9116.0	9368.0	
20	Potassium	mg/l	349.0	336.0	272.0	302.0	
21	Iron	mg/l	1.88	1.70	1.48	1.55	
22	Chromium	mg/l	0.12	0.11	0.11	0.14	
23	Copper	mg/l	BQL	BQL	BQL	BQL	
24	Arsenic	mg/l	BQL	BQL	BQL	BQL	
25	Cadmium	mg/l	0.04	0.05	0.06	0.04	
26	Mercury	mg/l	BQL	BQL	BQL	BQL	
27	Lead	mg/l	0.10	0.09	0.09	0.10	
28	Zinc	mg/l	BQL	BQL	BQL	BQL	

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Nitrite: 0.05mg/lCu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l, Zinc-0.1 mg/l).

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 32: Marine Water Quality Monitoring Parameters for location Near CoalBerth

Sr.	Parameters		Near Coal Berth 22°59'12"N 70°13'40"E				
		Unit					
No.				g Tide	-	Tide	
	Tide		High Tide	Low Tide	High Tide	Low Tide	
1	pH Calar	pH unit	7.30	7.46	7.30	7.36	
2 3	Color Odor	-	Colorless Odorless	Colorless Odorless	Colorless Odorless	Colorless Odorless	
		-	32.0	31.8	32.7	31.0	
4	Salinity	ppt					
5	Turbidity	NTU	34	29	36	40	
6	Total Dissolved Solids	mg/l	43205	41674	43606.0	40029.0	
7	Total Suspended Solids	mg/l	590	863	500.2	604.3	
8	Total Solids	mg/l	43795	42537	44106.2	40633.3	
9	DO	mg/l	4	5.1	4.5	4.4	
10	COD	mg/l	90.0	86.0	88.0	79.0	
11	BOD	mg/l	BQL	BQL	BQL	BQL	
12	Silica	mg/l	0.69	0.75	0.56	0.64	
13	Phosphate	mg/l	0.28	0.34	0.17	0.20	
14	Sulphate	mg/l	3240	2016	2676	2148	
15	Nitrate	mg/l	3.87	4.58	2.95	2.62	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	641.28	601.20	480.96	521.04	
18	Magnesium	mg/l	1628.1	1749.6	1749.6	1749.6	
19	Sodium	mg/l	9425.0	8408.0	9423.0	8709.0	
20	Potassium	mg/l	339.0	299.0	306.0	230.0	
21	Iron	mg/l	1.41	1.78	1.76	1.56	
22	Chromium	mg/l	0.11	0.13	0.13	0.12	
23	Copper	mg/l	BQL	BQL	BQL	BQL	
24	Arsenic	mg/l	BQL	BQL	BQL	BQL	
25	Cadmium	mg/l	0.06	0.05	0.05	0.07	
26	Mercury	mg/l	BQL	BQL	BQL	BQL	
27	Lead	mg/l	0.08	0.09	0.09	0.07	
28	Zinc	mg/l	BQL	BQL	BQL	BQL	

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, Ås-0.1mg/l, Hg-0.01 mg/l,Zinc-0.1 mg/l). DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 33: Marine Water Quality Monitoring Parameters for locationKhori creek at Kandla

_	Parameters	11	KPT 4 Near 15/16 Berth Spring Tide Neap Tide				
Sr.		Unit					
No.	Tide		High Tide	Low Tide	High Tide	Low Tide	
1		pH unit	-		-		
1 2	pH Color	PH UNIT	7.35 Colorless	7.50 Colorless	7.50 Colorless	7.20 Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
		-	32.1	32.6	31.9	31.6	
4	Salinity	ppt	_				
5	Turbidity	NTU	43	39	45	33	
6	Total Dissolved Solids	mg/l	42399	39089	38986.0	39711.0	
7	Total Suspended Solids	mg/l	743	577	681.8	530.3	
8	Total Solids	mg/l	43142	39666	39667.8	40241.3	
9	DO	mg/l	4.6	4.5	5.2	5.6	
10	COD	mg/l	92.0	90.0	82.0	89.0	
11	BOD	mg/l	BQL	BQL	BQL	BQL	
12	Silica	mg/l	0.82	0.58	0.58	0.51	
13	Phosphate	mg/l	0.28	0.25	0.22	0.20	
14	Sulphate	mg/l	1620	3492	2388	2100	
15	Nitrate	mg/l	1.97	3.03	2.71	2.06	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	561.12	641.28	561.12	440.88	
18	Magnesium	mg/l	1579.5	1603.8	1603.8	1822.5	
19	Sodium	mg/l	9423.0	9014.0	9526.0	9468.0	
20	Potassium	mg/l	341.0	301.0	218.0	221.0	
21	Iron	mg/l	1.62	1.33	1.74	1.21	
22	Chromium	mg/l	0.16	0.12	0.14	0.16	
23	Copper	mg/l	BQL	BQL	BQL	BQL	
24	Arsenic	mg/l	BQL	BQL	BQL	BQL	
25	Cadmium	mg/l	0.04	0.05	0.06	0.04	
26	Mercury	mg/l	BQL	BQL	BQL	BQL	
27	Lead	mg/l	0.08	0.06	0.09	0.08	
28	Zinc	mg/l	BQL	BQL	BQL	BQL	

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l, Zinc-0.1 mg/l). DCPL/DPT/20-21/19 -NOVEMBER - 2021

Table 34: Marine Water Quality Monitoring Parameters for locationNakti Creek near Tuna Port

			Nakti Creek Near Tuna Port				
Sr.	Parameters	Unit	22°57'49."N 70° 7'0.67"E				
No.			Sprin	g Tide	Nea	o Tide	
	Tide		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.30	7.20	7.30	7.40	
2	Color	-	Colorless	Colorless	Colorless	Colorless	
3	Odor	-	Odorless	Odorless	Odorless	Odorless	
4	Salinity	ppt	31.6	31.2	31.2	31.1	
5	Turbidity	NTU	36	42	36	31	
6	Total Dissolved Solids	mg/l	40770	38329	38644.0	38955.0	
7	Total Suspended Solids	mg/l	766	853	494.2	474	
8	Total Solids	mg/l	41536	39182	39138.2	39429.0	
9	DO	mg/l	4.1	4.7	4.6	4.8	
10	COD	mg/l	98.0	96.0	96.0	98.0	
11	BOD	mg/l	BQL	BQL	BQL	BQL	
12	Silica	mg/l	0.53	0.89	0.75	0.64	
13	Phosphate	mg/l	0.24	0.24	0.21	0.18	
14	Sulphate	mg/l	3456	3732	2820	2424	
15	Nitrate	mg/l	2.75	3.38	2.77	4.31	
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05	
17	Calcium	mg/l	561.12	521.04	480.96	561.12	
18	Magnesium	mg/l	1676.7	1725.3	1773.9	1676.7	
19	Sodium	mg/l	9839.0	10125.0	10118.0	10168.0	
20	Potassium	mg/l	399.0	402.0	387.0	390.0	
21	Iron	mg/l	1.20	1.13	1.45	1.10	
22	Chromium	mg/l	0.11	0.13	0.14	0.14	
23	Copper	mg/l	BQL	BQL	BQL	BQL	
24	Arsenic	mg/l	BQL	BQL	BQL	BQL	
25	Cadmium	mg/l	0.05	0.07	0.07	0.08	

DCPL/DPT/20-21/19 -NOVEMBER - 2021

			Nakti Creek Near Tuna Port				
Sr.	Parameters	Unit	Unit 22°57'49."N 70° 7'0.67"E				
No.			Sprin	g Tide	Neap	Tide	
-	Tide		High Tide	Low Tide	High Tide	Low Tide	
26	Mercury	mg/l	BQL	BQL	BQL	BQL	
27	Lead	mg/l	0.07	0.09	0.10	0.09	
28	Zinc	mg/l	BQL	BQL	BQL	BQL	

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l,Zinc-0.1 mg/l).

Table 35: Marine Water Quality Monitoring Parameters for locationNakti Creek Near NH-8A at Kandla

				Nakti Creek	Near NH-8	Α	
Sr.	Parameters	Unit	23° 02'01"N 70° 09'31"E				
No.			Sprin	g Tide	Nea	o Tide	
	Tide		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.52		7.52		
2	Color	-	Colorless		Colorless		
3	Odor	-	Odorless		Odorless		
4	Salinity	ppt	31.8		32.2		
5	Turbidity	NTU	35		35		
6	Total Dissolved Solids	mg/l	41695		42152.0		
7	Total Suspended Solids	mg/l	684		452		
8	Total Solids	mg/l	42379	Sampling	42604.0	Sampling	
9	DO	mg/l	4.8	not	5.1	not	
10	COD	mg/l	100.0	during Low Tide	94.0	during Low Tide	
11	BOD	mg/l	BQL		BQL		
12	Silica	mg/l	0.96		0.53		
13	Phosphate	mg/l	0.23		0.17	-	
14	Sulphate	mg/l	3780		2376		
15	Nitrate	mg/l	3.24		3.61		
16	Nitrite	mg/l	<0.05		<0.05	-	
17	Calcium	mg/l	480.96		601.2		

			Nakti Creek Near NH-8A						
Sr.	Parameters	Unit	23° 02'01"N 70° 09'31"E						
No.			Sprin	g Tide	Nea	o Tide			
	Tide		High Tide	Low Tide	High Tide	Low Tide			
18	Magnesium	mg/l	1725.3		1628.1				
19	Sodium	mg/l	10308.0	_	10319.0				
20	Potassium	mg/l	409.0	_	364.0				
21	Iron	mg/l	1.20		1.35				
22	Chromium	mg/l	0.11		0.12	-			
23	Copper	mg/l	BQL		BQL				
24	Arsenic	mg/l	BQL	_	BQL				
25	Cadmium	mg/l	0.06		0.06]			
26	Mercury	mg/l	BQL		BQL	1			
27	Lead	mg/l	0.08		0.11	1			
28	Zinc	mg/l	BQL		BQL]			

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l,Zinc-0.1 mg/l).

Table 36: Marine Water Quality Monitoring Parameters for locations Nr.Vadinar Jetty

			Nr.Vadinar Jetty 22°26'25.26"N 69°40'20.41"E					
Sr.	Parameters	Unit						
No.			Sprin	g Tide	Neap	o Tide		
	Tide		High Tide	Low Tide	High Tide	Low Tide		
1	рН	pH unit	7.60	7.70	7.41	7.52		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	31.2	32.0	31.5	31.4		
5	Turbidity	NTU	45	39	42	40		
6	Total Dissolved Solids	mg/l	38510	42661	40025.0	40250.0		
7	Total Suspended Solids	mg/l	585	523	548.9	505		
8	Total Solids	mg/l	39095	43184	40573.9	40755.0		
9	DO	mg/l	4.4	4.6	4.7	4.6		

DCPL/DPT/20-21/19 -NOVEMBER - 2021

			Nr.Vadinar Jetty						
Sr.	Parameters	Unit		22°26'25.26"N 69°40'20.41"E					
No.			Sprin	g Tide	Nea	p Tide			
	Tide		High Tide	Low Tide	High Tide	Low Tide			
10	COD	mg/l	76.0	80.0	72.0	70.0			
11	BOD	mg/l	BQL	BQL	BQL	BQL			
12	Silica	mg/l	0.85	1.02	0.75	0.82			
13	Phosphate	mg/l	0.22	0.25	0.18	0.17			
14	Sulphate	mg/l	2580	2700	2592	2508			
15	Nitrate	mg/l	2.75	3.59	3.67	3.39			
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05			
17	Calcium	mg/l	601.20	521.04	641.28	480.96			
18	Magnesium	mg/l	1603.8	1676.7	1652.4	1676.7			
19	Sodium	mg/l	10968.0	10848.0	11126.0	10829.0			
20	Potassium	mg/l	344.0	382.0	355.0	392.0			
21	Iron	mg/l	1.06	1.70	1.12	1.42			
22	Chromium	mg/l	0.12	0.13	0.14	0.13			
23	Copper	mg/l	BQL	BQL	BQL	BQL			
24	Arsenic	mg/l	BQL	BQL	BQL	BQL			
25	Cadmium	mg/l	0.05	0.04	0.08	0.07			
26	Mercury	mg/l	BQL	BQL	BQL	BQL			
27	Lead	mg/l	0.10	0.08	0.10	0.09			
28	Zinc	mg/l	BQL	BQL	BQL	BQL			

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l, Zinc-0.1 mg/l).

Table 36 (a): Marine Water Quality Monitoring Parameters for locationsNr. Vadinar SPM

			Nr.Vadinar SPM				
Sr.	Parameters	Unit	Unit 22°30'56.15"N 69°42'12.07"E				
No.			Spring	j Tide	Neap Tide		
	Tide		High Tide	Low Tide	High Tide	Low Tide	
1	рН	pH unit	7.40	7.60	7.45	7.26	

			Nr.Vadinar SPM					
Sr.	Parameters	Unit	22°30'56.15"N 69°42'12.07"E					
No.			Spring Tide		Neap	Tide		
	Tide		High Tide	Low Tide	High Tide	Low Tide		
2	Color	-	Colorless	Colorless	Colorless	Colorless		
3	Odor	-	Odorless	Odorless	Odorless	Odorless		
4	Salinity	ppt	32.2	32.1	32.0	31.8		
5	Turbidity	NTU	33.0	34.0	36.0	33.0		
6	Total Dissolved Solids	mg/l	41700.0	41987	40610.0	40925		
7	Total Suspended Solids	mg/l	635.0	480	513.0	548		
8	Total Solids	mg/l	43340.0	43924	41384.0	42000		
9	DO	mg/l	4.3	4.1	4.5	4.3		
10	COD	mg/l	90.0	92.0	78.0	70.0		
11	BOD	mg/l	BQL	BQL	BQL	BQL		
12	Silica	mg/l	0.92	0.96	0.6	0.78		
13	Phosphate	mg/l	0.24	0.25	0.2	0.16		
14	Sulphate	mg/l	2628.0	2364	2316.0	2556		
15	Nitrate	mg/l	3.10	3.38	3.34	3.68		
16	Nitrite	mg/l	<0.05	<0.05	<0.05	<0.05		
17	Calcium	mg/l	481.0	561.12	521.0	561.12		
18	Magnesium	mg/l	1652.4	2065.5	1676.7	1701		
19	Sodium	mg/l	10318	10829	10418	10786		
20	Potassium	mg/l	354	355	377	354		
21	Iron	mg/l	1.60	1.80	1.27	1.90		
22	Chromium	mg/l	0.14	0.14	0.13	0.12		
23	Copper	mg/l	BQL	BQL	BQL	BQL		
24	Arsenic	mg/l	BQL	BQL	BQL	BQL		
25	Cadmium	mg/l	0.05	0.04	0.08	0.08		
26	Mercury	mg/l	BQL	BQL	BQL	BQL		
27	Lead	mg/l	0.09	0.08	0.11	0.09		

DCPL/DPT/20-21/19 -NOVEMBER - 2021

			Nr.Vadinar SPM				
Sr.	Sr. Parameters		22°30'56.15"N 69°42'12.07"E				
No.				j Tide	Neap Tide		
	Tide		High Tide	Low Tide	High Tide	Low Tide	
28	Zinc	mg/l	BQL	BQL	BQL	BQL	

BQL- Below Quantification Limit, (BOD-2.0 mg/l,Cu-0.1 mg/l, As-0.1mg/l, Hg-0.01 mg/l,Zinc-0.1 mg/l).

5.4.1 Marine Sediments

Sediment samples were collected with Van Veen Grab from the six locations in Kandla Port Waters and two locations in Vadinar Port. Samples were collected and preserved in silver foil in ice box to prevent the contamination/decaying of the samples.

5.5 Results

The Sediment Quality results are given in below from table no. 34 A & B.

Table 34A: Results of Analysis of Sediment of Kandla & Vadinar Port(Spring Tide)

Sr. No.	Parameters	Unit	КРТ - 1	КРТ - 2	КРТ - 3	КРТ - 4	КРТ - 5	Jetty	SPM
1	Texture	-	Sandy Loam						
2	Organic Matter	mg/kg	1.72	1.34	1.36	2.74	1.53	2.31	2.00
3	Organic Carbon	mg/kg	0.99	0.78	0.79	1.59	0.89	1.34	1.16
4	Inorganic Phosphate	mg/kg	112.0	121.0	116.0	124.0	128.0	122.0	133.0
5	Moisture	%	29.43	23.11	31.0	27.25	25.69	27.4	43.00
6	Aluminium	mg/kg	ND						
7	Silica	mg/kg	11.2	10.5	12.3	11.4	10.5	13.2	13.00
8	Phosphate	mg/kg	2.57	2.73	9.48	6.12	11.84	5.96	6.68
9	Sulphate	mg/kg	283.0	257.0	411.0	182.0	338.0	209.0	494.7
10	Nitrite	mg/kg	0.12	0.11	0.12	0.12	0.11	0.1	0.11
11	Nitrate	mg/kg	BQL						
12	Calcium	mg/kg	364.7	152.3	505.0	76.2	325.0	225.0	177.0
13	Magnesium	mg/kg	260.0	241.0	158.0	175.0	308.0	58.3	228.4

DCPL/DPT/20-21/19 -NOVEMBER - 2021

14	Sodium	mg/kg	1819.0	2881.0	876.0	1858.0	4022.0	3159.0	8637.0
15	Potassium	mg/kg	119.0	166.0	102.0	113.0	263.0	283.0	1036.7
16	Chromium	mg/kg	60	46.6	51.2	43.2	58	46.40	65.00
17	Nickel	mg/kg	32.1	33.7	24.9	28	32.5	28.00	45.60
18	Copper	mg/kg	39.9	14.6	33	16.8	31.8	26.80	21.00
19	Zinc	mg/kg	81.90	52.70	60.80	42.70	68.70	64.30	65.90
20	Cadmium	mg/kg	2.0	BQL	BQL	BQL	BQL	BQL	BQL
21	Lead	mg/kg	18.50	5.4	9.0	5.70	11.4	10.90	5.20
22	Mercury	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23	Arsenic	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL

*ND - Not Detected, BQL: Below Quantification Limit (NO3:10.0mg/kg, Cd: 1.0mg/kg, Hg: 1.0mg/kg, As: 1.0mg/kg)

Table 34B: Results of Analysis of Sediment of Kandla & Vadinar Port (Neap Tide)

Sr. No.	Parameters	Unit	KPT - 1	КРТ - 2	КРТ - 3	КРТ - 4	КРТ - 5	Jetty	SPM
1	Texture	-	Sandy Loam						
2	Organic Matter	mg/kg	1.12	1.50	2.88	1.41	0.69	1.43	1.69
3	Organic Carbon	mg/kg	0.65	0.87	1.67	0.82	0.40	0.83	0.98
4	Inorganic Phosphate	mg/kg	118.0	126.0	120.0	130.0	128.0	112.0	130.0
5	Moisture	%	17.76	22.98	20.4	14.01	22.6	34.3	32.16
6	Aluminium	mg/kg	ND						
7	Silica	mg/kg	12.0	11.3	10.5	11.3	9.8	11.4	12.60
8	Phosphate	mg/kg	17.14	2.91	7.83	0.49	2.54	15.65	2.20
9	Sulphate	mg/kg	255.0	427.0	290.0	440.0	390.0	564.0	595.0
10	Nitrite	mg/kg	0.1	0.11	0.1	0.11	0.12	0.1	0.11
11	Nitrate	mg/kg	BQL						
12	Calcium	mg/kg	180.0	188.0	172.0	180.0	176.0	116.0	140.0
13	Magnesium	mg/kg	38.9	102.1	82.6	150.7	58.3	158.0	179.8

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Sr.									
No.	Parameters	Unit	KPT - 1	КРТ - 2	КРТ - 3	КРТ - 4	КРТ - 5	Jetty	SPM
14	Sodium	mg/kg	325.0	853.6	743.8	656.1	414.0	1895. 0	1810.0
15	Potassium	mg/kg	25.7	72.3	52.3	52.3	40.0	248.0	307.0
16	Chromium	mg/kg	25.7	38.6	28.6	27.3	31.3	51.90	56.20
17	Nickel	mg/kg	18.0	29.2	20.1	18.4	17.8	32.40	72.70
18	Copper	mg/kg	12.30	20.30	6.70	9.40	7.90	22.20	41.10
19	Zinc	mg/kg	24.90	57.40	32.80	27.90	25.50	46.40	1511.0 0
20	Cadmium	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL
21	Lead	mg/kg	4.60	6.7	7.5	3.70	3.3	24.70	29.60
22	Mercury	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL
23	Arsenic	mg/kg	BQL	BQL	BQL	BQL	BQL	BQL	BQL

*ND - Not Detected, BQL: Below Quantification Limit (NO3:10.0mg/kg,Cd: 1.0mg/kg,Hg: 1.0mg/kg, As: 1.0mg/kg)

REPORT

ΟΝ

ECOLOGICAL MONITORING

OF MARINE ENVIRONMENT

IN

DPTHARBOURAREA, NEAR BY CREEKS

AND

VADINAR JETTY AND SPM

FOR

DEENDAYAL PORT TRUST

November, 2021

INTRODUCTION:

Sampling Stations:

The monitoring of marine environment for the study of biological and ecological Parameters was carried out on19thNovember, 2021 in harbour region of DPT at Kandla Creek, and on 20thNovember, 2021 in creeks near by the port during spring tide. The monitoring of marine environment for the study of biological and ecological parameters was repeated again on 26thNovember, 2021 in harbour region of DPT at Kandla Creek and on27thNovember 2021 in creeks near by the port during neap tidal condition.

Plankton samples from sub surface layer was collected both during high tide period and low tide period from 3 water quality monitoring stations of KPT harbour area and one stations in Nakti creek and one station in Khori creek. Sampling at second sampling station of Nakti creek was possible only during high tide period. The same sampling schedule was repeated during consecutive Neap tide and spring tide in same month.

Plankton samples from sub surface layer were collected during high tide period and low tide period from monitoring station near Vadinar jetty at Path Finder Creek during neap tide on 11/11/2021 and spring tide period on 26/11/2021 Collected water samples were processed for estimation of Chlorophyll- a, Pheophytin- a, qualitative &quantitative evaluation of phytoplankton, qualitative &quantitative evaluation zooplanktons (density and their population).

monitoring requirement	Number of locations
Kandla creek	3 in Kandla creek
Nakti creek	2 in Nakti creek
Khori Creek	1 in Khori creek
Vadinar jetty	1 near Vadinar Jetty
SPM	1 near I st SPM
Total Number of locations	8

TABLE #1 SAMPLING LOCATIONS

Sampling methodology adopted:

A marine sampling is an estimation of the body of information in the population. The theory of the sampling design is depending upon the underlying frequency

distribution of the population of interest. The requirement for useful water sampling is to collect a representative sample of suitable volume from the specified depth and retain it free from contamination during retrieval.

50 litres of the water sample were collected from Sub surface by using bucket. From the collected water sample 1 litres of water sample were taken in an opaque plastic bottle for chlorophyll estimation, thereafter plankton samples were collected by using filtration assembly with nilyobolt cloth of $20\mu m$ mesh size.

Samples Processing for chlorophyll estimation:

Samples for the chlorophyll estimation were preserved in ice box on board in darkness to avoid degradation in opaque container covered with aluminium foil. Immediately after reaching the shore after sampling, 1 litre of collected water sample was filtered through GF/F filters (pore size 0.45 µm) by using vacuum filtration assembly. After vacuum filtration the glass micro fiber filter paper was grunted in tissue grinder, macerating of glass fiber filter paper along with the filtrate was done in 90% aqueous Acetone in the glass tissue grinder with glass grinding tube. Glass fiber filter paper will assist breaking the cell during grinding and chlorophyll content was extracted with 10 ml of 90% Acetone, under cold dark conditions along with saturated magnesium carbonate solution in glass screw cap tubes. After an extraction period of 24 hours, the samples were transferred to calibrated centrifuge tubes and adjusted the volume to original volume with 90% aqueous acetone solution to make up the evaporation loss. The extract was clarified by using centrifuge in closed tubes. The clarified extracts were then decanted in clean cuvette and optical density was observed at wavelength 664, 665 nm. By using corrected optical density, Chlorophyll-a value was calculated as given in (APHA, 1998).

PLANKTON:

The entire area open water in the sea is the pelagic realm. Pelagic organisms live in the open sea. In contrast to the pelagic realm, the benthic realm comprises organisms and zone of the bottom of the sea. Vertically the pelagic realm can be dividing into two zones based on light penetration; upper photic or euphotic zone and lower dark water mass, aphotic zone below the photic zone.

The term plankton is general term for organisms have such limited powers of locomotion that they are at the mercy of the prevailing water movement. Plankton is subdivided to phytoplankton and zooplankton. Phytoplankton is free floating organisms that are capable of photosynthesis and zooplankton is the various free floating animals.

Pelagic zone, represents the entire ocean water column from the surface to the deepest depths, is home to a diverse community of organisms. Differences in their locomotive ability categorize the organisms in the pelagic realm into two, *plankton* and *nekton* (Lalli and Parsons, 1997). *Plankton* consists of all organisms drifting in the water and is unable to swim against water currents, whereas *Nekton* includes organisms having strong locomotive power. Ecological studies on the plankton community, which form the base of the aquatic food chain, help in the better understanding of the dynamics and functioning of the marine ecosystem. The term 'Plankton' first coined by Victor Hensen (1887), Plankton, (Greek word: *planktos*meaning "passively drifting or wandering") is defined as drifting or free-floating organisms that inhabit the pelagic zone of water. Based on their mode of nutrition planktonic organisms are categorised into phytoplankton (organisms having a heterotrophic mode of nutrition).

Phytoplankton in the marine environment:

Phytoplankton is free floating unicellular, filamentous and colonial eutrophic organisms that grow in aquatic environments whose movement is more or less dependent upon water currents. These micro flora acts as primary producers as well as the basis of food chain, source of protein, bio purifier and bio indicators of the aquatic ecosystems of which diverse array of the life depends .They are considered as an important component of aquatic flora, play a key role in maintaining equilibrium between abiotic and biotic components of aquatic ecosystem.

The phytoplankton includes a wide range of photosynthetic and phototrophic organisms. Marine phytoplankton is mostly microscopic and unicellular floating flora, which are the primary producers that support the pelagic food-chain. The two most prominent groups of phytoplankton are diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae). The phytoplankton those normally captured in the net from the Gulf of Kutch is normally dominated by these two major groups; diatoms and dinoflagellates. Phytoplankton also include numerous and diverse collection of extremely small, motile algae which are termed micro flagellates (naked flagellates) as well as and Cyanophytes (blue-green algae).

Algae are an ecologically important group in most aquatic ecosystems and have been an important component of biological monitoring programs. Algae are ideally suited for water quality assessment because they have rapid reproduction

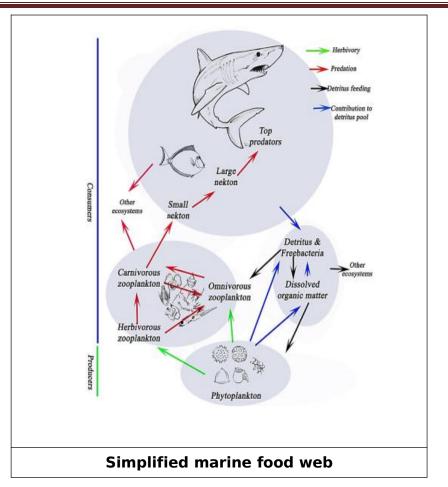
rates and very short life cycles, making them valuable indicators of short-term impacts.

Aquatic populations are impacted by anthropogenic stress, resulting in a variety of alterations in the biological integrity of aquatic systems. Algae can serve as an indicator of the degree of deterioration of water quality, and many algal indicators have been used to assess environmental status.

Zooplankton in the marine environment:

Zooplankton includes a taxonomically and morphologically diverse community of heterotrophic organisms that drift in the waters of the world's oceans. Qualitative and quantitative studies on zooplankton community are a prerequisite to delineate the ecological processes active in the marine ecosystem. Zooplankton community plays a pivotal role in the pelagic food web as the primary consumers of phytoplankton and act as the food source for organisms in the higher trophic levels, particularly the economically essential groups such as fish larvae and fishes. They also function in the cycling of elements in the marine ecosystem. The dynamics of the zooplankton community, their reproduction, and growth and survival rate are all significant factors determining the recruitment and abundance of fish stocks as they form an essential food for larval, juvenile and adult fishes (Beaugrand et al., 2004). Zooplankton grazing in the marine environment controls the primaryProduction and helps in determining the pelagic ecosystem (Banse, 1995). Through grazing in surface waters and following the production of sinking faecal matters and also by the active transportation of dissolved and particulate matter to deeper waters via vertical migration, they help in the transport of organic carbon to deep ocean layers and thus act as key drivers of biological pump' in the marine ecosystem. Zooplankton grazing and metabolism also, transform particulate organic matter into dissolved forms, promoting primary producer community, microbial demineralization, and particle export to the ocean's interior.

The categorisation of zooplankton into various ecological groups is based on several factors such as duration of planktonic life, size, food preferences and habitat. As they vary significantly in size from microscopic to metazoic forms, the classification of zooplankton based on size has paramount importance in the field of quantitative plankton research.


Based on the duration of planktonic life, zooplankton are categorised into Holoplankton (organisms which complete their entire lifecycle as plankton) and Meroplankton (organisms which are planktonic during the early part of their lives such as the larval stages of benthic and nektonic organisms). Tychoplankton are **DCPL/DPT/20-21/19 -NOVEMBER - 2021** organisms which live a brief planktonic life, such as the benthic crustaceans (Cumaceans, mysids, isopods) which ascend to the water column at night for feeding and certain ectoparasitic copepods, they leave the host and spend their life as plankton during their breeding cycle.

Zooplankton can be subdivided into holoplankton, i.e., permanent members of the plankton (e.g., Calanoid copepods), and meroplankton, i.e., temporary members in the plankton e.g., larvae of fish, shrimp, and crab). The meroplankton group consists of larval and young stages of animals that will adopt a different lifestyle once they mature. In contrast to phytoplankton which consist of a relatively smaller variety of organisms, Zooplankton are extremely divers, consist of a host of larval and adult forms representing many animal phylum.

Among the zooplankton one group always dominate than others; members of sub class copepods (Phylum Athropoda) and Tintinids (Phylum Protozoa) among the net planktons. These small animals are of vital importance in marine ecosystem as one of the primary herbivores animals in the sea, and it is they provide vital link between primary producer (autotrophs) and numerous small and large marine consumers.

As their community structure and function are highly susceptible to changes in the environmental conditions regular monitoring of their distribution as well as their interactions with various physicochemical parameters is inevitable for the sustainable management of the ecosystem (Kusum et al., 2014). Of all the marine zooplankton groups, copepods mainly Calanoid copepods are the dominant groups in marine subtropical and tropical waters and exhibit considerable diversity in morphology and habitats they occupy (Madhupratap, 1991;)

It has been well established that potential of pelagic fishes viz. finfishes, crustaceans, molluscs and marine mammals either directly or indirectly depend on zooplankton. The herbivorous zooplankton is efficient grazers of the phytoplankton and is referred to as living machines transforming plant material into animal tissue. Hence they play an essential role as the intermediaries for nutrients/energy transfer between primary and tertiary trophic levels. Due to their large density, shorter lifespan, drifting nature, high group/species diversity and different tolerance to the stress, they used as the indicator organisms for the physical, chemical and biological processes in the aquatic ecosystem (Ghajbhiye, 2002).

Spatial distribution of Plankton:

A characteristic of plankton population is that they tend to occur in patches, which are varying spatially on a scale of few meters to far as few kilometres in distance. They also vary in time scale, season as well as vertically in the water column. It is this patchiness and its constant changes in time and spot, that has made it so difficult for plankton biologist to learn about the ecology of plankton. The biological factors that causes this patchiness is due to the ability of zooplankton to migrate vertically and graze out the phytoplankton at a rapid rate that can create patchiness. Similarly the active swimming ability by certain zooplankton organisms can cause to aggregate in dense group.

At its most extreme, because the water in which plankton is suspended is constantly moving, each sample taken by the plankton biologists remain a different volume of water, so each sample is unique and replicate does not exist.

Plankton may also exhibit vertical patchiness. Physical factors contribute to this type of patchiness include light intensity, nutrients and density gradients in the water column.

Phytoplankton in particular tends to be unequally distributed vertically, which leads to the existence of different concentration of a chlorophyll value between photic zone and below the photic zone.

Methodology adopted for Plankton sampling:

Mixed plankton sample were obtained from the sub surface layer at each sampling locations by towing the net horizontally with the weight .After the tow of about 15-30minutes, plankton net was pulled up and washed down to the tail and collected the plankton adhered to plankton net in the collection bucket at the bottom by springing outer and inner surface of the net with sea water, while the net was hanging with the mouth upward. For quantitative evaluation 50 L water samples were collected from subsurface layer and filtered through 20µm mesh size net by using bucket and filtration assembly.

Preservation and storage:

Both filtered plankton and those collected from the plankton net were preserved with 5% buffered formalin and stored in 1L plastic container for further processing in the laboratory.

Sample concentration:

The collected plankton samples were concentrated by using centrifuge and made up to 50 ml with 5% formalin -Glycerine mixture.

Taxonomic evaluation:

Before processing, the sample was mixed carefully and a subsample was taken with a calibrated Stempel-pipette. 1 ml of the concentrated plankton samples were transferred on a glass slide with automatic pipette. The plankton sample on the glass slides were stained by using Lugol's iodine and added glycerine to avoid drying while observation. The plankton samples were identified by using Labex triangular Research microscope with photographic attachment. Microphotographs of the plankton samples were taken for record as well as for confirming the identification. The bigger sized zooplankton was observed through dissecting stereomicroscope with magnification of 20-30 x. Plankton organisms in the whole slide were identified to the lowest axon possible. A thorough literature search was conducted for the identification of the different groups of zooplankton that were encountered

Cell counts by drop count method:

The common glass slide mounted with a 1ml of concentrated phytoplankton/zooplankton sample in glycerol and covered with cover slip 22x 60mm was placed under the compound microscope provided with a mechanical **DCPL/DPT/20-21/19 -NOVEMBER - 2021**

stage. The plankton was then counted from the microscopic field of the left top corner of the slide. Then slide is moved horizontally along the right side and plankton in each microscopic field was thus counted. When first microscopic field row was finished the next consecutive row was adjusted using the mechanical device of the stage. In this way all the plankton present in entire microscopic field are counted. From this total number in 1ml of the concentrated plankton, total number of plankton in the original volume of sample filtered was calculated as units/L.

BENTHIC ORGANISMS:

Benthos is those organisms that are associated with the sea bed or benthic habitats. Epi- benthic organisms live attached to a hard substratum or rooted to a shallow depth below the surface. In fauna organisms live below the sedimentwater interface. Interstitial organisms live and move in pore water among sedimentary grains.

Because the benthic organisms are often collected and separated on sieves, a classification based on the overall size is used. Macro benthos include organisms whose shortest dimension is greater than or equal to 0.5 mm. Meio benthos are smaller than 0.5mm but larger than 42μ in size.

The terms such as macro fauna and Meio fauna generally have little relevance with taxonomic classification. The terms Meio fauna and macro fauna depend on the size. Meio fauna were considered as good bioassay of community health and rather sensitive indicators of environmental changes

SAMPLING METHODOLOGY ADOPTED FOR SUB TIDAL REGION:

Van veen sampler (0.09m²) was used for sampling bottom sediments. Two sets of sediments were sampled from each location, one for macro fauna and other for Meio fauna. The macro fauna in the sediments were sieved on board to separate out the organisms. The fixation of Meio fauna is normally done by bulk fixation of the sediment sample. The bulk fixation is done by using 10% formalin (Buffered with borate). The organisms were preserved with seawater as diluting agent.

Sample sieving:

Sediments samples were sieved to extract the organisms. Sieving was performed carefully as possible to avoid any damage to the animals. The large portion of the sediment was split in to smaller portions and mixed with sea water in a bucket. The cohesive lumps were broken down by continuous stirring. The disaggregated sediments were then passed through the sieves.

Sample staining: DCPL/DPT/20-21/19 -NOVEMBER - 2021

Sorting of the Meio fauna from the sieve is difficult task especially in the preserved material, because organisms are not easily detectable. To facilitate the animal detection the entire sample retained on the sieve after sieving operation were stained by immersing the sieve in a flat bottom tub with 1% Rose Bangal stain; a protein stain. A staining period of 10-30 minutes is sufficient for sample detection.

DIVERSITY INDICES:

On the whole, diversity indices provide more information about community composition than simply species richness (number of species present); they also, take the relative abundances of different species into account. Based on this fact, diversity indices therefore depend not only on species richness but on the evenness, or equitability, with which individuals are distributed among the different species (Magurram, A. E. (1988)

A diversity index is a measure of species diversity within a community that consists of co-occurring populations of several (two or more) different species. It includes two components: richness and evenness. Richness is the measure of the number of different species within a sample showing that more the types of species in a community, the higher is the diversity or greater is the richness. Evenness is the measure of relative abundance of the different species with in a community.

The basic idea of diversity index is to obtain a quantitative estimate of biological variability that can be used to compare biological entities composed of discrete components in space and time (Carol H.R. *etal.* 1998). Biodiversity is commonly expressed through indices based on species richness and species abundances (Whittaker 1972, Lande 1996, Purvis and Hector 2000). Biodiversity indices are a non-parametric tool used to describe the relationship between species number and abundance. The most widely used bio diversity indices are Shannon Weiner index and Simpson's index.

A diversity Index is a single statistic that incorporates in formation on richness and evenness. The diversity measures that incorporate the two concepts may be termed heterogeneity measures (Magurran, 2004).

Any study intended to interpret causes and effect of adverse impact on Biodiversity of communities require suitable measures to evaluate specie richness and Diversity. The former is number of species in community, while latter is a function of relative frequency of different species. Species richness is the iconic measure of biological diversity (Magurran, 2004). Several indices have been created to measure the diversity of species; however, the most widely used **DCPL/DPT/20-21/19 -NOVEMBER - 2021** in the last decades are the Shannon (1948) and Simpson (1949) (Buzas and Hayek 1996; Gorelick 2006), with the components of diversity: richness (S) and evenness (J)

Simpson's diversity index

Simpson's index (**D**) is a measure of diversity, which takes into account both species richness, and evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available.(Magurran ,2004).

The formula for calculating D is presented as:

$$D = \frac{\sum n_i(n_i-1)}{N(N-1)}$$

Where n_i = the total number of organisms of each individual species

N = the total number of organisms of all species

The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and, 1, no diversity. When D increases diversity decreases. Simpson's index is therefore usually expressed as 1-D or 1/D. (Magurran, 2004)

Low species diversity suggests:

relatively few successful species in the habitat

the environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment

food webs which are relatively simple

change in the environment would probably have quite serious effects High species diversity suggests:

a greater number of successful species and a more stable ecosystem

more ecological niches are available and the environment is less likely to be hostile complex food webs

environmental change is less likely to be damaging to the ecosystem as a whole

Species richness indices

The species richness *(S)* is simply the number of species present in an ecosystem. Species richness Indices of species richness are widely used to quantify or monitor the effects of anthropogenic disturbance. A decline in species richness may be concomitant with severe or chronic human-induced perturbation (Fair Fair weather 1990,) Species richness measures have traditionally been the mainstay in assessing the effects of environmental degradation on the biodiversity of natural assemblages of organisms (Clarke &Warwick, 2001)

Species richness is the iconic measure of biological diversity (Magurran, 2004). The species richness **(S)** is simply the number of species present in an ecosystem. This index makes no use of relative abundances. The term species richness was coined by McIntosh (1967) and oldest and most intuitive measure of biological diversity (Magurran, 2004).

Margalef's diversity index is a species richness index. Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, were derived.

The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of diversity index is maximised when all types are equally abundant (Rosenzweig, M. L. (1995).

Shannon-Wiener's index:

An index of diversity commonly used in plankton community analyses is the Shannon-Wiener's index **(H)**, which emphasizes not only the number of species (richness or variety), but also the apportionment of the numbers of individuals among the species (Odum 1971 and Reish 1984). Shannon-Wiener's index **(H)** reproduces community parameters to a single numberby using an equation.

Shannon and Weiner index represents entropy. It is a diversity index taking into account the number of individuals as well as the number of taxa. It varies from 0 for communities with only single taxa to high values for community with many taxa each with few individuals. This index can also determine the pollution status of a water body. Normal values range from 0 to 4. This index is a combination of species present and the evenness of the species. Examining the diversity in the range of polluted and unpolluted ecosystems, Wilham and Dorris (1968) concluded that the values of the index greater than 3 indicate clean water, values in the range of 1 to 3 are characterized by moderate pollution and values less than 1 characterized heavily are as polluted

$$H' = -\sum_{j=l}^{s} \frac{n_j}{N} \ln\left(\frac{n_j}{N}\right)$$

RESULTS:

CHLOROPHYLL-a:

Water Samples for the chlorophyll estimation were collected from sub surface layer during high tide and low tide period of the tidal cycle for each sampling locations and analysed for Chlorophyll -a and after acidification for Pheophytin -a. Chlorophyll- a value was used as algal biomass indicator (APHA,1998) Algal biomass was estimated by converting Chlorophyll value.

In the sub surface water chlorophyll-a was varying from 0.559 -0.868 mg/m³.in harbour region of DPT in Kandla Creek during sampling done in spring tide period of November, 2021. In the nearby creeks chlorophyll-a was varying from 0.246 -0.954 mg/m³.Pheophytin –a level was below detectable limit- the all the sampling stations during springtide

In the sub surface water chlorophyll-a was varying from 0.535 -0.921mg/m³.in harbour region of DPT in Kandla Creek during sampling done in neap tide period of November , 2021 . In the nearby creeks chlorophyll-a was varying from 0.425 -1.923 mg/m³. Pheophytin –a level was below detectable limit- the all the sampling stations except KPT-4 Khori-I during low tide and high tide and KPT-5 Nakti-I during High tide period.

In the sub surface water chlorophyll-a was varying from 0.393 -0.338 mg/m³.in harbour region of DPT OOT in path finder Creek during sampling done in spring tide period ofNovember, 2021. In the sub surface water chlorophyll-a was varying from 1.356 -0.500 mg/m³.in harbour region of DPT OOT in path finder Creek during sampling done in Neap Tide period of November, 2021

In the sub surface water chlorophyll-a was varying from 0.424 -0.290 mg/m³.in SPM region of DPT OOT in path finder Creek during sampling done in spring tide period of November, 2021. In the sub surface water chlorophyll-a was varying from 0.703 -0.409 mg/m³.in SPM region of DPT OOT in path finder Creek during sampling done in Neap Tide period of November, 2021

TABLE #2 VARIATIONS IN CHLOROPHYLL -a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA IN KANDLA CREEK ,NEAR BY CREEKS AND DPT OOT JETTY IN PATH FINDER CREEK AND SPM NEAR VADINAR DURING SPRING TIDE IN NOVEMBER,2021

Sr. No	Station	Tide	Chlorophyll- a (mg/m ³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chloroph yll method) mg/m ³				
DPT HARBOUR AREAKANDLA CREEK									
1	KDT1	High tide	0.748	BDL	50.15				
1	KPT1	Low tide	0.559	BDL	37.45				
2	KPT 2	High tide	0.677	BDL	45.36				
2	KPT Z	Low tide	0.764	BDL	51.19				
3	KPT 3	High tide	0.835	BDL	55.94				
5	NFT J	Low tide	0.868	BDL	58.16				
		C	REEKS						
4	KPT-4 Khori-l	High tide	0.661	BDL	44.29				
4	NF1-4 NH0H-I	Low tide	0.720	BDL	48.24				
5	KPT-5 Nakti-I	High tide	0.848	BDL	56.82				
5		Low tide	0.954	BDL	63.92				
6	KPT-5 Nakti-II	High tide	0.246	BDL	16.48				
		PATHFINDE	R CREEK VADINA	२					
7	VADINAR-I jetty	Low tide	0.393	BDL	26.33				
8	VADINAR-I JELLY	High tide	0.338	BDL	22.65				
9	SPM	High tide	0.424	BDL	28.41				
10	SPM	Low tide	0.290	BDL	19.43				

BDL: Below Detectable Limit.

TABLE #3 VARIATIONS IN CHLOROPHYLL -a PHEOPHYTIN- a AND ALGAL BIOMASS FROM SAMPLING STATIONS IN DPT HARBOUR AREA , NEAR BY CREEKS AND DPT OOT JETTY IN PATH FINDER CREEK AND SPM NEAR VADINARDURING NEAP TIDE IN NOVEMBER,2021

Sr. No	Station	Tide	Chlorophyll- a (mg/m ³)	Pheophytin- a (mg/m ³)	Algal Biomass (Chloroph yll method) mg/m ³				
DPTHARBOUR AREAKANDLA CREEK									
1	KDT1	High tide	0.748	BDL	50.12				
1	KPT1	Low tide	0.535	BDL	35.85				
2	2 KPT 2	High tide	0.713	BDL	47.77				
2		Low tide	0.713	BDL	47.77				
3	KPT 3	High tide	0.882	BDL	59.09				
5	KFTJ	Low tide	0.921	BDL	61.71				
		C	CREEKS						
4	KPT-4 Khori-l	High tide	1.669	0.484	111.82				
4		Low tide	1.178	0.380	78.93				
5	KPT-5 Nakti-I	High tide	1.923	0.570	128.84				
		Low tide	0.882	BDL	59.09				
6	KPT-5 Nakti-II	High tide	0.425	BDL	28.47				
		PATHFINDE	R CREEK VADINA						
7	VADINAR-I jetty	Low tide	1.356	0.415	90.85				
8	VADINAR-I Jetty	High tide	0.500	BDL	33.50				
9	SPM	High tide	0.703	BDL	47.10				
10	SPM	Low tide	0.409	BDL	27.40				

BDL: Below Detectable Limit.

PHYTOPLANKTON POPULATION:

For the evaluation of the Phytoplankton population in DPT harbour area and within the immediate surroundings of the port, sampling was conducted from 5 sampling locations (3 in harbour area and two in Nakti creek) during high tide period and low tide period of spring tide and neap tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by; Diatoms blue green algae and dinoflagellatesduring spring tide period.Diatoms were represented by 16genera. Blue green were represented by 2 genera and dinoflagellates were represented by two generaduring the sampling conducted in spring tide in November,2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area

and nearby creeks was varying from 43-198 units/ L during high tide period and 133-220 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the harbour and nearby creeks was represented by Diatoms, Blue green algae and Dinoflagellates duringNeap tide period. Diatoms were represented by 20genera Blue green algae were represented 1genera and Dinoflagellates with two genera during the sampling conducted in Neap tide in November, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area and nearby creeks was varying from83-327 units/ L during high tide period and 108 -252 units/ L during low tide of Neap Tide.

For the evaluation of the Phytoplankton population in DPT OOT jetty area in Path Finder creek sampling was conducted from one sampling locations ; jetty area during high tide period and low tide of spring tide. For the evaluation of the Phytoplankton population in DPTOOT jetty area in Path Finder creek in Vadinar sampling was conducted from 2 sampling locations ; jetty area and one near SPM during high tide period and low tide of Neap tide.

The phytoplankton community of the sub surface water in the path finder creeks was represented by only Diatoms spring tide period. Diatoms were represented by 11 genera during the sampling conducted in spring tide in November, 2021. Phytoplankton of the sampling stations at sub surface layer in the harbour area was varying from 162 units/ L during high tide period and 178 units/ L during low tide of Spring Tide. Phytoplankton of the sampling stations at sub surface at sub surface layer in the SPM area was varying from 154 units/ L during high tide period and 130 units/ L during low tide of Spring Tide.

The phytoplankton community of the sub surface water in the path finder creeks was represented by Diatoms, and Dinoflagellatesduring Neap tide period. Diatoms were represented by 15 generaand dinoflagellates by two genera during the sampling conducted in Neap tide in November, 2021. Phytoplankton of the sampling stations at sub surface path finder creek nearOOT Jetty was varying from 227 units/ L during high tide period and 182 -744 units/ L during low tide of Neap Tide. Phytoplankton of the sampling stations at sub surface path finder stations at sub surface path finder tide period and 182 -744 units/ L during low tide of Neap Tide. Phytoplankton of the sampling stations at sub surface path finder tide period and 158 units/ L during low tide of Neap Tide.

Species Richness Indices and Diversity Indices: Margalef's diversity index (Species Richness)S

DCPL/DPT/20-21/19 -NOVEMBER - 2021

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek and nearby creeks sampling stations was varying from 1.595-3.091 with an average of 2.396during the sampling conducted in High tide period of spring tide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek region and nearby creeks was varying from2.236 -2.863 with an average of 2.554 during the consecutive low tide period.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations in Kandla creek and nearby creeks was varying from 2.339-2.984 with an average of 2.696 during the sampling conducted in High tide period of Neaptide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the Kandla creek region and nearby creeks was varying from2.450-2.713 with an average of 2.624 during consecutive low tide.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was 1.769 at OOT jetty area and 1.588 at SPM area during the sampling conducted in High tide period of spring tide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the path finder creeknear OOT jetty was 1.737 and 1.644 at SPM during the consecutive low tide period.

Margalef's diversity index (Species Richness) S of phytoplankton communities in the stations was 2.561 at OOT jetty area and 2.370 at SPM area during the sampling conducted in High tide period of Neap tide. While Margalef's diversity index (Species Richness) S of phytoplankton communities in the path finder creek near OOT jetty was 2.114 and SPM area was 2.195 during the consecutive low tide period.

Shannon-Wiener's index:

Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.727-0.907 (H'(log10)) between selected sampling stations with an average value of 0.805 during high tide period of spring tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.787 -0.895 (H'(log10)) **DCPL/DPT/20-21/19 -NOVEMBER - 2021**

Environmental Monitoring Report of Deendayal Port Trust, November-2021

between selected sampling stations with an average value of 0.853 during consecutive low tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.695 -0.931 (H'(log10)) between selected sampling stations with an average value of 0.823 during high tide period of neap tide at Kandla creek and nearby creeks. Shannon-Wiener's Index (H) of phytoplankton communities in the sampling stations was in the range of 0.759-0.867 (H'(log10)) between selected sampling stations with an average value of 0.810 during consecutive low tide at Kandla creek and nearby creeks.

Shannon-Wiener's Index (H) of phytoplankton communities in the stations was 0.798 atOOT jetty area and 0.7551 at SPM area during the sampling conducted in High tide period of spring tide. While Shannon-Wiener's Index (H) of phytoplankton communities in the path finder creek near OOT jetty was 0.715 and 0.771 at SPM during the consecutive low tide period.

Shannon-Wiener's Index (H) of phytoplankton communities in the stations was 0.787 at OOT jetty area and 0.7330 at SPM area during the sampling conducted in High tide period of Neap tide. While Shannon-Wiener's Index (H) of phytoplankton communities in the path finder creek near OOT jetty was 0.729 and at SPM area was 0.712 during the consecutive low tide period.

Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of phytoplankton of Kandla Harbour region and nearby creeks is less but with abundant population of few, with relatively few ecological niches and only very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.742- 0.830 between selected sampling stations with an average of 0.788 during high tide period of spring tide. Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks, which was varying from 0.786- 0.832 **DCPL/DPT/20-21/19 -NOVEMBER - 2021**

between selected sampling stations with an average of 0.809during consecutive low tide .

Simpson diversity index (1-D) of phytoplankton communities was below 0.9 at all sampling stations in Kandla Harbour region and nearby creeks, during high tide period and low tide period during neap tide also, which was varying from 0.664-0.841 with an average value of 0.774 between selected sampling stations during high tide period and varying from 0.732-0.824 with an average value of 0.771 between selected sampling stations during consecutive low tide period Low species diversity suggests a relatively few successful species in this habitat.

Simpson diversity index (1-D) of phytoplankton communities in the stations was 0.813 atOOT jetty area and 0.779 at SPM area during the sampling conducted in High tide period of spring tide at Path finder creek . While Simpson diversity index (1-D) of phytoplankton communities in the path finder creek near OOT jetty was 0.753 and 0.794 at SPM during the consecutive low tide period in the path finder creek.

Simpson diversity index (1-D) of phytoplankton communities in the stations was 0.765 at OOT jetty area and 0.737 at SPM area during the sampling conducted in High tide period of Neap tide at Path finder Creek. While Simpson diversity index (1-D) of phytoplankton communities in the path finder creek near OOT jetty was 0.738 and at SPM area was 0.708 during the consecutive low tide period.

Low species diversity suggests a relatively few successful species in this habitat. The environment is quite stressful with relatively few ecological niches and only a few organisms are really well adapted to that environment. Any change in the environment would probably have quite serious effects.

Table # 4PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND ,NEAR BY CREEKS DURING SPRING TIDE IN NOVEMBER,2021

Tide	Samplin g Station	Abundanc e In units/L	No of Species observe d /total species	% of diversit y	Margalef 's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson' s Index) 1-D
	1	177	17/20	85	3.091	0.9004	0.8193
	2	152	16/20	80	2.986	0.9067	0.8305
HIGH	3	192	11/20	55	1.902	0.7268	0.7421
TIDE	4	167	13/20	65	2.345	0.7525	0.7454
	5	198	14/20	70	2.458	0.7886	0.7683
	6	43	7/20	35	1.595	0.7583	0.825
	1	133	15/20	75	2.863	0.8948	0.8214
	2	153	15/20	75	2.783	0.893	0.832
LOW TIDE	3	190	14/20	70	2.478	0.8679	0.8106
	4	137	12/20	60	2.236	0.8213	0.7966
	5	220	14/20	70	2.41	0.7872	0.786

Table # 5 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND ,NEAR BY CREEKS DURING NEAP TIDE IN

NOVEMBER,2021

Tide	Samplin g Station	Abundan ce In units/L	No of Species observe d /total species	% of diversit y	Margalef 's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson 's Index) 1-D
	1	131	15/24	62.5	2.872	0.9308	0.8406
	2	120	13/24	54.16	2.507	0.8561	0.8136
HIGH	3	213	17/24	70.83	2.984	0.8315	0.7733
TIDE	4	259	14/24	58.33	2.339	0.7394	0.7223
	5	327	17/24	70.83	2.763	0.6955	0.6641
	6	83	13/24	54.16	2.716	0.8861	0.8316
	1	108	13/24	54.16	2.563	0.791	0.7606
	2	134	13/24	54.16	2.45	0.8677	0.8239
LOW TIDE	3	177	15/24	62.5	2.705	0.7892	0.7325
	4	252	16/24	66.66	2.713	0.7591	0.7444
	5	182	15/24	62.5	2.69	0.8458	0.7939

Table # 6 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLINGSTATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND , NEAR BYCREEKS DURING SPRING TIDE IN NOVEMBER, 2021

Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplankt on Group range Units/L	Genera or species /total Phyto plankto n	Taxon Diversit y % (Group level)
		e 6	DIATOMS	41-197	16/20	80
			BLUE GREEN	0-4	2/20	10
HIGH TIDE	Sub surface		DINOFLAGELLAT ES	0-3	2/20	10
TIDE			TOTAL PHYTO PLANKTON	43-198	20	-
			DIATOMS	129-216	16/20	80
			BLUE GREEN	0-4	2/20	10
LOW TIDE	Sub surface	···· 5	DINOFLAGELLAT ES	0-2	2/20	10
	Surrace		TOTAL PHYTO PLANKTON	133-220	20	-

Table # 7 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLINGSTATIONS IN DPT HARBOUR AREA AT KANDLA CREEK AND , NEAR BYCREEKS DURING NEAP TIDE IN NOVEMBER,2021

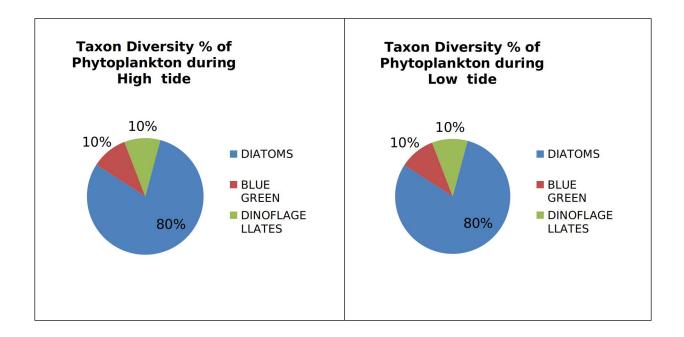
Tide	Surface	No of Sampling location	Group of phytoplankton	Phytoplan kton Group range Units/L	Genera or species /total Phyto plankto n	Taxon Diversit y % (Group level)
		6	DIATOMS	81-326	21/24	87.6
			BLUE GREEN	0-2	1/24	4.16
HIGH TIDE	Sub surface		DINOFLAGELLAT ES	0-2	2/24	8.33
			TOTAL PHYTO PLANKTON	83-327	24	
			DIATOMS	108-251	21/24	87.6
			BLUE GREEN	0-2	1/24	4.16
LOW TIDE	Sub surface	5	DINOFLAGELLAT ES	0-1	2/24	8.33
			TOTAL PHYTO PLANKTON	108-252	24	

Table # 8 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT OOTAT PATH FINDER CREEK, VADINAR &NEAR BY SPM, DURING SPRING TIDE IN NOVEMBER, 2021

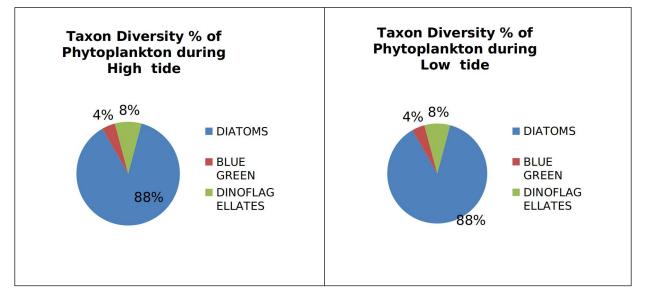
Tide	Samplin g Station	Abundan ce In units/L	No of Species observe d /total species	% of diversit y	Margalef 's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson 's Index) 1-D
HIGH	jetty	162	10/11	90.90	1.769	0.7989	0.8132
TIDE	SPM	178	10/11	90.90	1.737	0.7149	0.7536
LOW	jetty	154	9/11	81.82	1.588	0.7441	0.7796
TIDE	SPM	130	9/11	81.82	1.644	0.7712	0.7937

Table # 9 PHYTOPLANKTON VARIATIONS IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT OOTAT PATH FINDER CREEK , VADINAR & NEAR BY SPM, DURING NEAP TIDE IN NOVEMBER, 2021

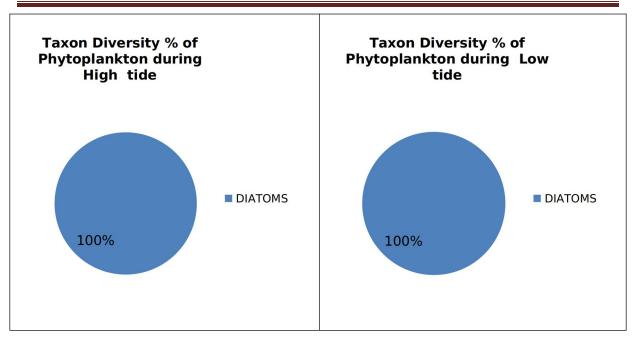
Tide	Samplin g Station	Abundance In units/L	No of Species observe d /total species	% of diversi ty	Margalef' S diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson' s Index) 1-D
HIGH	Jetty	227	15/17	88.24	2.581	0.7875	0.7647
TIDE	SPM	182	12/17	70.59	2.114	0.7288	0.7383
LOW TIDE	Jetty	158	13/17	76.47	2.37	0.733	0.7374
	SPM	150	12/17	70.59	2.195	0.7123	0.7087

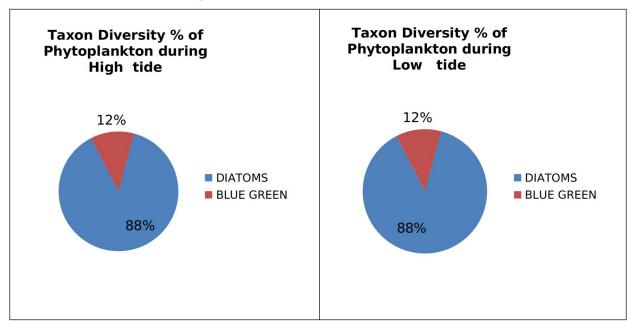

Table # 10 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLING STATIONS IN DPT DPTOOT AT PATH FINDER CREEK, VADINAR & NEAR BY SPM, DURING SPRING TIDE IN NOVEMBER, 2021

Tide	Surfac e	No of Sampli ng location	Group of phytoplankton	Phytoplankt on Group range Units/L	Genera or species /total Phyto plankto n	Taxon Diversit y % (Group level)
HIGH			DIATOMS	162-178	11/11	100
TIDE	Sub surface		TOTAL PHYTO PLANKTON	162-178	11	
	<u> </u>		DIATOMS	130-154	11/11	100
LOW TIDE	Sub surface	1	TOTAL PHYTO PLANKTON	130-154	11	


Table # 11 ABUNDANCE OF PHYTOPLANKTON SUBSURFACE SAMPLINGSTATIONS IN DPT DPTOOT AT PATH FINDER CREEK , VADINAR & NEARBY SPM, DURING NEAP TIDE IN NOVEMBER, 2021

Tide	Surfac e	No of Samplin g location	Group of phytoplankton	Phytoplankt on Group range Units/L	Genera or species /total Phyto plankto n	Taxon Diversit y % (Group level)
			DIATOMS	182-226	15/17	88.24
HIGH TIDE	Sub surface		DINOFLAGELLATES	0-1	2/17	11.76
TIDE	surrace		TOTAL PHYTO PLANKTON	182-227	17	
			DIATOMS	148-157	15/17	88.24
LOW	LOW Sub	2	DINOFLAGELLATES	0-1	2/17	11.76
TIDE	surface		TOTAL PHYTO PLANKTON	148-158	17	


Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide in Kandala creek and nearby creeks


Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide in Kandala creek and nearby creeks

Taxon Diversity % of Phytoplankton during High tide and Low tide period during spring tide in Path Finder Creek, Vadinar

Taxon Diversity % of Phytoplankton during High tide and Low tide period during Neap tide in Path Finder Creek, Vadinar

ZOOPLANKTON POPULATION:

For the evaluation of the Zooplankton population in DPT harbour area and within the immediate surroundings of the port sampling was conducted from 6 sampling locations (3 in harbour area and two in Nakti creek and one in Khoricreek) during high tide period and low tide period of spring tide and Neap tide in November,2021. The Zooplankton community of the sub surface water in **DCPL/DPT/20-21/19 -NOVEMBER - 2021**

the harbour and nearby creeks during spring tide was represented by mainly 4 groups, and 5 larval forms; Tintinids, Copepods,Rotifers, Urochordatesand larval forms represented from the group of Crustacea, Molluscansand Polychaetes. The Zooplankton community of the sub surface water in the harbour and nearby creeks during neap tide was represented by mainly Six groups, Tintinids, Copepods, Arrow worms, Mysids, Urochordata, Ciliates and unidentified Cnidarian member and larval forms of Crustacea Molluscans and Echinodermata Larvae Polychaete Larvae..,

Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 25-106x10³ N/ m³ during high tide and 58-85x10³ N/ m³during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT harbour area and nearby creek was varying from 40-143 x10³ N/ m³ during high tide and83-129x10³ N/ m³during low tide of Neap Tide period.

For the evaluation of the Zoo plankton population in DPT OOT jetty area in Path Finder creek and SPM in Vadinar selected 2 sampling locations (1 in jetty area and one near SPM) Duringspring tide sampling plankton sample were collected only at Jetty area during consecutive high tide period and low tide period. During Neap tide sampling Plankton samples were collected from jetty area and SPM during consecutive high tide period and low tide period.

The Zooplankton community of the sub surface water in the path finder creek creeks during spring tide was represented by mainly Titinids , Copepods and larval forms of Crusracens, Molluscs and Polychaetes .The Zooplankton community of the sub surface water in the path Finder creeks at Jetty region and SPM during neap tide was represented by mainly three groups, Tintinids, Copepods , Urochordates and , five Larval forms were represented from the major group of Crustaceans , Molluscans , and Polychaetes,.

Zooplankton of the sampling stations at sub surface layer in the DPT OOTjetty area of path finder creek was 87 x103 N/ m³ during high tide and 117 x103 N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT SPM area of path finder creek was 85 x10³ N/ m³ during high tide and 109 x10³ N/ m³ during low tide of Spring Tide period. Zooplankton of the sampling stations at sub surface layer in the DPT OOT jetty area in path finder creekwas recorded 54x10³ N/ m³during high tide and 86x10³ N/ m³ during consecutive low tide period of Neap . Zooplankton of the sampling

stations at sub surface layer in the DPT SPM area in path finder creek was recorded 72 $\times 10^3$ N/ m³ during high tide and 92 $\times 10^3$ N/ m³ during consecutive low tide period of Neap Tide .

Species Richness Indices and Diversity Indices:

Margalef's diversity index (Species Richness)S

At the organismal level, the most widely used biodiversity measures are those based on the number of species present, perhaps adjusted for the number of individuals sampled, Here Margalef's Species richness index (d), or indices that describe the evenness of the distribution of the numbers of individuals among species, are derived.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the stations Kandla creek region and nearby creeks was varying from 1.733-2.796 with an average of 2.196 during the sampling conducted in High tide period. Margalef's diversity index (Species Richness) S of Zooplankton communities varying from.1.871-2.217 with an average of 2.026 during the sampling conducted in low tide period during Spring tide.

Margalef's diversity index (Species Richness) S of Zooplankton communities in the Kandla creek region and nearby creeks sampling stations was varying from2.771-3.983with an average of 3.445 during the sampling conducted in high tide and varying from2.635- 3.054 with an average of 3.049 during the sampling conducted in low tide during Neap tide period

Margalef's diversity index (Species Richness) S of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted inconsecutive High tide period and low tide of spring tide was recorded as 1.769 and 1. 588 respectively..

Margalef's diversity index (Species Richness) S of Zooplankton communities near SPmat Path finder creek was varying from 2.256-2.572 during the sampling conducted in High tide period of Neap tide. While Margalef's diversity index (Species Richness) S of Zooplankton communities in the two stations at Path finder creek was varying from2.020- 1.769 during the consecutive low tide period. **Shannon-Wiener's index:**

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.725-0.945 (H'(log10)) between selected sampling stations with an average value of 0.811 (H'(log10)) during high tide period of spring tide. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour

region and nearby creeks was in the range of 0.703-0.884 (H'(log10)) between selected sampling stations with an average value of 0.780 (H'(log10)) during consecutive low tide period.

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.782-1.119 (H'(log10)) between selected sampling stations with an average value of 1.000 (H'(log10)) during high tide period of Neap tide. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling stations in Kandla Harbour region and nearby creeks was in the range of 0.855-1.059 (H'(log10)) between selected sampling stations with an average value of 0.950(H'(log10)) during consecutive low tide period.

Shannon-Wiener's Index (H) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 0.799 and 0.7441 respectively.. Shannon-Wiener's Index (H) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of Neap tide was recorded as 0.742 and 0.709 respectively

Shannon-Wiener's Index (H) of Zooplankton communities in the two stations at Path finder creek was varying from 0.715-0.798 during the sampling conducted in High tide period of Spring tide. While Shannon-Wiener's Index (H)of Zooplankton communities in the two stations at Path finder creek was varying from -0.771-0.7441during the consecutive low tide period.

Shannon-Wiener's Index (H) of Zooplankton communities in the two stations at Path finder creek was varying from 0.743-0.849 during the sampling conducted in High tide period of Neap tide. While Shannon-Wiener's Index (H) of Zooplankton communities in the two stations at Path finder creek was varying from -0.641 - 0.709 during the consecutive low tide period.

Typical values are generally between 1.5 and 3.5 in most ecological studies, and the index is rarely greater than 4. The Shannon-Wiener's index increases as both the richness and the evenness of the community increase. This result indicates that diversity of Zooplankton of Kandla Harbour region and nearby creeks stations is slightly high with very minimum diverse population but very few opportunist organisms are really well adapted to this environment and thrive better than other species.

Simpson's diversity index:

Simpson's index (D) is a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present. The Simson index is one of the meaningful and robust biodiversity measures available. (Magurran, 2004).

Simpson diversity index (1-D) of Zooplankton communities was below 0.9 most of sampling stations in the Kandla Harbour region and nearby creeksduring high tide and low tide of spring tide period, which was varying from 0.751-0.910between selected sampling stations with an average of 0.804 during high tide period and was varying from 0.722- 0.854 with an average value of 0.780 between selected sampling stations during low tide

Simpson diversity index (1-D) of Zooplankton communities was blow 0.9 at all sampling stations in the Kandla Harbour region and nearby creeks except few during high tide and low tide period, which was varying from 0.766 - 0.912 between selected sampling stations with an average of 0.863 during high tide period and was varying from 0.795- 0.896 with an average value of 0.843 between selected sampling stations during consecutive low tide

This low species diversity suggests a relatively few of successful species in this habitat during November, 2021 sampling.

Simpson diversity index (1-D) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 0.813and 0.779 respectively. Simpson diversity index (1-D) of Zooplankton communities in the sampling station near SPM at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of spring tide was recorded as 0.753 and 0.779 respectively.

Simpson diversity index (1-D) of Zooplankton communities in the sampling station near jetty at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of Neap tide was recorded as 0.778 - 0.729 respectively. Simpson diversity index (1-D) of Zooplankton communities in the sampling station near SPM at Path Finder Creek, Vadinar during the sampling conducted in consecutive High tide period and low tide of and low tide of spring tide was recorded as 0.817 and 0.697 respectively.

Table # 12 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITYIN SUB SURFACE SAMPLING STATIONS IN DPT HARBOUR AREA ATKANDLA CREEK AND NEAR BY CREEKS DURING SPRING TIDE IN

Tide	Samplin g Station	Abundance In Nx10 ³ / m ³	No of Species/gr oups observed /total species/gro up	% of diversi ty	Margalef' s diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson' s Index) 1-D
	1	75	10/16	62.5	2.085	0.7569	0.751
	2	82	11/16	68.75	2.269	0.8385	0.8154
HIGH	3	66	10/16	62.5	2.148	0.8294	0.8224
TIDE	4	106	11/16	68.75	2.144	0.7752	0.7641
	5	101	9/16	56.25	1.733	0.7251	0.7651
	6	25	10/16	62.5	2.796	0.9451	0.91
	1	69	9/16	56.25	1.889	0.8145	0.809
	2	58	10/16	62.5	2.217	0.8838	0.8542
LOW TIDE	3	72	9/16	56.25	1.871	0.7031	0.7218
	4	69	10/16	62.5	2.126	0.7896	0.7899
	5	85	10/16	62.5	2.026	0.7112	0.7272

NOVEMBER,2021

Table # 13 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITYIN SUB SURFACE SAMPLING STATIONS IN DPT HARBOUR AREAATKANDLA CREEK AND NEAR BY CREEKS DURING NEAP TIDE IN NOVEMBER,

Tide	Sampling Station	Abundance In No x10³/ m³	No of Species/gro ups observed /total species/gro up	% of diversit y	Margalef's diversity index (Species Richness S)	Shanno n Weiner index H (log ₁₀₎	Diversity Index (Simpson' s Index) 1-D
	1	118	20/28	71.42	3.983	1.119	0.9122
	2	102	17/28	60.71	3.459	0.9987	0.875
HIGH	3	108	19/28	67.86	3.844	1.085	0.8974
TIDE	4	143	18/28	64.29	3.425	1.118	0.9087
	5	101	16/28	57.14	3.25	0.9028	0.8212
	6	40	11/28	39.29	2.711	0.7823	0.7667
	1	83	13/28	46.43	2.716	0.8552	0.7949
	2	128	18/28	64.29	3.504	1.059	0.8958
LOW TIDE	3	129	18/28	64.29	3.498	1.055	0.8815
	4	89	14/28	50	2.896	0.8648	0.7975
	5	95	13/28	46.43	2.635	0.9189	0.8434

DCPL/DPT/20-21/19 -NOVEMBER - 2021

2021

Table # 14 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLINGSTATIONS IN DPT HARBOUR AREAATKANDLA CREEK AND ,NEAR BY
CREEKS DURING SPRING TIDE IN NOVEMBER,2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankto n ×10 ³ Group Range	Genera or species /total Zooplankto n	Taxon Diversity % (Group level)
			Tintinids	3-13	3/16	18.75
			Copepods	11-40	6/16	37.5
			Rotifers	0-2	1/16	6.25
HIGH Sub	6	Urochordata	1-4	1/16	6.25	
TIDE	TIDE surface	Ū	Larval forms	5-52	5/16	31.25
			TOTAL ZOOPLANKTON N/ M ³	25-106	16	
			Tintinids	5-9	3/16	18.75
			Copepods	20-27	6/16	37.5
			Rotifers	0	1/16	6.25
LOW	Sub	5	Urochordata	0-4	1/16	6.25
TIDE	surface		Larval forms	30-53	5/16	31.25
			TOTAL ZOOPLANKTON N/M ³	58-85	16	

Table # 15 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLINGSTATIONS IN DPT HARBOUR AREA IN KANDLA CREEK AND , NEAR BY
CREEKS DURING NEAP TIDE IN NOVEMBER, 2021

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankto n ×10 ³ Group Range	Genera or species /total Zooplankto n	Taxon Diversity % (Group level)
			Tintinids	7-36	5/28	17.86
			Copepods	11-49	8/28	28.58
			Mysids	0-1	2/28	7.14
			Arrow worms	0-2	1/28	3.57
HIGH Sub		Urochordata	0-2	1/28	3.57	
TIDE		6	Ciliates	0-4	1/28	3.57
HDL	Sunace		Medusa	0-4	1/28	3.57
			Larval forms	20-58	7/28	25
			Foraminiferans	0-4	2/28	7.14
			TOTAL ZOOPLANKTON N/M ³	40-143	28	
			Tintinids	10-32	5/28	17.86
			Copepods	17-54	8/28	28.58
			Mysids	0-2	2/28	7.14
LOW	Sub	5	Arrow worms	0-1	1/28	3.57
TIDE	TIDE surface	5	Urochordata	0-2	1/28	3.57
			Ciliates	0-1	1/28	3.57
			Medusa	0-1	1/28	3.57
			Larval forms	50-62	7/28	25

Environmental Monitoring Report of Deendayal Port Trust, November-2021

Foraminiferans	0-3	2/28	7.14
Total Zooplankton N/M3		28	

Table # 16 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY

IN SUB SURFACE SAMPLING STATIONS IN DPT OOT AREA AT PATH

FINDER CREEK AND NEAR BY SPM DURING SPRING TIDE IN

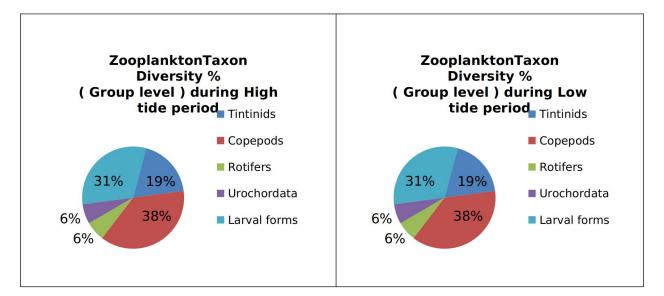
NOVEMBER,2021

Tide	Samplin g Station	Abundanc e In x10 ³ N / m ³	No of Species/gro ups observed /total species/gro up	% of diversit y	Margalef' s diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpso n's Index) 1-D
HIGH TIDE	Jetty	87	11/13	84.62	2.239	0.6821	0.6864
TIDE	SPM	85	12/13	92.31	2.476	0.7967	0.788
LOW	Jetty	117	10/13	76.92	1.89	0.7264	0.7265
TIDE	SPM	109	10/13	76.92	1.918	0.6599	0.6624

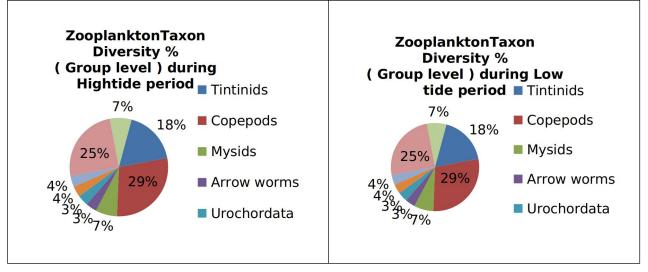
Table # 17 ZOOPLANKTON VARIATION IN ABUNDANCE AND DIVERSITY IN SUB SURFACE SAMPLING STATIONS IN DPT OOT AREA AT PATH FINDER CREEK AND NEAR BY SPM DURING NEAP TIDE IN NOVEMBER.2021

Tide	Sampling Station	Abundanc e In N×10³/ m³	No of Species/gro ups observed /total species/gro up	% of diversit y	Margalef' s diversity index (Species Richness S)	Shannon Weiner index H (log ₁₀₎	Diversity Index (Simpso n's Index) 1-D			
HIGH	Jetty	227	15/17	88.23	2.581	0.7875	0.7647			
TIDE	SPM	182	12/17	70.59	2.114	0.7288	0.7383			
LOW	Jetty	158	13/17	76.47	2.37	0.733	0.7374			
TIDE	SPM	150	12/17	70.59	2.195	0.7123	0.7087			

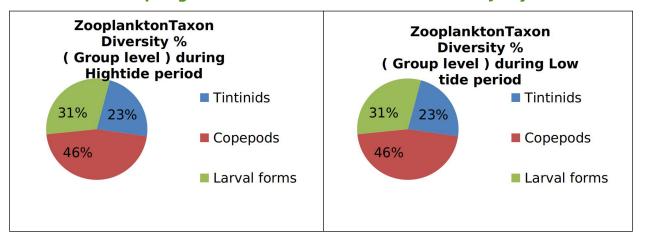
Table # 18 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLINGSTATIONS IN DPT OOT AREAAT PATH FINDER CREEK AND NEAR BY SPMDURING SPRING TIDE IN NOVEMBER,2021

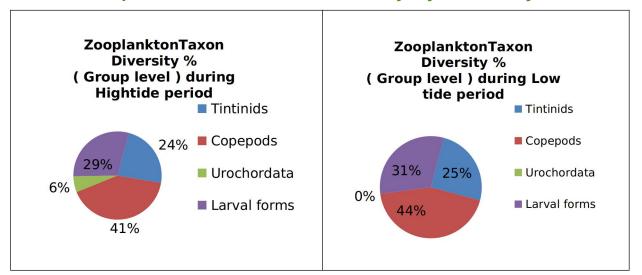

Tide	Surface	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankton x10 ³ Group Range	Genera or species /total Zooplankto n	Taxon Diversity % (Group level)
		2	Tintinids	6-7	3/13	23.08
HIGH	Sub		Copepods	30-39	6/13	46.15
TIDE	surface		Larval forms	39-51	4/13	30.77
	Sandee		TOTAL ZOOPLANKTON NO/L	85-87	13	
	Cub		Tintinids	15-16	3/13	23.08
	Sub surface	2	Copepods	30-35	6/13	46.15
TIDE surfa	Surrace		Larval forms	67-73	4/13	30.77

	TOTAL ZOOPLANKTON NO/M3	109-117	13	


Table # 19 ABUNDANCE OF ZOOPLANKTON IN SUBSURFACE SAMPLINGSTATIONS IN DPT OOT AREA AT PATH FINDER CREEK AND NEAR BYSPM DURING NEAP TIDE IN NOVEMBER, 2021

Tide	Surfac e	No of Sampling locations	Group of Zooplankton	Abundance of Zooplankt on ×10 ³ Group Range	Genera or species /total Zooplankto n	Taxon Diversity % (Group level)
			Tintinids	6-9	4/17	23.53
	Sub surface	2	Copepods	25-31	7/17	41.18
			Urochordata	0-1	1/17	5.88
HIGH TIDE			Larval forms	23-41	5/17	29.41
			TOTAL ZOOPLANKTON	48-63	17	
			Tintinids	9-10	4/16	25
			Copepods	43-47	7/16	43.75
			Urochordata	0	0	0
	Sub	2	Larval forms	43-47	5/16	31.25
LOW TIDE	surface	2	TOTAL ZOOPLANKTON NO/M3	77-83	16	


Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide In Kandla Creek and near by Creeks


Taxon Diversity % of Zooplankton during High tide and Low tide period of Neap tide In Kandla Creek and nearby Creeks

Taxon Diversity % of Zooplankton during High tide and Low tide period of Spring tide In Path Finder Creek and near Jetty

Taxon Diversity % of Zooplankton during High tide and Low tide period of Neap tide In Path Finder Creek near jetty and nearby SPM

TABLE # 20SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS OF DPT HARBOUR AREA

AT KANDLA CREEK AND NEARBY CREEKS DURINGSPRING TIDE OF NOVEMBER 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIE S	#	Relative Abundanc e
BLUE GREEN	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	<i>Oscillatoria</i> sp.	B1	Rare
ALGAE	Суапорнуса	Cyanophyceae	NUSLUCAIES	Oscillatoriaceae	Arthrospira sp.	B2	Rare
			Thalassiosirales	Thalassiosiraceae	<i>Planktoniella</i> sp	D1	Rare
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D2	Abundant
			Triceratiales	Tricoratiacaaa	<i>Odontella</i> sp	D3	Occasional
		Coscinodiscophyc eae	Theraciales	Triceratiaceae	<i>Triceratium</i> sp.	D4	Occasional
			Biddulphiales	Biddulphiaceae	<i>Biddulphia</i> sp	D5	Dominant
			Hemiaulales	Bellerocheaceae	<i>Bellerochea</i> sp	D6	Rare
	Bacillariophyta		Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D7	Occasional
DIATOMS			Chaetocerotales	Chaetocerotaceae	<i>Chaetoceros</i> sp	D8	Occasional
DIATONIS			Leptocylindrales	Leptocylindraceae	Leptocylindrussp	D9	Occasional
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D10	Frequent
		Bacillariophyceae	Naviculales	Pleurosigmataceae	<i>Pleurosigma</i> sp	D11	Occasional
			Thalassionematale	Thalassionematace	Thalassiothrix sp.	D12	Frequent
			S	ae	Thalassionema	D13	Rare
		Fragilariophyceae			Sp.		Fraguant
			Fragilariales	Fragilariaceae	<i>Fragilaria</i> sp	D14	Frequent
				-	<i>Synedra</i> sp	D15	Rare
			Tabellariales	Tabellariaceae	<i>Tabellaria</i> sp	D16	Rare
DINO FLAGELLATE		Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium sp.	DF1	Rare
S			Gonyaulacales	Ceratiaceae	Ceratiumfurca	DF2	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE # 21 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT HARBOURAREA AT KANDLA CREEK AND NEARBY CREEKS DURING AND NEAP TIDE OF NOVEMBER,2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIE S	#	Relative Abundanc e
BLUE GREEN ALGAE	Cyanophyta	Cyanophyceae	Nostocales	Oscillatoriaceae	<i>Oscillatoria</i> sp.	B1	Rare
			Thelessissirales	Thelessissing	<i>Planktoniella</i> sp	D1	Occasional
			Thalassiosirales	Thalassiosiraceae	Thalassiosirasp	D2	Occasional
			Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D3	Frequent
		Coscinodiscophyc	Triceratiales	Tricorationago	Ödontellasp	D4	Rare
			Inceraciales	Triceratiaceae	<i>Triceratium</i> sp.	D5	Occasional
		eae	Biddulphiales	Biddulphiaceae	<i>Biddulphia</i> sp	D6	Dominant
			Hemiaulales	Bellerocheaceae	<i>Bellerochea</i> sp	D7	Rare
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D8	Occasional
			Chaetocerotales	Chaetocerotaceae	<i>Chaetoceros</i> sp	D9	Rare
DIATOMO	Decillerienbyt		Leptocylindrales	Leptocylindraceae	Leptocylindrussp	D10	Rare
DIATOMS	Bacillariophyt		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D11	Frequent
	а		Bacillariales	Bacillariaceae	Bacillariasp.	D12	Occasional
					<i>Nitzschia</i> sp	D13	Rare
		Bacillariophyceae	Naviaulalaa	Naviculaceae	Naviculasp	D14	Rare
			Naviculales	Pleurosigmataceae	<i>Pleurosigma</i> sp	D15	Rare
			Surirellales	Entomoneidaceae	Entomoneissp	D16	Rare
			Thelessionemetals	Thelessienemeters	Thalassiothrix sp.	D17	Abundant
			Thalassionematale s	Thalassionematace ae	Thalassionema sp.	D18	Occasional
		Fragilariophyceae	L		<i>Fragilaria</i> sp	D19	Frequent
			Fragilariales	Fragilariaceae	<i>Synedra</i> sp	D20	Rare
			Tabellariales	Tabellariaceae	Tabellariasp	D21	Rare
DINO	Dinoflagellat				Ceratiumfurca	DF1	Rare
FLAGELLATES	a / Dinozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumtripos	DF2	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE # 22 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT OOT AREA ATPATH FINDER CREEK AND NEARBY SPM AT VADINAR DURING SPRING TIDEOF NOVEMBER 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIE S	#	Relative Abundanc e
		Coscinodiscophyce ae ophyta	Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D1	Dominant
			Triceratiales	Triceratiaceae	<i>Triceratium</i> sp.	D2	Rare
			Biddulphiales	Biddulphiaceae	<i>Biddulphia</i> sp	D3	Abundant
			Hemiaulales	Bellerocheaceae	<i>Bellerochea</i> sp	D4	Rare
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D5	Occasional
DIATOMS	Bacillariophyta		Chaetocerotales	Chaetocerotaceae	<i>Chaetoceros</i> sp	D6	Frequent
			Lithodesmiales	Lithodesmiaceae	Ditylumsp	D7	Occasional
			Naviculales	Pleurosigmataceae	<i>Pleurosigma</i> sp	D8	Rare
		Bacillariophyceae			<i>Bacillaria</i> sp.	D9	Rare
			Bacillariales	Bacillariaceae	<i>Pseudo-</i> <i>Nitzschia</i> sp	D10	Occasional
		Fragilariophyceae	Thalassionematale s	Thalassionematace ae	Thalassiothrix sp.	D11	Frequent

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE # 23 SYSTEMATIC ACCOUNT OF PHYTOPLANKTON IN THE SAMPLING LOCATIONS IN OF DPT OOT AREA ATPATH FINDER CREEK AND NEARBY SPM AT VADINAR DURING AND NEAP TIDE OF NOVEMBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIE S	#	Relative Abundanc e
			Thalassiosirales	Thalassiosiraceae	<i>Planktoniella</i> sp	D1	Occasional
			Indiassiositales	Indidissiosifaceae	Thalassiosirasp	D2	Rare
		Cooping diagona have	Coscinodiscales	Coscinodiscaceae	Coscinodiscus sp.	D3	Dominant
		Coscinodiscophyc eae	Triceratiales	Triceratiaceae	<i>Triceratium</i> sp	D4	Rare
			Biddulphiales	Biddulphiaceae	<i>Biddulphia</i> sp	D5	Abundant
			Hemiaulales	Bellerocheaceae	<i>Bellerochea</i> sp	D6	Occasional
			Rhizosoleniales	Rhizosoleniaceae	Rhizosolenia sp.	D7	Occasional
DIATOMS	Bacillariophy		Chaetocerotales	Chaetocerotaceae	<i>Chaetoceros</i> sp	D8	Rare
	ta		Lithodesmiales	Lithodesmiaceae	Ditylumsp	D9	Frequent
			Naviculales	Pleurosigmataceae	<i>Pleurosigma</i> sp	D10	Rare
					<i>Bacillaria</i> sp.	D11	Occasional
		Bacillariophyceae	Bacillariales	Bacillariaceae	<i>Nitzschia</i> sp	D12	Rare
			Dacillariales	Bacillallaceae	<i>Pseudo-</i> <i>Nitzschia</i> sp	D13	Frequent
			Fragilariales	Fragilariaceae	Synedra sp.	D14	Rare
		Fragilariophyceae	Thalassionematale	Thalassionematace	Thalassiothrix	D15	Occasional
			S	ае	sp.		Occasional
DINO	Dinoflagellat	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratiumfusus	DF1	Rare
FLAGELLATES	a / Dinozoa	Diriophycede			Ceratiumfurca	DF2	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE #24 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBY CREEKSDURING SPRING TIDE OF NOVEMBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDAN CE
				Tintinnidiidae	Leprotintinnussp.	T1	Rare
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida		Tintinnopsis radix	T2	Rare
	CILIOPHORA	Spirotricitea	Tintininda	Codonellidae	Tintinnopsisfailakkae nsis	Т3	Occasional
				Paracalanidae	Acrocalanus sp.	C1	Frequent
			Calanoida	Clausocalanida e	Clausocalanus sp.	C2	Rare
		Crustacea	Cyclopoida	Oithonidae	Oithona sp.	C3	Abundant
COPEPODS	ATHROPODA	Subclass: Copepoda	Harpacticoida	Ectinosomatid ae	<i>Microsetella</i> sp.	C4	Rare
				Euterpinidae	Euterpina sp.	C5	Occasional
			Poicilostomatato ida	Oncaeidae	Oncaea sp.	C6	Rare
ROTIFERS	ROTIFERA	Rotifera Subclass: Eurotatoria	Superorder: Monogononta Order:Ploimida	Brachionidae	Brachionusplicatilis	R1	Rare
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDAT A	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea Iarvae	L2	Occasional

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Environmental Monitoring Report of Deendayal Port Trust, November-2021

MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura	Opisthobranchia larvae	L3	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta	Trochophore larvae	L4	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda	Veliger larvae of Bivalves	L5	Rare

TABLE # 25 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING OF DPT HARBOUR AREA AT KANDLA CREEK AND NEARBY CREEKSDURING NEAP TIDE OF NOVEMBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDAN CE
				Tintinnidiidae	Leprotintinnussp.	T1	Frequent
					Tintinnopsisgracilis	T2	Occasional
TINTINIDS	PROTOZOA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsis radix	Т3	Frequent
TINTINIDS	CILIOPHORA	Spirotrichea	Intinida	Codonemaae	Tintinnopsisfailakkae nsis	T4	Occasional
				Tintinnidae	Amphorides sp.	T5	Rare
		Crustacea	Calanoida	Paracalanidae	<i>Acrocalanus</i> sp.	C1	Occasional
				Eucalanidae	Pareucalanus sp.	C2	Rare
				Clausocalanida e	Clausocalanus sp.	С3	Rare
				Centropagidae	Centropages sp.	C4	Rare
COPEPODS	ATHROPODA	Subclass:	Cyclopoida	Oithonidae	Oithona sp.	C5	Abundant
COFLFODS	ATTROFODA	Copepoda	Harpacticoida	Ectinosomatid ae	<i>Microsetella</i> sp.	C6	Frequent
				Euterpinidae	Euterpina sp.	C7	Occasional
			Poicilostomatato ida	Oncaeidae	Oncaea sp.	C8	Rare
ARROW WORMS	CHAETOGNATH A	Sagittoidea	Aphragmophora	Sagittidae	Sagitta sp.	A1	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Environmental Monitoring Report of Deendayal Port Trust, November-2021

			Musida	Colonocoridoo	Colonocorocn	141	Dara
MYSIDS	ATHROPODA	Malacostraca	Mysida,	Solenoceridae	Solenocerasp.	M1	Rare
	CRUSTACEA		Decapoda	Luciferidae	Lucifer sp.	M2	Rare
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDAT A	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CILIATES	CILIOPHORA	Oligohymenoph orea	Sessilida	Zoothamniidae	Zoothamniumsp.	CI1	Rare
MEDUSA	PHYLUM CNIDARIA	Hydrozoa			Unidentified medusa	ME 1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea Iarvae	L2	Frequent
GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDAN CE
BARNACLE LARVAE	ATHROPODA CRUSTACEA	Maxillopoda Thecostraca			Cirripede larvae	L3	Occasional
CYPHONAUTES LARVAE	BRYOZOA				Cyphonautes larvae	L4	Occasional
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L5	Rare
ECHINODERMAT A LARVAE	ECHINODERMA TA				Ophipluutes larvae/ Echinoplutes larvae	L6	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L7	Occasional
			D	Globigerinidae	<i>Globigerina</i> sp.	F1	Rare
FORAMINIFERA	FORAMINIFERA	Globothalamea	Rotaliida	Rotalliidae	<i>Rotalia</i> sp.	F2	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE # 26 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT OOT AREA AT

PATH FINDER CREEK AND NEARBY SPM AT VADINAR DURING SPRING TIDE OF NOVEMBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDA NCE
	PROTOZOA			Tintinnidiidae	Leprotintinnussp.	T1	Occasional
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Codonellidae	Tintinnopsisgracilis	T2	Rare
	CILIOFIIORA			Couoneniuae	Tintinnopsis radix	Т3	Occasional
			Calanoida	Paracalanida e	<i>Acrocalanus</i> sp.	C1	Frequent
	ATHROPODA	Crustacea Subclass: Copepoda	Calanoida	Clausocalanid ae	Clausocalanus sp.	C2	Rare
COPEPODS			Cyclopoida	Oithonidae	Oithona sp.	C3	Abundant
			Harpacticoida	Euterpinidae	Euterpina sp.	C4	Rare
			Poicilostomatat	Oncaeidae	Oncaea sp.	C5	Rare
			oida	Corycaeidae	Corycaeus sp.	C6	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L2	Occasional
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L3	Occasional
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L4	Occasional

DCPL/DPT/20-21/19 -NOVEMBER - 2021

TABLE # 27 SYSTEMATIC ACCOUNT OF ZOOPLANKTON FROM THE SAMPLING LOCATIONS OF DPT OOT AREA AT PATH FINDER CREEK AND NEARBY SPM AT VADINAR DURING NEAP TIDE OF NOVEMBER, 2021

GROUP	PHYLUM	CLASS	ORDER	FAMILY	GENUS/SPECIES	#	RELATIVE ABUNDAN CE
				Tintinnidiidae	Leprotintinnussp.	T1	Occasional
	PROTOZOA			Codonellidae	Tintinnopsisgracilis	T2	Rare
TINTINIDS	CILIOPHORA	Spirotrichea	Tintinnida	Couoneniuae	Tintinnopsis radix	T3	Occasional
	CILIOT HORA			Codonellopsid ae	<i>Codonellopsis</i> sp.	T4	Rare
				Paracalanidae	Acrocalanus sp.	C1	Abundant
			Calanoida	Eucalanidae	Subeucalanus sp.	C2	Rare
		Crustacea	Calanolua	Clausocalanida e	Clausocalanus sp.	С3	Occasional
COPEPODS	ATHROPODA	Subclass: Copepoda	Cyclopoida	Oithonidae	Oithona sp.	C4	Frequent
			Harpacticoida	Euterpinidae	Euterpina sp.	C5	Rare
			Poicilostomatatoi	Oncaeidae	Oncaea sp.	C6	Rare
			da	Corycaeidae	Corycaeus sp.	C7	Rare
UROCHORDATA	CHORDATA SUB PHYLUM UROCHORDATA	Appendicularia		Oikopleuridae	Oikopleura sp.	U1	Rare
CRUSTACEAN LARVAE	ARTHROPODA (CRUSTACEA)	Copepoda			Nauplius larvae of Copepods	L1	Dominant
BRACHYURA LARVAE	ARTHROPODA (CRUSTACEA)	Malacostraca Decapoda			Brachyuran Zoea Iarvae	L2	Rare
MOLLUSCAN LARVAE	MOLLUSCA	Gastropoda Streptoneura			Opisthobranchia larvae	L3	Rare
POLYCHAETE LARVAE	ANNELIDA	Polychaeta			Trochophore larvae	L4	Occasional
BIVALVE LARVAE	MOLLUSCA	Pelecypoda			Veliger larvae of Bivalves	L5	Rare

DCPL/DPT/20-21/19 -NOVEMBER - 2021

Environmental Monitoring Report Of Deendayal Port Trust, NOVEMBER-2021

BENTHIC ORGANISMS:

Few Benthic organismswere observed in the collected sediments by using the Van-veen grabs during the sampling conducted during spring tide period andNeap tide period from DPT harbour region and nearby creek.The meiobenthic organisms during spring tide were represented by Polychaetes, and Nematodes. The polychaetes were representedby *Scyphoproctus sp. Notomastus*sp,*Dasybranchus.* The meiobenthic organisms in the collected samples were varying from 50-180N/M ²during spring tide and 60-130 N/M

Table # 28BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPTHARBOUR AREA CREEKS DURING SPRING TIDE IN NOVEMBER ,2021

Benthic fauna	ABUNDANCE IN NO/M ² DIFFERENT SAMPLING STATIONS REPRESENTATION BY GROUP								
	DP	T HARBO	DUR		CREEKS	5			
POLYCHAETES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6			
Family : Capitellidae	0	40	0	20	20	NS			
Family : Capitellidae Notomastus sp.	40	60	40	80	30	NS			
Total Polychates N/M ²	40	100	40	120	50				
Un identified Nematode worms	10	20	40	60	20	NS			
TOTAL Benthic Fauna NUMBER/ M ²	50	120	80	180	70	-			

NS : No sample

Table # 29 BENTHIC FAUNA IN THE SAMPLING LOCATIONS IN DPTHARBOUR AREA CREEKS DURING NEAP TIDE IN NOVEMBER ,2021

	ABUN	ABUNDANCE IN NO/M ² DIFFERENT SAMPLING STATIO REPRESENTATION BY GROUP								
Benthic fauna	DPT HARBOUR			CREEKS						
POLYCHAETES	KPT-1	KPT-2	KPT-3	KPT-4	KPT-5	KPT-6				
Family : Capitellidae Dasybranchus sp.	10	20	10	10	20	NS				
Family : Capitellidae Notomastus sp.	50	60	20	40	20	NS				
Family : Glyceridae Glycera	10	20	10	0	0	NS				

DCPL/DPT/20-21/19 - NOVEMBER -2021

Total Polychates N/M ²	70	100	40	50	40		
Un identified Nematode worms	20	30	30	30	20	NS	
TOTAL Benthic Fauna NUMBER/ M ²	90	130	70	80	60	-	

Environmental Monitoring Report Of Deendayal Port Trust, NOVEMBER-2021

NS : No sample

Meteorological Data

Automatic Weather station have been installed in Seva Sadan -3 at the Deendayal Port which records the data on Temperature (°C), Humidity (%),Wind (mph), Dew Point (°C), Wind Direction (°), Pressure, Solar radiation, heat Index and UVI.

Temperature

The mean day time temperature for Deendayal Port was 30.3 °C. The daytime maximum temperature was 38.6 °C. The mean night time temperature was 26.5 °C. The minimum mean night time temperature recorded was 30.6 °C.

Air Pressure

The mean absolute air pressure for the month of November was 1009.9 hpa, whereas the mean relative pressure was 1009.3 hpa. The maximum absolute air pressure recorded for the month of November was 1016.5 hpa.

Heat Index

The mean day-time heat index for the month of November was 33.8 °C. The maximum heat index recorded was 55°C.

Solar Radiation

The mean Solar Radiation in November was 252.2 w/m². The maximum solar radiation recorded in the month of November was 746.6 w/m².

Humidity

The mean day-time humidity was 60.0 % for the month of November and mean night time humidity was 72.4%. Maximum humidity recorded during day-time was 94.0 % and maximum humidity recorded during night-time was 93.0%.

Wind Velocity and Wind Direction

The mean wind velocity for the entire month of November was 4.6 km/hour. Maximum wind velocity recorded was 29.2 Km/hr . The wind direction was mostly S to N.

Conclusive Summary and Remedial measures Suggested

The AAQ monitoring at six locations of Deendayal Port indicates that the mean PM_{10} values at four locations viz. Coal storage area, Marine Bhavan and Oil Jetty area were found above the permissible standards (100 µg/m³) and PM_{2.5} was above permissible limits at Coal storage location(Limit 60 µg/m³).

Drinking water at all the twenty locations was found potable and was within permissible limits of BIS standards (IS 10500).

Noise quality was also within the set permissible standards of an Industrial Area. The noise level observed during day time was >75 dB (A) and at night time was >70 dB (A) during the entire monitoring period.

The sewage treated water of Deendayal Port Colony (Gopalpuri) was in line with the standards set by the Gujarat Pollution Control Board.

Reasons for higher Values of PM10

Large amount of coal is handled at Berth No. 6, 7, 8 and 9. The unloading of coal directly in the truck, using grabs cause coal to spread in air as well as coal dust to fall on ground. This settled coal dust again mixes with the air while trucks travel through it.

Also, the coal laden trucks are not always covered with tarpaulin sheets and these results in spillage of coal from trucks/dumpers during its transit from vessel to yard or storage site. This also increased PM values around marine Bhavan & Coal storage area.

Remedial Measures

The values of PM_{10} during the month of November, 2021 were observed beyond the permissible limit at four locations mentioned above. Given below are the remedial measures suggest to minimize the Air pollution at Deendayal Port.

> Guidelines for Coal Handling by GPCB should be strictly followed. (http://gpcb.gov.in/pdf/coal-handling-guidelines.pdf)

> Except for the higher values of PM_{10} at Coal storage site, Oil Jetty, Tuna Port and Marine Bhavan locations, the monitoring results for the present month suggest that the overall Environment Quality of Deendayal Port is satisfactory.

SOURCE OF LITERATURE AND ADDITIONAL REFERENCE FOR

ECOLOGICAL STUDY

- 1) ALBERT WEST PHAL (1976) Protozoa Blackwell , London
- BANERJEE R.K. (1989) Heavy metals and Benthic foraminiferal distribution along Bombay coast India. Studies in benthic foraminifera. *Tokyo University Press* Tokyo pp 151-157
- 3) Banse K (1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass and production. ICES J Mar Sci 52: 265–277.
- BeaugrandG, and Ibanez F (2004) Monitoring marine plankton ecosystems. II:ong-term changes in North Sea calanoid copepods in relation to hydroclimatic variability. Inter Res Mar EcolProgSer 284:35-47.
- 5) DAY F. (1889) The fauna of British India Ceylon and Burma- Fishes Vol-1- Vol-2 *Taylor and Francis* London
- 6) DESIKACHARYT.V. (1989) Atlas of diatoms, Madras Science Foundation
- 7) DESIKACHARYT.V.(1959) Cyanophyta ICAP Monographs on Algae *Indian Council of Agricultural research* New Delhi
- 8) FAIZAYOUSIF AL-YAMANI& MARIA A. SABUROVA(2010) illustrative guide on the flagellates of Intertidal soft sediment *Kuwait Institute for scientific Research* Kuwait
- 9) FAIZAYOUSIF AL-YAMANI, VALERIYSKRYABIN, ALEKSANDRA GUBANOVA, SERGEY KHVOROV AND IRINA PRUSOVA (2011), Marine zooplankton Practical guide from North western Arabian gulf Vol-1 and vol-2 *Kuwait Institute for scientific Research* Kuwait
- 10) FAUVEL P. (1953), The fauna of India Annelida Polychaeta Indian Press Allahabad
- 11) Gajbhiye SN, Nair VR, and Desai BN (1984). Diurnal variation of zooplankton in Malad creek, Bombay. Indian Journal of Marine Science. 13:75-79.
- 12) HAYWARD P.J AND RYLAND J.S. (1995) Handbook of Marine fauna of north -West Europe oxford University Press London
- 13) HIGGINS R.P. HAJAMARTHIEL Eds. (1998) Introduction to the study of Meio Fauna
- 14) HORACE G. BARBER AND ELIZABETH Y. HAWORTH 91981) A guide to the Morphology of DIATOMS FRUSTULES.
- 15) INGRAM HENDEY (1964) An introductory account of smaller Algae of British coastal waters part-V. Bacillariophyceae
- 16) JOHN H. WICKSTEAD(1965) an Introduction to the study of Tropical Plankton .Hutchinson Tropical Monographs
- 17) JOYOTHIBABU,R. MADHU, N.V. MAHESHWARAN, P.A., NAIRK.K.C., VENUGOPL,P. BALASUBRAMANIAN T.2005) Dominance of Dinoflagellates in micro zooplankton communities in the oceanic region Bay of Bengal and Andaman sea Current science vol.84. 10th May 2003
- 18) KASTURIRANGANL.R. (1963) A key for the identification of the Common Planktonic Copepoda of Indian Coastal water
- 19) KusumKK, Vineetha G, Raveendran TV, Nair VR, Muraleedharan KR, Achuthankutty CT and Joseph T (2014) Chaetognath community and their responses to varying environmental factors in the northern Indian ocean. J Plankton Res 36(4): 1146- 1152.

DCPL/DPT/20-21/19 - NOVEMBER -2021

Environmental Monitoring Report Of Deendayal Port Trust, NOVEMBER-2021

- 20) Lalli CM and Parsons TR (1997) Biological Oceanography: An Introduction. DOI<u>https://doi.org/10.1016/B978-0-7506-3384-0.X5056-7</u>.
- 21) Madhupratap M (1978) Studies on ecology of zooplankton of Cochin backwaters. Mahasagar Bull Nat Inst Oceanogr 11: 45-56.
- 22) Madhupratap M (1979) Distribution, community structure and species succession of copepods from Cochin Backwaters. Indian J Ma Sci 8: 1-8.
- 23) Madhupratap M (1987) Status and strategy of zooplankton of tropical Indian estuaries: A review. Bull Plank SocJpn 34: 65-81.
- 24) Madhupratap M (1999) Free living copepods of the Arabian Sea, Distribution and Research Perspectives. I J Mar Sci 146-149.
- 25) Madhupratap M and Haridas P (1986) Epipelagic calanoid copepods of the northern Indian Ocean. OceanologicaActa 9(2):105-117.
- 26) MANAL AL-KANDARI, FAIZA Y. AL-YAMANI , KHOLOOD AL-RIFAIE (2009) Marine phytoplankton Atlas of Kuwait's water *Kuwait Institute for scientific Research*
- 27) MPEDA (1998) Commercial Fishes and shell fishes of India
- 28) NEWEL G.E. & NEWELL R.C. (1963) Marine plankton a Practical Guide Hutchinson Educational
- 29) NIGAM R.C. AND CHATURVEDIS.K. (2000) Foraminiferal Study from KharoCreek , Kachchh (Gujarat) North west coast of *India. Indian Journal of marine science* Vol.29 133-189
- 30) OLAV GIERE (1993) Meio benthology , Microscopic Fauna in Aquatic Sediments m Springer London
- 31) PERRAGALLO(1965) Diatomees marines de france A. Asher & Co. Amsterdam
- 32) Robert P.. Higgins (Eds.), (1985) An introduction to the study of Meuio fauna Smithsons Institution press Washington DC
- 33) STERRER W. STERRERC.S Eds. Marine fauna and flora of Bermuda A systematic Guide to the identification of Marine Organisms. *John Wiely and Sons*New York
- 34) Suresh Gandhi. M. (2009) Distribution of certain ecological parameters and Foraminiferal distribution in the depositional environment of Pak strait east coast of India .*Indian J. of Marine Science* Vol.33 pp 287-295
- 35) Venktaraman (1993 A systematic account of some south Indian diatoms . Proceeding of Indian Academy of Science Vol.X No.6 Sec.B.
